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Backdoor Attack

» Backdoor (Trojan) attack poses a significant threat to deep learning applications
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Traditional Cyber Attacks

» Adversary crafts a special input to exploit a program vulnerability
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Forensics

» Forensics identifies attack root causes and helps build vulnerability scanners
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Zoomed in area Line is warped

Why Backdoor Forensics?
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» Trigger-inversion based backdoor scanners

o Invert a trigger that does not exist in clean models

» Limitation of existing backdoor scanners

TR 2

o Have no knowledge about trigger patterns
Trigger-stamped

Ogilmage
o Hard to invert the trigger with little guidance

» Forensics on backdoor attack
o Acquire information about trigger

o Improve the scanner to invert similar triggers and detect the backdoor.

[1] Nguyen, Tuan A, et al. “WaNet-Imperceptible Warping-based Backdoor Attack.” ICLR 2021.
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Problem Definition

» Knowledge

o Aset of trojaned models attacked by one type of backdoor
o Afew poisoned images with triggers (for each model)

o Afew clean images without triggers (for each model)

> Goal

o Extract and summarize the trigger patterns, e.g., colors, positions

o Provide guidance for inversion and improve the scanning performance

» Scope

o Detect backdoors of the same type in other models
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Backdoor Forensics Overview

» Phase | —— Attack decomposition

o Given atrojaned image, we decompose it into the clean version and the trigger

> Phase Il —— Attack summarization

o Summarize the decomposed triggers into distributions

» Phase Ill —— Scanner synthesis Trigger Inversion
o Guide the trigger inversion fmwnﬁmmﬁumbased on the distributions
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Backdoor Forensics Overview

» Phase | —— Attack decomposition

o Given atrojaned image, we decompose it into the clean version and the trigger
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Phase I: Attack Decomposition

> Goal

o Decompose a trojaned image (x@t) to its clean version ¥ and the trigger t

o Decomposed clean version X resembles the source image x

o Decomposed trigger t resembles the source trigger t Decomposed
Clean Version x

Trojaned Image

[1] Liu, Yunfeli, et al. “Reflection backdoor: A natural backdoor attack on deep neural networks” ECCV 2020.
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Phase I: Attack Decomposition

» Cyclic optimization consists of 2 stages and 7 steps

A. Unstamping
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Phase I: Attack Decomposition

» Unstamping stage
o Initialize decomposed clean version X using the trojaned image (x@t)

o Initialize the trigger £ with some random values

Initialize Optimize Optimize
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Last iteration:
£, Decomposed trigger

Phase |: Attack Decomposition % Decomposed clean

Current iteration:

» Unstamping stage £: Decomposed trigger
A. Unstamping X: Decomposed clean

Draft Clean (2) Reconstruction Decomposed Clean %
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t: Decomposed trigger

Phase |: Attack Decomposition £ Decomposed clean

x,. Clean validation images

» Stamping stage % @ t: Recovered trojaned image
B. Stamping x, D t: Generated trojaned images
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Backdoor Forensics Overview

> Phase Il —— Attack summarization

o Summarize the decomposed triggers into distributions

BEAGLE: Forensics of Deep Learning Backdoor
UPIH &RIIJ'I'EY Attack for Better Defense

14



e

Phase |l: Attack Summarization

> Attack feature extraction

o Extract the feature of decomposed triggers, e.g., trigger sizes, colors

» Clustering

o Partition the attack features into different clusters

> Summarization

o Model the distribution of each partition
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Backdoor Forensics Overview

» Phase Il —— Scanner synthesis

o Guide the trigger inversion for existing scanners based on the distributions
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Phase I11: Scanner Synthesis

> General loss for trigger inversion Loss = Lossc, +: l:?ffr_e_ql

o  CE (Cross Entropy) loss ensures target misclassification

o Reg (Regularization) loss constrains trigger pattern
» Synthesize the regularization term based on summarized distribution

o  Penalize on inverted trigger that is out of range

Trigger Inversion
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Other application

» Backdoor mitigation

o Stamp the decomposed trigger on the clean images and perform adversarial

training to mitigate the backdoor effect

BEAGLE: Forensics of Deep Learning Backdoor
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Experiment Setup

» Datasets and models
o Datasets: TrojAlIl round 2, 3, CIFAR-10, GTSRB, CelebA, ImageNet

o Models: ResNet18, ResNet50, VGG11, VGG16, MobileNet, DenseNet. ..

o 2112 downloaded models + 420 pre-trained models

> Baselines

o 10 popular backdoor attacks

o Improve 5 existing trigger-inversion based backdoor scanners

[1] “Trojai leaderboard,” https://pages.nist.gov/trojai/.
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Evaluation on Enhanced Scanner

m== Original == BEAGLE
> Metrics: Accuracy (FPR, FNR) e
» Downloaded TrojAl models é 30_
o Improves NCIH, Taborl?l and K-Arml3] for § 62
10% accuracy on polygon backdoored models °07NC  Tabor KArm  ABS  Trinity

o Improve ABSI* and Trinityl® for 9%-27% accuracy on Instagram filter backdoored models

> Pre-trained models

o Improve ABSI* for 17% to 40% accuracy on 10 popular backdoored models

[1] Wang, Bolun, et al. “Neural cleanse: Identifying and mitigating backdoor attacks in neural networks.” S&P 2019.

[2] Guo, Wenbo, et al. “Towards Inspecting and Eliminating Trojan Backdoors in Deep Neural Networks.” ICDM 2020.

[3] Shen, Guangyu, et al. “Backdoor scanning for deep neural networks through k-arm optimization.” ICML 2021.

[4] Liu, Yingaqi, et al. “Abs: Scanning neural networks for back-doors by artificial brain stimulation.” CCS 20109.

[5] Karan Sikka, et al. “Detecting Trojaned DNNs Using Counterfactual Attributions.” arXiv preprint arXiv:2012.02275 (2020).

PURDUE BEAGLE: Forensics of Deep Learning Backdoor 20

UNIVERSITY Attack for Better Defense




Evaluation on Attack Decomposition

> Attack decomposition of Reflectionll backdoor

Trojaned Image Source Clean Decomposed Clean

Clean image @ Clean image @
Ground-truth Trigger Decomposed Trigger

[1] Liu, Yunfeli, et al. “Reflection backdoor: A natural backdoor attack on deep neural networks” ECCV 2020.
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Evaluation on Attack Decomposition

> Attack decomposition of Invisiblelt! backdoor
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[1] Li, Yuezun, et al. “Invisible backdoor attack with sample-specific triggers.” ICCV 2021.
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Conclusion

» Propose a novel Backdoor Forensics Technique (BEAGLE) can extract the trigger
features from the trojaned images and guide trigger inversion.

» BEAGLE can improve scanning accuracy for 10%-16% on average on
downloaded TrojAl models and 17%-40% on 10 popular backdoors

» BEAGLE can decompose a trojaned image into its clean version and the trigger

with high reconstruction quality.

? PURDUE BEAGLE: Forensics of Deep Learning Backdoor 24

UNIVERSITY Attack for Better Defense



e

PURDUE

UNIVERSITY

Thank you!

Q&A

BEAGLE: Forensics of Deep Learning Backdoor
Attack for Better Defense

25



Two Functions

» Stamping/Unstamping functions
o Classify existing backdoor attack triggers into two categories:
(1) Patch and (2) Transforming backdoor
o Utilize mask (m) and trigger (t) to stamp/unstamp patch triggers on images

o Design linear transformation function to handle transforming triggers
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Evaluation on Attack Decomposition

» Metrics: L! distance, PSNR, SSIM, Accuracy/ASR

» Outperforms Februus on both decomposed clean images and the trigger

o The decomposed components resemble their source images
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