Computer Security Laboratory

Unlocking the Potential of Domain Aware
Binary Analysis in the Era of loT

Zhigiang Lin
zlin@cse.ohio-state.edu

March 3rd, 2023

THE OHIO STATE UNIVERSITY 01

zlin@cse.ohio-state.edu

History of Computing (Since 1980s)

1/28

History of Computing (Since 1980s)

Internet

v

1/28

History of Computing (Since 1980s)

Internet Mobile

Netscape | Windows 3G/4G | Android f§ iPhone
1994 1995 2000s 2005 2007

0
p=="

v

1/28

History of Computing (Since 1980s)

Internet Mobile

Tc:/?Pg; Netscape | Windows 3G/4G | Android J§ iPhone
o) 1994 1995 2000s | 2005 f 2007

Amazon
Thermostat § Model S Alexa
2014

v

1/28

History of Computing (Since 1980s)

Internet

Mobile

E D-1
U Netscape | Windows 36/4G Android || iPhone GO dge. covib19
Internet 1994 1995 2000 2005 2007 Thermostat § Model S Alexa Computing Pandemic
1982 g 2014 2015 2020

1/28

of Computing (Since 1980s)

Internet Mobile loT

W B

-

TCP/IP &)) Nest A Ed covID-19
s Netscape | Windows 36/46 | Ancroid | iphone Thermostat Nexa. | computing Pandemic
o 1994 1995 2000s | 2005 | 2007 oL Sora S s

1/28

History of Computing (Since 1980s)

Internet Mobile

-

D-1
e | e Itscpe | wincows 3646 ancrou | ehone hermostt "o | computing Pandonic
o 1994 1995 2000s | 2005 | 2007 oL Sora S s

TRENDnet Jeep Verkada
Webcam § Cherokee Camera
Hack hack Hack

2012 2015 2021

1/28

Modern loT Architecture

i i Application E E

1 (aeot J (awoz) (apoa J(appe] 4

| Middleware |

E t (__APis__][Modules J(_services] E E

| SDKs)(Libraries]

E E (Framework) E '
b 0s/Bare-Metal b
e o
e HAL b
| Rt 1
Hardware

("Processor J [RAM J [Storage |{ 1/0]

An Embedded loT Device 2/28

Modern loT Architecture

i Application

t (ape1) (ave2) (Cawez] (ees) ()

' Middleware

APIs__J(_ Modules][Services]
SDKs) Libraries
Framework

]
\ Hardware

("Processor J [RAM J [Storage |{ 1/0]

An Embedded loT Device 2/28

Modern loT Architecture

i Application

t (ape1) (ave2) (Cawez] (ees) ()

' Middleware

APIs__J(_ Modules][Services]

SDKs)(Libraries
Framework

[Sensor][Actuator][UsB][Camera] !
(__clock][Microphone (" Keyboard] E
i

)
]

1

1

1

:

]

Peripherals &
i

]

]

]

]

1

]

1

An Embedded loT Device 2/28

R N . S S S
Modern loT Architecture
Q0

° | e |
0 ; ! 1 Middleware b
v J E t (__APis__][Modules J(_services] E E

(SDKs) Libraries)
(Framework)

: @ WatsonIoT.

]
\ Hardware

|
E ("Processor J [RAM] [Storage J{ 1/0]

eripherals {
'
Sensor][Actuator][UsB][Camera] !
i
1

Clock J(Microphone J(Keyboard]

e

An Embedded loT Device

2/28

R N . S S S
Modern loT Architecture

00 Eeen

° ! e :
a ; ! 1 Middleware o
v J i i APIs__J(_ Modules][Services] E E

SDKs) Libraries)

Framework)

@ WatsonIoT.

< &

atos A
D

An Embedded loT Device

2/28

R N . S S S
Modern loT Architecture

A \ o bIIIIoooooooooIiooooooooooooIIioooooio
; ! 1 Middleware b
J& i t (__APis__][Modules J(_services] E E

1
i (SDKs) Libraries)
H
H
1

(Framework)

: @ WatsonIoT.
<
\/

Clock J(Microphone J(Keyboard] % ‘

An Embedded loT Device

atos A
Py

»g |

WP @inen
CSR &Y

— = 5
w
o
=1
2
o
=
>
o
2
c
QU
Q
5]
=
c
wv
@
o
Q
3
(0]
s
[

2/28

Domain-Aware Binary Analysis

Binary code analysis is challenging

» Control flow recovery, semantic understanding, vulnerability detection, root-cause
analysis...

3/28

Domain-Aware Binary Analysis

Binary code analysis is challenging

» Control flow recovery, semantic understanding, vulnerability detection, root-cause
analysis...

Why Domain-Aware

@ One size does not fit all

» Heterogeneous architecture, OS, APIs of different loT vendors
» Domain-specific challenges

3/28

Domain-Aware Binary Analysis

Binary code analysis is challenging

» Control flow recovery, semantic understanding, vulnerability detection, root-cause
analysis...

Why Domain-Aware

@ One size does not fit all

» Heterogeneous architecture, OS, APIs of different loT vendors
» Domain-specific challenges

@ Learn from the domain

» Unique domain insights for binary analysis
» Novel techniques and methodology
» Transition to other domains

3/28

Our Recent Works on (loT) Binary Analysis

------------------------------------ @ Egg Hunt in Tesla Infotainment: A First Look
& at Reverse Engineering of Qt Binaries. In
USENIX Security 2023

\ (__APis__][Modules][Services] f
i

| SDKs | Libraries)

E (Framework)

[Sensor][Actuator][USB][Camera]
(__Clock][Microphone] Keyboard |

An Embedded loT Device 4/28

Our Recent Works on (loT) Binary Analysis

@ Egg Hunt in Tesla Infotainment: A First Look
at Reverse Engineering of Qt Binaries. In
USENIX Security 2023

' @ Understanding loT Security from a

Market-Scale Perspective. In CCS 2022
(__Apis) Modules][Sservices]

1
1
i
| SDKs | Libraries)
E Framework

Sensor][Actuator][USB][Camera]
Clock_J(Microphone J(Keyboard)

An Embedded loT Device 4/28

Our Recent Works on (loT) Binary Analysis

@ Egg Hunt in Tesla Infotainment: A First Look

s at Reverse Engineering of Qt Binaries. In
ondroid USENIX Security 2023

Q unity @ Understanding loT Security from a
Market-Scale Perspective. In CCS 2022

] E © Playing Without Paying: Detecting Vulnerable
i Payment Verification in Native Binaries of
. Mobile Games. In USENIX Security 2022

(__APis_J{_Modules][Services]

1
1
|
i (SDKs J(Libraries
|
|

(Framework)

Sensor][Actuator][USB][Camera]
Clock_J(Microphone J(Keyboard)

An Embedded loT Device

Our Recent Works on (loT) Binary Analysis

R : @ Egg Hunt in Tesla Infotainment: A First Look
: Application at Reverse Engineering of Qt Binaries. In
i (et] (app2] (aop3] ((appa (] USENIX Security 2023

Understanding loT Security from a

E E l\[lidd/:izuare][T] E i Market-Scale Perspective. In CCS 2022

1 1 S odules ervices] i

Vo (D I Libraries) Vo © Playing Without Paying: Detecting Vulnerable

E i (Framework i Payment Verification in Native Binaries of

E Seesseeeseeeeeeeeooeeeeeeeeee®] ﬂ Mobile Games. In USENIX Security 2022

E NO;DIC © What You See is Not What You Get: Revealing
1 seuicousieras 2 M2 Hidden Memory Mapping for Peripheral

Hardware Modeling. In RAID 2022

(‘Processor] [RAM] [storage][1/0]

i

| Peripherals H
' '
1 [Sensor][Actuator][USB][Camera] !
' '
' [Clock][Microphone J(Keyboard] !
1 U

An Embedded loT Device 4/28

Our Recent Works on (loT) Binary Analysis

@ Egg Hunt in Tesla Infotainment: A First Look
at Reverse Engineering of Qt Binaries. In
USENIX Security 2023

@ Understanding loT Security from a

a ‘*!£ Market-Scale Perspective. In CCS 2022
L §Aodl
s o

(__APis_J{_Modules][Services]

: (SDKs I Libraries] Playing Without Paying: Detecting Vulnerable
i (Framework] Payment Verification in Native Binaries of
: N i Mobile Games. In USENIX Security 2022
' NORDIC © What You See is Not What You Get: Revealing
semcenpucior Hidden Memory Mapping for Peripheral

Vulnerabilities from Bare-Metal Firmware. In
CCS 2020

Modeling. In RAID 2022
@ @ FirmXRay: Detecting Bluetooth Link Layer

'
'
i [Sensor][Actuator][USB][Camera]
'
' [Clock][Microphone] Keyboard |
1

An Embedded loT Device 4/28

Our Recent Works on (loT) Binary Analysis

.................................... ' @ Egg Hunt in Tesla Infotainment: A First Look
E ©run at Reverse Engineering of Qt Binaries. In
; A USENIX Security 2023

@ Understanding loT Security from a
Market-Scale Perspective. In CCS 2022
© Playing Without Paying: Detecting Vulnerable
Payment Verification in Native Binaries of
Mobile Games. In USENIX Security 2022

@ What You See is Not What You Get: Revealing
Hidden Memory Mapping for Peripheral
Modeling. In RAID 2022

© FirmXRay: Detecting Bluetooth Link Layer
Vulnerabilities from Bare-Metal Firmware. In
CCS 2020

@ Plug-N-Pwned: Comprehensive Vulnerability
Analysis of OBD-Il Dongles as A New
[RREERERREREEREE R Over-the-Air Attack Surface in Automotive loT.

""""""""""""""""""""""""" In USENIX Security 2020
An Embedded loT Device

(__APis_J{_Modules][Services]

i
i
E (SDKs | Libraries)
|
i
i

(Framework)

' '
' '
i [Sensor][Actuator][USB][Camera] i
' '
' [Clock][Microphone J(Keyboard] !
1 U

4/28

Our Recent Works on (loT) Binary Analysis

------------------------------------ @ Egg Hunt in Tesla Infotainment: A First Look
-') at Reverse Engineering of Qt Binaries. In
USENIX Security 2023

(__APis_J{_Modules][Services]

1
1
i
| SDKs | Libraries)
E (Framework)

@ What You See is Not What You Get: Revealing
Hidden Memory Mapping for Peripheral
Modeling. In RAID 2022

@ FirmXRay: Detecting Bluetooth Link Layer
Vulnerabilities from Bare-Metal Firmware. In

CCS 2020
[Sensor][Actuator][USB][Camera] e P N-P el chensive-Vulnerabili
[Clock] Microphone J(_Keyboard] Analysis-of- OBD-H-Dengles-as-A-New
LoD CIITIIITIITIIIIIIIIIIIIIIIIII Over-the-Air Attack Surface in-Automotive loT.
___ SENDCS 2020

An Embedded loT Device 4/28

R U N N s v
Background

<

Background

5/28

R N N - N
BA®Y

*2zBlackBerry LGwebOS

[=]=]=]s]
[=]=]=]s]

A
oooo

([&5

(A

N\
t:l A\

o

5/28

R N N - N
BA®Y

*#zBlackBerry LGwebOS
Autodkwell @ QT Medical

- C—v— N
O T %
PEUGEOT

Mercedes-Benz

0l
0oooo

0
0
[=]=]=]s]
[=]=]=]s]

([&

(A

N\
t:l A\

N,

Across 70+ industries!

5/28

Tesla's Infotainment System

Front End

User

6/28

Tesla's Infotainment System

Front End

6/28

Tesla's Infotainment System

Back End

VPN Q VPN

Front End

_ ®
Sierra -

—

Parrot

Ethernet Switch

D) M@ Ay
O

-
(o]
1)

User

Gateway

!
CAN BUS

6/28

Enabling Security Analysis of Qt Programs

» Reverse engineering (RE) is one of the keys to vet Qt binaries

7/28

Enabling Security Analysis of Qt Programs

» Reverse engineering (RE) is one of the keys to vet Qt binaries

» Existing C++ binary analysis tools can be applied [ghi, SWST16]

7/28

Enabling Security Analysis of Qt Programs

» Reverse engineering (RE) is one of the keys to vet Qt binaries

» Existing C++ binary analysis tools can be applied [ghi, SWST16]

Binary RE Challenges

» Control Flow Graph (CFG) Recovery. Indirect control flow transfers such as
callbacks and indirect calls [PCvdV 17, VDVGC'16]

7/28

Enabling Security Analysis of Qt Programs

» Reverse engineering (RE) is one of the keys to vet Qt binaries

» Existing C++ binary analysis tools can be applied [ghi, SWST16]

Binary RE Challenges

» Control Flow Graph (CFG) Recovery. Indirect control flow transfers such as
callbacks and indirect calls [PCvdV 17, VDVGC'16]

» Symbol Recovery (e.g., names/types of functions/variables). Code stripping
during binary compilation [TTN"19, SCD*18]

7/28

Key Insights

Unique Insights from Qt's Mechanisms

8/28

Key Insights

Unique Insights from Qt's Mechanisms
@ Qt's Signal and Slot

8/28

Key Insights

Unique Insights from Qt's Mechanisms
@ Qt's Signal and Slot

» Originally designed for efficient function callback implementation among GUIs

8/28

Key Insights

Unique Insights from Qt's Mechanisms
@ Qt's Signal and Slot

» Originally designed for efficient function callback implementation among GUIs

» We instead leverage it to identify Qt-specific function callbacks

8/28

Key Insights

Unique Insights from Qt's Mechanisms
@ Qt's Signal and Slot

» Originally designed for efficient function callback implementation among GUIs

» We instead leverage it to identify Qt-specific function callbacks

@ Qt's Dynamic Introspection

8/28

Key Insights

Unique Insights from Qt's Mechanisms
@ Qt's Signal and Slot

» Originally designed for efficient function callback implementation among GUIs

» We instead leverage it to identify Qt-specific function callbacks
@ Qt's Dynamic Introspection

» Originally designed for run-time class member query and update

8/28

Key Insights

Unique Insights from Qt's Mechanisms
@ Qt's Signal and Slot

» Originally designed for efficient function callback implementation among GUIs

» We instead leverage it to identify Qt-specific function callbacks
@ Qt's Dynamic Introspection

» Originally designed for run-time class member query and update

» We repurpose it to recover rich semantic symbols from the binary program

8/28

Qt's Signal and Slot Mechanism

MainWindow: :MainWindow() {

Please Enter Access Code
v0 = operator.new(0x30)
QLineEdit (vO0)
*(this + 0x30) = vO

|
|
|
|
|
|
|
|
|
|
|
| oK
|
|
|
|
|
|
|
|
|
|
|

9/28

Qt's Signal and Slot Mechanism

MainWindow: :MainWindow() {

cee Please Enter Access Code
v0 = operator.new(0x30)

QLineEdit (vO0)

*(this + 0x30) = vO

connect (* (this+0x30),“2textChanged (QString)”
, this, “lupdateText(QString)”, 0)

connect (* (this+0x30),“2editingFinished ()"
, this, “lhandleInput()”, 0)

|
|
|
|
|
|
|
|
|
|
|
| oK
|
|
|
|
|
|
|
|
|
|
|

9/28

Qt's Signal and Slot Mechanism

MainWindow: :MainWindow() { |
cee : Please Enter Access Code
|
v0 = operator.new(0x30) :
QLineEdit (vO0)
*(this + 0x30) = vO !
. |
|
|
|
|
|
|
|

.. Signal

oK
connect (* (this+0x30),“2textChanged (QString)”

, this, “lupdateText(QString)”, 0)

connect (* (this+0x30),“2editingFinished ()" Slot
, this, “lhandleInput()”, 0)

9/28

Qt's Signal and Slot Mechanism

MainWindow: :MainWindow() {
Please Enter Access Code

v0 = operator.new(0x30)
QLineEdit (vO0)
*(this + 0x30) = vO

| |

| |

| |

| |

| |

| |

| } Ple enter text here
| |

| |

| e |

| : P
| OK
| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

connect (* (this+0x30),“2textChanged (QString)”
, this, “lupdateText(QString)”, 0)

connect (* (this+0x30),“2editingFinished ()"
, this, “lhandleInput()”, 0)

((((o))))

9/28

Qt's Signal and Slot Mechanism

MainWindow: :MainWindow() {

cee Please Enter Access Code
v0 = operator.new(0x30)

QLineEdit (vO0)

*(this + 0x30) = vO

connect (* (this+0x30),“2textChanged (QString)”
, this, [lupdateText(QString)”, 0)

connect (* (this+0x30),“2editingFinished ()"
, this, “lhandleInput()”, 0)

(@)

textChanged

|
|
|
|
|
|
|
|
|
|
|
| oK
|
|
|
|
|
|
|
|
|
|
|

: MainWindow:fupdateText(QString v1) { :
| |
: (vl != null) :
: *(this + 0x48) = vl |

|
| |

9/28

Qt's Dynamic Introspection

I
MainWindow: :handleInput() { |
Please Enter Access Code : :
I I
| |
| |
I
|
|
|
|

((((o)))) i
& - i

window.text = “secret”

10/28

Qt's Dynamic Introspection

MainWindow: :handleInput() {

Please Enter Access Code
vl = *(this + 0x48)

(vl == “secret”) {

editing
&

window.text = “secret”

() i

10/28

Qt's Dynamic Introspection

MainWindow: :handleInput() {

|
Please Enter Access Code : :
1 vl = *(this + 0x48) :
: (vl == “secret”) { :
|
! this->setProperty(“text”, “test”) !
| gDebug () << vl :
oK : } |
' |

window.text = “secret”

4

window.text = “test”

10/28

Qt's Dynamic Introspection

g -

MainWindo handleInput() { |

Please Enter Access Code :
vl = *(this + 0x48) :

(vl == “secret”) { |

guery 1

index |

this->setProperty(“text”, “test”
qDebug() << vl

window.text = “secret”

4

window.text = “test”

Metadata

Property Table

Name
Index Tndex Type
0 0 QString
String Table
Index | String
0 text

10/28

Qt's Dynamic Introspection

Please Enter Access Code

window.text = “secret”

4

window.text = “test”

vl = *(this + 0x48)
(vl == “secret”) {

this->setProperty (“text”, “test)
gDebug () << vl 3

Metadata

Property Table

Name
Index Tndex Type
0 0 QString
String Table
Index | String
e R) text

10/28

Qt's Dynamic Introspection

Please Enter Access Code

window.text = “secret”

4

window.text = “test”

|

|

|

vl = *(this + 0x48) :
(vl == “secret”) { |

|

|

this->setProperty(“text”, “testf)
gDebug () << vl !

(vl == 0) {

|
|
|
|
*(this + 0x48) = (QString) v2 :
|
]

Metadata

Property Table

Name
Index Tndex Type
0 0 QString
String Table
Index | String
e R) text

10/28

Qt's Dynamic Introspection

Metadata

g -

gDebug () << vl !

Index | String

e R) text

MainWindo handleInput() { : Property Table
Please Enter Access Code ! |
| . Ind Name T
| vl = *(this + 0x48) : ndex | 1 dex ype
! (vl == “secret”) { |)
: Query 1 0 0 QString
| X index |
| this->setProperty(“text”, “test’y————+» string Table
| N
|
|
|

window.text = “secret”

4

window.text = “test” « (vl == 0) {

|
I
|
|
***** ---*(this + 0x48) = (Q@String) v2 !
:
|

10/28

Qt's Dynamic Introspection

Metadata

g -

MainWindo handleInput() { : Property Table
Please Enter Access Code ! |
I . Ind: Name T
: vl = *(this + 0x48) : ndex | 1 dex ype
vl == “secret”
: () 1 Query : 0 0 QString
| X index |
| this->setProperty(“text”, “test’y————+» string Table
" |
: qDebug() << vl R | Index | String
: =-f=- 0 | text |
L EY

*(this + 0x48)
Type: Qstring

(vl == 0) {
Name: text

|
|
|
|
*(this + 0x48) = (QString) v2 :
|
]

10/28

Application: Egg Hunt in Tesla Infotainment

Tesla Back to the Future
Easter Egg

Tesla: Mario Kart's Rainbow
Road / SNL Easter Egg

Easter eggs in Tesla vehicles

11/28

Application: Egg Hunt in Tesla Infotainment

Tesla Back to the Future
Easter Egg

» Do they raise security concerns?

» How to systematically identify them?

Tesla: Mario Kart's Rainbow
Road / SNL Easter Egg

Easter eggs in Tesla vehicles

11/28

Application: Egg Hunt in Tesla Infotainment

Tesla Back to the Future
Easter Egg

» Do they raise security concerns?
» How to systematically identify them?

Tesla: Mario Kart's Rainbow » Coverage-based fuzzing (emulation
Road / SNL Easter Egg .
required)

» Input validation analysis on Qt binaries

Easter eggs in Tesla vehicles

11/28

Application: Egg Hunt in Tesla Infotainment

Class Name Var./Func. Name
QLineEdit text()
QLineEdit text
H QAbstractSpinBox text
EXpe”ment Setup QDoubleSpinBox text
» Use input validation analysis to extract hidden QSpinBox text
2 QDateTimeEdit text
commands from Tesla firmware -
TextField text
» Identify user input variables from the PasswordTextField — text
recovered Qt symbols WebEntryField text
NavigationSearchBox text
» Analyze the recovered Qt control flow CompleterTextField text
ExtEntryField text

Table: Identified user input variables.

11/28

Application: Egg Hunt in Tesla Infotainment

Category Content

Description

"007" Submarine Easter egg
“modelxmas” Show holiday lights

Easter "42" Change car name

Egg “mars” Turn map into Mars surface

“transport” Transport mode
"performance” Performance mode
“showroom” Showroom mode
Security Tokenl Enable diagnostic mode

Access SecurityToken2
Token crc(token)==0x18e5a977
crc(token)==0x73bbee22

Enable diagnostic mode
Enable developer mode
Enable developer mode

Master Pwd ~ “3500”

Exit valet mode

Table: Hidden commands from Tesla firmware.

11/28

Application: Egg Hunt in Tesla Infotainment

Category Content Description

"007" Submarine Easter egg
"modelxmas” Show holiday lights

Easter 42" Change car name

Egg “mars” Turn map into Mars surface

“transport” Transport mode
"performance” Performance mode
“showroom” Showroom mode
Security Tokenl Enable diagnostic mode

Access Security Token2 Enable diagnostic mode

Token crc(token)==0x18e5a977 Enable developer mode
crc(token)==0x73bbee22 Enable developer mode

Master Pwd ~ “3500" Exit valet mode

Table: Hidden commands from Tesla firmware.

Application: Egg Hunt in Tesla Infotainment

Category Content Description

“007" Submarine Easter egg
“modelxmas” Show holiday lights

Easter 42" Change car name

Egg “mars” Turn map into Mars surface

“transport” Transport mode
"performance” Performance mode
“showroom” Showroom mode
Security Tokenl Enable diagnostic mode

Access SecurityToken2 Enable diagnostic mode

Token crc(token)==0x18e5a977 Enable developer mode
crc(token)==0x73bbee22 Enable developer mode

Master Pwd ~ “3500" Exit valet mode

Table: Hidden commands from Tesla firmware.

£ntar your My Tasta credentiais

11/28

Application: Egg Hunt in Tesla Infotainment

Category Content Description

"007" Submarine Easter egg
“modelxmas” Show holiday lights

Easter 42" Change car name

Egg “mars” Turn map into Mars surface

“transport” Transport mode
“performance” Performance mode
"showroom” Showroom mode
Security Tokenl Enable diagnostic mode

Access Security Token2 Enable diagnostic mode

Token crc(token)==0x18e5a977 Enable developer mode
crc(token)==0x73bbee22 Enable developer mode

Master Pwd ~ “3500" Exit valet mode

Table: Hidden commands from Tesla firmware.

Disclosure

The Tesla security team
acknowledged our findings in
2022/4 and have eliminated the
feasible paths for exploiting these
hidden commands in the latest
firmware.

11/28

QtRE [USENIX Security'23]

Netadata
MainWindow: :MainWindow() { MainWindow: :handleInput () { Symbol revealed i Property Table
vl = *(this + 0x48) Type
vo = opera:;;—.newwxzuv (vl == “secret”) { Query o 0 | osering
index | |
*(this + 0x30) = v0 this->setProperty(“text”, “tost’)—— |+ String Table
Signal perty ()~ g

abebug () << v1

Tndex | string
connect (*(this+0x30),“2textChanged (QString)”

s i
, s
, this, “lupdateText(QString)”, 0) 1
Slot !

connect (* (this+0x30),“2editingFinished()” MainWindow: :qt_metacall (. v1, +v2) (] Invoke
, this, “lhandleInput()”, 0) ot _metacall

(v1==0) { vz = “testr
}

*(this + 0x48) = (@String) v2

MainWindow: :updateText (9String v1) { «—)

(vl 1= null)
*(this + 0x48) = vl

QTRE

» A static analysis tool that leverages Qt's unique insights for function callback and symbol recovery

12/28

https://github.com/OSUSecLab/QtRE

QtRE [USENIX Security'23]

Netadata
MainWindow: MainWindow() {

NainWindow: shandleTnput() { g | broperty Table
SIS ymbol revealed! |
PR — ya e | Name
vl = *(this + 0xa8) Index | pngex | TYPE
v0 = operator.new(0x30) (v1 == “secret”) { uery 3 o Tosering
index

*(this + 0x30) = vO

thissetProperty | text’, test ™ |
qDebug() << v1

Signal

= String Table

R Tndex | string
connect (* (this+0x30), “2textChanged (9String) ") Vo [0 [e]
, this, “lupdateText(QString)”, 0)
Slot
connect (*(this+0x30), “2editingFinished ()"
, this, “lhandleInput()”, 0)

t_metacall(. int vi, ey (] oveke
qt_metacall

i vi=0

=0 v2 = “test”

*(this + 0x48) = (@String) v2

)
MainWindow: :updateText (0String v1) { «——

(vl 1= null)
*(this + 0x48) = vl

QTRE

» A static analysis tool that leverages Qt's unique insights for function callback and symbol recovery

» It additionally recovered (based on GHIDRA) 10,867 callbacks and 24,973 symbols among 123 binaries

12/28

https://github.com/OSUSecLab/QtRE

QtRE [USENIX Security'23]

Metadata

MainWindow: :MainWindow MainWindow: :handleInput | broperty Table
O (a ous thandletnput O { gy rovealed| | Property tan

v1 = *(this + 0x48)
1

Name.
Index | N | ype
(vl == “secret”) {

v0 = operator.new(0x30)

Query
index

thissetproperty | text’, Test ™ L S rre
qDebug() << v1

o 0 [ostring
*(this + 0x30) = vO

Signal

Tndex | string

5 \ | Do Lo

connect (* (this+0x30), “2textChanged (9String) "
, this, “lupdateText(QString)”, 0)
Slot
connect (*(this+0x30), “2editingFinished ()"
, this, “lhandleInput()”, 0)

MainWindow: :qt_metacall(. vi, ** v2) (] Invoke
- at_metacall
w-o

(v ==0) {

- v2 = “test”
)
“(this + 0x48) = (@String) v2
}

MainWindow: :updateText (QString v1) { «— |)

(1 1= nuil)

*(this + 0xa8) = vi
}

QTRE

» A static analysis tool that leverages Qt's unique insights for function callback and symbol recovery
» It additionally recovered (based on GHIDRA) 10,867 callbacks and 24,973 symbols among 123 binaries

» We demonstrate an application of input validation analysis with QTRE, and extracted 12 unique hidden
commands five new to the public.

The source code will be released at https://github.com/0SUSecLab/QtRE.
12/28

https://github.com/OSUSecLab/QtRE

Bluetooth Low Energy

Bluetooth
4.0

Low Energy

Low Technical Barrier for loT Development

14 /28

Low Technical Barrier for loT Development

14 /28

Low Technical Barrier for loT Development

Azure loT Hub

14 /28

Low Technical Barrier for loT Development

Azure loT Hub

14 /28

Low Technical Barrier for loT Development

Are they secure?

Azure loT Hub

14 /28

BLE Link Layer Vulnerabilities

Peripheral (1) Broadcast and Connection Central

@ Broadcast @ —— @ Scan
—J

3
]
]
i
]

© Connection Request]
]
]
)
]
]
]
]

Vulnerabilities

@ Identity Tracking. Configure static MAC
address during broadcast [DPCM16].

@ Connection Established

9 Pairing Feature Exchange

@ STKILTK Generation (Legacy/LESC Pairing)

ﬂ Transport Specific Key Distribution

15/28

BLE Link Layer Vulnerabilities

@ Broadcast «(‘l»

© Connection Request

@ Connection Established

e Pairing Feature Exchange

@ STKILTK Generation (Legacy/LESC Pairing)

ﬂ Transport Specific Key Distribution

Vulnerabilities
@ Identity Tracking. Configure static MAC
address during broadcast [DPCM16].

@ Active MITM. Just Works is adopted as the
pairing method.

15/28

BLE Link Layer Vulnerabilities

@ Broadcast «(‘1» = @ Scan

© Connection Request

@ Connection Established

e Pairing Feature Exchange

@ STKILTK Generation (Legacy/LESC Pairing)

ﬂ Transport Specific Key Distribution

Vulnerabilities

@ Identity Tracking. Configure static MAC

: address during broadcast [DPCM16].

@ Active MITM. Just Works is adopted as the
: pairing method.

© Passive MITM. Legacy pairing is used
during key exchange [ble14].

15/28

BLE Link Layer Vulnerabilities

Peripheral (1) Broadcast and Connection Central

@ Broadcast «“» = @ Scan

© Connection Request

Vulnerabilities

: @ Identity Tracking. Configure static MAC
: address during broadcast [DPCM16].

@ Connection Established

@ Active MITM. Just Works is adopted as the
pairing method.

_ © Passive MITM. Legacy pairing is used
during key exchange [ble14].

e Pairing Feature Exchange

@ STKILTK Generation (Legacy/LESC Pairing)

Identification
ﬂ Transport Specific Key Distribution
N . @ Traffic analysis
(1) Data Transmission @ Mobile app analysis

15/28

BLE Link Layer Vulnerabilities

Peripheral (1) Broadcast and Connection Central

@ Broadcast «“» = @ Scan

© Connection Request

Vulnerabilities

: @ Identity Tracking. Configure static MAC
: address during broadcast [DPCM16].

@ Connection Established

@ Active MITM. Just Works is adopted as the
pairing method.

_ © Passive MITM. Legacy pairing is used
during key exchange [ble14].

e Pairing Feature Exchange

@ STKILTK Generation (Legacy/LESC Pairing)

Identification
ﬂ Transport Specific Key Distribution
N . @ Traffic analysis
(1) Data Transmission @ Mobile app analysis

© Firmware analysis

15/28

An Example of a Just Works Pairing Vulnerability

Read Only Memory
mmm) | 24328 mov , #0x0 Register Values
243aa orr , #0x1
243ac and , #0xel _
243ae add , #0xc rl = 0x0
243b0 and , #0xdf r2 = 0x0
243b2 ldr , [0x260c8]
243b4 str , [r1,#0x0]
25f44 1ldr , [0x260c8]
25£46 mov , #0x0
25£48 sve ox7£
260c8 0x20003268

16/28

An Example of a Just Works Pairing Vulnerability

Read Only Memory

243a8 mov , #0x0 Register Values

243aa orr , #0x1

243ac and , #0xel _

243ae add , #0xc rl = 0x0
=) 5 24360 and , #0xdf r2 = 0xD

243b2 ldr , [0x260c8]

243b4 str , [r1,#0x0]

25f44 1ldr , [0x260c8]

25£46 mov , #0x0

25£48 sve ox7£

260c8 0x20003268

16/28

An Example of a Just Works Pairing Vulnerability

243a8
243aa
243ac
243ae
243b0

) 6 243b2

243b4
25f44

25£46
25£48

260c8

Read Only Memory

mov
orr
and
add
and
1ldr
str

1dr
mov
sve

'
0x7£f

0x20003268

#0x0
#0x1
#0xel
#0xc
#0xdf
[0%260c8]
[r1,#0x0]

[0%260c8]
#0x0

Random Access Memory

Struct ble_gap_sec_params_t Register Values
20003268 uint8 pairing_feature
rl = 0x20003268
r2 = 0xD

20003269
20003270
20003271
20003275

uint8 min_key size

uint8 max_key size

ble _gap_sec_kdist_t kdist own
ble_gap_sec_kdist_t kdist_peer

16/28

An Example of a Just Works Pairing Vulnerability

243a8
243aa
243ac
243ae
243b0
243b2

) 7 243b4

25f44
25£46
25£48

260c8

Read Only Memory

mov
orr
and
add
and
1ldr
str

1dr
mov
sve

'
0x7£f

0x20003268

#0x0
#0x1
#0xel
#0xc
#0xdf
[0%260c8]
[r1,#0x0]

[0%260c8]
#0x0

Struct ble_gap_sec_params_t

20003268

20003269
20003270
20003271
20003275

Random Access Memory

Register Values

uint8 pairing_ feature = 0xD

rl 0x20003268
r2 = 0xD

uint8 min_key size

uint8 max_key size

ble _gap_sec_kdist_t kdist own
ble_gap_sec_kdist_t kdist_peer

16/28

An Example of a Just Works Pairing Vulnerability

243a8
243aa
243ac
243ae
243b0
243b2
243b4

25f44
25£46

mmp 10 25£48

260c8

Read Only Memory

mov
orr
and
add
and
1ldr
str

1dr
mov
sve

'
0x7£f

0x20003268

#0x0
#0x1
#0xel
#0xc
#0xdf
[0%260c8]
[r1,#0x0]

[0%260c8]
#0x0

Random Access Memory

Struct ble_gap_sec_params_t

20003268

20003269
20003270
20003271
20003275

uint8 pairing_ feature = 0xD

uint8 min_key size

uint8 max_key size

ble _gap_sec_kdist_t kdist own
ble_gap_sec_kdist_t kdist_peer

Register Values

rl
r2

0x0
0x20003268

16/28

An Example of a Just Works Pairing Vulnerability

243a8
243aa
243ac
243ae
243b0
243b2
243b4

25f44
25£46

mmp 10 25£48

260c8

Read Only Memory

mov
orr
and
add
and
1ldr
str

1dr
mov
sve

'
0x7£f

0x20003268

#0x0
#0x1
#0xel
#0xc
#0xdf
[0%260c8]
[r1,#0x0]

[0%260c8]
#0x0

Random Access Memory

Struct ble_gap_sec_params_t

20003268

20003269
20003270
20003271
20003275

uint8 pairing_ feature = 0xD

[BonD [mmm 1o | ooB |

uint8 min_key size

uint8 max_key size

ble _gap_sec_kdist_t kdist own
ble_gap_sec_kdist_t kdist_peer

Register Values

rl
r2

0x0
0x20003268

16/28

An Example of a Just Works Pairing Vulnerability

Correct Firmware Disassembling

!

Read Only Memory Random Access Memory
243a8 mov , #0x0 Struct ble_gap_sec_params_t Register Values
243aa orr , #0x1
243ac and , #0xel 20003268 uint8 pairing feature = 0xD £l = 0%0
243ae add , #0xc -
243b0 and , #0xdf |B°ND | ™ ||° | 008 | r2 = 0x20003268
243b2 ldr , [0x260c8]
243b4 str , [rl,#0x0]
.. 20003269 uint8 min_key size
25f44 ldr , [0x260c8] 20003270 uint8 max_key_size
25£46 mov , #0x0 20003271 ble_gap_sec_kdist_t kdist_own
25f48 sve 0x7f 20003275 Dble_gap_sec_kdist_t kdist_peer

260c8 0x20003268

16/28

An Example of a Just Works Pairing Vulnerability

Correct Firmware Disassembling Recognize data structures

Read Only Memory Random Access Memory
243a8 mov , #0x0 Struct ble_gap_sec_params_t Register Values
243aa orr , #0x1
243ac and , #0xel 20003268 uint8 pairing feature = 0xD

rl = 0x0

243ae add s #Oxe BOND | mitm [10 [ooB
243b0 and , #0xdf | | | | | r2 = 0x20003268
243b2 ldr , [0x260c8]
243b4 str , [r1l,#0x0]
) 20003269 uint8 min key size
25f44 ldr , [0x260c8] 20003270 uint8 max_key_size
25£46 mov , #0x0 20003271 ble_gap_sec_kdist_t kdist_own
25f48 sve 0x7f 20003275 Dble_gap_sec_kdist_t kdist_peer

260c8 0x20003268

16/28

An Example of a Just Works Pairing Vulnerability

Correct Firmware Disassembling Recognize data structures Value computation
Read Only Memory Random Access Memory
243a8 mov , #0x0 Struct ble_gap_sec_params_t Register Values
243aa orr , #0x1
243ac and , #0xel 20003268 uint8 pairing feature = 0xD
rl = 0x0
243ae add s #Oxe BOND | mitm [10 [ooB
243b0 and , #0xdf | | | | | r2 = 0x20003268
243b2 ldr , [0x260c8]
243b4 str , [r1l,#0x0]
) 20003269 uint8 min key size
25f44 ldr , [0x260c8] 20003270 uint8 max_key_size
25£46 mov , #0x0 20003271 ble_gap_sec_kdist_t kdist_own
25f48 sve 0x7f 20003275 Dble_gap_sec_kdist_t kdist_peer

260c8 0x20003268

16/28

Firmware Collection

17/28

Firmware Collection

>

l@l
APK

2M Free Apps

17/28

Firmware Collection

>

1@ Filter ‘ uﬁl
APK ll APK

2M Free Apps 13K BLE Apps

17/28

Firmware Collection

>

- - 1111
l@l Filter l@l Unpack [~
> B e S— i
APK APK Extract -:‘:?

2M Free Apps 13K BLE Apps 793 Firmware

17/28

Firmware Collection

>

l

Filter

-
l@l

2M Free Apps

- Y
gy '
] 9

13K BLE Apps

N

768 Nordic

4

Unpack

Extract

793 Firmware

3

25Tl

17/28

Experiment Results

Identity Tracking Vulnerability ldentification

Among the 538 devices, nearly all of them (98.1%) have configured random static
addresses that do not change periodically.

18/28

Experiment Results

Identity Tracking Vulnerability ldentification

Among the 538 devices, nearly all of them (98.1%) have configured random static

addresses that do not change periodically.

Firmware Name Mobile App Category # Device
cogobeacon com.aegismobility.guardian Car Accessory 4
sd_bl fr.solem.solemwf Agricultural Equip. 2
LRFL_nRF52 fr.solem.solemwf Agricultural Equip. 2
orb one.shade.app Smart Light 1
sd_bl com.rainbird Agricultural Equip. 1

Table: Firmware using private MAC address.

18/28

Experiment Results

Active MITM Vulnerability Identification

385 (71.5%) devices use Just Works pairing, which essentially does not provide any
protection against active MITM attacks at the BLE link layer.

18/28

Experiment Results

Active MITM Vulnerability Identification

385 (71.5%) devices use Just Works pairing, which essentially does not provide any
protection against active MITM attacks at the BLE link layer.

Item N T Total %
Total Device 513 25 538 100
Device w/ active MITM vulnerability 384 1 385 T1.5
Device w/ Just Works pairing only 317 1 318 59.1

Device w/ flawed Passkey implementation 37 0 37 6.9

Device w/ flawed OOB implementation 30 0 30 5.6

Device w/ secure pairing 6 24 30 38
Device w/ correct Passkey implementation 3 24 27 34

Device w/ correct OOB implementation 3 0 3 04

Table: Pairing configurations of devices (N:Nordic, T:TI).

18/28

Experiment Results

Passive MITM Vulnerability Identification

98.5% of the devices fail to enforce LESC pairing, and thus they can be vulnerable to
passive MITM attacks if there is no application-layer encryption.

18/28

Experiment Results

Passive MITM Vulnerability Identification

98.5% of the devices fail to enforce LESC pairing, and thus they can be vulnerable to
passive MITM attacks if there is no application-layer encryption.

Firmware Name Mobile App Category # Version
DogBodyBoard com.wowwee.chip Robot 16
BW_Pro com.ecomm.smart_panel Tag 1
Smart_Handle com.exitec.smartlock Smart Lock 1
Sma05 com.smalife.watch Wearable 1
CPRmeter com.laerdal.cprmeter2 Medical Device 4
WiJumpLE com.wesssrl.wijumple Sensor 1
nRF Beacon no.nordicsemi.android.nrfbeacon Beacon 1
Hoot Bank com.qvivr.hoot Debit Card 1

Table: Firmware that enforce LESC pairing.

18/28

FirmXRay [CCS'20]

) Dpisassembler

Robust Firmware R
X= ar?in;aXN(i) Constraints

Disassembling

L)

Bare-metal
Firmware

Precise Data
Structure Recognition

Configuration
Value Resolution

Detection II . I
Policies Vulnerabilities I

FiIRMXRAY

» A static analysis tool based on Ghidra for detecting BLE link layer vulnerabilities from bare-metal firmware.
» A scalable approach to efficiently collect bare-metal firmware images from only mobile apps.

» Vulnerability discovery and attack case studies.

The source code is available at https://github.com/0SUSecLab/FirmXRay.

19/28

https://github.com/OSUSecLab/FirmXRay

Microcontroller Unit (MCU)

» The chip inside the board

» Ubiquitous (e.g., drone, smart
light bulb)

20/28

Microcontroller Unit (MCU)

» Peripherals are inside the provided
[MCU firmware] board
» Firmware controls peripherals
through peripheral registers

Peripherals » Peripheral executes firmware

-~ * @ (I) = "E‘ O through the corresponding

interrupt

20/28

Microcontroller Unit (MCU)

MCU Firmware Vulnerabilities
©@ Memory corruption
© Privacy leakage

© Peripheral malfunctioning

20/28

Microcontroller Unit (MCU)

MCU Firmware Vulnerabilities
©@ Memory corruption
© Privacy leakage

© Peripheral malfunctioning

Firmware Analysis

© Hardware-in-the-loop. Testing
firmware with hardware

@ Re-hosting. Emulating firmware
without hardware

20/28

Microcontroller Unit (MCU)

MCU Firmware Vulnerabilities
©@ Memory corruption
© Privacy leakage

© Peripheral malfunctioning

Firmware Analysis

© Hardware-in-the-loop. Testing

Common Challenge
firmware with hardware

_ Modeling Peripheral Processing
@ Re-hosting. Emulating firmware

without hardware

20/28

An Example of Processing a Peripheral Register

Execution just based on the firmware code

- 1: REG _CLOCK = 0x40023800;

: *REG_CLOCK = 0x1000000;
3: if (*REG_CLOCK & 0x2000000) == 0) {
4: return HAL_ERROR;

©)

: Freq = HAL_RCC_GetSysClockFreq();
7: return HAL_OK;

[REG_CLOCK] 0x40023800 = <uninitialized>

21/28

An Example of Processing a Peripheral Register

Execution just based on the firmware code

1l: REG_CLOCK = 0x40023800;

- : *REG_CLOCK = 0x1000000;

3: if (*REG_CLOCK & 0x2000000) == 0) {
: return HAL_ERROR;
:)}

6: Freq = HAL_RCC_GetSysClockFreq();
: return HAL_OK;

[REG_CLOCK] 0x40023800 = 0x1000000

21/28

An Example of Processing a Peripheral Register

Execution just based on the firmware code

1l: REG_CLOCK = 0x40023800;
: *REG_CLOCK = 0x1000000;
EEEE) |3: if (*REG_CLOCK & 0x2000000) == 0) {
: return HAL_ERROR;
:)}
6: Freq = HAL_RCC_GetSysClockFreq();
: return HAL_OK;

[REG_CLOCK] 0x40023800 = 0x1000000

21/28

An Example of Processing a Peripheral Register

Execution just based on the firmware code

1: REG_CLOCK = 0x40023800;
: *REG_CLOCK = 0x1000000;
3: if (*REG_CLOCK & 0x2000000) == 0) {
‘ : return HAL_ERROR;
©)
6: Freq = HAL_RCC_GetSysClockFreq();
: return HAL_OK;

[REG_CLOCK] 0x40023800 = 0x1000000

21/28

An Example of Processing a Peripheral Register

Execution on real MCU hardware

1: REG_CLOCK = 0x40023800;

- : *REG_CLOCK = 0x1000000;

3: if (*REG_CLOCK & 0x2000000) == 0) {
: return HAL_ERROR;
:)}

6: Freq = HAL_RCC_GetSysClockFreq();
: return HAL_OK;

[REG_CLOCK] 0x40023800 = 0x3000000

21/28

An Example of Processing a Peripheral Register

Execution on real MCU hardware

1l: REG_CLOCK = 0x40023800;
: *REG_CLOCK = 0x1000000;
- 3: if (*REG_CLOCK & 0x2000000) == 0) {
: return HAL_ERROR;
:)}
6: Freq = HAL_RCC_GetSysClockFreq();
: return HAL_OK;

[REG_CLOCK] 0x40023800 = 0x3000000

21/28

An Example of Processing a Peripheral Register

Execution on real MCU hardware

1: REG_CLOCK = 0x40023800;
: *REG_CLOCK = 0x1000000;

3: if (*REG_CLOCK & 0x2000000) == 0) {
: return HAL_ERROR;
:)}

6: Freq = HAL_RCC_GetSysClockFreq();

- : return HAL_OK;

\ [REG_CLOCK] 0x40023800 = 0x3000000

21/28

R N N N s v
Hidden Memory Mapping

Peripheral register bits get simultaneously updated by the MCU hardware

As some bits are semantically relevant (e.g., clock status)

Memory Mapping

| 31:26 |25|24| 23

10

[REG_CLOCK] 0x40023800

24 bit - Clock enable
0 OFF
10N

25 bit - Clock ready flag
0 Unlocked
1 Locked

22/28

Hidden Memory Mapping

Peripheral register bits get simultaneously updated by the MCU hardware
As some bits are semantically relevant (e.g., clock status)

Memory Mapping

N U AW N R

REG_CLOCK = 0x40023800;

*REG_CLOCK = 0x1000000;

if (*REG_CLOCK & 0x2000000) == 0) {
return HAL_ERROR;

}

Freq = HAL_RCC_GetSysClockFreq();
return HAL_OK;

| 31:26 |25|24| 23

10

[REG_CLOCK] 0x40023800

24 bit - Clock enable
0 OFF
10N

25 bit - Clock ready flag
0 Unlocked
1 Locked

22/28

Hidden Memory Mapping

Peripheral register bits get simultaneously updated by the MCU hardware
As some bits are semantically relevant (e.g., clock status)

Memory Mapping

N U AW N R

REG_CLOCK = 0x40023800;

*REG_CLOCK = 0x1000000;

if (*REG_CLOCK & 0x2000000) == 0) {
return HAL_ERROR;

}

Freq = HAL_RCC_GetSysClockFreq();
return HAL_OK;

| 31:26 |25|24| 23:0 |

[REG_CLOCK] 0x40023800

| 0 | 0 | 1 | 0000000000000... |

0x1000000

24 bit - Clock enable
0 OFF
10N

25 bit - Clock ready flag
0 Unlocked
1 Locked

22/28

Hidden Memory Mapping

Peripheral register bits get simultaneously updated by the MCU hardware
As some bits are semantically relevant (e.g., clock status)

Memory Mapping 24 bit - Clock enable
0 OFF
10N
1: REG_CLOCK = 0x40023800; | 31:26 | » | 2 | 3:0 |
- 2: *REG_CLOCK = 0x1000000; [REG_CLOCK] 0x40023800 25 bit - Clock ready flag
3: if (*REG_CLOCK & 0%2000000) == 0) { - 0 Unlocked
1 Locked
4: return HAL_ERROR;
5: %} | 0 | 0 | 1 | 0000000000000... |
6: Freq = HAL_RCC_GetSysClockFreq();
7: return HAL_OK; 0x1000000
| 0 | 1 | 1 | 0000000000000... |
0x3000000

22/28

R N N N s v
Hidden Memory Mapping

Root cause: Autonomous Peripheral Operation

Hardware feature in microcontroller architectures. The peripheral performs its
operation without CPU intervention to save energy.

[POoWER | [cLock | [RaDIO |
Peripheral Channel

{ { {

[UART]l SPI]l GPIO_|

Peripheral

Peripheral core

Task —> Peripheral Changing Reg 1 Event
Process Changing Reg 2

22/28

Hidden Memory Mapping

Root cause: Autonomous Peripheral Operation

Hardware feature in microcontroller architectures. The peripheral performs its
operation without CPU intervention to save energy.

Bit 24 PLLRDY: Main PLL (PLL) clock ready flag
Set by hardware to indicate that PLL is locked.
0: PLL unlocked
1: PLL locked

Bit 1 SBF: Standby flag
This bit is set by hardware and cleared only by a POR/PDR (power-on
reset/power-down reset) or by setting the CSBF bit in the PWR_CR register
0: Device has not been in Standby mode
1: Device has been in Standby mode

22/28

AuTOoMAP Overview

Challenges

© Nearly infinite number of possible
writes to peripheral registers

@ Cannot infer memory mappings
from code-level

© Dependency of peripheral register
writes

23/28

(SEST Gbeoo GRBC3% Gesesb we™ &
AuToMAP Overview

Challenges Solutions
© Nearly infinite number of possible © On-demand memory mapping inference
writes to peripheral registers @ Differential memory introspection
@ Cannot infer memory mappings through hardware-in-the-loop
from code-level © Memory context preparation by
© Dependency of peripheral register executing previous peripheral registers
writes write intrusions

23/28

Experiment Setup

» Three MCUs
» Nordic NRF52832
» 41 example firmware included in SDK
» STMicroelectronics STM32F103
» 5 real-world firmware from pEMU [ZGLZ21]
» STMicroelectronics STM32F429
» 4 real-world firmware from pEMU [ZGLZ21]

24/28

Experiment Results

Identity Memory Mapping in Example Firmware

At least one memory mapping is discovered in every firmware. Even single register
write can affect multiple other registers.

25/28

Experiment Results

Identity Memory Mapping in Example Firmware

At least one memory mapping is discovered in every firmware. Even single register
write can affect multiple other registers.

. # of Writes Max # of M.M

MCU Firmware Causing M.M Dby single write
o bk_freertos 21 7
[bk 9 3
E bk_rtc 21 7
OZ: bk_systick 9 3
bsp 35 11

Table: Memory mapping result on example firmware of NRF52832

25/28

Experiment Results

Integrating AUTOMAP with pEMU
AutoMAP with uEMU can cover at most 15.59% more basic blocks than pEMU.

25/28

Experiment Results

Integrating AUTOMAP with pEMU
AutoMAP with uEMU can cover at most 15.59% more basic blocks than pEMU.

executed BBs

BBs portion of

Firmware AUTOMAP not in pEMU
AutoMaprP pEMU # %

Drone 1,413 1,410 5 0.35%

Gateway 1,385 1,248 | 216 15.59%

Steering_lron 1,402 1,289 | 116 8.27%

Reflow_Oven 845 830 | 17 2.01%

Robot 1,035 964 | 77 7.43%

Table: Fuzzing result comparison between yEMU and both AuTOMAP and yEMU.

25 /28

AutoMap [RAID'22]

On-demand Memory Applying Memory
Mapping Inference Mapping

Knowledge Base

AUTOMAP

Memory Context Q Differential Memory
Preparation Introspection

Hardware

AuTtoMAP
» Discover memory mapping in peripheral registers.
» Propose AUTOMAP to discover memory mappings systematically.

» Emulate firmware properly with memory mappings and execute more basic blocks when AuTOMAP
integrates with pEMU.

The source code is available at https://github.com/0SUSecLab/AutoMap. 26 /28

https://github.com/OSUSecLab/AutoMap

Q0 K ¥
5° @3¢
. { ‘I;QT MQTT . » The need to analyze new domains for

heterogeneous loT binary analysis

@ WatsonIoT.
RTOS 5 é » New domains (mechanisms,
architecture, API...) lead to new

o Atom insights and techniques

» Should be encouraged as long as the

b (infineon domain is valuable
CSR €Sy Sy

27/28

The Potentials of Domain-Aware Analysis

Name Category # Repository %

Qt Frameyvork 45,635 35.70% Bluetooth Low Energy end-product certifications*

ROS Robotics 16,796 13.14%

Boost Framework 6,205 4.85% 1600 43% .

MFC Framework 4,409 3.45% 0% 39% b

Cocos2d Game Engine 3,587 2.81% 1400 = Norac
OpenFrameworks Framework 3,264 2.55% 1200 32% 55% Tl
JUCE Framework 2,204 1.72%

PCL Robotics 1,719 1.34% 1,000 Dialog
imgui GUI 1,557 1.22% cer
wxWidgets GUI 1,076 0.84% 800

Cinder Framework 1,042 0.82% s |nfineon
Allegro Game Engine 958 0.75% 600

Godot Game Engine 682 0.53% 400 = SiLabs
GamePlay Game Engine 561 0.44% 142 Other
dlib Framework 547 0.43% 200 I

FLTK GUI 518 0.41% — —=o=Mkt share
GTK++ GUI 436 0.34% 0

Libu Eramework 425 0.33% 2014 2015 2016 2017 2018 2019

raylib Game Engine 376 0.29%

gtkmm Gul 349 0.27%

Top C++ frameworks for software development. 2828

The Potentials of Domain-Aware Analysis

© Systematically vetting domain-specific
applications

@ WatsonIoT.
RTOS S é

ng ©H
CSR €S iy

28/28

The Potentials of Domain-Aware Analysis

Jﬂl*

AWS Io

l i MaT © Systematically vetting domain-specific
applications
RTOS O watsonIoT @ Extension to other loT domains,
architectures, frameworks...

ng ©H
CSR(S’%

28/28

seen S SR A e S
The Potentials of Domain-Aware Analysis
‘00 B ¥

. [g\ m M%TT @ Systematically vetting domain-specific

applications
RTOS & 'O WatsonIoT] Exte_nsion to other loT domains,
architectures, frameworks...
o © Support various security applications
‘ d b (e.g., Qt-Fuzz, Automap-Fuzz)

c‘:gR(Sf ’%'

28/28

seen S SR A e S
The Potentials of Domain-Aware Analysis
Q0 K <

AWS Io

‘g\ ' MQTT © Systematically vetting domain-specific

applications
RTOS A & watsontor @ Extension to other loT domains,
24 architectures, frameworks...
o © Support various security applications
‘ d N (e.g., Qt-Fuzz, Automap-Fuzz)

b C“""”“ © Generalize methodology and insights
CSR to other similar domains

28/28

CSEST Gbeoo GaEG3% Gesesb W™ O
Thank You

Unlocking the Potential of Domain Aware
Binary Analysis in the Era of loT

Zhigiang Lin
zlin@cse.ohio-state.edu

March 3rd, 2023

28/28

zlin@cse.ohio-state.edu

References |

)) O & E E)ED

Bluetooth specification version 4.2, https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=286439, 2014.

Aveek K Das, Parth H Pathak, Chen-Nee Chuah, and Prasant Mohapatra, Uncovering privacy leakage in ble network traffic of wearable fitness
trackers, Proceedings of the 17th international workshop on mobile computing systems and applications, 2016, pp. 99-104.

Ghidra, https://ghidra-sre.org/.

Andre Pawlowski, Moritz Contag, Victor van der Veen, Chris Ouwehand, Thorsten Holz, Herbert Bos, Elias Athanasopoulos, and Cristiano
Giuffrida, Marx: Uncovering class hierarchies in c++ programs., NDSS, 2017.

Edward J Schwartz, Cory F Cohen, Michael Duggan, Jeffrey Gennari, Jeffrey S Havrilla, and Charles Hines, Using logic programming to
recover c++ classes and methods from compiled executables, Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, 2018, pp. 426—441.

Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino, Andrew Dutcher, John Grosen, Siji Feng, Christophe
Hauser, Christopher Kruegel, et al., Sok:(state of) the art of war: Offensive techniques in binary analysis, 2016 IEEE Symposium on Security
and Privacy (SP), IEEE, 2016, pp. 138-157.

Hieu Tran, Ngoc Tran, Son Nguyen, Hoan Nguyen, and Tien N Nguyen, Recovering variable names for minified code with usage contexts,
2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), IEEE, 2019, pp. 1165-1175.

Victor Van Der Veen, Enes Goktas, Moritz Contag, Andre Pawoloski, Xi Chen, Sanjay Rawat, Herbert Bos, Thorsten Holz, Elias

Athanasopoulos, and Cristiano Giuffrida, A tough call: Mitigating advanced code-reuse attacks at the binary level, 2016 IEEE Symposium on
Security and Privacy (SP), IEEE, 2016, pp. 934-953.

Wei Zhou, Le Guan, Peng Liu, and Yuqing Zhang, Automatic firmware emulation through invalidity-guided knowledge inference., USENIX
Security Symposium, 2021, pp. 2007-2024.

https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=286439
https://ghidra-sre.org/

	Motivations
	QtRE
	FirmXRay
	AutoMap
	Takeaway
	References

