
DiffCSP: Finding Browser Bugs in
Content Security Policy Enforcement

through Differential Testing
Seongil Wi*, Trung Tin Nguyen†, Jihwan Kim*, Ben Stock†, Sooel Son*

*KAIST †CISPA Helmholtz Center for Information Security

NDSS 2023

Cross-Site Scripting (XSS) Attacks

2

Browser

Request:
http://vuln.com?query=
<script>attack()</script>

Response
Server-side

web application

App

<script>attack()</script>

HTML

<script>attack()</script>

Execute arbitrary

JavaScript code

3

Browser

Server-side

web application

App

script-src benign.com

CSP

Content Security Policy (CSP)

Response

Request:
http://vuln.com?query=
<script>attack()</script>

<script>attack()</script>

HTML

4

script-src benign.com

CSP

Content Security Policy (CSP)

• A browser-enforced security mechanism

Browser

Refer

Enforce!

<script>attack()</script>

HTML

Block

Content Security Policy (CSP)

5

• A browser-enforced security mechanism

https://www.bitsight.com/blog/content-security-policy-limits-dangerous-activity-so-why-isnt-everyone-doing-it

https://www.bitsight.com/blog/content-security-policy-limits-dangerous-activity-so-why-isnt-everyone-doing-it

CSP Ecosystem

6

Browser

Refer

Enforce!

<script>attack()</script>

HTML

Block

 Block inline scripts by default

CSP specification

Site operator

Configure

script-src benign.com

CSP

Refer

Enforce!

<script>attack()</script>

HTML

CSP Ecosystem

7

Block

 Block inline scripts by default

CSP specification

Browser

developer

Implement

Browser

script-src benign.com

CSP

Site operator

Configure

Our Research Question

8

 Block inline scripts by default

CSP specification

Browser

developer

Misunderstand

What if developers misunderstand or

misimplement the CSP specification?

CSP Enforcement Bugs

9

 Block inline scripts by default

CSP specification

Browser

developer

Browser

Implement

Allow inline script

by default!
CSP Enforcement Bugs Allow inline scripts

by default!

Misunderstand

CSP Enforcement Bugs

10

 Block inline scripts by default

CSP specification

Browser

developer

Browser

Implement

Allow inline script

by default!
Allow inline scripts

by default!

Refer

Enforce!

<script>attack()</script>

HTML

script-src benign.com

CSP

Misunderstand

CSP Enforcement Bugs

11

Browser

Allow inline script

by default!

Refer

Enforce!

<script>attack()</script>

HTML

script-src benign.com

CSP

Allow

Allow adversaries to

bypass CSPs and execute adversarial JS snippets

12

CSP specification

Site operator

script-src benign.com

CSP
Configure

- 12 angry developers, CCS ’21

- Complex security policy?, NDSS ’20

- CSP is dead, long live CSP!, CCS ’16

- Reining in the web with CSP, WWW ’10

- CCSP, USENIX Security ’17

- CSPAutoGen, CCS ’16

Recent Studies – Insecure CSP Deployment

13

CSP specification

Browser

developer

Browser

Implement

Allow inline script

by default!
Allow inline script

by default!

Recent Studies – CSP Enforcement Bugs

Few studies have addressed
finding CSP enforcement bugs!

- Content Security Problems?, CCS ’16

→ Limited search space (15 tests)

Our Goal:
Finding CSP enforcement bugs
regarding JS execution

14

Challenges in Finding Bugs

15

Browser
<script>attack()</script>

HTML

script-src benign.com

CSP Refer

Enforce!

<script>attack()</script>

HTML

script-src benign.com

CSP

Challenges in Finding Bugs

16

Browser

Generating

diverse inputs

Testing CSPs

Testing HTMLs

Refer

Enforce!

Challenges in Finding Bugs

17

Browser

Generating

diverse inputs

Benign

Bug

Implementing

bug oracles

Testing CSPs

Testing HTMLs

Refer

Enforce!

Challenge: Implementing Bug Oracles

18

CSP specification

1,006

CSPs

25,800

HTMLs

For each

test CSP and HTML

Browser

Benign

Bug

Testing CSPs

Testing HTMLs

What is the

correct behavior?

Implementing bug oracles

CSP specification What is the

correct behavior?

Challenge: Implementing Bug Oracles

19

1,006

CSPs

25,800

HTMLs

For each

test CSP and HTML

Browser

Benign

Bug

Testing CSPs

Testing HTMLs

Implementing bug oracles

The manual identification of

correct behaviors is not scalable

Challenges in Finding Bugs

20

Browser

Generating

diverse inputs

Implementing

bug oracles

Identifying

root causes

Benign

Bug

Passed test cases

Developer

Testing CSPs

Testing HTMLs

About 4,000,000

cases!

21

How do we address
all the challenges?

22

We propose

DiffCSP

Our Goal: Finding CSP Enforcement Bugs

23

Benign

Bug

Passed test cases

Browser

Generating

diverse inputs

Implementing

bug oracles

Identifying

root causes

Testing CSPs

Testing HTMLs

Developer

Passed test cases

Implementing

bug oracles

Benign

Bug

Browser

Generating Diverse Inputs in DiffCSP

Identifying

root causes

Developer
24

Generating

diverse inputs
Grammar-based

input generation

Known bugs

XSS payloads

ECMAScript spec

HTML cheat sheet Testing CSPs

Testing HTMLs

Grammar

Grammar-based Input Generation

25

Known CSP bugs

HTML cheat sheet

XSS payloads

ECMAScript spec

Diverse ways of

executing JS snippets

Grammar-based Input Generation

HTML cheat sheet

<iframe onload=
attack()>

</iframe>

Known CSP bugs

document.body.innerHTML+=
“<script>

eval(‘attack()’)
</script>”

Grammar

Testing HTMLs

Derive all known forms

of executing JS codes

Diverse ways of

executing JS snippets

Grammar-based Input Generation

HTML cheat sheet

<iframe onload=
attack()>

</iframe>

Known CSP bugs

document.body.innerHTML+=
“<script>

eval(‘attack()’)
</script>”

Grammar

[JS]

document.body.innerHTML+=
“[HTML]”

Testing HTMLs

document.body.innerHTML+=
“

”

Known CSP bugs

Grammar-based Input Generation

HTML cheat sheet

<iframe onload=
attack()>

</iframe>

Known CSP bugs

document.body.innerHTML+=
“<script>

eval(‘attack()’)
</script>”

Grammar

[JS]

[HTML]

document.body.innerHTML+=
“[HTML]”

<iframe onload=
[JS]>

</iframe>

Testing HTMLs

document.body.innerHTML+=
“

”

Known CSP bugs

<iframe onload=

</iframe>

HTML cheat sheet

Grammar

Grammar-based Input Generation

HTML cheat sheet

<iframe onload=
attack()>

</iframe>

Known CSP bugs

document.body.innerHTML+=
“<script>

eval(‘attack()’)
</script>”

[JS]

[HTML]

document.body.innerHTML+=
“[HTML]”

eval(‘[JS]’)

attack()

<iframe onload=
[JS]>

</iframe>

<script>
[JS]

</script>

Testing HTMLs

Grammar-based Input Generation

HTML cheat sheet

<iframe onload=
attack()>

</iframe>

Known CSP bugs

document.body.innerHTML+=
“<script>

eval(‘attack()’)
</script>”

Grammar

[JS]

[HTML]

document.body.innerHTML+=
“[HTML]”

eval(‘[JS]’)

attack()

<iframe onload=
[JS]>

</iframe>

<script>
[JS]

</script>

<script>
document.body.innerHTML+=
“<iframe onload=

eval(‘attack()’)>
</iframe>”

</script>

Testing HTML #1

<iframe onload=
eval(‘document.body.innerHTML+=
“<script>

attack()
</script>”’)>

</iframe>

Testing HTML #2…

Testing HTML #NGenerate 25,880 HTML instances

CSP Generation

31
Generate 1,006 policies

script-src benign.com;

CSP

Keyword

none, unsafe-inline,
unsafe-eval, self,
strict-dynamic, unsafe-hashes

Host-source Self URL, Allowed URL, *

Schemes data:, blob:, http:, https:

Nonce-source nonce-123

Hash-source sha256-[HASH]

default-src,
script-src,
script-src-elem,
script-src-attr

Developer

Passed test cases

Implementing

bug oracles

JS not
executed

JS
executed

Implementing Bug Oracles in DiffCSP

Browser

Identifying

root causes

32

Generating

diverse inputs
Grammar-based

input generation

Safari

Chrome

Firefox

JS not
executed

Benign

Bug
Known bugs

XSS payloads

ECMAScript spec

HTML cheat sheet

Grammar

Testing CSPs

Testing HTMLs

Differential testing

as a bug oracle

Differential Testing as a Bug Oracle

33

CSP specification

Safari

Chrome

Firefox

Testing CSPs

Testing HTMLs

What is the

correct behavior?

Differential Testing as a Bug Oracle

34

Safari

Chrome

Firefox Developer

Implement

This is the

correct behavior!

CSP specification

Testing CSPs

Testing HTMLs

Differential Testing as a Bug Oracle

35

CSP specification

Safari

Chrome

Firefox

Developer

Developer

Developer

(Incorrectly) Implement

Implement

Implement

This is the

correct behavior!

Testing CSPs

Testing HTMLs

Misunderstand

Differential Testing as a Bug Oracle

36

Safari

Chrome

Firefox

JS not
executed

JS
executed

JS not
executed

Highly likely due to a

CSP enforcement bug!

Testing CSPs

Testing HTMLs

Differential Testing as a Bug Oracle

37

Safari

Chrome

Firefox

JS not
executed

JS
executed

JS not
executed

Highly likely due to a

CSP enforcement bug!

Testing CSPs

Testing HTMLs

Avoid modelling the correct behaviors!

Developer

Identifying

root causes

Differential Testing as a Bug Oracle

38

Grammar-based

input generation

Chrome

Safari

Firefox

Differential testing

as a bug oracle

Testing CSPs

Testing HTMLs
JS not

executed

JS
executed

JS not
executed

Inconsistent results

Known bugs

XSS payloads

ECMAScript spec

HTML cheat sheet

Grammar

Known bugs

XSS payloads

ECMAScript spec

HTML cheat sheet

Grammar

Identifying Root Causes in DiffCSP

Grammar-based

input generation

JS not
executed

JS
executed

Chrome

Safari

Firefox

JS not
executed

Differential testing

as a bug oracle

Testing CSPs

Testing HTMLs

Identifying

root causes

Inconsistent results

39

About 4,000,000

cases!

Developer

Identifying Root Causes in DiffCSP

Grammar-based

input generation

Differential testing

as a bug oracle

JS not
executed

JS
executed

Chrome

Safari

Firefox

JS not
executed

Testing CSPs

Testing HTMLs

Known bugs

XSS payloads

ECMAScript spec

HTML cheat sheet

Grammar

Condition 1

Condition 2 Condition 3

Condition 4 Condition 3

40

Inconsistent results

Identifying

root causes
Root cause analysis

using decision tree

Developer

Decision Tree-based Root Cause Analysis

41

4,000,000

inconsistent results

We need to cluster the results!

Under what conditions

are they clustered together?

Decision tree-based

root cause analysis

Decision #4

Decision Tree-based Root Cause Analysis

42

Decision tree

Not exist Exist

ExistNot exist

Condition 1

Condition 3

Condition 2

ExistNot exist

Inconsistent

Inconsistent

Consistent

Consistent

4,000,000

inconsistent results

Not exist

Not exist

Consistent

Consistent

Decision #4

Decision Tree-based Root Cause Analysis

43

Decision tree

Exist

ExistNot exist

Condition 1

Condition 3

Condition 2

Exist

Inconsistent

Inconsistent

4,000,000

inconsistent results

Not exist

Not exist

Consistent

Consistent

Decision Tree-based Root Cause Analysis

44

Decision #4

Decision tree

Exist

Not exist

Condition 1

Condition 3
Exist

Inconsistent
Developer

Exist

Condition 2

Inconsistent

Decision Tree-based Root Cause Analysis

45

Consistent results

Components of HMTL

Components of CSP
Inconsistent

Consistent

Label:

Label:

37 Features

Condition 3

Condition 4

Root cause #3

Root cause #1

Train
Inconsistent results Condition 1

Condition 2

Condition 5

Root cause #2

Decision tree

Components of HMTL

Components of CSP

37 Features

Decision Tree-based Root Cause Analysis

46

Consistent results

Inconsistent

Consistent

Label:

Label:

Condition 3

Condition 4

Root cause #3

Root cause #1

Train
Inconsistent results

4,000,000 cases

Condition 1

Condition 2

Condition 5

Root cause #2

Decision tree

525 paths

We analyzed only 525 paths

to pinpoint the root causes

Consistent Inconsistent

Decision Tree-based Root Cause Analysis

47

Decision tree

Not exist Exist

ExistNot exist

CSP directive:
script-src

Consistent

Consistent
JS Execution Method:

Executing inline JS

CSP value:
unsafe-inline

ExistNot exist

script-src benign.com

CSP

<script>attack()</script>

HTML

JS not
executed

JS
executed

Chrome

Safari

Firefox

JS not
executed

Consistent

Not exist

Exist

Consistent

Consistent

Not exist

Decision Tree-based Root Cause Analysis

JS
executed

Chrome

script-src benign.com

CSP

<script>attack()</script>

HTML

Inconsistencies occurred when

Chrome
Root cause analysis

Exist

Decision tree

Not exist

JS Execution Method:

Executing inline JS

Exist

Inconsistent

CSP directive:
script-src

CSP value:
unsafe-inline

Consistent

Not exist

Exist

Consistent

Consistent

Not exist

JS
executed

Chrome

<script>attack()</script>

HTML

Decision Tree-based Root Cause Analysis

Inconsistencies occurred when

1. the script-src directive is exist,

Root cause analysis

script-src benign.com

CSP CSP directive:
script-src

Exist

Not exist

CSP value:
unsafe-inline

Decision tree

JS Execution Method:

Executing inline JS

Exist

Inconsistent

Consistent

Not exist

Exist

Consistent

Consistent

Not exist

JS
executed

Chrome

<script>attack()</script>

HTML

Decision Tree-based Root Cause Analysis

Inconsistencies occurred when

1. the script-src directive is exist,

2. the unsafe-inline value is not exist, and

Root cause analysis

script-src benign.com

CSP

Exist

Not exist

CSP directive:
script-src

CSP value:
unsafe-inline

Decision tree

JS Execution Method:

Executing inline JS

Exist

Inconsistent

Consistent

Not exist

Exist

Consistent

Consistent

Not exist

JS
executed

Chrome

Decision Tree-based Root Cause Analysis

51

Inconsistencies occurred when

1. the script-src directive is exist,

2. the unsafe-inline value is not exist, and

3. the inline script is exist in the HTML

snippet!

Root cause analysis

script-src benign.com

CSP

<script>attack()</script>

HTML
Exist

CSP directive:
script-src

Not exist

CSP value:
unsafe-inline

Exist

JS Execution Method:

Executing inline JS

Decision tree

Inconsistent

Consistent

Not exist

Exist

Consistent

Consistent

Not exist

JS
executed

Chrome

Decision Tree-based Root Cause Analysis

52

Inconsistencies occurred when

1. the script-src directive is exist,

2. the unsafe-inline value is not exist, and

3. the inline script is exist in the HTML

snippet!

Root cause analysis

script-src benign.com

CSP

<script>attack()</script>

HTML

Decision tree

Exist

Not exist

CSP directive:
script-src

JS Execution Method:

Executing inline JS

CSP value:
unsafe-inline

Exist

Inconsistent

Evaluation

53

Grammar-based

input generation

Differential testing

as a bug oracle

Root cause analysis

using decision tree

JS not
executed

JS
executed

Chrome

Safari

Firefox

JS not
executed

Testing CSPs

Testing HTMLs

Condition 1

Condition 2 Condition 3

Condition 4 Condition 3

Root cause #2

Root cause #3

Inconsistent results

Root cause #1

Known bugs

XSS payloads

ECMAScript spec

HTML cheat sheet

Grammar

Developer

Experimental Setup

• Target browsers: eight popular browsers

Chrome

Desktop

browsers Firefox Safari

54

Mobile

browsers Chrome Brave Opera Firefox Tor

Experimental Setup

• Target browsers: eight popular browsers

Chrome

Desktop

browsers Firefox Safari

55

Mobile

browsers Chrome Brave Opera Firefox Tor

Chromium Gecko WebKit

Bugs Found

• Found 37 CSP enforcement bugs in three browser engines
with 4M inconsistent results

− # of security bugs: 27

− # of specification bugs: 3

− # of functional bugs: 7

• We reported 27 security bugs resulting from vendor’s mistakes
− 23 bugs have been patched (12 bugs were patched due to our report)

56

rewarded with $4,000!

Incorrect CSP inheritance 2 0 6

Incorrect hash handling 1 0 2

Non-ignored directive values 1 0 1

Non-supporting specific directives 0 2 0

Non-supporting specific directive values 0 3 1

Auto-enabling directive values by default 0 1 1

Auto-enabling directive values on specific conditions 0 0 5

Non-supporting CSP for specific status code 1 0 0

Incorrect handling of malformed CSPs 0 1 0

Allowing out-going request 1 1 0

Root Causes

57

Case Study: Non-ignored CSP Values

58

default-src ‘strict-dynamic’
‘unsafe-inline’

<script>attack()</script>

HTML

 unsafe-inline should be

ignored when strict-dynamic
is specified

CSP3 specification

Ignored!

CSP

Blocked!

Expected behavior:

Case Study: Non-ignored CSP Values

59

Chrome

Safari

Firefox

Block!

Allow
attack()

Block!

 unsafe-inline should be

ignored when strict-dynamic
is specified

CSP3 specification

default-src ‘strict-dynamic’
‘unsafe-inline’

<script>attack()</script>

HTML

CSP

Case Study: Non-ignored CSP Values

60

Chrome

Allow
attack()

 unsafe-inline should be

ignored when strict-dynamic
is specified

CSP3 specification

default-src ‘strict-dynamic’
‘unsafe-inline’

<script>attack()</script>

HTML

CSP

Lesson #1: Complex CSP Specification

61

 unsafe-inline should be

ignored when strict-dynamic
is specified

CSP3 specification

−CSP Level 1, 2012

−CSP Level 2, 2014

−CSP Level 3, 2015 +‘strict-dynamic’, ‘unsafe-hashes’, …

+ hash handling, nonce handling, …

83% bugs are caused

by CSP Level 3

83% bugs are caused

by

Lesson #1: Complex CSP Specification

62

−CSP Level 1, 2012

−CSP Level 2, 2014

−CSP Level 3, 2015

Complex description

CSP specification

+‘strict-dynamic’, ‘unsafe-hashes’, …

+ hash handling, nonce handling, …

Require more comprehensive

browser testing!

63

script-src ‘nonce-123’

<iframe src=“javascript:attack()”>
</iframe>

HTML

 Documents from local schemes

will inherit the CSP of their

parent page

CSP specification

CSP

Case Study: Incorrect CSP Inheritance

Case Study: Incorrect CSP Inheritance

64

script-src ‘nonce-123’

<iframe src=“javascript:attack()”>
</iframe>

HTML

 Documents from local schemes

will inherit the CSP of their

parent page

CSP specification

CSP

Local scheme

local schemes

CSP specification

<iframe src=“javascript:attack()”>
</iframe>

Case Study: Incorrect CSP Inheritance

65

script-src ‘nonce-123’

<iframe src=“javascript:attack()”>
</iframe>

HTML

 Documents from local schemes

will inherit the CSP of their

parent page

CSP specification

CSP

Inherit!

Local scheme

Case Study: Incorrect CSP Inheritance

66

script-src ‘nonce-123’

 Documents from local schemes

will inherit the CSP of their

parent page

CSP specification

CSP

<iframe id=“z” src=“tmp.html” />
<script nonce=123>
z.addEventListener(“load”,() => {

z.src=“javascript:attack()”
;});

</script>

HTML

Case Study: Incorrect CSP Inheritance

script-src ‘nonce-123’

 Documents from local schemes

will inherit the CSP of their

parent page

CSP specification

CSP

<iframe id=“z” src=“tmp.html” />
<script nonce=123>
z.addEventListener(“load”,() => {

z.src=“javascript:attack()”
;});

</script>

HTML

67

<iframe id=“z” src=“tmp.html” /> src=“tmp.html”

Work FlowHTML

Case Study: Incorrect CSP Inheritance

script-src ‘nonce-123’

 Documents from local schemes

will inherit the CSP of their

parent page

CSP specification

CSP

<iframe id=“z” src=“tmp.html” />
<script nonce=123>
z.addEventListener(“load”,() => {

z.src=“javascript:attack()”
;});

</script>

HTML

68

<iframe id=“z” src=“tmp.html” /> src=“tmp.html”

on “load” event

Work Flow

addEventListener(“load”
z.src=“javascript:attack()”

src=“javascript:attack()”

Dynamic page

redirection

HTML

Expected behavior:

Case Study: Incorrect CSP Inheritance

script-src ‘nonce-123’

 Documents from local schemes

will inherit the CSP of their

parent page

CSP specification

CSP

<iframe id=“z” src=“tmp.html” />
<script nonce=123>
z.addEventListener(“load”,() => {

z.src=“javascript:attack()”
;});

</script>

HTML

69

Only nonce-protected

scripts are allowed

Blocked!
Inherit!

Block!

Allow
attack()

Block!

Case Study: Incorrect CSP Inheritance

script-src ‘nonce-123’

 Documents from local schemes

will inherit the CSP of their

parent page

CSP specification

CSP

<iframe id=“z” src=“tmp.html” />
<script nonce=123>
z.addEventListener(“load”,() => {

z.src=“javascript:attack()”
;});

</script>

HTML

70

Chrome

Safari

Firefox

Lesson #2: Page Redirection

 Documents from local schemes

will inherit the CSP of their

parent page

CSP specification

71

28% bugs are caused

by page redirection!

Limitations

• DiffCSP cannot find a bug if all the browsers exhibit
the same bug

• DiffCSP cannot find a bug if there exist unknown HTML
forms of executing JS snippets

72

Open Science

73

https://github.com/WSP-LAB/DiffCSP

https://github.com/WSP-LAB/DiffCSP

Conclusion

• We propose DiffCSP, the differential testing framework designed to
identify CSP enforcement bugs

−We propose an HTML grammar to generate diverse test inputs

−We conduct differential testing to identify the correct behavior

−We leverage decision trees to pinpoint the root causes for
erroneous CSP enforcement

• We found 29 security bugs and eight functional bugs

74

Thank you! Questions?

Conclusion

• We propose DiffCSP, the differential testing framework designed to
identify CSP enforcement bugs

−We propose an HTML grammar to generate diverse test inputs

−We conduct differential testing to identify the correct behavior

−We leverage decision trees to pinpoint the root causes for
erroneous CSP enforcement

• We found 29 security bugs and eight functional bugs

75

Thank you! Questions?

Conclusion

• We propose DiffCSP, the differential testing framework designed to
identify CSP enforcement bugs

−We propose an HTML grammar to generate diverse test inputs

−We conduct differential testing to identify the correct behavior

−We leverage decision trees to pinpoint the root causes for
erroneous CSP enforcement

• We found 29 security bugs and eight functional bugs

76

Thank you! Questions?

Conclusion

• We propose DiffCSP, the differential testing framework designed to
identify CSP enforcement bugs

−We propose an HTML grammar to generate diverse test inputs

−We conduct differential testing to identify the correct behavior

−We leverage decision trees to pinpoint the root causes for
erroneous CSP enforcement

• We found 29 security bugs and eight functional bugs

77

Thank you! Questions?

Conclusion

• We propose DiffCSP, the differential testing framework designed to
identify CSP enforcement bugs

−We propose an HTML grammar to generate diverse test inputs

−We conduct differential testing to identify the correct behavior

−We leverage decision trees to pinpoint the root causes for
erroneous CSP enforcement

• We found 29 security bugs and eight functional bugs

78

Thank you! Questions?

Conclusion

• We propose DiffCSP, the differential testing framework designed to
identify CSP enforcement bugs

−We propose an HTML grammar to generate diverse test inputs

−We conduct differential testing to identify the correct behavior

−We leverage decision trees to pinpoint the root causes for
erroneous CSP enforcement

• We found 29 security bugs and eight functional bugs

79

Thank you! Questions?

Conclusion

• We propose DiffCSP, the differential testing framework designed to
identify CSP enforcement bugs

−We propose an HTML grammar to generate diverse test inputs

−We conduct differential testing to identify the correct behavior

−We leverage decision trees to pinpoint the root causes for
erroneous CSP enforcement

• We found 29 security bugs and eight functional bugs

80

Thank you! Questions?

Conclusion

• We propose DiffCSP, the differential testing framework designed to
identify CSP enforcement bugs

−We propose an HTML grammar to generate diverse test inputs

−We conduct differential testing to identify the correct behavior

−We leverage decision trees to pinpoint the root causes for
erroneous CSP enforcement

• We found 29 security bugs and eight functional bugs

81

Thank you! Questions?

Conclusion

• We propose DiffCSP, the differential testing framework designed to
identify CSP enforcement bugs

−We propose an HTML grammar to generate diverse test inputs

−We conduct differential testing to identify the correct behavior

−We leverage decision trees to pinpoint the root causes for
erroneous CSP enforcement

• We found 29 security bugs and eight functional bugs

82

Thank you! Questions?

83

84

More in the Paper

• HTML category
−Executing inline JS in script tag

−Fetching JS in script tag

−Redirecting to scheme

−Executing inline JS in event
handler

−Writing to frame

−Changing location of iframe

−Evaluating string via frame’s
function

−Expanding document

85

• CSP generation

• JS category
−Executing inline JS

−Evaluating string

−Dynamically fetching JS

−Redirecting to scheme

−Expanding document

−Writing to opened document

Grammar

Grammar-based Input Generation

HTML cheat sheet

<iframe onload=
attack()>

</iframe>

Known CSP bugs

document.body.innerHTML+=
“<script>

eval(‘attack()’)
</script>”

[JS]

[HTML]

document.body.innerHTML+=
“[HTML]”

eval(‘[JS]’)

attack()

[HTML]

Testing HTML #1

<iframe onload=
[JS]>

</iframe>

<script>
[JS]

</script>

Grammar-based Input Generation

HTML cheat sheet

<iframe onload=
attack()>

</iframe>

Known CSP bugs

document.body.innerHTML+=
“<script>

eval(‘attack()’)
</script>”

[JS]

document.body.innerHTML+=
“[HTML]”

eval(‘[JS]’)

attack()

[HTML]

Testing HTML #1

<iframe onload=
[JS]>

</iframe>

<script>
[JS]

</script>

Grammar

[HTML]

<script>
[JS]

</script>

Grammar-based Input Generation

HTML cheat sheet

<iframe onload=
attack()>

</iframe>

Known CSP bugs

document.body.innerHTML+=
“<script>

eval(‘attack()’)
</script>”

[JS]

[HTML]

document.body.innerHTML+=
“[HTML]”

eval(‘[JS]’)

attack()

<script>
[JS]

</script>

Testing HTML #1

<iframe onload=
[JS]>

</iframe>

<script>
[JS]

</script>

Grammar
<script>
document.body.innerHTML+=
“[HTML]”

</script>document.body.innerHTML+=
“[HTML]”

More in the Paper – CSP generation

89
Generate 1,006 policies

script-src benign.com;

CSP

Keyword

none, unsafe-inline,
unsafe-eval, self,
strict-dynamic, unsafe-hashes

Host-source Self URL, Allowed URL, *

Schemes data:, blob:, http:, https:

Nonce-source nonce-123

Hash-source sha256-[HASH]

default-src,
script-src,
script-src-elem,
script-src-attr

Content Security Problems?, CCS ‘16

90

Browser

Benign

Bug

Passed test cases

Auditor

Manual preparation

(only 15 cases)

Manual verification

for each case

Manual analysis

for each case

Testing CSPs

Testing HTMLs

Manual verification

for each case

Implementing

bug oracles

Content Security Problems?, CCS ‘16

91

Browser

Benign

Bug

Passed test cases

Auditor

Manual preparation

(only 15 cases)

Manual analysis

for each case

Generating

diverse inputs

Identifying

root causes

Testing CSPs

Testing HTMLs

Implementing

bug oracles

Content Security Problems?, CCS ‘16

Browser

Benign

Bug

Passed test cases

Auditor

Generating

diverse inputs

Identifying

root causes

Testing CSPs

Testing HTMLs

92

Found only one CSP bug involving JS execution

Evaluation – Decision Tree

93

Lesson #3: Specification Bugs

94

 When a CSP contains non-ASCII

characters, the whole policy

should be discarded

CSP specification

script-src http://a.com
http://가.com

CSP

<script>attack()</script>

HTML

Expected behavior:
Whole policy should be discarded

Lesson #3: Specification Bugs

95

 When a CSP contains non-ASCII

characters, the whole policy

should be discarded

CSP specification

script-src http://a.com
http://가.com

CSP

<script>attack()</script>

HTML

Expected behavior:
Whole policy should be discarded

➔ Inline script should be allowed?

Lesson #3: Specification Bugs

96

 When a CSP contains non-ASCII

characters, the whole policy

should be discarded

CSP specification

script-src http://a.com
http://가.com

CSP

<script>attack()</script>

HTML

Chrome

Safari

Firefox

JS not
executed

JS
executed

JS
executed

Follow spec

Follow spec

Case Study: Incorrect CSP Inheritance

97

script-src ‘nonce-123’

CSP

 Sources from a local scheme

(e.g., javascript) should inherit

the CSP of their parent page

CSP specification

<iframe id=“z” src=“tmp.html” />
<script nonce=123>
z.addEventListener(“load”,() => {

z.src=“javascript:attack()”
;});

</script>

HTML

Expected behavior:
The nonce-protected JS will be allowed

➔ Inline script should be blocked

Case Study: Incorrect CSP Inheritance

98

script-src ‘nonce-123’

<iframe id=“z” src=“tmp.html” />
<script nonce=123>
z.addEventListener(“load”,() => {

z.src=“javascript:attack()”
;});

</script>

HTML

 Documents from local schemes

will inherit the CSP of their

parent page

CSP specification

CSP

Case Study: Incorrect CSP Inheritance

99

 Sources from a local scheme

(e.g., javascript) should inherit

the CSP of their parent page

CSP specification

https://test.com

Parent CSP
iframe src=javascript:

Child CSP

Inherit!

https://test.com/

Case Study: Incorrect CSP Inheritance

100

script-src ‘nonce-123’

CSP

<iframe id=“z” src=“tmp.html” />
<script nonce=123>
z.addEventListener(“load”,() => {

z.src=“javascript:attack()”
;});

</script>

HTML

 Documents from local schemes

will inherit the CSP of the parent

document

CSP specification

https://test.com

Parent CSP
Child CSP

Inherit!

iframe src=“tmp.html”

https://test.com/

Case Study: Incorrect CSP Inheritance

101

script-src ‘nonce-123’

CSP

<iframe id=“z” src=“tmp.html” />
<script nonce=123>
z.addEventListener(“load”,() => {

z.src=“javascript:attack()”
;});

</script>

HTML

 Sources from a local scheme

(e.g., javascript) should inherit

the CSP of their parent page

CSP specification

https://test.com

Parent CSP
iframe src=javascript:

Child CSP

Inherit!

Dynamic

page redirection

https://test.com/

Case Study: Incorrect CSP Inheritance

102

script-src ‘nonce-123’

CSP

<iframe id=“z” src=“tmp.html” />
<script nonce=123>
z.addEventListener(“load”,() => {

z.src=“javascript:attack()”
;});

</script>

HTML

 Sources from a local scheme

(e.g., javascript) should inherit

the CSP of their parent page

CSP specification

Expected behavior:
The nonce-protected JS will be allowed

Case Study: Incorrect CSP Inheritance

103

script-src ‘nonce-123’

CSP

 Sources from a local scheme

(e.g., javascript) should inherit

the CSP of their parent page

CSP specification

<iframe id=“z” src=“tmp.html” />
<script nonce=123>
z.addEventListener(“load”,() => {

z.src=“javascript:attack()”
;});

</script>

HTML

Expected behavior:
The nonce-protected JS will be allowed

➔ Inline script should be blocked

Decision #3 Decision #4

Decision Tree-based Root Cause Analysis

104

Decision tree

Not exist Exist

ExistNot exist

Condition 1

Decision #1

Decision #2Condition 3

Condition 2

ExistNot exist

Decision #3

Not exist

Exist

Decision #1

Decision #2

Not exist

Decision Tree-based Root Cause Analysis

105

Human-readable conditions

leading to classification decisions

Decision #4

Decision tree

Exist

Not exist

Condition 1

Condition 3

Condition 2

Exist

Decision #3

Not exist

Exist

Decision #1

Decision #2

Not exist

Decision Tree-based Root Cause Analysis

106

Decision #4

Decision tree

Exist

Not exist

Condition 1

Condition 3

Condition 2

Exist

Inconsistent

Human-readable conditions

leading to classification decisionsinconsistent results

Incorrect CSP inheritance 2 0 6

Incorrect hash handling 1 0 2

Non-ignored directive values 1 0 1

Non-supporting specific directives 0 2 0

Non-supporting specific directive values 0 3 1

Auto-enabling directive values by default 0 1 1

Auto-enabling directive values on specific conditions 0 0 5

Non-supporting CSP for specific status code 1 0 0

Incorrect handling of malformed CSPs 0 1 0

Allowing out-going request 1 1 0

Root Causes

107

Execute an arbitrary

JS code (97%)

Sending a request to an

arbitrary endpoint (3%)

