DiffCSP: Finding Browser Bugs in
Content Security Policy Enforcement
through Differential Testing

Seongil Wi*, Trung Tin Nguyent, Jihwan Kim®, Ben StockT, Sooel Son*

"KAIST TCISPA Helmholtz Center for Information Security

NDSS 2023

W |CISPA
MIST Wszs_ecum{ b -’/M_\ HELMHOLTZ CENTER FOR
rivacy La LW

Cross-Site Scripting (XSS) Attacks

Request:
http://vuln.com?query=
<scr1pt>attack()</scr'1pt>.

Response

Server-side
web application

—

Execute arbitrary JsgiEEy

JavaScript code
2 KAIST @Wébpifﬁc CIS PA

Content Security Policy (CSP) @

Request:

http://vuln.com?query=
wripbattack()dscripb

eb application

I . G

Browser

\\\\\\\\\\\\\\\\\\\

Content Security Policy (CSP) @

* A browser-enforced security mechanism

|
Enforce! Browser

W " ICISPA
4 MIST Wg(bps?cur“{ b -’//I\‘\ HELMHOLTZ CENTER FOR
rivacy La

\\\\\\\\\\\\\\\\\\\

Content Security Policy (CSP) @

* A browser-enforced security mechanism

o 500,000

(0]

@)

= 400,000 -

=

[72)

I

8 300,000 -

O)

o

=

o 200,000 A

A

>

& 100,000 1—

N Q o) X N Q O N N Q) N N Q
PO A eI SN SN SR S s S e
S S S S S S S S S S
¥ ¥ @ @ P P P P P @ @ @ @ q
Quarters
https://www.bitsight.com/blog/content-security-policy-limits-dangerous-activity-so-why-isnt-everyone-doing-it Vi,
S KAIST @(/Wszifﬁc’;‘{ab s CISPA

https://www.bitsight.com/blog/content-security-policy-limits-dangerous-activity-so-why-isnt-everyone-doing-it

CSP Ecosystem

CSP specification

6 KAIST W, ¢ /[SISPA

\\\\\\\\\\\\\\\\\\\\\

CSP Ecosystem

CSP specification

Browser
developer

Implement

Browser

, KAIST O ‘|ICISPA

\\\\\\\\\\\\\\\\\\\

Our Research Question
CSP specification .
Misunderstand 'q

v" Block inline scripts by defaul Browser

r developer

What If developers misunderstand or

misimplement the CSP specification?

CSP Enforcement Bugs

CSP specification

o _ Misunderstand
v" Block inline scripts by defaul

Browser
developer

Implement

CSP Enforcement Bugs Allow inline scripts
by default!

\\\\\\\\\\\\\\\\\\\

CSP Enforcement Bugs

CSP specification

Browser
developer

Implement

| csPU| Refer

Allow inline scripts

. by default!

I

| HTML |

/4 " ICISPA
10 MIST Wszsgcurit{ b -’//l\‘\ HELMHOLTZ CENTER FOR
rivacy La

\\\\\\\\\\\\\\\\\\\

CSP Enforcement Bugs

Allow adversaries to
bypass CSPs and execute adversarial JS sni

I

W |CISPA
11 m‘ ST W;bPSgcurit{ . ',’,,/a,“\‘\ HELMHOLTZ CENTER FOR
rivacy Lai ‘

\\\\\\\\\\\\\\\\\\\

Recent Studies - Insecure CSP Deployment

CSP specification

12 angry developers, CCS 21
- Complex security policy?, NDSS °20

- CSPis dead, long live CSP!, CCS ’16

- Reining in the web with CSP, WWW ’10
- CCSP, USENIX Security 17
CSPAutoGen, CCS 16

12 KAIST W, ¢ |C1SPA

\\\\\\\\\\\\\\\\\\\\\

Recent Studies — CSP Enforcement Bugs

CSP specification

Browser
developer

Implement

Few studies have addressed
finding CSP enforcement bugs!

- Content Security Problems?, CCS 16
— Limited search space (15 tests)

/4 " ICISPA
13 MIST Wszsgcurit{ b -’//l\‘\ HELMHOLTZ CENTER FOR
rivacy La

\\\\\\\\\\\\\\\\\\\

Our Goal:

Finding CSP enforcement bugs
regarding JS execution

W |CISPA
14 MIST Wszs_ecum{ b -’/M_\ HELMHOLTZ CENTER FOR
rivacy La (A D

Challenges in Finding Bugs

| csPO| Refer

script-src benign.com | W g

lHT™ML | @

I ¢script>attack()</script> :

R v Browser
Enforce!

15 KAIST @/Wz%if;:

CISPA

\\\\\\\\\\\\\\\\\\\

Challenges in Finding Bugs

Generating
diverse Inputs
| CSP@_ ______

scrifastameCBEgn. com | W gl

| HTM |— __________ &
| ¢scrip r ack()</script> !
L= — —(—)—/— e V Browser

Testing HTMLs Enforce!

16 KAIST @/Wz%if;: C I S P A

\\\\\\\\\\\\\\\\\\\

Challenges in Finding Bugs
Generating Implementing
diverse inputs bug oracles

v

Testing CSPs

Browser
Testing HTMLs)
Benign

17 KAIST Q |CISPA

\\\\\\\\\\\\\\\\\\\

=

Challenge: Implementing Bug Oracles

For each CSP specification What is the
test CSP and HTML ~ () . correct behavior?

B
=1 1,006 -9
= CSPs
Testing CSPS c Implementing bug oracles

Browser

25 3800
HTMLS

Testlng HTMLs

18 KAIST @Wibpifﬁc C I S P A

\\\\\\\\\\\\\\\\\\\

Challenge: Implementing Bug Oracles

For each CSP specification What is the
test CSP and HTML ~ () . correct behavior?
Testing CSPs

n2Ce

The manual ildentification of

Bug

= 1,006

g CSPs

Implementing bug oracles

correct behaviors Is not scalable

Challenges in Finding Bugs
Generating Implementing
diverse inputs bug oracles

» [+
Testing CSPs c

Passed test cases
Browser

ldentifying

root causes

About 4,000,000
cases!

W%

-

Developer

Testlng HTMLs

20

How do we address
all the challenges?

We propose

DiffCSP

W/ s"ICISPA
22 MIST Wz{bpS?curit,Z b -’/M_\ HELMHOLTZ CENTER FOR
rivacy La LW

Our Goal: Finding CSP Enforcement Bugs

Generating Implementing
diverse inputs bug oracles
s [+ [
Passed test cases
Testlng CSPS
Browsér

ldentifying

root causes

7%
Testlng HTMLs

Benign \4

Developer

Generating Diverse Inputs in DiffCSP

Grammar-based

Input generation

_
@3
Testing CSPs

¥

&80

Testing HTMLs

24

Grammar-based Input Generation

Known CSP bugs

XSS payloads

ECMAScript spec
HTML cheat sheet DIV?I’SG Ways of
executing JS snippets

/4 " ICISPA
25 MIST Wszsgcurit{ b -’//l\‘\ HELMHOLTZ CENTER FOR
rivacy La

\\\\\\\\\\\\\\\\\\\

Grammar-based Input Generation

Grammar

Derive all known forms

of executing JS codes

Known CSP bugs

document.body.innerHTML+=
“Kscript>
eval(“‘attack()’)
</script>”

Diverse ways o

executing JS snippets

<iframe onload=
attack()>
</iframe>

Testing HTMLs

W " ICISPA
MIST Wg(bps?cur“{ b -’//I\‘\ HELMHOLTZ CENTER FOR
rivacy La

\\\\\\\\\\\\\\\\\\\

Grammar-based Input Generation

Grammar
[IS]

Known CSP bugs document.body.innerHTML+=
“ITHTML]”>

document.body.innerHTML+=

(L3

»

Grammar-based Input Generation

Grammar
AN

[IS]

document.body.innerHTML+=
“[HTML]”

Known CSP bugs

document.body.innerHTML+=

(L3

HTML cheat sheet
<iframe onload= <iframe onload=
[IS]>
</iframe> </iframe>

Testing HTMLs

KAIST O ‘|ICISPA

\\\\\\\\\\\\\\\\\\\

Grammar-based Input Generation

Grammar
[IS]
Known CSP bugs document.body.innerHTML+=
document.body.innerHTML+= [HTML]
“Kscript>] ,
eval(‘attack()’) eval([35]”)
</script> attack()
HTML cheat sheet
<iframe onload= <iframe onload=
attack()> [IS]>
</iframe> </iframe>

Testing HTMLs

<script>
[JS]

</script>
KAIST W

\\\\\\\\\\\\\\\\\\\

Grammar-based Input Generation

Known CSP bugs

document.body.innerHTML+=
“Kscript>
eval(“‘attack()’)

</script>”

HTML cheat sheet

<iframe onload=
attack()>
</iframe>

Generate 25,880 HTML Instances

»

Grammar
[IS]

document.body.innerHTML+=
“[HTML]”

eval([3S]’)

attack()

<iframe onload=
[JS]>
</iframe>

<script>
document.body.innerHTML+=
“<iframe onload=
eval(‘attack()’)>
</iframe>”
</script>

Testing HTML #1

<iframe onload=
eval(‘document.body.innerHTML+=
“<script>
attack()
</script>”’)>
</iframe>

Testing HTML #2

CSP Generation

none, unsafe-inline,
Keyword unsafe-eval, self,
strict-dynamic, unsafe-hashes

script-src, Host-source Self URL, Allowed URL, *
script-src-elem, Schemes data:, blob:, http:, https:
script-src-attr Nonce-source nonce-123

Hash-source sha256-[HASH]

default-src,

Generate 1,006 policies

Implementing Bug Oracles in DiffCSP

Grammar-based Differential testing
Input generation as a bug oracle

Testing HTMLs

Safari

. JS not
executed
B

Firefox

32

Differential Testing as a Bug Oracle

Testing CSPs

Testing HTMLs

CSP specification

What Is the
correct behavior?

KAIST

WWeb Security
& Privacy La

\\,/
=)
b

HELMHOLTZ CENTER FOR

\\\\\\\\\\\\\\\\\\\

Differential Testing as a Bug Oracle

CSP specification

This Is the
Testing CSPs correct behavior!

Testing HTMLs

@

Firefox

Developer

Differential Testing as a Bug QIR0

correct behavior!

CSP specification

Mlsunderstand

(Incorrectly) Implement 4

=

Developer
Testing CSPs c 1
Chrome Developer

Firefox Developer

Differential Testing as a Bug Oracle

JS
o) executed
. JS not
executed

Chrome Highly likely due to a

|
33 not CSP enforcement bug!
e - executed

Firefox KAIST \X/ |CISPA

\\\\\\\\\\\\\\\\\\\

@

Testing CSPs

Testing HTMLs

Differential Testing as a Bug Oracle

Testing HTMLs

Firefox CISPA

37

Differential Testing as a Bug Oracle

Grammar-based Differential testing

Input generation as a bug oracle

N SN
0. mp PE Lmp =,
Chrome Inconsistent results

=

HTML cheat sheet Testing CSPs

&80

Testlng HTMLs

e JS not
executed

» JS not
executed

Firefox

ldentifying Root Causes in DiffCSP

39

root causes
BN

Inconsistent results

About 4,000,000
cases!

%

A

Developer

Identifying Root Causes in DiffCSP

Root cause analysis

using decision tree

o+

Inconsistent results

Conditicn 1

40 Developer

Decision Tree-based Root Cause Analysis

We need to cluster the results!

I

I

X " Under what conditions

i = are they clustered together?
I

| . .

. Decision tree-based
e - root cause analysis

N -
4,000,000
Inconsistent reSUItS 41 KAIST W/W;"pifv‘i’i‘{ab ’,\ CISPA

Decision Tree-based Root Cause Analysis

-

N -
4.000,000
inconsistent results kaistT W, i7|CI1SPA

42

\\\\\\\\\\\\\\\\\\\

Decision Tree-based Root Cause Analysis

Cond:tion 1

Not exist

Condition 3

- Inconsistent
| 4’(_)00’000 Decision tree
Inconsistent results kalsT ..., " CISPA

43

\\\\\\\\\\\\\\\\\\\

Decision Tree-based Root Cause Analysis

ol

Conc:tion 1

. Xist
“‘
‘ i

L . .

o* Cricitior. 2
nun®

L uunn® ® ®Not exist Exist

nt®

Condition 3 Inconsistent

xist

Inconsistent
Developer

Decision tree
44 KAIST @Wf&bps,fﬂ[f{ab :’1\.,\\: SM HIOL§CEIN?Epé

\\\\\\\\\\\\\\\\\\\

Decision Tree-based Root Cause Analysis

IE; + 37 Features

Inconsistent results

gL consistent JREY

B+D

Consistent results Decision tree

R Consistent

Components of CSP Traln C“”di“‘{‘ 1
Components of HMTL

45 KAIST Q ‘|ICISPA

\\\\\\\\\\\\\\\\\\\

Decision Tree-based Root Cause Analysis

4,000,000 cases I 525 paths

We analyzed only 525 paths

to pinpoint the root causes

Decision Tree-based Root Cause Analysis

| CSP@' _________ CSP directive:
'script-src benign.com script-src
| HTML |
' script>attack()</script>: ' un‘;g’fe‘_’?'nulei:ne
35 Not exist
executed JS Execution Method:

cConsistent

Executing inline JS
JS not Not exist

executed
Consistent Inconsistent

JS not oo
executed Decision tree

Firefox 47 KAIST W i|CISPA

\\\\\\\\\\\\\\\\\\\

Decision Tree-based Root Cause Analysis

| CSP @ | CSP directive:

'script-src benign.com script-src

lHT™ML |
<scr‘ipt>attack()</SCPiPt>:

CSP value;
unsafe-inline

Not exist

JS
executed JS Execution Method:

. Executing inline JS
Root cause analysis

Inconsistencies occurred when
Inconsistent

Decision tree
KAIST W, i|CISPA

Chrome

Decision Tree-based Root Cause Analysis

| CSP@' _________ CSP directive:
\ssr'_:l.gt_s_r's\ _bgn_lgn_c_or_n script-src
| HTML | R

'<script>attack()</script>: o CSP value:

L e e e e e e e e Y e e e m = X V'S unsafe-inline
Not exist
JS

executed

*2JS Execution Method:
Executing inline JS

Chrome

Root cause analys's

Inconsistencies occurred when @
i . T @ . .
1. the script-src directive Is exist, Inconsistent

Decision tree
KAIST Q ‘|ICISPA

\\\\\\\\\\\\\\\\\\\

Decision Tree-based Root Cause Analysis

| CSP@' _________ CSP directive:
scrlpt src \benlgn com\ script-src
| HTML |
I . . L CSP value:
<scriptyattack()</script>
L - _P _____ (_) _/_ — _p_ | unsafe-inline
JS
executed JS Execution Method:

Chrome

Executing inline JS

Root cause analysis
\ 2

Inconsistencies occurred when R
1. the script-src direcii¥e is exist, Inconsistent
[] [] ‘ L M
2. the unsafe-inline value is not exist, and

Decision tree
KAIST Q ‘|ICISPA

\\\\\\\\\\\\\\\\\\\

Decision Tree-based Root Cause Analysis

| CSP @ | CSP directive:

script-src

CSP value;
unsafe-inline

Not exist

JS Execution Methad:
Executing inline yS

Inconsistencies occurred when
1. the script-src directiveis exist, 4 Inconsistent
2. the unsafe-inline value is not exi8t, and

3. the inline script is exist in the H'FML Decision tree
snippet! KAIST GW“ C|SPA

\\\\\\\\\\\\\\\\\\\

Decision Tree-based Root Cause Analysis

| CSP @ | CSP directive:

'script-src benign.com script-src

lHT™ML |
<scr‘ipt>attack()</SCPiPt>:

CSP value;
unsafe-inline

Not exist

JS
executed JS Execution Method:

. Executing inline JS
Root cause analysis

Inconsistencies occurred when
1. the script-src directive Is exist,
Decision tree
KAIST W i |CISPA

Chrome

2. the unsafe-inline value is not exist, and
3. the inline script is exist in the HTML
snippet!

Evaluation

Grammar-based Differential testing Root cause analysis

using decision tree

Input generation

XSS payloads

ECMAScript spec

Testing CSPs

‘ .
E&np

Testing HTMLs

as a bug oracle

JS
executed

Chrome

Root cause #1 Root =
» JS not
executed

Firefox Developer

Experimental Setup

 Target browsers: eight popular browsers

.

Desktop
browsers Chrome Firefox Safari

n

Mobile
browsers Chrome Brave Opera Firefox

Experimental Setup

 Target browsers: eight popular browsers

=——
Desktop
browsers

]

Mobile
browsers

Chromium Gecko =--WebKit

W, ICISPA
MI ST wszsrf;;cr;‘{ab ”I I\‘\ :-1NEFL34HOLTZ CENTER Fop

RMATION SECURITY

Bugs Found

* Found 37 CSP enforcement bugs in three browser engines
with 4M Inconsistent results
— # of security bugs: 27
— # of specification bugs: 3
— # of functional bugs: 7

* We reported 27 security bugs resulting from vendor’s mistakes
— 23 bugs have been patched (12 bugs were patched due to our report)

GO gle rewarded with $4,000!

T \x/ S ICISPA
56 m‘s Wg{bpSf.’ﬂlrit{ " -’, .~ | HELMHOLTZ CENTER FOR
rivacy La LN

Root Causes

Incorrect CSP inheritance

Incorrect hash handling
Non-ignored directive values
Non-supporting specific directives

Non-supporting specific directive values
Auto-enabling directive values by default
Auto-enabling directive values on specific conditions
Non-supporting CSP for specific status code
Incorrect handling of malformed CSPs

Allowing out-going request

57

Case Study: Non-ignored CSP Values

CSP3 specification

v unsafe-inline should be
Ignored when strict-dynamic
IS specified

| CSPU] _____ - - - - Expected behavior:

jdefault-src ‘strict-dynamic’!
‘unsafe-inline’— Ignored!

58 KAIST @W%ﬂ” C I S P A

\\\\\\\\\\\\\\\\\\\

Case Study: Non-ignored CSP Values

CSP3 specification

v unsafe-inline should be
Ignored when strict-dynamic
IS specified

O
attack()

Chrome

Safari

@~

59 Firefox KAIST @(/Wszifv‘:!" C I S P A

\\\\\\\\\\\\\\\\\\\

Case Study: Non-ignored CSP Values

CSP3 specification

v unsafe-inline should be
Ignored when strict-dynamic
IS specified

Allow
e..mp 5N

Chrome
! CSP{ |

60 KAIST @/Wz%if;:;;y e | DB

\\\\\\\\\\\\\\\\\\\

Lesson #1: Complex CSP Specification

CSP3 specification

v’ unsafe-inline should be 83% bugs are caused

ignored when strict-dynamic by CSP Level 3
IS specified

-CSP Level 1, 2012

-CSP Level 2, 2014 |+ hash handling, nonce handling, ...

-CSP Level 3, 2015 [+‘strict-dynamic’, ‘unsafe-hashes’, ...

W, £
61 KAIST websecury %
&PrivacyLab 10\

\\\\\\\\\\\\\\\\\\\

Lesson #1: Complex CSP Specification

CSP specification

Require more comprehensive

Complex description browser testing!

-CSP Level 1, 2012

-CSP Level 2, 2014 |+ hash handling, nonce handling, ...

-CSP Level 3, 2015 [+‘strict-dynamic”’, ‘unsafe-hashes’, ...

62 KAIST W &|CISPA

\\\\\\\\\\\\\\\\\\\

Case Study: Incorrect CSP Inheritance

CSP specification

v Documents from local schemes
will inherit the CSP of their
parent page

| cSPU|

'script-src ‘nonce- ~1237)
|HTML|

' <iframe src=*“javascript:attack()”
Lf/lframe> I

o3 KAIST W, ¢ /[SISPA

\\\\\\\\\\\\\\\\\\\\\

Case Study: Incorrect CSP Inheritance

CSP specification

v Documents from local schemes
will inherit the CSP of their
parent page

|HTML|

L ocal scheme

64

EEEEEEEEEEEEEEEEEE
\\\\\\\\\\\\\\\\\\\\\

Case Study: Incorrect CSP Inheritance

CSP specification

v Documents from local schemes
will inherit the CSP of their
parent page

L ocal scheme

65 KAIST @/w EEEEEEEEEEEEEEEEEE
& Privacy Lab

\\\\\\\\\\\\\\\\\\\\\

Case Study: Incorrect CSP Inheritance

CSP specification

v Documents from local schemes
will inherit the CSP of their
parent page

|HTML|

| ¢iframe id=*z” src=“tmp.html” />
I<script nonce=123>
z.addEventListener(“load™, () => {

z.src=*“javascript:attack()”
31

</script>

Case Study: Incorrect CSP Inheritance

CSP specification

v Documents from local schemes
will inherit the CSP of their
parent page

| ;T_I\/I_L_| _________ Work Flow
““““““ - src=“tmp.html”

| <iframe id="z” src=“tmp.html” />

- 67 KAIST W i |CISPA

\\\\\\\\\\\\\\\\\\\\\

Case Study: Incorrect CSP Inheritance

CSP specification

v Documents from local schemes
will inherit the CSP of their
parent page

lcsPOU|

script-src_‘nonce-123

| HTML | | Work Flow _

I <iframe id:“;”_s;c;‘t_mp_. h_tm_l”_ /_> T src="tmp.html™ Dyna_mlc page

| 3 N redirection
addEventListener(“load” lon load™ event

src=“javascript:attack()”
< sempt o __ 63 KAIST Q “|CISPA

\\\\\\\\\\\\\\\\\\\\\

|
|
I z.src="javascript:attack()”
|
|

Case Study: Incorrect CSP Inheritance

CSP specification

v Documents from local schemes
will inherit the CSP of their
parent page

Expected behavior:

|CSPOU| ____ Only nonce-protected

"script-src_‘nonce-123%1 . scripts are allowed
Inherit!

_______ Blocked!
p.html” />

| HTML |

| ¢iframe id=*z” src=*
I<scr‘ipt nonce=123>
z.addEventListener(“10M”, () =>4

z.src=*“javascript:attack()”
31

</script>

- == _ ______________ 69 MIST @W?PS::::;)/ C I S PA

\\\\\\\\\\\\\\\\\\\

Case Study: Incorrect CSP Inheritance

CSP specification

v Documents from local schemes
will inherit the CSP of their
parent page

O Y siock:

Chrome

I/": » AI IOW
“: attack()

| <iframe id=*z” src=“tmp.html” />
I<scr‘ipt nonce=123>
z.addEventListener(“load™, () => {

z.src=*“javascript:attack()”
31

</script>

Firefox KAIST Q ‘|ICISPA

\\\\\\\\\\\\\\\\\\\

Lesson #2: Page Redirection

CSP specification

v Documents from local schemes 28% b r
will inherit the CSP of their 0 bugs are cause

parent page by page redirection!

/4 " ICISPA
71 MIST Wszsgcurit{ b -’//l\‘\ HELMHOLTZ CENTER FOR
rivacy La

\\\\\\\\\\\\\\\\\\\

Limitations

* DIffCSP cannot find a bug if all the browsers exhibit
the same bug

* DIffCSP cannot find a bug if there exist unknown HTML
forms of executing JS snippets

W/ s"ICISPA
72 MIST Wz{bPSQC(lrit{ b -’/M_\ HELMHOLTZ CENTER FOR
rivacy La LW

Open Science

H WSP-LAB [DiffCSP ' Pubiic

<> Code Issues 0 Pull requests 0 Actions Projects 0

https.//github.com/WSP-LAB/DIffCSP

v

73 KAIST W..... i |CISPA

\\\\\\\\\\\\\\\\\\\

https://github.com/WSP-LAB/DiffCSP

Conclusion

» We propose DIffCSP, the differential testing framework designed to
Identify CSP enforcement bugs

—We propose an HTML grammar to generate diverse test inputs

—We conduct differential testing to identify the correct behavior

—We leverage decision trees to pinpoint the root causes for
erroneous CSP enforcement

* We found 29 security bugs and eight functional bugs

Thank you! Questions?
74 KAIST V(/Wszif;::;'{ab e | S

\\\\\\\\\\\\\\\\\\\

Conclusion

» We propose DIffCSP, the differential testing framework designed to
Identify CSP enforcement bugs

—We propose an HTML grammar to generate diverse test inputs

—We conduct differential testing to identify the correct behavior

—We leverage decision trees to pinpoint the root causes for
erroneous CSP enforcement

* We found 29 security bugs and eight functional bugs

Thank you! Questions?
75 KAIST V(/Wszif;::;'{ab e | S

\\\\\\\\\\\\\\\\\\\

Conclusion

» We propose DIffCSP, the differential testing framework designed to
Identify CSP enforcement bugs

—We propose an HTML grammar to generate diverse test inputs

—We conduct differential testing to identify the correct behavior

—We leverage decision trees to pinpoint the root causes for
erroneous CSP enforcement

* We found 29 security bugs and eight functional bugs

Thank you! Questions?
76 KAIST V(/Wszif;::;'{ab e | S

\\\\\\\\\\\\\\\\\\\

Conclusion

» We propose DIffCSP, the differential testing framework designed to
Identify CSP enforcement bugs

—We propose an HTML grammar to generate diverse test inputs

—We conduct differential testing to identify the correct behavior

—We leverage decision trees to pinpoint the root causes for
erroneous CSP enforcement

* We found 29 security bugs and eight functional bugs

Thank you! Questions?
77 KAIST V(/Wszif;::;'{ab e | S

\\\\\\\\\\\\\\\\\\\

Conclusion

» We propose DIffCSP, the differential testing framework designed to
Identify CSP enforcement bugs

—We propose an HTML grammar to generate diverse test inputs

—We conduct differential testing to identify the correct behavior

—We leverage decision trees to pinpoint the root causes for
erroneous CSP enforcement

* We found 29 security bugs and eight functional bugs

Thank you! Questions?
78 KAIST V(/Wszif;::;'{ab e | S

\\\\\\\\\\\\\\\\\\\

Conclusion

» We propose DIffCSP, the differential testing framework designed to
Identify CSP enforcement bugs

—We propose an HTML grammar to generate diverse test inputs

—We conduct differential testing to identify the correct behavior

—We leverage decision trees to pinpoint the root causes for
erroneous CSP enforcement

* We found 29 security bugs and eight functional bugs

Thank you! Questions?
79 KAIST V(/Wszif;::;'{ab e | S

\\\\\\\\\\\\\\\\\\\

Conclusion

» We propose DIffCSP, the differential testing framework designed to
Identify CSP enforcement bugs

—We propose an HTML grammar to generate diverse test inputs

—We conduct differential testing to identify the correct behavior

—We leverage decision trees to pinpoint the root causes for
erroneous CSP enforcement

* We found 29 security bugs and eight functional bugs

Thank you! Questions?
80 KAIST WWZbPSerC:cr;t{ab ://\.,\\: SM HIOL§CEIN?ED§

\\\\\\\\\\\\\\\\\\\

Conclusion

» We propose DIffCSP, the differential testing framework designed to
Identify CSP enforcement bugs

—We propose an HTML grammar to generate diverse test inputs

—We conduct differential testing to identify the correct behavior

—We leverage decision trees to pinpoint the root causes for
erroneous CSP enforcement

* We found 29 security bugs and eight functional bugs

Thank you! Questions?
81 KAIST WWZbPSerC:cr;t{ab ://\.,\\: SM HIOL§CEIN?ED§

\\\\\\\\\\\\\\\\\\\

Conclusion

» We propose DIffCSP, the differential testing framework designed to
Identify CSP enforcement bugs

—We propose an HTML grammar to generate diverse test inputs

—We conduct differential testing to identify the correct behavior

—We leverage decision trees to pinpoint the root causes for
erroneous CSP enforcement

* We found 29 security bugs and eight functional bugs

Thank you! Questions?
82 KAIST WWZbPSerC:cr;t{ab ://\.,\\: SM HIOL§CEIN?ED§

\\\\\\\\\\\\\\\\\\\

of Paths

140

120 -
100 -

nN Ao O O
o O o o o

- .

m Complete Explanation
o Partial Explanation

nconsistency

(a) Desktop browsers.

83

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

CISPA

\\\\\\\\\\\\\\\\\\\

KAIST W...,

25,000 — 0.98
== # of Paths e
Recall 0.90
20,000 -
L 0.94
7))
% 15,000 - - 0.92 4
o 09 &
'© 10,000 - 088 =
* 0.86
5,000 - -
L 0.84
525
0 1— . . ' . ' . - 0.82
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Depth
2 CISPA

84 MI ST Web Security z N

. %, > | HELMHOLTZ CENTER FOR
&PrivacyLab ~ “LAN

\\\\\\\\\\\\\\\\\\\

More in the Paper

* CSP generation « HTML category
» JS category —Executing inline JS In script tag
—Executing inline JS —Fetching JS In script tag
—Evaluating string —Redirecting to scheme
—~Dynamically fetching JS —Executing inline JS in event
handler

—Redirecting to scheme
—EXxpanding document
—Writing to opened document

—Writing to frame
—Changing location of iframe

—Evaluating string via frame’s
function

—Expanding document
85 KIM ST \X/Wibpsrfié'!f{ab ',\ ,\ CM IOSCPAO

Grammar-based Input Generation

Grammar
[HTML]
[IS]
Known CSP bugs document.body.innerHTML+=
document.body.innerHTML+= [HTML]
“Kscript>] ,
eval(‘attack()’) eval(“[35]) Testing HTML #1
</script>” attack()
HTML cheat sheet
<iframe onload= <iframe onload=
attack()> [IS]>
</iframe> </iframe>

<script>
[JS]

</script>
KAIST W

\\\\\\\\\\\\\\\\\\\

Grammar-based Input Generation

Grammar
[HTML]
[IS]
Known CSP bugs document.body.innerHTML+=
document.body.innerHTML+= [HTML]
“Kscript>] ,
eval(‘attack()’) eval(“[35]) Testing HTML #1
</script>” attack()
HTML cheat sheet
<iframe onload= <iframe onload=
attack()> [IS]>
</iframe> </iframe>

<script>
[IS]

</script>
KAIST W

\\\\\\\\\\\\\\\\\\\

Grammar-based Input Generation

Grammar
<script>

[JS] fasdment.body.innerHTML+=

“[HTML]”
Known CSP bugs document.body.innerHTML+= </script>
“[HTML]”

document.body.innerHTML+=
“Kscript> . ,
eval(‘attack()’) eval(“[35]") Testing HTML #1
</script>” attack()
HTML cheat sheet
<iframe onload= <iframe onload=
attack()> [JS]>

</iframe> </iframe>

<script>
[JS]

</script>)
MI ST @W% Sgcurity :r

&Privacylab %1 N\

HELMHOLTZ CENTER FOR

\\\\\\\\\\\\\\\\\\\

More in the Paper — CSP generation

none, unsafe-inline,
Keyword unsafe-eval, self,
strict-dynamic, unsafe-hashes

script-src, Host-source Self URL, Allowed URL, *
script-src-elem, Schemes data:, blob:, http:, https:
script-src-attr Nonce-source nonce-123

Hash-source sha256-[HASH]

default-src,

Generate 1,006 policies

Content Security Problems?, CCS ‘76

Manual preparation
(only 15 cases)

Manual verification Manual analysis
for each case for each case

Testing CSPs

~Cy

Browser
Testing HTMLs

Auditor

90

Content Security Problems?, CCS ‘76

Implementing ldentifying
bug oracles root causes

Generating
diverse Inputs

=Gy

Browser
Testing HTMLs

Auditor

91

Content Security Problems?, CCS ‘76
Generating Implementing ldentifying
diverse Inputs bug oracles root causes

Found only one CSP bug involving JS execution

92

Evaluation — Decision Tree

140

120 +
100 -

of Paths

20 -

80 -
60 -
40 |

1

m Complete Explanation
—Partial Explanation

_ m_ e

-

2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Inconsistency

93

KAIST W

\\\\\\\\\\\\\\\\\\\

Lesson #3: Specification Bugs

CSP specification

v When a CSP contains non-ASCI|
characters, the whole policy
should be discarded

| CSP |

Expected behavior:

Whole policy should be discarded

o KAIST Q ‘|CISPA

&P Lb II \\\\\\\\\\\\\\\\\\\

Lesson #3: Specification Bugs

CSP specification

v When a CSP contains non-ASCI|
characters, the whole policy
should be discarded

| CSP |

—————————— Expected behavior:

:SCr‘lpt-SPC :::ccpfxgicgr)nm : Whole policy should be discarded
il ALEES L -> Inline script should be allowed?

|<scr1pt>attack()</scr1p > :

o KAIST Q ‘|CISPA

&P Lb II \\\\\\\\\\\\\\\\\\\

Lesson #3: Specification Bugs

CSP specification

v When a CSP contains non-ASCI|
characters, the whole policy
should be discarded

C %
executed

Chrome Follow spec

'script-src _hft?):_//_a_.c_or;_: JS
L http://7k.com $ executed
1n> Follow spec

Safari

i<script>attack()</script> !

» JS not
e executed

Firefox S
96 KAIST WWZbPSrfvc:cr}’;t{ab TN SM HIOL§CEIN?ED§

\\\\\\\\\\\\\\\\\\\

Case Study: Incorrect CSP Inheritance

CSP specification

v Sources from a local scheme
(e.g., javascript) should inherit
the CSP of their parent page

lcsp |

'script-src ‘nonce-123° : Expected behavior:
______________ The nonce-protected JS will be allowed

| HTML |

_____________ -> Inline script should be blocked

| ¢iframe id=*z” src=“tmp.html” /> |
I ¢script nonce=123> '
z.addEventListener(“load™, () => '

z.src=*“javascript:attack()”

315 |
| </script> o __ . KAIST O |CISPA

\\\\\\\\\\\\\\\\\\\

Case Study: Incorrect CSP Inheritance

CSP specification

v Documents from local schemes
will inherit the CSP of their
parent page

|HTML|

| ¢iframe id=*z” src=“tmp.html” />
I<script nonce=123>
z.addEventListener(“load™, () => {

z.src=*“javascript:attack()”
31

</script>

Case Study: Incorrect CSP Inheritance

CSP specification

v Sources from a local scheme
(e.g., javascript) should inherit
the CSP of their parent page

https://test.com

Child CSP
Iframe src=javascript:

Parent CSP

09 KaIST W, ¢7|CISPA
& Privacy Lab

\\\\\\\\\\\\\\\\\\\\\

https://test.com/

Case Study: Incorrect CSP Inheritance

CSP specification

v Documents from local schemes
will inherit the CSP of the parent
document

https://test.com
¢
e

-:0

| . ¢ ’ —

script-src ‘nonce-123 .

b e S e e e e e L ST e - - - | Parent CSP Child CSP

CSP

HTML iframe src=“tmp.html”

| ¢iframe id=*z” src=“tmp.html” />
I<scr'ipt nonce=123>
z.addEventListener(“load™, () => {

z.src=*“javascript:attack()”
31

</script>

EEEEEEEEEEEEEEEEEE
\\\\\\\\\\\\\\\\\\\\

https://test.com/

Case Study: Incorrect CSP Inheritance

CSP specification

v Sources from a local scheme
(e.g., javascript) should inherit
the CSP of their parent page

https://test.com

CSP

lcrpint-cre ‘nance-192 >

scrlpt src ‘nonce-123 .
________________ | Parent CSP Child CSP
HTML Iframe src=javascript:

| <iframe id="z” src=““tmp.html” />
I<scr'ipt nonce=123>
z.addEventListener(“load™, () => {

; : Dynamic
z.src="“javascript:attack()” _ _
1) : page redirection

</script>

CZISID/\

https://test.com/

Case Study: Incorrect CSP Inheritance

CSP specification

v Sources from a local scheme
(e.g., javascript) should inherit
the CSP of their parent page

lcsp |

'script-src ‘nonce-123’ Expected behavior:
______________ The nonce-protected JS will be allowed

| HTML |

| ¢iframe id=*z” src=“tmp.html” />
I<script nonce=123>
z.addEventListener(“load™, () => {

z.src=*“javascript:attack()”
31

</script>

\\\\\\\\\\\\\\\\\\\

Case Study: Incorrect CSP Inheritance

CSP specification

v Sources from a local scheme
(e.g., javascript) should inherit
the CSP of their parent page

lcsp |

'script-src ‘nonce-123° : Expected behavior:
______________ The nonce-protected JS will be allowed

| HTML |

_____________ -> Inline script should be blocked

| ¢iframe id=*z” src=“tmp.html” /> |
I ¢script nonce=123> '
z.addEventListener(“load™, () => '

z.src=*“javascript:attack()”

315 |
| </script> o __ I oa KAIST O |CISPA

\\\\\\\\\\\\\\\\\\\

Decision Tree-based Root Cause Analysis

Not exist

Decision #1

Not exist

Exist

Decision #2

Not exist Exist

Decision #3 Decision #4

Decision tree
104 KAIST @Wibps,ff:[f{ab ://\.,\\: SM HIOL§CEIN?ED§

\\\\\\\\\\\\\\\\\\\

Decision Tree-based Root Cause Analysis

Human-readable conditions
leading to classification decisions

Not exist

mxist

Decision #4

Decision tree
105 KAIST \X/Wszsrfvfggf{a . ',\ | \ SM HIOSCINDAO

Decision Tree-based Root Cause Analysis

Human-readable conditions
leading to ' inconsistent results

Not exist

Condition 3

Inconsistent

Decision tree
106 KAIST @Wibpsffﬂf{ab ://\.,\\: SM HIOL§CEIN?ED§

\\\\\\\\\\\\\\\\\\\

Root Causes

Incorrect CSP inheritance

Incorrect hash handling Execute an arbitrary
Non-ignored directive values JS code (97%)

Non-supporting specific directives
Non-supporting specific directive values

Auto-enabling directive values by default

Auto-enabling directive values on specific conditions | JESiciAellglo RN =l [V[E R{ek=1g
Non-supporting CSP for specific status code arbitrary endpoint (3%)
Incorrect handling of malformed CSPs

Allowing out-going request

o7 KAIST Q ‘|ICISPA

\\\\\\\\\\\\\\\\\\\

