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Encoder as a Service

• Service provider
• OpenAI, Clarifai

• Encoder
• A general-purpose feature extractor

• Supervised learning, self-supervised learning

• Client
• Smartphone, IoT device, self-driving car, edge device
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Deployment of Encoder as a Service

OpenAI’s GPT-3 Clarifai’s General Image Embedding
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Standard Encoder as a Service
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Building a Downstream Classifier
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Adversarial Example
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Certified Defense

• A certified defense
• Build a certifiably robust classifier

• Derive the certified radius

• Certifiably robust classifier:
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Certified Defense

• Base classifier (BC) based certification
• CROWN, IBP

• Smoothed classifier (SC) based certification
• Randomized smoothing
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Base Classifier Based Certification

• Directly derive the certified radius of a given classifier (base classifier)

• White-box access to the base classifier
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Figure is from “Scalable Verified Training for Provably Robust Image Classification.”, in ICCV, 2019 



Smoothed Classifier Based Certification

• Build a certifiably robust smoothed classifier upon a base classifier

• Requires the base classifier to predict the labels of multiple noisy 
versions of a testing input.
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Goal of A Client

• A client aims to
• Build a certifiably robust classifier

• Deriving its certified radius

• SEaaS
• View composition of encoder and downstream classifier as a base classifier

• BC or SC based certification
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Challenges of Existing SEaaS

• BC based certification
• Not applicable

• SC based certification
• Incur large communication cost
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Our Solution

• Robust Encoder as a Service (REaaS)

• Feature-API

• An extra API: F2IPerturb-API
• Input: An image, a feature-space certified radius

• Output: An image-space certified radius
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Feature-space Certified Radius

• View the downstream classifier as a base classifier
• BC or SC based certification

• Build a certifiably robust downstream classifier
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Image-space Certified Radius
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Solving the Optimization Problem

• Binary search
• We verify whether a given r satisfy the constraint

• Key challenge

• Key idea
• Derive an upper bound of 
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Summary of REaaS
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Pre-training Robust Encoder

• Decomposition and spectral norm [1]

• We use the following loss:
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Theoretical Comparison with SEaaS

• REaaS makes BC based certification applicable

• REaaS incurs a smaller communication cost for SC based certification

19



Evaluation

• Pre-training dataset and algorithm:
• Tiny-ImageNet

• MoCo

• Downstream dataset and classifier:
• CIFAR10, SVHN, STL10

• A fully connected neural network
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Evaluation Setting

• BC based certification
• CROWN

• SC based certification
• Randomized smoothing
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Evaluation Metrics

• #Queries
• #Queries per training input

• #Queries per testing input

• Average certified radius (ACR)
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Comparing REaaS with SEaaS
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REaaS supports BC based certification while SEaaS does not. 



Comparing REaaS with SEaaS
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REaaS achieves larger ACR while incurring smaller communication cost for SC based certification



Comparing Our Pre-training Method
with Existing Ones

• Non-robust MoCo

• RoCL (generalize adversarial training)
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Comparing Our Pre-training Method
with Existing Ones
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Our pre-training method outperforms existing ones



Extending REaaS to NLP Domain
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Conclusion

• We propose REaaS that enables a client to build a certifiably robust 
downstream classifier

• Our REaaS reduces the communication cost of SC based certification

• Our pre-training method improves the certified robustness of a 
downstream classifier
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Thank you!


