GPS SPOOFING ATTACK DETECTION ON INTERSECTION MOVEMENT ASSIST USING ONE CLASS CLASSIFICATION

Jun Ying

Lyles School of Civil Engineering

Connected, Automated, and Resilient Transportation (CART) Lab

Introduction

Overview

Source: GAO.

Emara, Karim. (2016). Safety-aware Location Privacy in Vehicular Ad-hoc Networks.

GPS spoofing attack model

Anomaly detection model

Threat Model

IMA warning application

CV threat model

Threat Model

Trajectory generation model

minimize_s $\theta^T f(s, u)$ (1) s.t. vehicle dynamic constraints

Objective function:

Acceleration: $f_1 = \frac{1}{N} \sum_i a_i^2$.

Heading rate : $f_2 = \frac{1}{N-1} \sum_i (\dot{\psi_i})^2$.

Curvature: $f_3 = \frac{1}{N} \sum_i \sqrt{(x_i - x^c)^2 + (y_i - y^c)^2}$.

Lateral terminal point: $f_4 = (x_N - x^{con})^2$.

Longitudinal terminal point: $f_5 = (y_N - y^{con})^2$

Trigger victim vehicle's IMA warning

Data Set Description

Trajectory data collected from the State & Ellsworth roundabout at Ann Arbor,

Michiganime step 0.4s

- Vehicle location
- Speed
- Heading
- Acceleration
- Neighboring vehicle information

Video Source: Michigan Traffic Lab

Zhang R, Zou Z, Shen S, Liu HX. Design, implementation, and evaluation of a roadside cooperative perception system. Transportation research record. 2022 Nov;2676(11):273-84.

Streetlights with poles

CV Threat Model Experiments

Numerical Experiments

- 927 vehicle pairs
- Attack success rate: 77.970%.
- Average attack success time: 1.71s.

Real vehicle trajectory
BSM trajectory under attack
Victim vehicle trajectory

Detection Methodology

Detection Framework

Detection Methodology

One class classification

Detection framework evaluation

Offline detection

False positive rate: 8/1539 (0.52%)

False Negative rate: 2/490 (0.2%)

Online detection

False Positive	False Negative	Mean attack	Mean detection	Mean time to attack succeed(s)
Rate	Rate	succeed time (s)	time (s)	
14/1539 (0.91%)	0/314 (0%)	2.096	1.600	0.497

Collaborators

Yiheng Feng Purdue University feng333@purdue.edu

Qi Alfred Chen University of California at Irvine alfchen@uci.edu

Z. Morley Mao University of Michigan zmao@umich.edu

Acknowledgement

Thank you!

Questions?

Contact: Jun Ying (ying29@purdue.edu), Yiheng Feng (feng333@purdue.edu)

