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Introduction

« Autonomous vehicles rely on sensors to observe environment and make decisions.
« LIDAR sensors have been demonstrated to be vulnerable to spoofing attacks, e.g.,
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[1] Sun, Jiachen Sun, Yulong Cao Cao, Qi Alfred Chen, and Z. Morley Mao. "Towards robust lidar-based perception in autonomous driving: General black-box
adversarial sensor attack and countermeasures.” In USENIX Security Symposium (Usenix Security'20). 2020.

[2] Cao, Yulong, Chaowei Xiao, Benjamin Cyr, Yimeng Zhou, Won Park, Sara Rampazzi, Qi Alfred Chen, Kevin Fu, and Z. Morley Mao. "Adversarial sensor attack on
lidar-based perception in autonomous driving." In Proceedings of the 2019 ACM SIGSAC conference on computer and communications security, pp. 2267-2281. 2019.
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Types of LIDAR Spoofing

e Goal: causing errors in detection modules.
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« Adversarial objects: synthesized 3D printed objects [2]
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[1] Y. Cao, C. Xiao, B. Cyr, Y. Zhou, W. Park, S. Rampazzi, Q. A. Chen, K. Fu, and Z. M. Mao, “Adversarial sensor attack on LiDAR-based perception in autonomous
driving,” in ACM SIGSAC conference on Computer and Communications Security, 2019, pp. 2267-2281.

[2] Cao, Yulong, et al. "Adversarial objects against lidar-based autonomous driving systems.” arXiv preprint arXiv:1907.05418 (2019).
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Current State-of-the-art: Detection and Mitigation
of LIDAR Spoofing

 Single sensor

— Random sampling proposed in [1] [~ = mmmmmm e —————— - .
— Randomize the pulses' waveforms [2]  + | Increase incost |
» Redundancy-based approach e e .
— Fusion and overlapping [3] : Focus on the single-agent case :
» Cooperative perception e .
— Connected Automated Vehicles [4] | Leave LIDAR spoofing less studied |

[1] Davidson, Drew, et al. "Controlling UAVs with Sensor Input Spoofing Attacks.” WOOT. 2016..

[2] Matsumura, Ryuga, Takeshi Sugawara, and Kazuo Sakiyama. "A secure LIDAR with AES-based side-channel fingerprinting.” 2018 Sixth International Symposium on
Computing and Networking Workshops (CANDARW). IEEE, 2018.

[3] Yeong, De Jong, et al. "Sensor and sensor fusion technology in autonomous vehicles: A review." Sensors 21.6 (2021): 2140.
[4] Bouchouia, Mohammed Lamine, et al. "A Simulator for Cooperative and Automated Driving Security."

10/7/2024 Electrical and Systems Engineering Department, McKelvey School of Engineering, Washington University in St. Louis 5



Contributions e
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« Propose a cooperative, multi-vehicle approach to detecting LIDAR spoofing attacks

« We develop a Fault Detection, Identification, and Isolation procedure (FDII) to
Identify LIDAR attacks and estimate the actual locations of obstacles.

« We propose a controller that guarantees safety based on the updated unsafe region.
* We analyze the correctness of the results from the FDII module.
« We validate our framework in CARLA simulation environment.
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Threat Model Analysis
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Fact 2: the fake obstacle can
1 only be seen by the victim

NEO: Non-Existing Obstacle:
« Agent B cannot see any obstacle
* No overlapping of occupied areas

PRA: Physical Removal Attack:
« Agent B can see obstacle
» Some overlapping of occupied areas

AOQO: Adversarial Obstacle
« Agent B can see obstacle
« Some overlapping of occupied areas
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Proposed Fault Detection, Identification and
|solation
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NEO: Non-Existing Obstacle:
« Agent B cannot see any obstacle
* No overlapping of occupied areas

PRA: Physical Removal Attack:
« Agent B can see obstacle
« Some overlapping of occupied areas

« PRAL1/2/3: Full/Partial/No observation on
the area affected by the fake obstacle

AOQ: Adversarial Obstacle
« Agent B can see obstacle
« Some overlapping of occupied areas
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Proposed Cooperative Framework for Safe Control

* In the paper, we show the correctness of the FDI decision tree.

« Theorem: Suppose we are given the occupied areas U, and Ug. The obstacle
IS contained in U, N Ugfor any of the attack types NEO, PRA, or AO.
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Case Study: Proposed FDII

Attack-free Attack NEO Attack PRA2 Attack PRA3
A pedestrian is set between An obstacle falsified by spoofer The attack signal is set between The attack signal affects a
two agents without attack. Is set in front of Agent A. Agent A and the pedestrian. relatively smaller area.
LiDAR
Point
Cloud
Annotated pedestrian canbe  Fake obstacle can be detected ~ AgentA: Fake obstacle U, = @  AgentA: Fake obstacle U, # @
detected by both agents with  only by Agent A with U, # @ Agent B: Pedestrian Uy # @ Agent B: Pedestrian Ug # @
Uy #@andUp # @. ~and Uy = 0.
Unsafe 2 _ s
. °1  Updated safe region o =
Region = /
Detect No attack; Detects NEO attack Detects PRA2 attack; Detects PRAS3 attack;
unsafe region Uy N Up No unsafe region Uy nUg =@  unsafe region Uy N Ug. unsafe region U, N Ug.
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Case Study: Safe Control

«  Safe Control
«  Unsafe Region updated by proposed FDII

— Unsafe region
- Translate the unsafe region to a set of half-plane safe constraints. S I, wecar
«  Controller compute control input to satisfy constraints. 1375 1

 Simulation in CARLA 137.0 Unsafe Region
*  We define an MPC controller for a linearized vehicle dynamics: 1365 -

CARLA agent trajectory with safe controller
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*  We realize our controller with do-mpc [1], which calls CasADi [2]
and IPOPT [3] for nonlinear programming.

[1] Lucia, Sergio, et al. "Rapid development of modular and sustainable nonlinear model predictive control solutions.” Control Engineering Practice 60 (2017): 51-62.

[2] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Dichl, “CasADi: a software framework for nonlinear optimization and optimal control,” Mathematical
Programming Computation, vol. 11, no. 1, pp. 1-36, 20109.

[3] Wachter, Andreas, and Lorenz T. Biegler. "On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear
programming.” Mathematical programming 106 (2006): 25-57.
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Conclusion oL
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* \We developed a Fault Detection, Identification, and Isolation procedure that
Identifies non-existing obstacle, physical removal, and adversarial object attacks,
while also estimating the actual locations of obstacles.

« We proposed a control algorithm that guarantees that these estimated object
locations are avoided.

* We validated our framework using a CARLA simulation, in which we verify that
our FDII algorithm correctly detects each attack pattern.
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