Short: Rethinking Secure Pairing in Drone Swarms

Muslum Ozgur Ozmen*, Habiba Farrukh*, Hyungsub Kim, Antonio Bianchi, and Z. Berkay Celik

February 27, 2023

Background & Motivation

Drone swarms enable critical applications but

The Hacker News

You Can Hijack Nearly Any Drone Mid-flight Using This Tiny Gadget

Forbes

Keeping Foreign Spyware Out Of U.S.-Made Drones Is Harder Than You Think

threat post

Hack Allows Drone Takeover Via 'ExpressLRS' Protocol

Design Requirements

Swarms need a pairing method to establish secure communication channels that protect the confidentiality and integrity of the messages

R1a: Person-in-the-middle Attacks

R1b: Adversarial Drones

R1c: Stolen Credential Attacks

R2: Energy Efficiency and Scalability

R3: Drone Addition and Removal

Existing Pairing Solutions

Human-in-the-loop-based

- Vulnerable to stolen credentials
- Key revocation

Context-based

- Malicious drones can observe the same context
- They do not support drone addition

Public key cryptography (PKC)-based

- Vulnerable to stolen credentials
- Scalability issues

Existing Pairing Solutions

Unfortunately, existing pairing solutions fail to meet the design requirements of drone swarms

Pairing Solution	R1a	R1b	R1c	R2	R ₃
Human-in-the-loop-based	•	•	0	•	•
Context-based	•	0	0	•	0
PKC-based	•	•	0	0	•

Research Directions

Protection against stolen credentials

Secure hardware

Identifying crashed drones + maintaining deny lists

Behavior-based continuous authentication & attestation

Combination of Pairing Solutions

Conclusion

- In this paper:
 - We explore the security and design requirements for effective swarm pairing
 - We show existing pairing techniques are not sufficient to meet the needs of drone swarms
 - We propose research directions for designing swarm pairing methods that satisfy the unique needs of swarms

 These research endeavors are of utmost importance for secure and trustworthy drone swarms

Thank you! Questions?

mozmen@purdue.edu & hfarrukh@purdue.edu

Backup

