Evaluations of Cyberattacks on Cooperative Control of Connected and Automated Vehicles at Bottleneck Points

Presentation Title

- H. M. Sabbir Ahmad¹, Ehsan Sabouni¹, Wei Xiao², Christos G. Cassandras¹, Wenchao Li¹
 - 1. Boston University
 - 2. Massachusetts Institute of Technology

GAME-CHANGING OPPORTUNITY: CONNECTED AUTOMATED VEHICLES (CAVs)

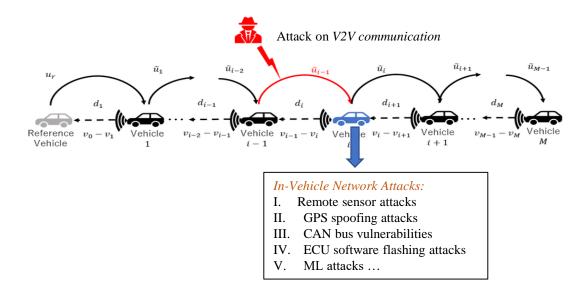
NO TRAFFIC LIGHTS, NEVER STOP...

FROM (SELFISH) "DRIVER OPTIMAL" TO (SOCIAL) "SYSTEM OPTIMAL" TRAFFIC CONTROL

Motivation

With traffic lights

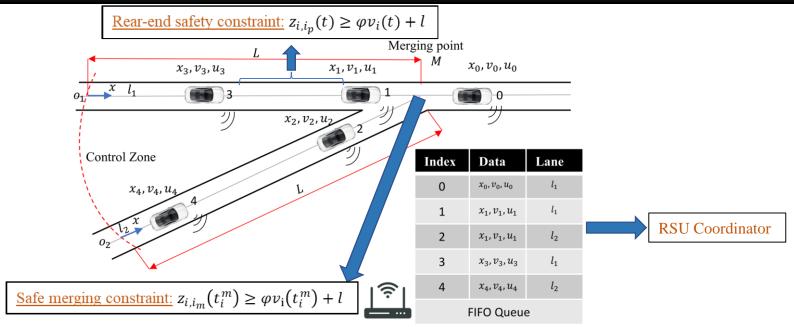
With decentralized control of CAVs



(BU Bridge - Commonwealth Ave, Boston)

Cybersecurity Challenge

Cyber attack can thwart CACC.


Our paper: first study on *security* of *SOTA coordination and control algorithms* for CAVs through *numerous traffic bottleneck points*.

[1]. Yamamoto, Yudai & Kuze, Naomi & Ushio, Toshimitsu. (2021). Attack Detection and Defense System Using an Unknown Input Observer for Cooperative Adaptive Cruise Control Systems. IEEE Access. Pp. 1-1. 10.1109/ACCESS.2021.3124547.

CAV Coordination Problem at Bottleneck Points

Merging roadways

- Provides coordination by maintaining a passing sequence (like Shortest Distance First (SDF), FIFO etc...). We used FIFO policy.
- ➤ The coordination is achieved using V2X communication between the CAVs and the coordinator.

Decentralized Constrained Optimal Control Problem formulation

Rear-end safety constraint

Safe merging constraints

Vehicle limitations:

$$v_{i,\min} \le v_i(t) \le v_{i,\max}$$
, $\forall t \in [t_i^0, t_i^f]$
 $u_{i,\min} \le u_i(t) \le u_{i,\max}$, $\forall t \in [t_i^0, t_i^f]$

Decentralized Controller:

Minimize travel time

Minimize energy consumption

Maximize centrifugal comfort

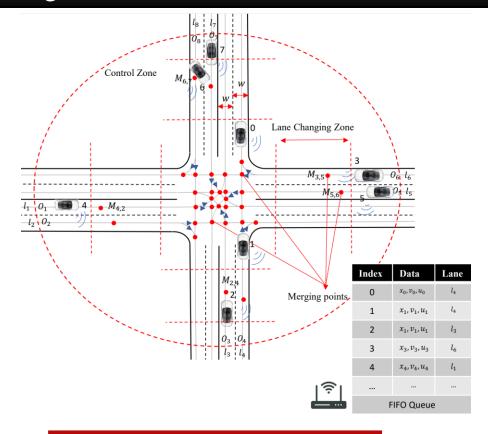
Control $u_i^*(t)$

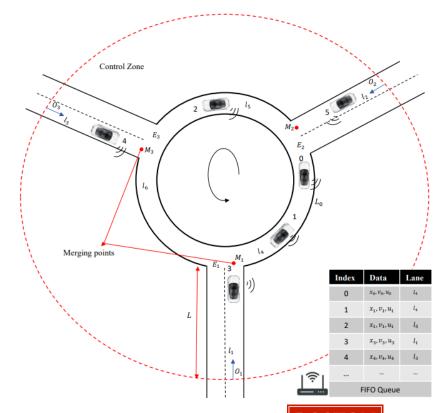
Objective:
$$\min_{u_i(t),t_i^f} \beta_1(t_i^f - t_i^0) + \int_{t_i^0}^{t_i^f} \beta_2 C_i(u_i(t)) dt + \int_{t_i^0}^{t_i^f} \beta_3 \kappa(x_i(t)) v_i^2(t) dt$$

I. CBF constraints for rear-end, merging, and state constraints:

$$L_f b_1(\mathbf{x}) + L_g b_1(\mathbf{x}) u + \alpha_1 \big(b_1(\mathbf{x}) \big)$$

II. CLF constraints for velocity tracking:


$$L_f V(\mathbf{x}) + L_g V(\mathbf{x}) u + \epsilon V(\mathbf{x}) \le e_i(t)$$


Advantages of CBF based Controller:

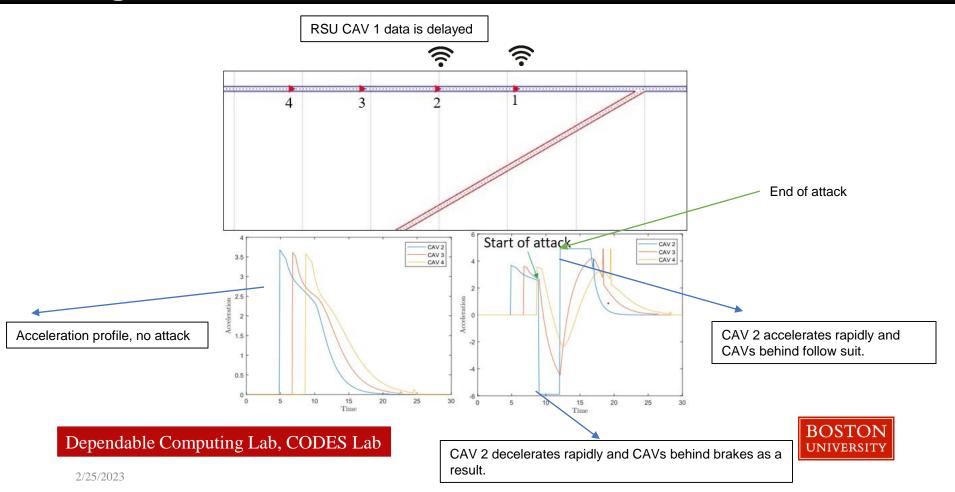
- i. The CBF OCP problem can be *solved in real time*.
- ii. Safety guarantee through forward invariance property of CBFs.

Signal-Free Intersection and Roundabout

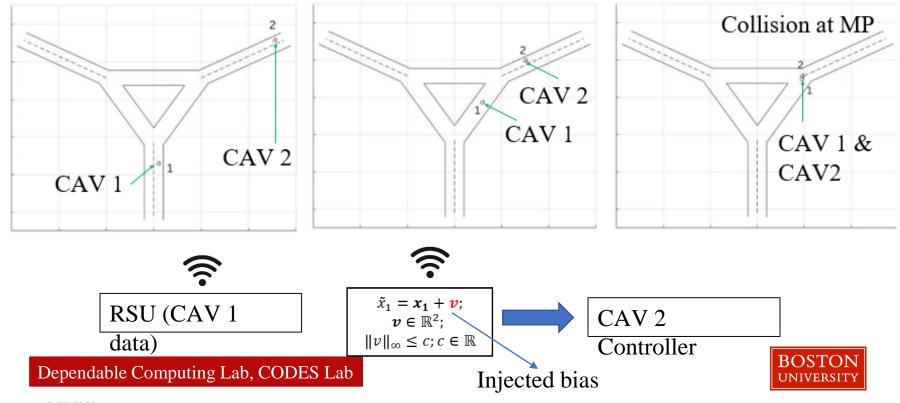
Merging roadway testbed using Decentralized CBF-OCP control scheme

Attack taxonomy - 1

- Systems assets: i. RSU Coordinator, and ii. The CAVs in the CZ.
- Information assets:
 - I. RSU Queue table data of all CAVs in CZ.
 - II. V2X communication data.
 - III. CAV hardware (internal network, onboard sensors and actuators)
- ➤ We consider the *RSU* as a trusted entity; and primarily focus on *V2X* communication network security.


Attack taxonomy - 1

Attack category	Attack type	Network security requirements			
		Confidentiality	Integrity	Availability	Authenticity
Main-in-the-Middle attacks	Acpray attack		×		
	False data injection		×		
	attack		,		
	Slight Attack		×		
Communication hijacking attacks	DoS attack			×	
	Timing attack			×	
	Flooding attack			×	
	Black hole attack			×	
	Grey hole attack			×	
	Wormhole attack			×	
Spoofing attacks	Sybil attack				×
	Impersonation				V
	attack				×
Eavesdropping		×			
ittack		^			
	Interception attack	×	Simula	ated attacks	
ependable Com	puting Lab, CODI	ES Lab	Suitatte		BOSTON UNIVERSIT


Attack modelling, simulation and results

Timing Attack - Result

FDI Attack - results

Sybil attack - Attacker capabilities

Three types of attacker models:

i) Non-informed attacker: Attacker with no knowledge of the infrastructure

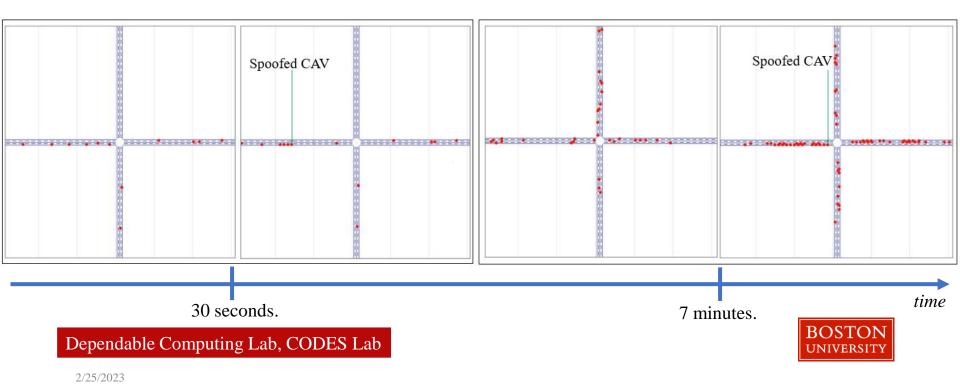
$$\begin{bmatrix} \tilde{x}_{i,k} \\ \tilde{u}_{i,k} \end{bmatrix} = \begin{bmatrix} r_1 \\ r_2 \\ r_3 \end{bmatrix} \ r_i \in \mathbb{R}$$

ii) **Infrastructure aware adversary:** Has knowledge about the data packet structures, coordination requirements (constraints) and CAV physical model.

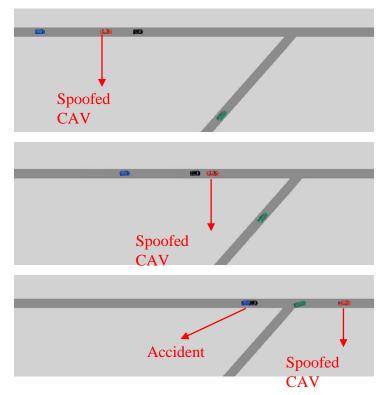
$$\begin{bmatrix} \tilde{\boldsymbol{x}}_{i,k} \\ \tilde{u}_{i,k} \end{bmatrix} = \begin{bmatrix} (f(\tilde{\boldsymbol{x}}_{i,k-1}) + g(\tilde{\boldsymbol{x}}_{i,k-1})\tilde{u}_{i,k})dt \\ \tilde{u}_i^k \end{bmatrix}$$

 u_t s.t. rear and merging constraints, and vehicle constraints are satisfied.

(ii) **Strategic adversary:** Adversary's aim adversary's aim is to cause havoc in the traffic network in the shortest time possible before getting detected. Hence, the data is generated using the same model as following:


$$\begin{bmatrix} \tilde{\boldsymbol{x}}_{i,k} \\ \tilde{\boldsymbol{u}}_{i,k} \end{bmatrix} = \begin{bmatrix} (f(\tilde{\boldsymbol{x}}_{i,k-1}) + g(\tilde{\boldsymbol{x}}_{i,k-1})\tilde{\boldsymbol{u}}_{i,k})dt \\ \tilde{\boldsymbol{u}}_i^k \end{bmatrix}$$

 $u^t \in \mathbb{R}$; $u_{\min} < u < u_{\max}$ and other constraints are not guaranteed to be satisfied.


Sybil Attack - Infrastructure aware adversary

- Single spoofed CAV.
- FIFO policy whereby a single sybil CAV in one road causes congestion in other roads in the intersection.

Sybil Attack – Strategic adversary (VISSIM Simulation)

- Adversary spoofs a fake CAV.
- > The rear end constraint was modified by adding a large bias as the following:
- Velocity reference for spoofed CAV was set to maximum value.
- > Spoofed CAV eventually overtakes normal CAV ahead; result: collision between physical CAV following it and physical CAV originally ahead of it.

Conclusion and future works

- Our future plans: i. Relax the assumption of *perfect communication*.
 - ii. Incorporate *attack resilience* in these SOTA coordination and control algorithms.
 - iii. Design attack detection and mitigation techniques against V2X communication

The End

Please share any questions you have.

attacks.