
Automatic Insecurity: Exploring Email
Auto-configuration in the Wild

Shushang Wen∗, Yiming Zhang†B, Yuxiang Shen∗, Bingyu Li‡, Haixin Duan†§, Jingqiang Lin∗B
∗School of Cyber Science and Technology, University of Science and Technology of China, China

†Tsinghua University, China
‡School of Cyber Science and Technology, Beihang University, China

§Zhongguancun Laboratory, China
{sswen, yuxiangshen}@mail.ustc.edu.cn, {zhangyiming, duanhx}@tsinghua.edu.cn,

libingyu@buaa.edu.cn, linjq@ustc.edu.cn

Abstract—Email clients that support auto-configuration mech-
anisms automatically retrieve server configuration information,
such as the hostname, port number, and connection type, al-
lowing users to log in by simply entering email addresses and
passwords. Auto-configuration mechanisms are being increasingly
adopted. However, the security implications of these mechanisms,
both in terms of implementation and deployment, have not yet
been thoroughly studied. In this paper, we present the first
systematic analysis of security threats associated with email
auto-configuration and evaluate their impacts. We summarize 10
attack scenarios, covering 17 defects (including 8 newly identified
ones), along with 4 inadequate client UI notifications. These
attack scenarios can either cause a victim to connect to an
attacker-controlled server or establish an insecure connection,
putting the victim’s credentials at risk. Moreover, our large-scale
measurements and in-depth analysis revealed serious insecurity of
auto-configuration applications in the wild. On the server-side, we
discovered 49,013 domains, including 19 of the Top-1K popular
domains, were misconfigured. On the client-side, 22 out of 29
clients were vulnerable to those threats. Moreover, 27 out of 29
clients exhibited at least one UI-notification defect that facilitates
silent attacks. These defects arise from misconfiguration, mis-
management, flawed implementation and compatibility. We hope
this paper raises attention to email auto-configuration security.

I. INTRODUCTION

Email has emerged as a crucial communication chan-
nel globally [16]. Email clients are widely used for their
customization options and convenience, with 57.8% of all
emails opened through mobile or desktop clients in 2021 [36].
However, email clients typically require users to specify the
configuration information of the mail server (e.g., hostname,
port number, connection type) and establish a connection
with the target server based on the above parameters. This
complicates the login process and impairs usability.

To improve the usability of email clients, Microsoft and
Thunderbird proposed their auto-configuration mechanisms,
Autodiscover [46] and Autoconfig [51] in 2007 and 2008,

BCorresponding author.

respectively. Both mechanisms are designed to retrieve server
configuration information automatically, allowing a user to log
in by simply entering the email address and password. Subse-
quently, in 2011, the IETF released a standard [23] for client
auto-configuration, defining the use of DNS SRV records to
locate email submission and access services. In a typical login
scenario that supports auto-configuration, server administrators
publish configuration information on web servers. The client
requests this configuration information by constructing specific
URLs using the user’s email address. Then, it establishes a
connection with the mail server based on the server hostname,
port, and connection type parameters in the configuration
information.

Although auto-configuration mechanisms significantly im-
prove the usage convenience of email clients, they also in-
troduce new attack vectors for the email system. Recent
studies [56], [8] have identified flawed Autodiscover imple-
mentations, which can cause email users to inadvertently
connect to attacker-controlled servers, thereby exposing their
credentials. To the best of our knowledge, no research has
been done to systematically analyze the security of email
auto-configuration mechanisms and evaluate their real-world
impacts. While some threats have been discussed in the non-
academic community [23], [14], they focus mainly on proto-
col design and lack practical evaluation. Furthermore, auto-
configuration remains an area without harmonized standards.
Microsoft’s Autodiscover and Thunderbird’s Autoconfig serve
merely as industry references. Email vendors may imple-
ment their own defined or customized mechanisms, such as
built-in lists, heuristic guessing, and default settings. Those
mechanisms remain unclear to the public, and the security
implications are also understudied.

Question. Our investigation is guided by two questions: What
security threats exist in email auto-configuration? If defects
are present, how extensive is their impact on email services?
We focus our exploration on the standard email protocols
(i.e., IMAP, POP3, and SMTP), with an emphasis on potential
threats that could facilitate user credentials theft. In this
paper, we define the web server as the entity responsible
for publishing the configuration file to the client, and the
mail server as the server to which the client is expected
to log in. In a client-server communication scenario with
auto-configuration, we identified two key security factors: (1)
the transmission of configuration information from the web

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.241078
www.ndss-symposium.org

server to the client should be secured, and (2) the setting of
configuration parameters should enforce a secure connection
(e.g., STARTTLS or implicit TLS) between the client and the
mail server. These factors correspond to two types of attacks
presented in our threat analysis.

Approach. To comprehensively assess security issues of email
auto-configuration, we analyzed potential threats and identified
defects in both servers and clients. Then, we conducted a large-
scale inspection of servers across 1,053,469 domains and 29
email clients on 5 operating platforms to evaluate the real-
world impact of these threats.

Findings. The auto-configuration process consists of two
phases: (1) configuration information retrieval, and (2) param-
eter parsing and application. We analyze two threats (or attack
goals) in these two phases: victims connecting to attacker-
controlled servers (Type-I) and leaking credentials (Type-II).
Based on different attacker capabilities, we summarize 10
attack scenarios on these goals, with 8 newly identified defects.

Our extensive experiments demonstrated that current email
auto-configurations in the wild exhibit general defects on both
the server and client sides. Among the 1M domains tested,
79,212 supported at least one auto-configuration mechanism.
Of these domains, 61.88% (49,013) domains were misconfig-
ured. 55.0% (43,566) had defects leading to Type-I threats,
such as delivering configuration files via plaintext HTTP
connections, allowing attackers to tamper with configurations
and redirect the email connections to servers they controlled.
Meanwhile, 14.93% (11,824) of domains were affected by
Type-II threats, including defects of configuration (e.g., in-
correct parameter settings) and management (e.g., inconsistent
parameters among mechanisms), which downgrade the security
of connections to mail servers. 19 popular domains in the Top-
1K list, including well-known vendors like Yandex and Onet,
suffered from these issues.

In the client experiments, we tested 29 clients across 5 op-
erating platforms. Of these, 22 clients, including Thunderbird
and Outlook, are affected by at least one threat. Specifically,
13 clients were susceptible to Type-I threats, potentially con-
necting users to attacker-controlled servers. 19 clients were
vulnerable to Type-II threats, resulting in connection down-
grades. Further, we examined client UI designs and found that
21 clients did not seek user confirmations when obtaining con-
figurations, enabling silent attacks. We also identified client-
side defects that could leak user credentials on a server without
auto-configuration mechanisms. For instance, Nextcloud Mail
did not verify domain formats when constructing configuration
request URLs, mistakenly connecting to domains that could be
registered by attackers. This defect could result in users from
at least 24,149 domains being hijacked to attacker-controlled
servers. We have extensively reported to affected clients and
servers, and some of them have confirmed and fixed related
issues (see Section VIII-C for details).

Contributions. Our main contributions include:

• We systematically analyzed email auto-configuration defects
across protocol design, server deployment, and client im-
plementation. We summarized 10 attack scenarios with 8
new defects and 4 UI issues that resulted in connecting to
attacker-controlled servers or leaking credentials.

Table I: Protocols and ports for email services.

Protocol Port Defined in Service Implicit TLS

SMTP
25 [63] Relay and submission No

587 [29] Submission No
465 [50] Yes

IMAP 143 [19] Access No
993 [50] Yes

POP3 110 [55] Access No
995 [50] Yes

• We conducted extensive measurements of auto-configuration
to evaluate the real-world impact of these threats, revealing
widespread flaws in server deployments and client imple-
mentation, and discussing the root causes of the flaws.

II. BACKGROUND

A. Email Submission and Access

An email system consists of several components [22]
that collaborate to send and receive email messages. Email
submission [30] and access refer to the interactions between
users and servers, while email relay involves the store-and-
forward transmissions of messages between mail servers.

Simple Mail Transport Protocol (SMTP) [39] plays a
vital role in transmitting messages across the Internet. Email
submission is a communication between a Mail User Agent
(MUA), which is also known as an email client (e.g., Thun-
derbird), and a Mail Submission Agent (MSA). The MSA is
responsible for posting a message to the outgoing server, which
then delivers the message to the intended recipient through
email relay. Although both submission and relay use SMTP,
the standard [29] specifies different ports for each service.
Internet Message Access Protocol (IMAP) [19] and Post Office
Protocol v3 (POP3) [55] are email protocols for accessing
messages on servers.

B. STARTTLS and Implicit TLS

Email protocols like SMTP, IMAP, and POP3 were orig-
inally designed without encryption, leaving data potentially
exposed. STARTTLS [33] was proposed to compensate for this
design weakness, which allows upgrading insecure connections
to secure ones on existing ports (i.e., 587, 143, and 110). Im-
plicit TLS, however, mandates encryption from the beginning
of the connection without requiring an explicit command to
initiate it. As it relies on dedicated ports (i.e., 465, 993, and
995), it ensures that all data transmitted over the connection
is encrypted by default, reducing the risk of transmitting data
in plaintext and eliminating attacks against STARTTLS [62].
Table I lists well-known ports of SMTP, IMAP, and POP3.

Several security issues with STARTTLS [33], [57], [78],
[40], [62] have been disclosed. The command injection vul-
nerability (CVE-2011-0411) [78], which was first discovered
in 2011, allows attackers to inject plaintext content into the
TCP packet containing the STARTTLS command, leading the
server to misinterpret it as part of the TLS session. The
primary cause of this vulnerability is that servers mishandle

2

the state transition from unencrypted to encrypted commu-
nications, making plaintext commands buffered alongside the
STARTTLS negotiation. The complexity of STARTTLS makes
it error-prone to implement, and implicit TLS is recommended
to be prioritized over STARTTLS for secure connections [50].

C. Related Work

Mismanagement of email protocol deployments. Measure-
ment studies on the deployment of email protocols have been
conducted, including sender authentication (e.g., SPF, DKIM,
and DMARC) [28], [26], [11], [80], [10], [75], transport
encryption (e.g., TLS, DANE, and MTA-STS) [28], [26], [34],
[45], [43], [42], [74], [13] and end-to-end encryption (e.g.,
S/MIME and OpenPGP) [73]. A significant proportion of
SPF policies were found to be overly broad [26], weakening
their intended protections, while the use of the include
mechanism in SPF records has brought excessive DNS lookups
during SPF evaluation [11]. Misconfigurations have also been
found in the DKIM deployment, such as weak keys and signa-
tures [80]. Recently, researchers analyzed the DMARC report-
ing mechanism and revealed that 26% of DMARC records with
external domains lacked proper authorizations, making them
vulnerable to reflection attacks [10]. On transport encryption
protocols, researchers analyzed the usage of TLS in email
ecosystems for the entire IPv4 address space. They discovered
that a large percentage of emails were transmitted unencrypted,
leaving content vulnerable to interception [34], [45]. Finally, a
study on email encryption adoption at a university revealed that
only 0.06% of over 80M emails were encrypted, and 32.99%
of PGP keys lacked expiration dates [73]. Our work focuses
on the deployment of email auto-configuration mechanisms,
identifying security issues in configuration and management.

Attacks on email mechanisms. Recent work has exposed
various exploitable vulnerabilities in email security protocols,
including authentication bypass [44], [70], [17], [35], creden-
tial theft [62], signature spoofing [52] and even the decryp-
tion of encrypted contents [38], [61], [53]. For example, the
difficulties in detecting and mitigating spoofing attacks, make
forged emails difficult to handle [35]. Additionally, weaknesses
in S/MIME and OpenPGP email signature verification leave
70% of the tested clients susceptible to forgery attacks [52].
A novel attack technique called malleability gadgets [61] was
introduced to exploit CBC and CFB modes in S/MIME and
OpenPGP encryption, enabling the exfiltration of plaintext
through backchannels, and such vulnerabilities were found in
23 S/MIME and 10 OpenPGP clients.

Poddebniak et al. [62] performed the first structured anal-
ysis of STARTTLS and uncovered over 40 issues that could
be exploited to steal users’ login credentials. They developed
a test tool and identified over 300,000 hosts vulnerable to the
command injection. They concluded that STARTTLS should
be replaced with implicit TLS. Our work applied this conclu-
sion to the threat analysis of email auto-configuration.

III. EMAIL AUTO-CONFIGURATION

Email auto-configuration automates the configuration pro-
cess in email clients that retrieves server settings, thus sim-
plifying email account setup for users. Figure 1 shows the
typical workflow of email auto-configuration. 1) Email ad-
ministrators first publish server configuration information by

Email Client Mail Server

DNS Server

Web Server

SMTP

IMAP/POP3

Built-in list

Heuristic
guessing

Default
setting

SRV Record

2

SRV

config-v1.1.xml

autodiscover.xml

2

3

4

1

1

Figure 1: Email auto-configuration.

placing configuration files at specified URLs or by adding
SRV [32] records to DNS. 2) When a user enters an email
address, the client that supports auto-configuration generates a
list of candidate URLs based on the email address and attempts
to retrieve server configurations from these URLs. The client
can also query SRV records to obtain these settings. 3) If
configurations are unavailable, the client resorts to a built-in
list containing the settings of popular providers or heuristically
guesses the settings. If this fails, the client usually fills in some
default parameters (e.g., the connection type) and prompts the
user to enter the hostname manually. 4) After the user confirms
the settings, the client uses them to log in to the mail server.1

A. Autodiscover

Autodiscover was first introduced in Exchange for Outlook
[46] and later extended to support others. This paper focuses on
Autodiscover for standard email protocols [47], [48]. Accord-
ing to the specification [48], Autodiscover requires a client to
send an HTTP POST request with the email address for which
the configuration information will be retrieved. The Autodis-
cover response contains configuration information related to
the mail server, including settings for IMAP, POP3, and SMTP
services. For example, the connection type parameter (i.e.,
SSL or Encryption element) specifies whether encryption
is required to connect to servers (more details in Appendix A).

A client that supports Autodiscover performs as below:
it firstly constructs a list of Autodiscover URLs based on
the email address entered by a user [47]; then, the client
sequentially requests each URL until it successfully obtains the
configuration information. Table II shows an example and the
user’s email address is user@example.com, patterned as <local
part>@<domain part> [20]. The client initially extracts the
domain part (marked in red) and constructs an ordered list
of candidate URLs. The client then sends POST requests to
the URLs listed in Steps 1 or 2 to retrieve the configuration
information. If the previous requests fail, in Step 3 the client
queries the SRV record to obtain the destination hostname
(e.g., target.com) of the Autodiscover server. The client then
constructs a new URL using that hostname (marked in blue)
and sends a POST request. Finally, in Step 4, if all preceding
attempts fail, the client sends an insecure (non-SSL) GET
request to the URL from Step 2. If the server responds with a

1In this paper, the discussion of mail servers is limited only to those involved
in the processes of email submission and access, excluding email relay.

3

Table II: An example of configuration information retrieval via Autodiscover.

Step Candidate URL Request method
1 http://example.com/autodiscover/autodiscover.xml HTTP POST
2 https://autodiscover.example.com/autodiscover/autodiscover.xml HTTP POST

3.1 autodiscover. tcp.example.com. IN SRV 0 0 443 target.com. DNS SRV request for Autodiscover server
3.2 https://target.com/autodiscover/autodiscover.xml HTTP POST

4 http://autodiscover.example.com/autodiscover/autodiscover.xml HTTP GET for initial request, POST for redirection

Table III: An example of configuration information retrieval via Autoconfig.

Step Candidate URL Request method
1 https://autoconfig.example.com/mail/config-v1.1.xml?emailaddress=user@example.com HTTP GET
2 https://example.com/.well-known/autoconfig/mail/config-v1.1.xml HTTP GET
3 http://autoconfig.example.com/mail/config-v1.1.xml HTTP GET

∗4 https://autoconfig.thunderbird.net/v1.1/example.com HTTP GET
5.1 example.com. IN MX 0 mx.backoff.target.com. DNS MX request for mail provider
5.2 https://autoconfig.backoff.target.com/mail/config-v1.1.xml?emailaddress=user@example.com HTTP GET
5.3 https://autoconfig.target.com/mail/config-v1.1.xml?emailaddress=user@example.com HTTP GET

∗5.4 https://autoconfig.thunderbird.net/v1.1/backoff.target.com HTTP GET
∗5.5 https://autoconfig.thunderbird.net/v1.1/target.com HTTP GET

6 %USER CONFIGURATION DIR%/isp/example.com.xml Local import
∗ Retrieve configuration information through the public centralized database ISPDB [3], which maintained by Thunderbird.

302 redirect, the client then attempts to resend an HTTP POST
request to the URL specified in the Location header of the
response. The specification [47] suggests that this step should
only be used for redirection and not for querying settings.

B. Autoconfig

Although Autoconfig [15] has been proposed for over a
decade, formal specifications are still not finished. We refer
to the only known authoritative source, the draft “Mail Au-
toconfig” [14], to explain its workflow. Unlike Autodiscover,
Autoconfig allows the client to use the email address directly
as a query parameter in an HTTP GET request. The Autoconfig
response also contains a socketType element that specifies
whether encryption is required (see Appendix A for details on
the Autoconfig response elements).

Table III shows an example of Autoconfig workflow, with
each step ordered by priority. In Steps 1-3, the client extracts
the domain part (i.e., example.com) of the email address and
constructs an order list of candidate query URLs. The client
then sends HTTP GET requests for each URL in the list. To
allow mail providers to provide user-specific configurations,
the full email address may be included as a query parameter
(e.g., the URL in Step 1). In Step 4, the client accesses a pub-
lic centralized database ISPDB [3], to retrieve configuration
information for most mail providers.

If all of the above steps fail, Autoconfig provides a fallback
mechanism. In Step 5, the client reconstructs requests based
on the MX hostname (marked in blue) of the email domain.
Since MX hostnames may have multiple levels of subdomains,
Autoconfig provides two mechanisms for extracting the input
to construct the candidate URLs: 1) the parent domain of
the MX hostname (i.e., %MXFULLDOMAIN%), 2) the effective
second-level domain (i.e., eTLD + 1) of the MX hostname
(i.e., %MXMAINDOMAIN%). For example, the %MXFULLDO-
MAIN% of mx.backoff.target.com is backoff.target.com and the
%MXMAINDOMAIN% is target.com. Here, we refer to [8] and
define this query process as a “back-off” query. Finally, in Step

Table IV: SRV labels for email submission and access.

Service label Port Alias Encryption support

submission. tcp 587 SUBMISSION
Plaintext or STARTTLSimap. tcp 143 IMAP

pop3. tcp 110 POP3

submissions. tcp 465 SUBMISSIONS
implicit TLSimaps. tcp 993 IMAPS

pop3s. tcp 995 POP3S

6, when the client cannot retrieve the configuration through the
above requests, it can read a specific directory on the local disk
to check for the presence of a configuration file.

Note that some of the candidate steps (i.e., Step 4 and Steps
5.4-5.5) actually retrieve the configuration information from
the ISPDB. In this paper, we consider the ISPDB to be a kind
of “built-in provider list” (another auto-configuration mech-
anism discussed in Section III-D). Therefore, we excluded
these steps in the subsequent analysis related to Autoconfig,
and analyzed the configuration information of the ISPDB
separately in Section VII (A8.1).

C. SRV Record for Locating Services

DNS SRV resource records (RR) [32] are widely used to
locate servers for specific services. RFC 6186 [23] and RFC
8314 [50] define the use of SRV records for locating email
submission and access services without the “auto-discover”
process (e.g., Autodiscover or Autoconfig) as described above.
Table IV lists all the SRV service labels for email submission
and access. Since a domain may have multiple mail services,
the query name (QNAME) of an SRV record is a combination
of the service (e.g., IMAP, POP3, or SUBMISSION), protocol
(i.e., TCP or UDP), and domain name. For example, to request
an SRV record for an IMAP server of example.com, QNAME
is formatted as _imap._tcp.example.com.

4

The SRV response contains one or more SRV RRs, each of
which consists of the following fields (details in [32]): Pri-
ority, Weight, Port, and Target. The Priority and
Weight fields determine the order of preference among the
listed servers. Servers with lower Priority values are more
preferred, while among servers with the same Priority,
those with higher Weight values are preferred.

D. Built-in Provider Lists

Clients may contain a built-in list of configuration informa-
tion for popular providers. The sources of these settings include
actively searching and discovering from the Internet [9], email
development frameworks [6], or central databases maintained
by third parties (e.g., ISPDB [3]). When a client cannot retrieve
settings for a domain through real-time queries, it refers to
built-in lists to retrieve settings.

E. Heuristic Guessing and Default Settings

Clients may use heuristic methods to guess the mail server
settings, typically by prefixing the domain name with a relevant
protocol (e.g., “smtp”, “imap” or “pop3”) and attempting to
connect to the constructed hostname via common ports (as
listed in Table I). Clients that only assist users in filling out
hostnames on login forms, without connection attempts (e.g.,
Gmail and iOS Mail), are excluded from this definition.

If none of the above mechanisms return settings, a user
has to manually enter the hostname and other configuration
parameters. In such cases, most clients preset the default
value for connection type (e.g., STARTTLS) and authentication
method (e.g., password-cleartext) to minimize the user’s input.

IV. ATTACK ANALYSIS AROUND EMAIL
AUTO-CONFIGURATION

In this section, we analyze the security of communications
between clients and servers that support auto-configuration
from two perspectives: (1) Is the configuration information
transmitted securely? For example, through an encrypted
HTTPS connection. (2) Does the server-provided configuration
instruct the client to establish secure connections with a
mail server? For example, setting the connection type to an
encrypted option. For the former, attackers could potentially
tamper with the configuration information; for the latter, they
could sniff the connections to mail servers.

Starting from these two aspects, we analyzed the detailed
steps of each email auto-configuration mechanism, including
(1) configuration published by a web server, (2) configuration
retrieved and parsed by a client, and (3) configuration applied
to clients. We analyzed potential threats at each step based on
various possible attacker capabilities and outlined each attack
scenario. Then, for every auto-configuration mechanism, an
attack scenario is instantiated into specific attack cases. We
also conducted proof-of-concept experiments for some attack
scenarios, demonstrating practical attack cases.

A. Threat Model

We assumed an attacker with two goals: (Type-I) Induce a
victim user to connect to attacker-controlled servers, enabling
the manipulation of the victim’s mailbox, and/or (Type-II)

Steal the victim’s credentials, such as passwords. We explain
these attackers’ capabilities as below:

Type-I Attacker. Such attackers target the auto-configuration
process, where various request methods are used to retrieve
configuration information that determines which mail servers
a client connects to. A Type-I attacker requires one of the fol-
lowing capabilities, depending on the client’s request method:
(1) Tampering with TCP packets, on-path attackers (e.g., those
sharing a WiFi network) can modify TCP packets to alter
configuration information transmitted in plaintext; (2) Domain
squatting, attackers can register and control domains that are
used in the auto-configuration process. These domains often
appear unrelated to mail services, making them overlooked by
administrators.

Type-II Attacker. Type-II attackers focus on the connection
between a client and the mail servers after configuration
information has been retrieved from the web server. Depending
on whether the connection is plaintext or encrypted, a Type-
II attacker requires one of the following capabilities: (3)
Sniffing, on-path attackers can steal credentials by sniffing
traffic; (4) Delaying or dropping packets, attackers can disrupt
connections by dropping packets; (5) Hacking STARTTLS, an
attacker who can tamper with TCP packets as in Capability
(1), can inject plaintext contents into TCP packets sent to vul-
nerable servers (e.g., CVE-2011-0411), allowing them to steal
credentials. Details about hacking STARTTLS are discussed
in Section II-B.

B. Attack Scenarios and Cases

Building on the above threat analysis and attacker capabil-
ities, we summarize 10 possible attack scenarios in Table V,
each containing one or more specific attack cases. An attack
scenario refers to a category of cases that follow the same
attack pattern, while a case (denoted as Ai.j) is a specific
attack vector that may arise from configuration or management
defects on servers or implementation defects on clients. In each
attack scenario, either the client or the server has a defect,
and sometimes both are necessary, as in A4. We also indicate
which mechanisms are vulnerable to these attack scenarios. For
scenarios related to the Type-II attacks, we defined two levels
of downgrade: (1) the server configuration information allows
encrypted-only (i.e., implicit TLS) or STARTTLS connection
type, but the client uses plaintext; (2) the server configuration
information includes encrypted-only connection type, but the
client uses STARTTLS. Depending on the result of the down-
grade, the capabilities required for an attacker vary. In the first
case, the attacker only needs to sniff packets. In the second,
the attacker must hack STARTTLS.

While some attack scenarios have been discussed from a
protocol design perspective in the non-academic community
(e.g., A1 in the Autoconfig draft [14]), our analysis also
considers attacks caused by client implementation and server
deployment. Overall, we identified 7 new cases (involving
8 defects, marked with ⋇ in Table V) that have not been
discussed before. We categorize these attack scenarios into four
groups.

1) Broken external connection for configuration informa-
tion retrieval: Autodiscover and Autoconfig request configu-
ration files using specific URL formats. The security of these

5

Table V: Attack scenarios of email auto-configuration.

Attack goal Attack scenario Attacker capability Attack
case3 Applicability4 Client defect5 Server defect5

Web DNS

Type-I: Connecting to
attacker-controlled

servers

A1: Client requests configuration information in plaintext Tampering with
TCP packets

A1.1 AC Plain request Plain response6 ∅
A1.2 AD Plain request Plain response6 ∅

⋇A1.3 AC/AD ∅ Redirection to HTTP ∅
A2: Client does not enforce eTLD verification Domain squatting ⋇A2.1 AC Inadequate eTLD check ∅ ∅

Type-II:
Leaking credentials

A3: Server sets only the plaintext connection type

Sniffing A3.1 AC/AD ∅ Plain-only connection ∅
Sniffing or
hacking STARTTLS1 A3.2 SR ∅ ∅ Plain or

STARTTLS connection

A4: Client fails to parse and defaults to plaintext Sniffing ⋇A4.1 AC/AD Plain fallback on parser error Incorrect connection type ∅
A5: Client fails to auto-configure and defaults to plaintext Sniffing A5.1 AC/AD/SR/BL Plain default ∅ ∅
A6: Client implements Autodiscover inadequately

Sniffing or
hacking STARTTLS2

⋇A6.1 AD Ignoring Encryption element ∅ ∅
A7: Client prioritizes SRV records incorrectly ⋇A7.1 SR Non-compliant SRV sorting ∅ ∅
A8: Client maintains an outdated built-in list. ⋇A8.1 BL Outdated built-in list ∅ ∅

A9: Server prefers insecure connection type A9.1

AC/AD/SR/BL

∅ ∅ Insecure SRV priority
A9.2 Insecure connection priority ∅

A10: Server sets inconsistent connection type
Delaying or dropping packets
and, sniffing or
hacking STARTTLS2

⋇A10.1 ∅ Inconsistent connection types

1 When the server adds only SRV records for non-encrypted-only services, the capability required for an attacker depends on client implementations.
2 When a downgrade occurs, the capability required for an attacker depends on the downgrade result.
3 ⋇ Newly identified cases.
4 AC - Autoconfig. AD - Autodiscover. SR - SRV service discovery. BL - Built-in lists.
5 ∅ means no defect with the client implementation or server deployment in the corresponding scenario.
6 In A1.1 and A1.2, only client defect is required. Whether or not the server returns a plain response is irrelevant since a MITM attacker can manipulate the response.

connections depends on the use of TLS protocol [66], [65].
Any data transmitted over plaintext HTTP is vulnerable to
modification by manipulator-in-the-middle (MITM) attackers
and should be avoided. Additionally, clients must verify that
the query URLs are properly formatted; otherwise, they may
connect to incorrect or irrelevant domains. Security threats
related to DNS resolution (e.g., cache poisoning or hijacking)
are not considered, as they pertain to the DNS system itself
and are not specific to email auto-configuration (see Section
VIII-D for more discussions).

A1: Client requests configuration information in plaintext.
When the configuration file is transmitted in plaintext, an
attacker can modify the Server or hostname element to
a fake server, causing the victim to send credentials directly
to the attacker. Based on the request paths in Tables II and
III, we consider whether the client sends plain requests and
whether the server transmits configuration information over
an unencrypted connection, and identify two distinct cases for
Autoconfig (A1.1) and Autodiscover (A1.2). We also found a
third case where the server redirects HTTPS client requests
to HTTP (A1.3). In A1.1 and A1.2, as long as the client-
side defect exists (i.e., sending HTTP requests), a MITM
attacker can tamper with the configuration regardless of the
server’s responses. Nevertheless, since the protocol (e.g., Au-
todiscover [47], [48]) requires servers to respond over HTTPS
even to plaintext requests, we also treat plaintext responses
from the server as a server-side defect (related but unnecessary)
for this attack.

A2: Client does not enforce eTLD verification. Autoconfig
allows clients to request configuration files from the mail
provider. As detailed in Step 5 of Table III, a client generates
multiple candidate URLs based on the MX hostname. If the
client fails to verify whether the extracted %MXFULLDOMAIN%
or %MXMAINDOMAIN% is an eTLD, it may mistakenly use
the TLD as the domain name to construct the URLs. This
allows attackers to register domains like autoconfig.tld in bulk
to gain control of these domains. As shown in Figure 2, for an
email address admin@example.com, the following conditions
are required for this attack:

• example.com has not deployed Autoconfig.

• The MX hostname for example.com is an eTLD + 1 (e.g.,
provider.co.uk).

• The attacker (can and) has registered autoconfig.co.uk.

When the user enters their email address, the client first
extracts example.com and constructs the query URL based on
Steps 1-4 in Table III. If the query fails, the client queries the
MX record for example.com and extracts the parent domain of
the MX hostname to construct a new URL (detailed in Sec-
tion III-B). At this point, if the client does not verify whether
the extracted hostname is a TLD and queries autoconfig.co.uk,
it could connect to an attacker-controlled server.

Construct candidate list

admin@example.com

Web Server

Autoconfig

example.com

DNS MX Query

DNS Server

ns.example.com

Back-off MX, construct
candidate list

Register autoconfig.co.uk

Attacker
* OK [CAPABILITY IMAP4rev1 AUTH=PLAIN] Dovecot ready

V LOGIN admin passwords

…

Web Server

autoconfig.co.uk
Email Client

Victim 404 Status, no config found.

HTTP Request:
https://autoconfig.example.com/mail/config-
v1.1.xml?emailaddress=admin@example.com

…

DNS MX Request: example.com

DNS Response: example.com MX provider.co.uk

HTTP Request:
https://autoconfig.co.uk/mail/config-

v1.1.xml?emailaddress=admin@example.com
…

200 Status, config found.

Figure 2: An example of the back-off query attack (A2).

2) Insecure parameter settings and parsing: Configuration
files list the services supported by the server and the specific
parameter settings associated with those services, which clients
rely on to establish a connection (we provide detailed param-
eter definitions in Appendix A). For instance, the connection
type is determined by the SSL and Encryption elements
in Autodiscover and the sockettype element in Autoconfig.
Besides the parameters in configuration files, the service labels
in SRV queries (as shown in Table IV) can also be used
to distinguish between encrypted-only [50] and STARTTLS
connections [23]. In this paper, we focus on parameters related
to the connection type (i.e., whether encryption is used), and
ignore others.

A3: Server sets only the plaintext connection type. When a

6

server sets only the plaintext connection type in the configura-
tion file (e.g., socketType set to plain), a client establishes
an unencrypted connection, allowing attackers to steal creden-
tials through traffic sniffing (A3.1). For SRV service discovery,
if a server does not add records for implicit TLS services,
it implies that it supports plaintext and/or STARTTLS. In
such cases, it is up to the client implementation to decide
which connection type to use for the connection. We consider
such servers as insecure if they only add SRV records for
services without implicit TLS (A3.2). If a client connects using
plaintext, attackers can steal credentials through traffic sniffing.
Even if the client upgrades the connection using STARTTLS,
attackers may further hack STARTTLS.

A4: Client fails to parse and defaults to plaintext. Server
administrators must correctly set the SSL, Encryption, or
socketType elements in the configuration file [48], [14].
If the client cannot interpret a value (e.g., SSL is set to
starttls, which is a valid Autoconfig setting but invalid in
Autodiscover), it may initiate a plaintext connection by default.

A5: Client fails to auto-configure and defaults to plaintext.
If a client cannot retrieve the server’s configuration through
external requests, built-in lists, or heuristic guessing, it typi-
cally defaults to pre-set parameters for user convenience, only
requiring the user to enter the hostname. In cases where the
client defaults to a plaintext connection type, users (especially
those unfamiliar with security) may accept the insecure default
settings, risking credentials exposure.

A6: Client implements Autodiscover inadequately. Autodis-
cover introduces an Encryption element, which overrides
the SSL element. A properly implemented client should check
for Encryption first and choose the connection type ac-
cordingly. If a server sets the Encryption element but
leaves SSL unset, the client that does not strictly follow
the specification and ignores the Encryption element may
default to a plaintext connection. In this case, even if the server
is correctly configured, the client’s faulty implementation leads
to a downgrade.

A7: Client prioritizes SRV records incorrectly. Clients
supporting SRV records for auto-configuration must prioritize
records correctly according to the standard [32]. If a server pri-
oritizes more secure options (e.g., favoring implicit TLS over
plaintext or STARTTLS) and correctly sets the Priority
and Weight values for different services, a client incorrectly
implementing the SRV record sorting may mistakenly select a
service with a higher, and therefore less preferred, Priority
value. This flaw in SRV record prioritization could lead to con-
nections being established over less secure channels. Similar
to A3, the capabilities required for an attacker depend on how
a client processes SRV records.

A8: Client maintains an outdated built-in list. When a client
cannot retrieve configuration files in real time through external
requests, it relies on a built-in list of providers. If this list is
outdated, the client may fail to establish a connection using
the latest settings.

3) Discouraged priority settings for services: Configura-
tion files can contain settings for multiple services (e.g.,
IMAP and POP3), and the order in which these services
appear implies their priority. Clients typically prioritize the
first service listed. Additionally, RFC 6186 allows servers to

Autoconfig Query 1

admin@example.com

Web Server

Auto-configuration

example.com

Autoconfig Query 2

Autodiscover Query

200 Status, config found.

Mail Server

Web Server

example.com

Web Server

example.comHTTP GET Request:
https://example.com/.well-known/autoconfig/mail/config-

v1.1.xml?emailaddress=admin@example.com

example.com

Email Client

Victim

HTTP GET Request:
https://autoconfig.example.com/mail/config-
v1.1.xml?emailaddress=admin@example.com

HTTP POST Request:
https://autodiscover.example.com/autodiscover/autodisc

over.xml

Downgraded connection

Drop packet

Drop packet

Figure 3: An example of a downgrade attack exploiting incon-
sistent server configuration information (A10).

indicate preferred services using the Priority and Weight
fields in SRV records.

A9: Server prefers insecure connection type. If a server sets
STARTTLS or plaintext as the first option, followed by implicit
TLS, a compliant client will never establish a connection with
the highest security strength. While server administrators may
prioritize STARTTLS for compatibility reasons, this is discour-
aged in the context of email submission and access [62] and
is not recommended by RFC standards [25], [50]. Therefore,
we also consider it a security defect.

4) Inconsistency of configuration information across and
within mechanisms: Clients often support multiple mecha-
nisms simultaneously to enhance user experience. As described
in Section III, clients may prioritize certain mechanisms (e.g.,
prefer Autoconfig over Autodiscover), and there is also an
internal priority order for URL paths within a single mech-
anism. Since these mechanisms differ in URL structures and
configuration file definitions, it is crucial for administrators
to ensure that configuration information is consistent across
all mechanisms. Specifically, considering the connection type
settings, inconsistencies in the security strength between mech-
anisms can lead to a downgrade to less secure connections.

A10: Server sets inconsistent connection types. If a server
sets different security strengths for connection types across
various auto-configuration mechanisms, an attacker could ex-
ploit this by delaying or dropping TCP packets, causing the
client to retrieve only the configuration with the least security
strength. For example, as shown in Figure 3, this attack could
occur if an administrator sets implicit TLS for all Autoconfig
configuration files but forgets to update the Autodiscover files,
which still use plaintext. If the client prioritizes Autoconfig
and sends Query 1 and Query 2 to the server, a MITM attacker
could disrupt these requests by dropping packets. The client
would then fall back to an Autodiscover query, retrieving a
configuration file with a plaintext connection type. As a result,
the client would establish an insecure connection, allowing the
attacker to steal credentials through traffic sniffing, effectively
downgrading the connection from encrypted to plaintext.

C. Inadequate UI Notifications

We analyzed the UI notifications related to various auto-
configuration mechanisms. In particular, a defect concerning
user confirmation affects all the scenarios mentioned above and
increases the likelihood of successful attacks. For instance, an

7

Figure 4: UI notifications (UC and WP) of auto-configuration
in Thunderbird.

attack can occur silently while the user does not realize it. We
summarize 4 UI notifications (including 3 warnings) recom-
mended by public documentations [14], [50], [47], [23] that
should appear during the auto-configuration process. Ignoring
these notifications could lead to users unknowingly connecting
to attacker-controlled servers.

• User confirmation (UC). When a client successfully re-
trieves the configuration information through any auto-
configuration mechanisms as described above, it should
first prompt the user to confirm the correctness of the
configuration before attempting to log in [14]. If an attacker
has tampered with the configuration, the victim’s credentials
(e.g., passwords) could be silently leaked.

• Plain warning (WP). In addition to user confirmation, the
UI should also emphasize security-sensitive fields, i.e., dis-
tinguishing “SSL” and “PLAIN” connection types [50]. The
“PLAIN” option should be highlighted to warn users that
the connection will be unencrypted, as shown in Figure 4.

• Autodiscover redirect warning (WAD). Autodiscover allows
a client to send an HTTP GET request (see Table II), fol-
lowed by a 302 redirect response containing the destination
server URL in the Location header. Since the redirection
response stems from an insecure request, attackers could
exploit it to intercept configuration information. Therefore,
the client should warn the user upon receiving the redirec-
tion, and proceed only after the user permits it [47].

• SRV FQDN warning (WSR). RFC 6186 [23] suggests that
when the SRV record is not protected by a secure DNS
option, the client should verify whether the target FQDN
(Fully Qualified Domain Name) of the SRV record matches
the queried domain name. Any mismatch should be reported,
and let the user decide whether to connect to the host
specified in the SRV record.

V. METHODOLOGY FOR IMPACT EVALUATION

In this section, we present the methodology used to eval-
uate the impact of the attack scenarios discussed above. Our
evaluation involved a large-scale measurement of servers and
an end-to-end security analysis of clients. Our methodology is
illustrated in Figure 5.

Download domain lists. We downloaded the following lists:
(1) Tranco1M, a list from the Tranco ranking [60] generated
on March 25, 2024,2; (2) Top100Provider, a list of the most

2https://tranco-list.eu/download/Z33PG/1000000

Select email clients Analyze client defects

Extract built-in lists

Autoconfig
Autodiscover

DNS
SRV

Collect configuration
information

Evaluate impacts

Autoconfig
Autodiscover

DNS SRV
Default settings

Clients

Servers

HTTP
request

Analyze configuration
information

PriorityIncorrect
Parameter

Connection
type

…

Download domain lists

Free-email
provider

GOV

Bank

Tranco1M

Top100

Figure 5: Our methodology to analyze and evaluate defects of
servers and clients.

popular email domains from Online Email Verification [54];
(3) GovDomain, a list of government websites worldwide [71];
(4) BankDomain, a list of all bank domains provided by Fondy
Payment Service Provider [1]; (5) FreeDisposableProvider, a
list of free and disposable email service providers (including
Guerrilla Mail, Temp Mail) [2]. In particular, we used PSL [7]
to extract the registrable domain from GovDomain and cross-
checked the FreeDisposableProvider list with data from Hub-
spot [37] and an open-source list [4]. Our experiments involved
a total of 1,053,469 unique domain names.

Collect configuration information. We developed a Golang-
based crawler and conducted server scanning for Autodiscover,
Autoconfig, and DNS SRV records. The scan was performed
from an ECS instance (located in Hong Kong) between March
26 and March 30, 2024. The request paths used are detailed
in Appendix B.

• Autodiscover. We generated a list of 10 candidate URLs
according to the specifications [48], [47] published by
Microsoft. Additionally, to retrieve as many configuration
files as possible, we also included plaintext HTTP re-
quests with the GET method. We heuristically set the
EmailAddress element in the body of the POST request
to info@example.com by referring to common aliases pub-
lished by 101domain.com [81] and RFC 2142 [21].

• Autoconfig. We constructed 6 candidate URLs following the
RFC draft [14] and used info@example.com as the query
parameter in all URLs.

• DNS SRV. We queried all SRV records listed in Table IV
and used Unbound [41] as the DNS resolver.

Analyze configuration information. Based on the config-
uration collected in the previous phase, we analyzed the
deployment of auto-configuration across the scanned servers.
For configuration files obtained from Autodiscover or Auto-
config, we parsed them based on their respective schemas [48],
[14], excluding files with formatting errors. After that, we
examined the defects of these servers respectively. Specifically,
the analysis approach includes the following aspects:

• Insecure responses. We recorded the URL redirection chain
during the request process. We checked if HTTP requests
were redirected to HTTPS URLs. For HTTPS requests, we
checked if any plaintext URLs appeared in the chain.

• Plain-only connection types. We identified domains that sup-
ported only plaintext connection types based on incoming

8

or outgoing server configurations. For SRV records, we
checked whether non-encrypted-only service records (e.g.,
submission. tcp) were added.

• Incorrect parameter settings. We verified whether server-
provided connection types adhered to the values defined
in the specifications (see more details in Appendix A). In
this work, we mainly focus on socketType, SSL, and
Encryption elements. Specifically, given the prioritiza-
tion of services outlined in the configuration file, only the
first service listed in the incoming and outgoing servers was
evaluated.

• Insecure priority settings. We analyzed if plaintext connec-
tions were prioritized over STARTTLS or implicit TLS, or
whether STARTTLS was prioritized over implicit TLS.

• Inconsistent connection type. Since each mechanism defines
connection types differently, we first unified the config-
uration parameters and then evaluated consistency across
mechanisms (detailed in Appendix E).

Select email clients. We initially included all 7 clients listed
in the RFC draft [14]. Then, we searched online blogs and
media sites using keywords like “most popular email clients
for Android” or “best email clients for Android” on Google.
We further extended the list using popularity rankings from
Google Play and the Apple App Store. Finally, we checked
whether these candidates were open-source by searching for
them on GitHub. We did not test cross-platform clients on
different platforms, as auto-configuration runs primarily on the
OS-independent application layer. In this work, we assumed
that their functionality would be consistent (our tests of Gmail
for Android and iOS confirmed this assumption). Overall, we
selected 29 clients from Windows, Linux, Android, iOS, and
macOS, as listed in Table VII.

Extract built-in lists. For open-source clients, we reviewed
their codebases and extracted built-in lists as separate files
if they existed. We also considered the ISPDB [3] a built-in
list and merged all its configuration information into a single
file. For other clients that we could not extract built-in lists,
we determined their presence by analyzing whether the login
screens offered multiple service providers for selection.

Analyze client defects. Our client analysis involved the fol-
lowing parts: (1) support for auto-configuration, (2) default
connection types when auto-configuration fails, and (3) defect
analysis. We first built a test platform (detailed in Appendix F)
that included a mail server, a web server, and a DNS server.
We combined the access logs from these servers to track
client requests. Additionally, we used Wireshark to capture
packets and verify whether the client requests the ISPDB list
or performs heuristic guessing. We then suspended all auto-
configuration services on our test servers to observe the default
connection type clients used when auto-configuration failed.
For Outlook, we used its built-in testing tools [67] to make
the results more intuitive and accurate. Our defect analysis
approach mainly includes the following:

• Plain requests. We tracked client requests using Wireshark
and logs from our test servers.

• Inadequate eTLD checking. We first tested whether the
client performs back-off queries. We added an MX record
with subdomain.example.xyz for the test domain exam-
ple.com and published configuration information in the

corresponding directories of example.xyz. For clients that
support back-off queries, we checked if they were vulner-
able to A2. Specifically, we registered the domain names
example.xyz and autoconfig.xyz and set the MX record for
example.com to example.xyz, and published configuration in-
formation at https://autoconfig.xyz/mail/config-v1.1.xml. We
set the hostname to 127.0.0.1 to prevent users affected by
this vulnerability from connecting to our server.

• Insecure configuration parsing. We tested how clients handle
configuration parsing errors by setting the socketType
and SSL elements to “xxx” and observing the default con-
figurations. Since the Encryption element overrides SSL,
we set SSL to “on” and Encryption to “off” to check
if clients supporting Autodiscover correctly interpreted the
configuration, i.e., resulting in a plaintext connection. For
clients that only support Autodiscover for Exchange [49],
we skipped tests related to parameter parsing (A4 and A6).

• Non-compliant SRV sorting. We set SRV records with
different Priority and Weight values according to the
specification [32] and verified whether clients correctly
prioritized the records.

• Outdated built-in lists. We evaluated whether the extracted
built-in lists were outdated by comparing them against the
configurations obtained from our server scan results.

• Inadequate UI notifications. We tested if Autodiscover-
enabled clients displayed warnings when encountering
HTTP GET redirects by returning a 302 redirect to a
domain we registered. We also added SRV records where
the Target field had a different FQDN from the queried
domain to check for warnings. For clients that retrieve
configuration through auto-configuration, we also verified if
users were prompted to confirm settings before login and if
highlight warnings were displayed for plaintext connections.

Evaluate impacts. We evaluated the impact of the attack
scenarios outlined in Table V. We analyzed defects on both
the server-side and the client-side and presented detailed eval-
uation results in Sections VI and VII, respectively. Although
the impact of these defects is evaluated separately, practical
attacks sometimes require defects on both sides, such as the
attacks in A4.

VI. SERVER DEFECTS IN THE WILD

Deployment status. We first present the real-world support
for auto-configuration mechanisms. Overall, our scan included
1,053,469 domains, with 79,212 (7.52%) deploying at least one
auto-configuration mechanism: Autodiscover, Autoconfig, or
SRV records. The adoption of Autodiscover (49,538 domains)
and Autoconfig (57,331 domains) was comparable, but only
11,281 domains deployed SRV records. This limited adoption
may be due to SRV supporting fewer field types [14], [5],
making it less flexible. We provide more details about the
deployment result in Appendix C.

Summary. As listed in Table V, we focused on five server-
side defects: (1) A1 in Type-I, which could result in the
victim’s email connection being hijacked to an attacker-
controlled server, and (2) A3, A4, A9, and A10 in Type-II,
which could result in the victim’s credentials being exposed.
Table VI summarizes our detection results for these defects.
Our analysis discovered a total of 49,013 domains with security
defects. For Type-I attacks, we identified defects in 43,566

9

Table VI: The number of domains affected by different attacks
introduced by servers.

Domain list Type-I Type-II
A1.1 A1.2 A1.3 A3.1 A3.2 A4.1 A9.1 A9.2 A10.1

Tranco1M 36,417 28,902 400 762 7,021 1,225 368 1,827 3,220
Top100Provider 7 7 0 3 19 0 0 0 7
GovDomain 756 773 2 9 71 20 7 18 41
BankDomain 64 69 1 1 3 0 0 1 3
FreeDisposableProvider 553 185 10 81 253 2 1 20 197

Total 43,566 11,824

(55.0%) domains, including 10 domains in the Tranco Top
1K. This suggests that considerable domains still transmit
configuration information over plaintext, allowing configura-
tion tampering and email communication hijacking. For Type-
II attacks, 11,824 (14.93%) domains were detected, with 15
listed in the Top 1K. Misconfiguration or mismanagement
in these services weakens the security of email connections,
downgrading them to insecure protocols. Specifically, 2,273
domains could be downgraded to plaintext connections and
5,120 to STARTTLS. We further examined services susceptible
to STARTTLS attacks using a command injection testing tool
from previous work [62], and found 128 servers (including
Yandex’s) had buffering flaws. Attackers can further exploit
those servers to compromise the victims’ credentials. Next, we
detail the specifics of the affected domains in each category.

Plain responses (A1.1/A1.2) + Redirection to HTTP (A1.3).
We define a well-established server as one that balances secu-
rity and compatibility. This included two aspects: (1) for HTTP
requests, the server redirects requests to an HTTPS URL, and
(2) for HTTPS requests, all response URLs in the redirection
chain are HTTPS. We analyzed all scan results for Autodis-
cover and Autoconfig (Table XII in Appendix D) and found
that 60.32% (28,905/47,917) and 66.57% (36,464/54,776) of
the domains in the Tranco1M list returned insecure responses
(i.e., not well-established), respectively.

For Autodiscover, 80.26% (38,456/47,917) of the domains
in the Tranco1M list provided configuration information via
HTTP requests, of which 75.16% (28,902/38,456) had inse-
cure responses (i.e., returned configuration files directly in
plaintext). Additionally, 12.80% (4,924/38,456) could only
retrieve configuration information via HTTP requests. Of these,
668 domains were redirected to the 1and1.info provider via
HTTP GET requests. Fortunately, they were all redirected
with HTTPS URLs. From the HTTPS requests perspective,
38 domains redirected HTTPS to HTTP. For Autoconfig,
20.49% (11,222/54,776) of the domains in the Tranco1M
list could retrieve configuration information through MX
records. Among them, 36.37% (4,082/11,222) and 20.88%
(2,343/11,222) had their MX hostname set to emx.mail.ru and
mx.yandex.ru, respectively. Overall, 78.94% (43,238/54,776)
had their configuration information retrieved through HTTP
requests. However, 84.22% (36,417/43,238) did not redirect
to HTTPS URLs. In addition, 19.39% (8,383/43,238) could
only retrieve configuration information via HTTP requests. Of
these, 604 domains were redirected to privateemail.com using
HTTPS URLs. We also found 380 domains with HTTP URLs
in their HTTPS redirection chains, and 181 of these were
redirected to myshoptet.com.

Plain-only connection (A3.1) + Plain or STARTTLS con-
nection (A3.2). Analysis of the connection types in configu-
ration files revealed that 570 Autodiscover-enabled domains
and 503 Autoconfig-enabled domains provided only plain-
text connection settings. Among Autoconfig-enabled domains,
we identified 3 providers (zonnet.nl, bigpond.com, and big-
pond.net.au) from the Top100Provider list. For DNS SRV
records, unexpectedly, we found that 92.25% (6,805/7,377)
of the Tranco1M domains did not add SUBMISSIONS. This
makes the connection type a client can establish with the
server dependent on the client’s implementation (as discussed
in Section IV-B). If the client defaults to plaintext, a plain-
text connection will be established; otherwise, an encrypted
connection (via STARTTLS) may be established. Fortunately,
none of the clients we tested established a plaintext connection
in this case.

Incorrect connection type (A4.1). For Autodiscover, we
found 925 domains in the Tranco1M list with incorrect param-
eter values. Among these, 156 domains had Encryption set
to starttls, which is not a valid use of STARTTLS and can not
be recognized by clients. Further analysis showed that 112 of
these domains were destined to the hosting provider cyber-
folks.pl located in Poland. We suggested that the incorrect
configuration may be due to a lack of clear guidance on setting
STARTTLS in Autodiscover, leading providers to configure
it improperly. Additionally, we found 668 domains on the
Tranco1M list with SSL incorrectly set to yes instead of on.
Of these, 198 hostnames point to the provider of wpx.net
and 113 to wpxhosting.com. For Autoconfig, we identified
300 domains with incorrect socketType values in the
Tranco1M list. Specifically, 237 domains set values such as
%server/imap/socket/% or %server/smtp/sock-
et/%, which are meaningless. Further analysis revealed that
the mail server hostnames for these domains pointed to the
service provider kinghost.net.

Insecure SRV priority (A9.1) + Insecure connection pri-
ority (A9.2). For SRV records, we identified 368 domains
in the Tranco1M with improper priority settings: 333 IMAP,
88 POP3, and 37 SUBMISSION domains had records pri-
oritized higher than IMAPS, POP3S, and SUBMISSIONS,
respectively. For Autodiscover, 584 domains in the Tranco1M
list had improper priority settings, with 288 domains relying
on email hosting provided by home.pl and 109 by cyber-
folks.pl. home.pl prioritized the plaintext connection type of
POP3 (port 110) over IMAPS (port 993), while cyber-folks.pl
supported POP3S (port 995) but favored IMAP (port 143).
For Autoconfig, we found 1,367 misconfigured domains. Two
service providers, one.com and jino.ru, were particularly prob-
lematic, serving emails for 404 and 63 domains, respectively.
Specifically, one.com’s SMTP server and jino.ru’s IMAP server
prioritized STARTTLS over implicit TLS.

Inconsistent connection types (A10.1). Configuration in-
consistencies can occur in two ways: (1) within different
paths of the same mechanism (as shown in Table X), and
(2) between different mechanisms (e.g., autodiscover.xml vs.
config-v1.1.xml). We conducted a detailed comparison of the
configurations of Autodiscover, Autoconfig, and SRV records
(details are provided in Appendix E for space reasons). First,
we analyzed inconsistent settings within the same mecha-
nism. From the Tranco1M list, we found 5,365 Autodiscover-

10

enabled domains and 328 Autoconfig-enabled domains with
discrepancies. Particularly, we further analyzed the inconsis-
tencies in connection-type parameters (e.g., SSL, Encryp-
tion, socketType), as these could lead to downgrading
of connection security. Among 146,046 autodiscover.xml files
from the Tranco1M list, 58 domains had inconsistencies, with
11 vulnerable to downgrades from STARTTLS or implicit TLS
to plaintext. For Autoconfig, among 90,850 config-v1.1.xml,
272 domains had inconsistent settings. Second, we compared
domains with discrepancies between different configuration
mechanisms. Note that if a domain had internal inconsistencies
within a mechanism, that mechanism was excluded from
comparison. Finally, we found 2,902 domains in the Tranco1M
list with inconsistent connection types across different mecha-
nisms, including 7 in the Tranco Top 1K list (e.g., yandex.com
and onet.pl). Of these, 625 domains could be downgraded to
plaintext connections due to these inconsistencies.

VII. ANALYSIS RESULT OF CLIENT DEFECTS

Auto-configuration support. As shown in Table VII, all
29 tested clients supported at least one auto-configuration
mechanism. Of these, 13 supported Autoconfig, 12 supported
Autodiscover, and only 5 supported service discovery via
SRV records. Except for Claws Mail, 28 clients had built-in
lists, and 14 of them queried the centralized ISPDB database.
Additionally, 19 clients implemented heuristic guessing as an
auto-configuration mechanism.

Summary. Overall, 22/29 clients were vulnerable to at least
one of the attack scenarios in Table V. Specifically, 13 clients
could lead to the victim connecting to an attacker-controlled
server (i.e., A1 and A2), and 19 clients were susceptible to
downgrades to STARTTLS or plaintext, risking credential ex-
posure (i.e., A4-A8). Furthermore, 21/29 clients did not prompt
users to confirm server configuration information (i.e., UC),
meaning these attacks can be executed silently. Notably, clients
were not affected by these attacks mainly because they did not
support the relevant auto-configuration mechanisms. Thus, our
results are sufficient to conclude that client auto-configuration
implementations have widespread security defects.

Plain request (A1.1/A1.2). 13/20 clients that supported Au-
toconfig or Autodiscover sent plaintext HTTP requests. Sur-
prisingly, 6/13 clients, including Postbox, Kmail, and Nine,
initiated only plaintext requests. 5 clients fell back to plaintext
if encrypted requests failed. Notably, 9/13 clients used plaintext
requests in Autoconfig, which aligns with our server scanning
results, showing that transmitting configuration information in
plaintext is still prevalent in Autoconfig.

Inadequate eTLD check (A2.1). Except for Nextcloud Mail
and Thunderbird, none of the other clients implemented the
Autoconfig back-off query. However, Nextcloud Mail used a
period (‘.’) as the delimiter when extracting the %MXFULL-
DOMAIN%, making it vulnerable in the A2 attack scenario.
We particularly evaluated the impact of this attack against the
Nextcloud Mail implementation in Groupware [58]. We found
that 31,281 domains (involving 675 TLDs) meet the attack
conditions described in Section IV-B. Using the GoDaddy
API [31], we identified 224 registrable autoconfig.tld domains,
including autoconfig.net and autoconfig.co. In total, 24,149
domains were susceptible to this attack, 54 of which were

within the top 10K domains in the Tranco ranking. It is
important to note that even if the server administrator does
not deploy any auto-configuration mechanisms, errors in the
client implementation can still put users at risk of credentials
disclosure. Since we only considered registrable TLDs from
GoDaddy, our evaluation only represented the lower bound of
the actual impact of this attack.

Plain fallback on parser error (A4.1) + Plain default (A5.1).
In scenarios where clients successfully retrieved configuration
information through auto-configuration but failed to parse the
parameters (A4.1), our experiments showed that 7 clients
defaulted to the plaintext connection type. In another scenario
(A5.1), 6 clients defaulted to plaintext when they could not ob-
tain the configuration information through auto-configuration.
Our experiments revealed variations in default connection
types across clients. For example, 4 clients (including Kmail
and Nextcloud Mail) defaulted to an encrypted connection type
when no configuration file was available (A5.1) but defaulted
to plaintext upon parsing failure (A4.1).

Ignoring the Encryption element (A6.1). We found that 5
clients, including Thunderbird and FairEmail, did not handle
the Encryption element when parsing the configuration
files to determine the connection type. We analyzed config-
uration files collected in the scanning module and found 3,942
domains in the Tranco1M list only set the Encryption value
without specifying SSL. Among them, 3 domains were from
the Top100Provider list.

Non-compliant SRV sorting (A7.1). We found that FairEmail
requested all SRV service records and performed a uniform
sort. While this did not raise security issues when following
the standard [32], FairEmail sorted SRV records by both
Priority and Weight in descending order, which does not
conform to the specification. Fortunately, FairEmail always
attempted to establish a secure connection regardless of the
origin of the SRV record.

Outdated built-in lists (A8.1). We compared connection type
parameters (i.e., whether encryption is used) and found that
all extracted built-in lists were outdated. For example, the list
from Mailspring was last updated three years ago. Taking the
widely-used ISPDB as an example, it provided configurations
for 873 domains. By comparing our scan results with ISPDB,
we found at least 71 domains in ISPDB had outdated config-
urations. This was primarily due to one provider’s failure to
update information timely, affecting 69 domains. Fortunately,
no plaintext connection types were found in these files.

UI notification. Our analysis showed that all clients, except
Thunderbird and K-9 Mail, had at least one UI-related defect.
Only 8 clients prompted users to confirm the results obtained
from auto-configuration (UC). When configuration informa-
tion contained a plaintext connection type, only Thunderbird
provided a highlighted warning (WP), and K-9 Mail required
the user to enter the configuration manually. Our analysis
results show that, in a real-world scenario, an attacker could
attack without the victim’s awareness. For instance, once a
client retrieves configuration, it proceeds directly to a login
attempt using the credentials entered by the user, leaving
the victim unaware of a connection to an attacker-controlled
server. Additionally, clients that rely on built-in lists for auto-
configuration should also confirm the configuration with the

11

Table VII: Evaluation results of 29 email clients.

Auto-configuration Support2 Default Port [P/S]3 UI Notification4
Client1

Autoconfig Autodiscover DNS SRV Built-in list Guess Incoming Outgoing Defect
UC WP WAD WSR

Windows
Postbox (7.0.60) P I 143 S 587 S A1.1, A8.1 ✓ ✗
Delta Chat (1.42.1) ∗ I 993 S 465 S A6.1, A8.1 ✗
Outlook (16.0.10406.20006) 143 P 25 P A4.1, A5.1 ✗ ✓
Mailbird (3.0.6.0) − − A1.2 ✗
eM Client (9.2.2157) 143 S 587 S ✗ ✗
The bat! (11.0.3.1) 143 P 25 P A5.1 ✓ ✗
Linux
Claws Mail (4.2.0git36) ∗ 143 P 25 P A5.1 ✓ ✗ ✗
Thunderbird (115.6.0) ∗ I 143 P 587 P A1.1, A4.1, A5.1, A6.1, A8.1 ✓ ✓ ✓
Kmail (5.24.4) ∗ P I 993 S 25 S A1.1, A4.1, A8.1 ✓ ✗
Evolution (3.50.3) ∗ I 993 S 465 S A1.1, A4.1, A8.1 ✓ ✗ ✗
Nextcloud Mail (3.5.3) ∗ I 993 S 587 S A1.1, A2.1, A4.1, A8.1 ✗
Geary (44.1) ∗ I 993 S 465 S A4.1, A8.1 ✗
Android
FairEmail (1.2149a) ∗ I 993 S 465 S A1.1, A6.1, A7.1, A8.1 ✗ ✗
Nine (4.9.5e) P I 993 S 465 S A1.1, A1.2, A6.1, A8.1 ✗ ✗ ✗
MailTime (4.1.5.1218) P I 993 S 465 S A1.1, A8.1 ✗ ✗
K-9 Mail (6.714) ∗ I 993 S 465 S A1.1, A8.1 ✓ N/A
Spark Mail (3.7.2) I 993 S 587 S A8.1 ✗
ProfiMail Go (4.32.00) I 143 P 25 P A4.1, A5.1, A8.1 ✗
Maildroid (5.22) I 143 P 25 P A5.1, A8.1 ✗
iOS
myMail (14.71.0) 993 S 465 S ✗
iOS Mail (17.1) 993 S 587 S ✗
Edison Mail (1.53.14) 993 S 587 S ✗ ✗
Gmail (6.0.240225) 993 S 465 S ✗
Mailbus (3.3.11) 993 S 465 S A1.2 ✗
AltaMail (8.2.5) P 143 S 25 S A1.2, A6.1 ✗
MacOS
Apple Mail (13.5.2) 993 S 465 S ✗
Airmail (5.7) 993 S 465 S ✗
Mailspring (1.13.3) ∗ 993 S 465 S A8.1 ✓ ✗
Spike (3.8.0) P 993 S 587 S A1.2 ✗ ✗ ✗ ✗

1 ∗ Open-source client.
2 - Not support. - Supported. - Support Autodiscover for Exchange only. P indicates the client only initiates plaintext requests and I indicates the client queries the

ISPDB.
3 P - Default to plaintext. S - Encrypted connection through implicit TLS or STARTTLS. Mailbird does not provide a default connection type and port, requiring the user

to enter manually.
4 UC - User confirmation. WP - Plaintext warning. WAD - Autodiscover redirect warning. WSR - SRV FQDN warning. ✓ means a UI notification, and ✗ means no UI

notification. K-9 Mail requires the user to enter configuration parameters manually when the configuration information retrieved contains a plaintext connection type.

user before proceeding with the login, as built-in lists may not
always be up-to-date (e.g., Mailspring).

VIII. DISCUSSION

In this section, we first analyze the root causes of the se-
curity defects in auto-configuration mechanisms, then present
mitigation recommendations, and discuss the ethical concerns
and limitations of this work.

A. Root Causes

Defects and complexities in protocol design give rise to
disparate deployment. Beyond administrator negligence, we
believe the primary cause of defects stems from the protocols
themselves. First, Autoconfig was originally designed without
HTTPS [76], leaving the transmission of configuration files
vulnerable to tampering. Second, Autodiscover does not define
STARTTLS, which confuses administrators during setup. Our
heuristic exploration also revealed that many administrators
mistakenly equate the tls value in the Encryption element
with starttls. Lastly, regarding SRV service records, RFC 6186
(published in 2011) did not define encrypted-only records for
SMTP (i.e., SUBMISSIONS), which were added 7 years later
in RFC 8314 (published in 2018). This transition may have

led to misconfigurations among administrators who intend to
provide encrypted-only services (i.e., implicit TLS). Our anal-
ysis showed that 50.35% (3,426/6,805) of the SUBMISSION
records from the Tranco1M list incorrectly had port 465 set,
contrary to the RFC standard [23].

Lack of guidance for client implementations. As described
in Section III, several auto-configuration mechanisms are
available for clients. However, these mechanisms are not all
well standardized and lack of clear guidance, which makes
client implementations of auto-configuration depend on the
developer’s knowledge of the implemented mechanism. Our
client-side experiments revealed that many clients did not
strictly follow specifications, leading to two problems: (1)
failing to retrieve configuration files, which impacted usability,
and (2) introducing security issues. For example, DeltaChat,
FairEmail, and Nine only sent GET requests for Autodiscover,
potentially preventing the correct retrieval of configuration
files.3 Additionally, clients supporting multiple mechanisms
often introduce more security defects, making the security of
the auto-configuration process dependent on its weakest link.

Challenges of balancing usability and security. Our scan

3This work focuses on security issues, so usability-related issues are not
included in Table VII.

12

results showed that most servers support insecure connections
to ensure clients can retrieve configuration files. Moreover,
the need for compatibility across different client implemen-
tations compels administrators to deploy multiple mechanisms
simultaneously, increasing the maintenance burden. Similarly,
to enhance user experience, clients tend to support as many
mechanisms as possible, potentially introducing more defects.
Notably, our analysis revealed that most clients attempted to
log in without user confirmation of the configuration infor-
mation, prioritizing usability at the expense of security. As
the saying goes, complexity is the enemy of security [69].
The community should aim for a simpler, more secure auto-
configuration mechanism that is easy to deploy and implement,
striking a balance between usability and security.

B. Mitigations

Enforcing secure connections, especially in clients. Most
servers and clients support insecure connections for compat-
ibility purposes. We believe that clients should take the lead
to enforce TLS in auto-configuration, similar to how browsers
enforced HTTPS [68]. Moreover, servers should migrate from
plaintext or STARTTLS connection type to implicit TLS
services and disable support for plaintext connections where
possible. We also included such recommendations [50] in our
reports to mail providers.

Checking and updating configurations regularly. Server
administrators should regularly check and update their pub-
lished configuration information. We have released a testing
tool available at https://github.com/emailconfigtest/mailconfig,
which supports querying and comparing mail domain con-
figuration information across different mechanisms. We also
included built-in lists of open-source projects in our tool to
help administrators identify outdated and inconsistent configu-
rations. For client developers, it is essential to ensure that built-
in lists contain up-to-date configurations. While querying the
ISPDB [3] in real-time is a good practice, maintaining secure
and reliable configuration information in the ISPDB requires
coordinated efforts from the community.

Implementing professional clients. A client should consider
the effectiveness and security of auto-configuration mecha-
nisms. For effectiveness, the client should support multiple
mechanisms to maximize its ability to retrieve configuration
information. For security, it must carefully extract domains
(e.g., using tools like PSL [7]) to construct candidate URLs and
use HTTPS for configuration retrieval. Regardless of any fail-
ures (e.g., parsing issues), the client should provide encrypted
connection types by default. Adequate UI notifications should
also be implemented as a defense against attacks. Additionally,
when employing multiple auto-configuration mechanisms, the
client should compare the results and, in the case of inconsis-
tencies, apply the most secure connection type.

C. Ethical Concerns and Responsible Disclosure

All our experiments focused on publicly accessible services
without collecting personal information. We adhered to best
practices for Internet measurements as outlined in [12], [27].
We declared the purpose of our measurements on web pages
and set up a PTR record. Client analysis experiments were
conducted on our own platform, and no users were affected.

We contacted all affected clients using the following meth-
ods: (1) submitting reports to their SRC or HackerOne.4 (e.g.,
Outlook and Nextcloud Mail) (2) raising issues on forums
(e.g., GNOME,5 Bugzilla6) or emailing maintainers via their
provided security policy. (3) contacting security teams (e.g.,
security@address) or submitting forms on their web portals.
In general, we have contacted all 22 clients and received
responses from 10 clients so far (including Thunderbird,
Nextcloud Mail, and Mailspring), confirming some or all of
the defects reported. Specifically, Nextcloud Mail and KMail
assigned CVE identifiers to the vulnerabilities associated with
A2 and A1.1, respectively. Nextcloud Mail also rewarded us
for our findings. FairEmail fixed all reported defects except
for the plaintext request in Autoconfig, stating that many
email providers still use insecure connections to transmit
configuration files. For the centralized ISPDB database [3],
we raised an issue on GitHub and attached all the domains
with outdated configurations, which was confirmed by the
developers and has been updated.

We also launched a notification campaign for all affected
domains. Following the practices from previous research [79],
[72], we sent reports to their dedicated email addresses,
including security@, support@, abuse@, postmaster@ and
info@. For reports that failed to deliver through the above
email addresses, we have contacted those domains by visiting
their web portals and extracting email addresses [77]. Overall,
we have received 1,340 response emails so far, including
753 automated responses from ticketing systems. 93 domains
(including a ranked top 500 domain) acknowledged us for the
report and are in the process of being fixed.

D. Limitations

First, we evaluated the security of email auto-configuration
based on the configuration information provided by the server.
We did not establish connections to mail servers to analyze
which email service ports were opened and connection types
they supported. Second, for clients using HTTPS requests to
download configuration files, we did not investigate whether
trusted root certificates were deployed and the client performed
strict certificate validation, such as hostname matching. Lastly,
since Autoconfig is not yet standardized, our measurements
only represent a snapshot of its adoption across servers at the
time of the study. Future results may vary as the standard
evolves and adoption patterns shift.

This work does not consider DNS resolve-related security
threats. While we assume that Type-I attackers can tamper with
TCP packets, we consider ISPs trustworthy since recursive
resolution typically occurs within their network. Clients have
limited defenses against attacks at recursive resolution, and
even DNSSEC does not directly protect query results here.
Although RFC 8314 [50] advises against connections based
on unsigned SRV records, an active attacker within ISPs
could modify recursive DNS responses, including DNSSEC
validation flags. Such threats are not specific to SRV records
and are applied to all network applications relying on domains.

4https://www.hackerone.com/
5https://gitlab.gnome.org/GNOME
6https://bugzilla.mozilla.org/home

13

https://github.com/emailconfigtest/mailconfig

IX. CONCLUSION

In this paper, we performed the first systematic security
analysis of email auto-configuration in the wild, revealing
widespread defects in server deployment and client imple-
mentation. We summarized 10 attack scenarios, including 8
newly identified defects. These attacks could result in victims
connecting to attacker-controlled servers or leaking credentials.
Among the 79,212 domains supporting one or more auto-
configuration mechanisms, 49,013 domains were deployed
with defects. Of these, 43,566 and 11,824 domains are vulner-
able to the two attacks, respectively. Among the 29 analyzed
clients, 22 were affected by at least one attack scenario, and 21
did not adequately prompt users to confirm the configurations.

These findings demonstrate that current server deployments
and client implementations of email auto-configuration bring
security weaknesses to email services. Professional practices
and implementation guidelines are imperative to address the
defects due to misconfiguration, mismanagement, and flawed
implementation. Moreover, the community should prioritize
the security concerns surrounding auto-configuration and take
actions to eliminate the defects due to compatibility.

ACKNOWLEDGMENT

We thank all the anonymous reviewers for their insightful
feedback on improving this paper. This research was partially
supported by National Key RD Plan of China under Grant
2020YFB1005803, National Natural Science Foundation of
China under Grant (62302258, 62472021), Beijing Natural
Science Foundation under Grant 4242023, and Youth Top
Talent Support Program of Beihang University under Grant
YWF-22-L-1272. Yiming Zhang is in part supported by the
Shuimu Tsinghua Scholar Program.

REFERENCES

[1] “All banks domains and IPs,” https://github.com/cloudipsp/all banks i
ps, accessed: 2024-04-16.

[2] “Free or Disposable Email Providers Domains - Collected and combined
from various resources primarily built on top of lists provided by
Okutbay & frankwarwick,” https://gist.github.com/drakodev/e85c1
fd6d9ac8634786d6139e0066fa0, accessed: 2024-04-16.

[3] “Ispdb - generic database of mail server configuration,” https://github
.com/thunderbird/autoconfig/tree/master/ispdb, accessed: 2024-10-05.

[4] “A list of domains for disposable and temporary email addresses,” https:
//gist.github.com/adamloving/4401361, accessed: 2024-04-16.

[5] “Mail account autoconfiguration via DNS SRV (possibly with
DNSSEC) rfc6186,” https://bugzilla.mozilla.org/show bug.cgi?id=
342242, accessed: 2024-04-26.

[6] “Nodemailer,” https://github.com/nodemailer/nodemailer., accessed:
2024-03-31.

[7] “Public suffix list,” https://publicsuffix.org/, accessed: 2024-04-09.
[8] Amit Serper, “Autodiscovering the great leak,” Sep. 2021, https://ww

w.akamai.com/blog/security/autodiscovering-the-great-leak, accessed:
2024-10-05.

[9] Apple Inc., “Mail - Official Apple Support,” https://support.apple.com/
mail, accessed: 2024-10-05.

[10] M. I. Ashiq, W. Li, T. Fiebig, and T. Chung, “You’ve got report:
Measurement and security implications of DMARC reporting,” in
32nd USENIX Security Symposium, USENIX Security 2023, Anaheim,
CA, USA, August 9-11, 2023, J. A. Calandrino and C. Troncoso,
Eds. USENIX Association, 2023, pp. 4123–4137. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity23/presentation/ashiq

[11] ——, “SPF beyond the standard: Management and operational
challenges in practice and practical recommendations,” in 33rd
USENIX Security Symposium, USENIX Security 2024, Philadelphia,
PA, USA, August 14-16, 2024, D. Balzarotti and W. Xu, Eds. USENIX
Association, 2024. [Online]. Available: https://www.usenix.org/confere
nce/usenixsecurity24/presentation/ashiq

[12] M. D. Bailey, D. Dittrich, E. Kenneally, and D. Maughan, “The menlo
report,” IEEE Secur. Priv., vol. 10, no. 2, pp. 71–75, 2012. [Online].
Available: https://doi.org/10.1109/MSP.2012.52

[13] B. Blechschmidt and B. Stock, “Extended hell(o): A comprehensive
large-scale study on email confidentiality and integrity mechanisms in
the wild,” in 32nd USENIX Security Symposium, USENIX Security
2023, Anaheim, CA, USA, August 9-11, 2023, J. A. Calandrino
and C. Troncoso, Eds. USENIX Association, 2023, pp. 4895–4912.
[Online]. Available: https://www.usenix.org/conference/usenixsecurity
23/presentation/blechschmidt

[14] B. Bucksch, “Mail Autoconfig,” Internet Engineering Task Force,
Internet-Draft draft-bucksch-autoconfig-00, https://datatracker.ietf.o
rg/doc/draft-bucksch-autoconfig/00/, Work in Progress.

[15] B. Bucksch, “Proposal: Auto-configuration,” 2008, https://groups.googl
e.com/g/mozilla.dev.apps.thunderbird/c/6L2wrzGWGQg#a73bd97251b
18777, accessed: 2024-10-05.

[16] L. Ceci, “Emails sent per day 2025,” https://www.statista.com/statistic
s/456500/daily-number-of-e-mails-worldwide/, accessed: 2024-04-29.

[17] J. Chen, V. Paxson, and J. Jiang, “Composition kills: A case study
of email sender authentication,” in 29th USENIX Security Symposium,
USENIX Security 2020, August 12-14, 2020, S. Capkun and F. Roesner,
Eds. USENIX Association, 2020, pp. 2183–2199. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity20/presentation/chen
-jianjun

[18] I. S. Consortium, “BIND 9,” https://www.isc.org/bind/, accessed: 2024-
10-05.

[19] M. R. Crispin, “Internet message access protocol - version 4,”
RFC, vol. 1730, pp. 1–77, 1994. [Online]. Available: https:
//doi.org/10.17487/RFC1730

[20] D. Crocker, “Standard for the format of ARPA internet messages,”
RFC, vol. 822, pp. 1–49, Aug. 1982. [Online]. Available: https:
//doi.org/10.17487/RFC0822

[21] ——, “Mailbox names for common services, roles and functions,”
RFC, vol. 2142, pp. 1–6, May 1997. [Online]. Available: https:
//doi.org/10.17487/RFC2142

[22] ——, “Internet mail architecture,” RFC, vol. 5598, pp. 1–54, Jul.
2009. [Online]. Available: https://doi.org/10.17487/RFC5598

[23] C. Daboo, “Use of SRV records for locating email submission/access
services,” RFC, vol. 6186, pp. 1–9, 2011. [Online]. Available:
https://doi.org/10.17487/RFC6186

[24] Dovecot, “The Secure IMAP server,” https://www.dovecot.org/downlo
ad/, accessed: 2024-10-05.

[25] V. Dukhovni, “Opportunistic security: Some protection most of the
time,” RFC, vol. 7435, pp. 1–11, Dec. 2014. [Online]. Available:
https://doi.org/10.17487/RFC7435

[26] Z. Durumeric, D. Adrian, A. Mirian, J. Kasten, E. Bursztein,
N. Lidzborski, K. Thomas, V. Eranti, M. D. Bailey, and J. A.
Halderman, “Neither snow nor rain nor MITM...: an empirical
analysis of email delivery security,” in Proceedings of the 2015
ACM Internet Measurement Conference, IMC 2015, Tokyo, Japan,
October 28-30, 2015, K. Cho, K. Fukuda, V. S. Pai, and
N. Spring, Eds. ACM, 2015, pp. 27–39. [Online]. Available:
https://doi.org/10.1145/2815675.2815695

[27] Z. Durumeric, E. Wustrow, and J. A. Halderman, “Zmap: Fast
internet-wide scanning and its security applications,” in Proceedings
of the 22th USENIX Security Symposium, Washington, DC, USA,
August 14-16, 2013, S. T. King, Ed. USENIX Association, 2013, pp.
605–620. [Online]. Available: https://www.usenix.org/conference/usen
ixsecurity13/technical-sessions/paper/durumeric

[28] I. D. Foster, J. Larson, M. Masich, A. C. Snoeren, S. Savage, and
K. Levchenko, “Security by any other name: On the effectiveness
of provider based email security,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security,
Denver, CO, USA, October 12-16, 2015, I. Ray, N. Li, and

14

https://github.com/cloudipsp/all_banks_ips
https://github.com/cloudipsp/all_banks_ips
https://gist.github.com/drakodev/e85c1fd6d9ac8634786d6139e0066fa0
https://gist.github.com/drakodev/e85c1fd6d9ac8634786d6139e0066fa0
https://github.com/thunderbird/autoconfig/tree/master/ispdb
https://github.com/thunderbird/autoconfig/tree/master/ispdb
https://gist.github.com/adamloving/4401361
https://gist.github.com/adamloving/4401361
https://bugzilla.mozilla.org/show_bug.cgi?id=342242
https://bugzilla.mozilla.org/show_bug.cgi?id=342242
https://github.com/nodemailer/nodemailer.
https://publicsuffix.org/
https://www.akamai.com/blog/security/autodiscovering-the-great-leak
https://www.akamai.com/blog/security/autodiscovering-the-great-leak
https://support.apple.com/mail
https://support.apple.com/mail
https://www.usenix.org/conference/usenixsecurity23/presentation/ashiq
https://www.usenix.org/conference/usenixsecurity24/presentation/ashiq
https://www.usenix.org/conference/usenixsecurity24/presentation/ashiq
https://doi.org/10.1109/MSP.2012.52
https://www.usenix.org/conference/usenixsecurity23/presentation/blechschmidt
https://www.usenix.org/conference/usenixsecurity23/presentation/blechschmidt
https://datatracker.ietf.org/doc/draft-bucksch-autoconfig/00/
https://datatracker.ietf.org/doc/draft-bucksch-autoconfig/00/
https://groups.google.com/g/mozilla.dev.apps.thunderbird/c/6L2wrzGWGQg#a73bd97251b18777
https://groups.google.com/g/mozilla.dev.apps.thunderbird/c/6L2wrzGWGQg#a73bd97251b18777
https://groups.google.com/g/mozilla.dev.apps.thunderbird/c/6L2wrzGWGQg#a73bd97251b18777
https://www.statista.com/statistics/456500/daily-number-of-e-mails-worldwide/
https://www.statista.com/statistics/456500/daily-number-of-e-mails-worldwide/
https://www.usenix.org/conference/usenixsecurity20/presentation/chen-jianjun
https://www.usenix.org/conference/usenixsecurity20/presentation/chen-jianjun
https://www.isc.org/bind/
https://doi.org/10.17487/RFC1730
https://doi.org/10.17487/RFC1730
https://doi.org/10.17487/RFC0822
https://doi.org/10.17487/RFC0822
https://doi.org/10.17487/RFC2142
https://doi.org/10.17487/RFC2142
https://doi.org/10.17487/RFC5598
https://doi.org/10.17487/RFC6186
https://www.dovecot.org/download/
https://www.dovecot.org/download/
https://doi.org/10.17487/RFC7435
https://doi.org/10.1145/2815675.2815695
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/durumeric
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/durumeric

C. Kruegel, Eds. ACM, 2015, pp. 450–464. [Online]. Available:
https://doi.org/10.1145/2810103.2813607

[29] R. Gellens and J. C. Klensin, “Message submission,” RFC,
vol. 2476, pp. 1–15, Dec. 1998. [Online]. Available: https:
//doi.org/10.17487/RFC2476

[30] ——, “Message submission for mail,” RFC, vol. 6409, pp. 1–20, Nov.
2011. [Online]. Available: https://doi.org/10.17487/RFC6409

[31] Godaddy, “Domains API,” https://developer.godaddy.com/doc/endpoint
/domains, accessed: 2024-04-26.

[32] A. Gulbrandsen, P. Vixie, and L. Esibov, “A DNS RR for specifying
the location of services (DNS SRV),” RFC, vol. 2782, pp. 1–12, Feb.
2000. [Online]. Available: https://doi.org/10.17487/RFC2782

[33] P. E. Hoffman, “SMTP service extension for secure SMTP over
transport layer security,” RFC, vol. 3207, pp. 1–9, 2002. [Online].
Available: https://doi.org/10.17487/RFC3207

[34] R. Holz, J. Amann, O. Mehani, M. A. Kâafar, and M. Wachs, “TLS in
the wild: An internet-wide analysis of tls-based protocols for electronic
communication,” in 23rd Annual Network and Distributed System
Security Symposium, NDSS 2016, San Diego, California, USA, February
21-24, 2016. The Internet Society, 2016.

[35] H. Hu and G. Wang, “End-to-end measurements of email spoofing
attacks,” in 27th USENIX Security Symposium, USENIX Security 2018,
Baltimore, MD, USA, August 15-17, 2018, W. Enck and A. P. Felt,
Eds. USENIX Association, 2018, pp. 1095–1112. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/hu

[36] K. Huang, “Email Client Market Share in August 2021: Email Clients
Hold Steady,” Sep. 2021, https://www.litmus.com/blog/email-client-m
arket-share-august-2021, accessed: 2024-04-29.

[37] Hubspot, “Internet message access from form submissions,” https://kn
owledge.hubspot.com/forms/what-domains-are-blocked-when-using-t
he-forms-email-domains-to-block-feature, accessed: 2024-04-16.

[38] F. Ising, D. Poddebniak, T. Kappert, C. Saatjohann, and S. Schinzel,
“Content-type: multipart/oracle - tapping into format oracles in email
end-to-end encryption,” in 32nd USENIX Security Symposium, USENIX
Security 2023, Anaheim, CA, USA, August 9-11, 2023, J. A. Calandrino
and C. Troncoso, Eds. USENIX Association, 2023, pp. 4175–4192.
[Online]. Available: https://www.usenix.org/conference/usenixsecurity
23/presentation/ising

[39] J. C. Klensin, “Simple mail transfer protocol,” RFC, vol. 5321, pp.
1–95, Oct. 2008. [Online]. Available: https://doi.org/10.17487/RFC5321

[40] J. Kundrát., “Trojita 0.4.1, a security update for CVE-2014-2567,” http:
//jkt.flaska.net/blog/Trojita 0 4 1 a security update for CVE 201
4 2567.html, accessed: 2024-07-06.

[41] N. Labs, “Unbound DNS Resolver,” https://nlnetlabs.nl/projects/unbo
und/about/, accessed: 2024-04-26.

[42] H. Lee, M. I. Ashiq, M. Müller, R. van Rijswijk-Deij, T. T. Kwon,
and T. Chung, “Under the hood of DANE mismanagement in SMTP,”
in 31st USENIX Security Symposium, USENIX Security 2022, Boston,
MA, USA, August 10-12, 2022, K. R. B. Butler and K. Thomas,
Eds. USENIX Association, 2022, pp. 1–16. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity22/presentation/lee

[43] H. Lee, A. Gireesh, R. van Rijswijk-Deij, T. Kwon, and T. Chung,
“A longitudinal and comprehensive study of the DANE ecosystem
in email,” in 29th USENIX Security Symposium, USENIX Security
2020, August 12-14, 2020, S. Capkun and F. Roesner, Eds. USENIX
Association, 2020, pp. 613–630. [Online]. Available: https://www.usen
ix.org/conference/usenixsecurity20/presentation/lee-hyeonmin

[44] J. Ma, L. Chen, K. Xue, B. Luo, X. Huang, M. Ai, H. Zhang,
D. S. L. Wei, and Y. Zhuang, “Fakebehalf: Imperceptible email
spoofing attacks against the delegation mechanism in email systems,”
in 33rd USENIX Security Symposium, USENIX Security 2024,
Philadelphia, PA, USA, August 14-16, 2024, D. Balzarotti and
W. Xu, Eds. USENIX Association, 2024. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity24/presentation/ma-jinrui

[45] W. Mayer, A. Zauner, M. Schmiedecker, and M. Huber, “No need
for black chambers: Testing TLS in the e-mail ecosystem at large,”
in 11th International Conference on Availability, Reliability and
Security, ARES 2016, Salzburg, Austria, August 31 - September 2,
2016. IEEE Computer Society, 2016, pp. 10–20. [Online]. Available:
https://doi.org/10.1109/ARES.2016.11

[46] Microsoft, “Exchange 2007 Autodiscover and certificates,” https://tech
community.microsoft.com/t5/exchange-team-blog/exchange-2007-aut
odiscover-and-certificates/ba-p/593753?WT.mc id=M365-MVP-9501,
accessed: 2024-10-05.

[47] ——, “[MS-OXDISCO]: Autodiscover HTTP Service Protocol,” Aug.
2021, https://learn.microsoft.com/en-us/openspecs/exchange serve
r protocols/ms-oxdisco/d912502b-c0e2-41a1-8b0e-f714ba523e08,
accessed: 2024-03-06.

[48] ——, “[MS-OXDSCLI]: Autodiscover Publishing and Lookup Proto-
col,” Aug. 2021, https://learn.microsoft.com/en-us/openspecs/exchange

server protocols/ms-oxdscli/78530279-d042-4eb0-a1f4-03b18143cd1
9, accessed: 2024-03-06.

[49] ——, “Autodiscover for Exchange,” Sep. 2022, https://learn.microsoft.
com/en-us/exchange/client-developer/exchange-web-services/autodisc
over-for-exchange, accessed: 2024-04-26.

[50] K. Moore and C. Newman, “Cleartext considered obsolete: Use of
transport layer security (TLS) for email submission and access,”
RFC, vol. 8314, pp. 1–26, Jan. 2018. [Online]. Available: https:
//doi.org/10.17487/RFC8314

[51] MozillaWiki, “Thunderbird:Autoconfiguration - MozillaWiki,” 2021, ht
tps://wiki.mozilla.org/Thunderbird:Autoconfiguration, accessed: 2024-
10-05.

[52] J. Müller, M. Brinkmann, D. Poddebniak, H. Böck, S. Schinzel,
J. Somorovsky, and J. Schwenk, “”johnny, you are fired!” -
spoofing openpgp and S/MIME signatures in emails,” in 28th
USENIX Security Symposium, USENIX Security 2019, Santa Clara,
CA, USA, August 14-16, 2019, N. Heninger and P. Traynor, Eds.
USENIX Association, 2019, pp. 1011–1028. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity19/presentation/muller

[53] J. Müller, M. Brinkmann, D. Poddebniak, S. Schinzel, and J. Schwenk,
“Re: What’s up johnny? - covert content attacks on email end-
to-end encryption,” in Applied Cryptography and Network Security
- 17th International Conference, ACNS 2019, Bogota, Colombia,
June 5-7, 2019, Proceedings, ser. Lecture Notes in Computer
Science, R. H. Deng, V. Gauthier-Umaña, M. Ochoa, and M. Yung,
Eds., vol. 11464. Springer, 2019, pp. 24–42. [Online]. Available:
https://doi.org/10.1007/978-3-030-21568-2 2

[54] My-Addr, “List of most popular email domains (by number of live
emails),” 2016, https://email-verify.my-addr.com/list-of-most-popular
-email-domains.php, accessed: 2024-10-05.

[55] J. G. Myers and M. T. Rose, “Post office protocol - version
3,” RFC, vol. 1939, pp. 1–23, May 1996. [Online]. Available:
https://doi.org/10.17487/RFC1939

[56] I. Nesterov and M. Goncharov, “All your emails belong to us: exploiting
vulnerable email clients via domain name collision,” Black Hat Asia,
2017.

[57] C. Newman, “Using TLS with imap, POP3 and ACAP,” RFC,
vol. 2595, pp. 1–15, Jun. 1999. [Online]. Available: https:
//doi.org/10.17487/RFC2595

[58] Nextcloud, “Nextcloud Groupware,” https://nextcloud.com/groupware/,
accessed: 2024-10-05.

[59] Nginx, “Nginx Release Version,” https://nginx.org/en/download.html,
accessed: 2024-10-05.

[60] V. L. Pochat, T. van Goethem, S. Tajalizadehkhoob, M. Korczynski, and
W. Joosen, “Tranco: A research-oriented top sites ranking hardened
against manipulation,” in 26th Annual Network and Distributed
System Security Symposium, NDSS 2019, San Diego, California,
USA, February 24-27, 2019. The Internet Society, 2019. [Online].
Available: https://www.ndss-symposium.org/ndss-paper/tranco-a-resea
rch-oriented-top-sites-ranking-hardened-against-manipulation/

[61] D. Poddebniak, C. Dresen, J. Müller, F. Ising, S. Schinzel,
S. Friedberger, J. Somorovsky, and J. Schwenk, “Efail: Breaking
S/MIME and openpgp email encryption using exfiltration channels,” in
27th USENIX Security Symposium, USENIX Security 2018, Baltimore,
MD, USA, August 15-17, 2018, W. Enck and A. P. Felt, Eds.
USENIX Association, 2018, pp. 549–566. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity18/presentation/poddebniak

[62] D. Poddebniak, F. Ising, H. Böck, and S. Schinzel, “Why TLS is
better without STARTTLS: A security analysis of STARTTLS in the
email context,” in 30th USENIX Security Symposium, USENIX Security
2021, August 11-13, 2021, M. D. Bailey and R. Greenstadt, Eds.

15

https://doi.org/10.1145/2810103.2813607
https://doi.org/10.17487/RFC2476
https://doi.org/10.17487/RFC2476
https://doi.org/10.17487/RFC6409
https://developer.godaddy.com/doc/endpoint/domains
https://developer.godaddy.com/doc/endpoint/domains
https://doi.org/10.17487/RFC2782
https://doi.org/10.17487/RFC3207
https://www.usenix.org/conference/usenixsecurity18/presentation/hu
https://www.litmus.com/blog/email-client-market-share-august-2021
https://www.litmus.com/blog/email-client-market-share-august-2021
https://knowledge.hubspot.com/forms/what-domains-are-blocked-when-using-the-forms-email-domains-to-block-feature
https://knowledge.hubspot.com/forms/what-domains-are-blocked-when-using-the-forms-email-domains-to-block-feature
https://knowledge.hubspot.com/forms/what-domains-are-blocked-when-using-the-forms-email-domains-to-block-feature
https://www.usenix.org/conference/usenixsecurity23/presentation/ising
https://www.usenix.org/conference/usenixsecurity23/presentation/ising
https://doi.org/10.17487/RFC5321
http://jkt.flaska.net/blog/Trojita_0_4_1__a_security_update_for_CVE_2014_2567.html
http://jkt.flaska.net/blog/Trojita_0_4_1__a_security_update_for_CVE_2014_2567.html
http://jkt.flaska.net/blog/Trojita_0_4_1__a_security_update_for_CVE_2014_2567.html
https://nlnetlabs.nl/projects/unbound/about/
https://nlnetlabs.nl/projects/unbound/about/
https://www.usenix.org/conference/usenixsecurity22/presentation/lee
https://www.usenix.org/conference/usenixsecurity20/presentation/lee-hyeonmin
https://www.usenix.org/conference/usenixsecurity20/presentation/lee-hyeonmin
https://www.usenix.org/conference/usenixsecurity24/presentation/ma-jinrui
https://www.usenix.org/conference/usenixsecurity24/presentation/ma-jinrui
https://doi.org/10.1109/ARES.2016.11
https://techcommunity.microsoft.com/t5/exchange-team-blog/exchange-2007-autodiscover-and-certificates/ba-p/593753?WT.mc_id=M365-MVP-9501
https://techcommunity.microsoft.com/t5/exchange-team-blog/exchange-2007-autodiscover-and-certificates/ba-p/593753?WT.mc_id=M365-MVP-9501
https://techcommunity.microsoft.com/t5/exchange-team-blog/exchange-2007-autodiscover-and-certificates/ba-p/593753?WT.mc_id=M365-MVP-9501
https://learn.microsoft.com/en-us/openspecs/exchange_server_protocols/ms-oxdisco/d912502b-c0e2-41a1-8b0e-f714ba523e08
https://learn.microsoft.com/en-us/openspecs/exchange_server_protocols/ms-oxdisco/d912502b-c0e2-41a1-8b0e-f714ba523e08
https://learn.microsoft.com/en-us/openspecs/exchange_server_protocols/ms-oxdscli/78530279-d042-4eb0-a1f4-03b18143cd19
https://learn.microsoft.com/en-us/openspecs/exchange_server_protocols/ms-oxdscli/78530279-d042-4eb0-a1f4-03b18143cd19
https://learn.microsoft.com/en-us/openspecs/exchange_server_protocols/ms-oxdscli/78530279-d042-4eb0-a1f4-03b18143cd19
https://learn.microsoft.com/en-us/exchange/client-developer/exchange-web-services/autodiscover-for-exchange
https://learn.microsoft.com/en-us/exchange/client-developer/exchange-web-services/autodiscover-for-exchange
https://learn.microsoft.com/en-us/exchange/client-developer/exchange-web-services/autodiscover-for-exchange
https://doi.org/10.17487/RFC8314
https://doi.org/10.17487/RFC8314
https://wiki.mozilla.org/Thunderbird:Autoconfiguration
https://wiki.mozilla.org/Thunderbird:Autoconfiguration
https://www.usenix.org/conference/usenixsecurity19/presentation/muller
https://www.usenix.org/conference/usenixsecurity19/presentation/muller
https://doi.org/10.1007/978-3-030-21568-2_2
https://email-verify.my-addr.com/list-of-most-popular-email-domains.php
https://email-verify.my-addr.com/list-of-most-popular-email-domains.php
https://doi.org/10.17487/RFC1939
https://doi.org/10.17487/RFC2595
https://doi.org/10.17487/RFC2595
https://nextcloud.com/groupware/
https://nginx.org/en/download.html
https://www.ndss-symposium.org/ndss-paper/tranco-a-research-oriented-top-sites-ranking-hardened-against-manipulation/
https://www.ndss-symposium.org/ndss-paper/tranco-a-research-oriented-top-sites-ranking-hardened-against-manipulation/
https://www.usenix.org/conference/usenixsecurity18/presentation/poddebniak
https://www.usenix.org/conference/usenixsecurity18/presentation/poddebniak

USENIX Association, 2021, pp. 4365–4382. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity21/presentation/poddebniak

[63] J. Postel, “Simple mail transfer protocol,” RFC, vol. 821, pp. 1–72,
Aug. 1982. [Online]. Available: https://doi.org/10.17487/RFC0821

[64] Postfix, “Postfix Announcements,” https://www.postfix.org/announcem
ents.html, accessed: 2024-10-05.

[65] E. Rescorla, “HTTP over TLS,” RFC, vol. 2818, pp. 1–7, May 2000.
[Online]. Available: https://doi.org/10.17487/RFC2818

[66] ——, “The transport layer security (TLS) protocol version 1.3,”
RFC, vol. 8446, pp. 1–160, Aug. 2018. [Online]. Available:
https://doi.org/10.17487/RFC8446

[67] P. Rice, “How to Test Autodiscover Functionality in Microsoft Outlook,”
Nov. 2018, https://www.prrcomputers.com/blog/how-to-test-autodisco
ver-functionality-in-microsoft-outlook/, accessed: 2024-07-01.

[68] E. Schechter, “A milestone for Chrome security: marking HTTP as “not
secure”,” Jul. 2018, https://blog.google/products/chrome/milestone-chr
ome-security-marking-http-not-secure/, accessed: 2024-08-27.

[69] B. Schneier, “Essays: A Plea for Simplicity - Schneier on Security,”
https://www.schneier.com/essays/archives/1999/11/a plea for simplicit
.html, accessed: 2024-10-05.

[70] K. Shen, C. Wang, M. Guo, X. Zheng, C. Lu, B. Liu, Y. Zhao, S. Hao,
H. Duan, Q. Pan, and M. Yang, “Weak links in authentication chains:
A large-scale analysis of email sender spoofing attacks,” in 30th
USENIX Security Symposium, USENIX Security 2021, August 11-13,
2021, M. D. Bailey and R. Greenstadt, Eds. USENIX Association,
2021, pp. 3201–3217. [Online]. Available: https://www.usenix.org/con
ference/usenixsecurity21/presentation/shen-kaiwen

[71] S. Singanamalla, E. H. B. Jang, R. J. Anderson, T. Kohno, and
K. Heimerl, “Accept the risk and continue: Measuring the long tail of
government https adoption,” in IMC ’20: ACM Internet Measurement
Conference, Virtual Event, USA, October 27-29, 2020. ACM, 2020, pp.
577–597. [Online]. Available: https://doi.org/10.1145/3419394.3423645

[72] B. Stock, G. Pellegrino, F. Li, M. Backes, and C. Rossow, “Didn’t you
hear me? - towards more successful web vulnerability notifications,”
in 25th Annual Network and Distributed System Security Symposium,
NDSS 2018, San Diego, California, USA, February 18-21, 2018. The
Internet Society, 2018.

[73] C. Stransky, O. Wiese, V. Roth, Y. Acar, and S. Fahl, “27 years
and 81 million opportunities later: Investigating the use of email
encryption for an entire university,” in 43rd IEEE Symposium
on Security and Privacy, SP 2022, San Francisco, CA, USA,
May 22-26, 2022. IEEE, 2022, pp. 860–875. [Online]. Available:
https://doi.org/10.1109/SP46214.2022.9833755

[74] D. Tatang, R. Flume, and T. Holz, “Extended abstract: A first large-
scale analysis on usage of MTA-STS,” in Detection of Intrusions and
Malware, and Vulnerability Assessment - 18th International Conference,
DIMVA 2021, Virtual Event, July 14-16, 2021, Proceedings, ser. Lecture
Notes in Computer Science, L. Bilge, L. Cavallaro, G. Pellegrino, and
N. Neves, Eds., vol. 12756. Springer, 2021, pp. 361–370. [Online].
Available: https://doi.org/10.1007/978-3-030-80825-9 18

[75] D. Tatang, F. Zettl, and T. Holz, “The evolution of dns-based email
authentication: Measuring adoption and finding flaws,” in RAID ’21:
24th International Symposium on Research in Attacks, Intrusions and
Defenses, San Sebastian, Spain, October 6-8, 2021, L. Bilge and
T. Dumitras, Eds. ACM, 2021, pp. 354–369. [Online]. Available:
https://doi.org/10.1145/3471621.3471842

[76] Thunderbird, “Thunderbird Autoconfiguration,” https://www.bucksch.
org/1/projects/thunderbird/autoconfiguration/#ISPDB, accessed: 2024-
10-05.

[77] C. Utz, M. Michels, M. Degeling, N. Marnau, and B. Stock,
“Comparing large-scale privacy and security notifications,” Proc. Priv.
Enhancing Technol., vol. 2023, no. 3, pp. 173–193, 2023. [Online].
Available: https://doi.org/10.56553/popets-2023-0076

[78] W. Venema, “Plaintext command injection in multiple implementations
of STARTTLS (CVE-2011-0411),” https://www.postfix.org/CVE-201
1-0411.html, accessed: 2024-04-09.

[79] C. Wang, Y. Kuranaga, Y. Wang, M. Zhang, L. Zheng, X. Li,
J. Chen, H. Duan, Y. Lin, and Q. Pan, “Breakspf: How shared
infrastructures magnify SPF vulnerabilities across the internet,” in
31st Annual Network and Distributed System Security Symposium,

NDSS 2024, San Diego, California, USA, February 26 - March
1, 2024. The Internet Society, 2024. [Online]. Available: https:
//www.ndss-symposium.org/ndss-paper/breakspf-how-shared-infrastru
ctures-magnify-spf-vulnerabilities-across-the-internet/

[80] C. Wang, K. Shen, M. Guo, Y. Zhao, M. Zhang, J. Chen, B. Liu,
X. Zheng, H. Duan, Y. Lin, and Q. Pan, “A large-scale and longitudinal
measurement study of DKIM deployment,” in 31st USENIX Security
Symposium, USENIX Security 2022, Boston, MA, USA, August 10-12,
2022, K. R. B. Butler and K. Thomas, Eds. USENIX Association,
2022, pp. 1185–1201. [Online]. Available: https://www.usenix.org/con
ference/usenixsecurity22/presentation/wang-chuhan

[81] G. Workspace, “The Most Common Email Aliases Backed by Data,”
Aug. 2022, https://blog.101domain.com/google-workspace/most-com
mon-email-aliases, accessed: 2024-04-16.

APPENDIX

A. Autodiscover Request Body and Parameter Definitions

The specification [48] provides an example of the Au-
todiscover request body (as shown in List 1), which is a
formatted XML containing the EmailAddress element that
identifies the email address (e.g., user@example.com) for
which the configuration information will be retrieved. The
same specification [48] also defines the elements included in
the Autodiscover response (i.e., autodiscover.xml, as shown in
List 2). For Autoconfig, since there is currently no formal
standard, we refer to the relevant RFC drafts [14] for the
configuration file definitions (i.e., config-v1.1.xml). Tables VIII
and IX show the definitions of some of the elements in these
configuration files, respectively.

1 <?xml version=’1.0’ encoding=’utf-8’ ?>
2 <Autodiscover xmlns="http://schemas.microsoft.com

/exchange/autodiscover/outlook/requestschema
/2006">

3 <Request>
4 <EMailAddress>user@example.com</

EMailAddress>
5 <AcceptableResponseSchema>http://schemas.

microsoft.com/exchange/autodiscover/outlook/
responseschema/2006a</
AcceptableResponseSchema>

6 </Request>
7 </Autodiscover>

Listing 1: An example of the body of POST request in
Autodiscover.

1 <AccountType>email</AccountType>
2 <Action>settings</Action>
3 <Protocol>
4 <Type>IMAP</Type>
5 <Server>imap.example.com</Server>
6 <Port>993</Port>
7 <SPA>off</SPA>
8 <SSL>on</SSL>
9 <TTL>0</TTL>

10 <Encryption>SSL</Encryption>
11 </Protocol>
12 <Protocol>
13 <Type>SMTP</Type>
14 <Server>smtp.example.com</Server>
15 <Port>465</Port>
16 <SPA>off</SPA>
17 <SSL>on</SSL>
18 <TTL>0</TTL>
19 <Encryption>SSL</Encryption>
20 </Protocol>

Listing 2: An example of autodiscover.xml. The bold text
indicates configuration information for IMAP and SMTP
servers.

16

https://www.usenix.org/conference/usenixsecurity21/presentation/poddebniak
https://www.usenix.org/conference/usenixsecurity21/presentation/poddebniak
https://doi.org/10.17487/RFC0821
https://www.postfix.org/announcements.html
https://www.postfix.org/announcements.html
https://doi.org/10.17487/RFC2818
https://doi.org/10.17487/RFC8446
https://www.prrcomputers.com/blog/how-to-test-autodiscover-functionality-in-microsoft-outlook/
https://www.prrcomputers.com/blog/how-to-test-autodiscover-functionality-in-microsoft-outlook/
https://blog.google/products/chrome/milestone-chrome-security-marking-http-not-secure/
https://blog.google/products/chrome/milestone-chrome-security-marking-http-not-secure/
https://www.schneier.com/essays/archives/1999/11/a_plea_for_simplicit.html
https://www.schneier.com/essays/archives/1999/11/a_plea_for_simplicit.html
https://www.usenix.org/conference/usenixsecurity21/presentation/shen-kaiwen
https://www.usenix.org/conference/usenixsecurity21/presentation/shen-kaiwen
https://doi.org/10.1145/3419394.3423645
https://doi.org/10.1109/SP46214.2022.9833755
https://doi.org/10.1007/978-3-030-80825-9_18
https://doi.org/10.1145/3471621.3471842
https://www.bucksch.org/1/projects/thunderbird/autoconfiguration/#ISPDB
https://www.bucksch.org/1/projects/thunderbird/autoconfiguration/#ISPDB
https://doi.org/10.56553/popets-2023-0076
https://www.postfix.org/CVE-2011-0411.html
https://www.postfix.org/CVE-2011-0411.html
https://www.ndss-symposium.org/ndss-paper/breakspf-how-shared-infrastructures-magnify-spf-vulnerabilities-across-the-internet/
https://www.ndss-symposium.org/ndss-paper/breakspf-how-shared-infrastructures-magnify-spf-vulnerabilities-across-the-internet/
https://www.ndss-symposium.org/ndss-paper/breakspf-how-shared-infrastructures-magnify-spf-vulnerabilities-across-the-internet/
https://www.usenix.org/conference/usenixsecurity22/presentation/wang-chuhan
https://www.usenix.org/conference/usenixsecurity22/presentation/wang-chuhan
https://blog.101domain.com/google-workspace/most-common-email-aliases
https://blog.101domain.com/google-workspace/most-common-email-aliases

Table VIII: Definitions of key element values of autodis-
cover.xml.

Element Value Meaning

Server any The hostname of the mail server.
Port any Typically is a well-known port, e.g., 993, 995, 465.
SSL on, off Whether to establish an encrypted connection, default

is “on”.
SPA on, off Whether secure password authentication is required,

default is “on”.
Encryption none, ssl, tls,

auto
If present, overrides the SSL element. “none” rep-
resents no encryption is used. “ssl” and “tls” stand
for Secure Sockets Layer (SSL) or Transport Layer
Security (TLS) is used, respectively, where SSL is
superseded by TLS. “auto” represents using the most
secure encryption that both client and server support.

1 Note that Autodiscover specification [47] does not define STARTTLS.
In our experiments, we determine whether the connection type is
STARTTLS based on the well-known port.

Table IX: Definitions of key element values of config-v1.1.xml.

Element Value Meaning

hostname any The hostname of the mail
server.

port any Typically is a well-known
port, e.g., 993, 995, 465.

socketType plain, starttls, ssl Plaintext, or encrypted con-
nection via STARTTLS or
SSL.

authentication password-cleartext,
password-encrypted,
GSSAPI, NTLM,
client-IP-address,
TLS-client-cert,
OAuth2, none

Authentication methods.

B. Request Paths in Server Scanning

As shown in Table X, our scanning module includes 10
candidate URLs for Autodiscover and 6 for Autoconfig.

C. Deployment of Auto-configuration

We retrieved a total of 152,646 autodiscover.xml files from
Autodiscover, 95,070 config-v1.1.xml files from Autoconfig,
and 31,499 SRV records. We filtered out files that could not be
parsed or had no configuration information. The results of our
scan are shown in Table XI. Specifically, among the 1,053,469
domains scanned, 79,212 (7.52%) domains support at least one
auto-configuration mechanism (Autodiscover, Autoconfig, or
SRV records). Autodiscover and Autoconfig were supported by
49,538 and 57,331 domains, respectively, while only 11,281
domains supported SRV. From the perspective of different
domain lists, as expected, the Top100Provider list showed
the highest deployment rate, with 30% of domains supporting
auto-configuration.

We further analyzed the distribution for auto-configuration
support. Our results showed that very few domains support all
three mechanisms at the same time. For example, only 2.23%
(1,695/76,104) domains in the Tranco1M list support all three
mechanisms. The Top100Provider and FreeDisposableProvier
lists, which are more closely tied to email services, have

26.67% (8/30) and 9.94% (190/1,911) of domains that support
all three mechanisms simultaneously.

D. Evaluation Results of Autodiscover and Autoconfig for A1.

Table XII presents the evaluation results of Autodisocver
and Autoconfig for A1 (refer to Section IV-B and Section VI).

E. Comparison Method for Configuration Information

Considering the prioritization of services in the configura-
tion files, we extracted only the first parameter setting of the
incoming or outgoing server in each mechanism’s results for
comparison. Specifically, we focused on the sockettype,
SSL, and Encryption elements related to connection types.
We aligned the configuration information obtained from Au-
todiscover and SRV records with the value of socketType
defined in Autoconfig as a reference. For Autodiscover, the
Encryption element, if present, overrides the SSL element
as defined in Table VIII.

When Encryption was set to ssl or tls, we further
determined the connection type to be ssl or starttls based on
the port. By default, we set the connection type to starttls
for ports 587, 143, and 110, and ssl for ports 465, 993, and
995. If Encryption was set to auto, we determined the
connection type based on whether the port was well-known
(see Table I), defaulting to starttls for unfamiliar ports. We
also applied this default setting if there were incorrect values in
the sockettype, SSL, or Encryption elements. For SRV
service records, we prioritized encrypted-only service records
(IMAPS, POP3S, and SUBMISSIONS). If the server lacked
such records, we determined the connection type based on
the non-encrypted-only service records and whether their ports
were familiar. Note that the analysis results presented in this
paper are based on the processing methods defined here. Actual
results may vary depending on specific client implementations.

F. Test Platform

Our platform was set up with a mail server running
Postfix [64] and Dovecot [24], and a web server running
Nginx [59] on CentOS 7. We applied certificates from Let’s
Encrypt for both servers. For the mail server, we enabled both
implicit TLS and STARTTLS services on the well-known ports
for IMAP and SMTP protocols. We did not test the POP3
protocol here since we were primarily concerned with the
auto-configuration mechanism, and the exact protocol used is
trivial. We hosted both autodiscover.xml and config-v1.1.xml
files in the appropriate directories on the web server and logged
request paths and errors in access.log. To track DNS queries
from clients, we set up an authoritative DNS server running
Bind9 [18] on Ubuntu 22.04.1. We added SRV records for all
services listed in Table IV. In addition, we also added an SRV
record for autodiscover. tcp to support Autodiscover queries.

17

Table X: The request paths in Autodiscover and Autoconfig scanning module.

Path URL Request Method
Autodiscover

1 http://autodiscover.example.com/autodiscover/autodiscover.xml HTTP POST
2 https://example.com/autodiscover/autodiscover.xml HTTP POST

3 autodiscover. tcp.example.com. IN SRV 0 0 443 target.com. DNS SRV request for Autodiscover server
https://target.com/autodiscover/autodiscover.xml HTTP POST

4 http://autodiscover.example.com/autodiscover/autodiscover.xml HTTP GET for initial request, POST for redirection
5 https://autodiscover.example.com/autodiscover/autodiscover.xml HTTP POST
6 http://example.com/autodiscover/autodiscover.xml HTTP POST
7 https://autodiscover.example.com/autodiscover/autodiscover.xml HTTP GET
8 https://example.com/autodiscover/autodiscover.xml HTTP GET
9 http://autodiscover.example.com/autodiscover/autodiscover.xml HTTP GET

10 http://example.com/autodiscover/autodiscover.xml HTTP GET
Autoconfig

1 https://autoconfig.example.com/mail/config-v1.1.xml?emailaddress=info@example.com HTTP GET
2 https://example.com/.well-known/autoconfig/mail/config-v1.1.xml?emailaddress=info@example.com HTTP GET
3 http://autoconfig.example.com/mail/config-v1.1.xml?emailaddress=info@example.com HTTP GET
4 http://example.com/.well-known/autoconfig/mail/config-v1.1.xml?emailaddress=info@example.com HTTP GET

5
example.com. IN MX 0 mx.mail.provider.com. DNS MX request for mail provider
https://autoconfig.mail.provider.com/mail/config-v1.1.xml?emailaddress=info@example.com HTTP GET
or https://autoconfig.provider.com/mail/config-v1.1.xml?emailaddress=info@example.com HTTP GET

Table XI: The deployment rate of auto-configuration among different domain lists.

Domain list Domains # (100%) Intersection1 MX Records Autodiscover Autoconfig SRV Records Support2

Tranco1M 1,000,000 1,000,000 (100.00%) 646,895 (64.69%) 47,917 (4.79%) 54,776 (5.48%) 11,060 (1.11%) 76,104 (7.61%)
Top100Provider 100 100 (100.00%) 100 (100.00%) 15 (15.00%) 18 (18.00%) 22 (22.00%) 30 (30.00%)
GovDomain 41,865 8,831 (21.10%) 19,882 (47.49%) 1,104 (2.64%) 973 (2.32%) 165 (0.40%) 1,446 (2.74%)
BankDomain 7,021 1,943 (27.70%) 5,488 (78.17%) 112 (1.60%) 90 (1.28%) 11 (0.16%) 160 (2.28%)
FreeDisposableProvider 16,752 1,380 (8.24%) 8,293 (49.50%) 612 (3.65%) 1,754 (10.47%) 296 (1.77%) 1,911 (11.41%)

Total 1,053,469 1,000,000 (94.92%) 670,709 (63.67%) 49,538 (4.70%) 57,331 (5.44%) 11,281 (1.07%) 79,212 (7.52%)
1 Intersection refers to the size of the intersection of the domain list with the Tranco1M list.
2 Support refers to how many domains support at least one auto-configuration mechanism.

Table XII: Evaluation results of Autodiscover and Autoconfig in A1.

(a) Number of Autodiscover-enabled domains returning configuration information per request method and the number of not well-established servers.

Domain List Support HTTP Return1 w/ HTTP Only1 HTTPS Return2 w/ HTTPS Only2 Not well-established3 w/o to-HTTPS redirection3 w/ to-HTTP redirection3

Tranco1M 47,917 38,456 (80.26%) 4,924 (10.28%) 42,993 (89.72%) 9,461 (19.74%) 28,905 (60.32%) 28,902 (60.32%) 38 (0.08%)
Top100Provider 15 14 (93.33%) 0 (0.00%) 15 (100.00%) 1 (6.67%) 7 (46.67%) 7 (46.67%) 0 (0.00%)
GovDomain 1,104 919 (83.24%) 37 (3.35%) 1,067 (96.65%) 185 (16.76%) 773 (70.02%) 773 (70.02%) 1 (0.09%)
BankDomain 112 89 (79.46%) 7 (6.25%) 105 (93.75%) 23 (20.54%) 69 (61.61%) 69 (61.61%) 0 (0.00%)
FreeDisposableProvider 612 552 (90.20%) 30 (4.90%) 582 (95.10%) 60 (9.80%) 185 (30.23%) 185 (30.23%) 0 (0.00%)

(b) Number of Autoconfig-enabled domains returning configuration information per request method and the number of not well-established servers.

Domain List Support (From MX) HTTP Return1 w/ HTTP Only1 HTTPS Return2 w/ HTTPS Only2 Not well-established3 w/o to-HTTPS redirection3 w/ to-HTTP redirection3

Tranco1M 54,776 (11,222) 43,238 (78.94%) 8,383 (15.30%) 46,393 (84.70%) 11,538 (21.06%) 36,464 (66.57%) 36,417 (66.48%) 380 (0.69%)
Top100Provider 18 (1) 17 (94.44%) 2 (11.11%) 16 (88.89%) 1 (5.56%) 7 (38.89%) 7 (38.89%) 0 (0.00%)
GovDomain 974 (121) 834 (85.63%) 58 (5.95%) 915 (93.94%) 139 (14.27%) 756 (77.62%) 756 (77.62%) 1 (0.10%)
BankDomain 90 (16) 73 (81.11%) 2 (2.22%) 88 (97.78%) 17 (18.89%) 64 (71.11%) 64 (71.11%) 1 (1.11%)
FreeDisposableProvider 1,754 (1,061) 681 (38.83%) 209 (11.92%) 1,545 (88.08%) 1,073 (61.17%) 555 (31.64%) 553 (31.53%) 10 (0.57%)

1 HTTP return indicates that configuration information can be retrieved via an HTTP request. HTTP only indicates that configurations can only be retrieved through an HTTP requ-
est and not via HTTPS.

2 HTTPS return indicates that configuration information can be retrieved via an HTTPS request. HTTPS only indicates that configurations can only be retrieved through an HTTPS
request and not via HTTP.

3 Not well-established indicates that servers do not redirect HTTP to HTTPS or include HTTP URLs in the redirection chain for HTTPS requests.

18

	Introduction
	Background
	Email Submission and Access
	STARTTLS and Implicit TLS
	Related Work

	Email Auto-configuration
	Autodiscover
	Autoconfig
	SRV Record for Locating Services
	Built-in Provider Lists
	Heuristic Guessing and Default Settings

	Attack Analysis around Email Auto-configuration
	Threat Model
	Attack Scenarios and Cases
	Broken external connection for configuration information retrieval
	Insecure parameter settings and parsing
	Discouraged priority settings for services
	Inconsistency of configuration information across and within mechanisms

	Inadequate UI Notifications

	Methodology for Impact Evaluation
	Server Defects in the Wild
	Analysis Result of Client Defects
	Discussion
	Root Causes
	Mitigations
	Ethical Concerns and Responsible Disclosure
	Limitations

	Conclusion
	References
	Appendix
	Autodiscover Request Body and Parameter Definitions
	Request Paths in Server Scanning
	Deployment of Auto-configuration
	Evaluation Results of Autodiscover and Autoconfig for A1.
	Comparison Method for Configuration Information
	Test Platform

