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Abstract—With the proliferation of IoT devices, network device
identification is essential for effective network management and
security. Many exhibit performance degradation despite the
potential of machine learning-based IoT device identification
solutions. Degradation arises from the assumption of static IoT
environments that do not account for the diversity of real-world
IoT networks, as devices operate in various modes and evolve
over time. In this paper, we evaluate current IoT device identifica-
tion solutions using curated datasets and representative features
across different settings. We consider key factors that affect real-
world device identification, including modes of operation, spatio-
temporal variations, and traffic sampling, and organise them into
a set of attributes by which we can evaluate current solutions. We
then use machine learning explainability techniques to pinpoint
the key causes of performance degradation. This evaluation un-
covers empirical evidence of what continuously identifies devices,
provides valuable insights, and practical recommendations for
network operators to improve their IoT device identification in
operational deployments.

I. INTRODUCTION

The ubiquitous adoption of IoT devices poses security and
privacy challenges because they are large in number, wide
in variety, interactive and embedded. IoT devices often share
hardware and software components and, as a consequence,
potential vulnerabilities, as exposed by [20]. Therefore, net-
work operators have relied on the location and identification of
devices to attribute vulnerabilities rather than conduct security
studies directly. This led the IETF to produce the Manufacturer
Usage Description (MUD) specification to facilitate the iden-
tification of IoT device types and functionalities, but this also
has challenges, e.g., managing device diversity, slow adoption,
and limited manufacturer compliance, hindering its widespread
effectiveness [4, 21].

Consequently, several proposed solutions to identify IoT
devices [1-6, 8, 16, 18, 19, 22-28] have leveraged Machine
Learning (ML) techniques. Such techniques analyse passive
network data to fingerprint IoT devices, assuming each device
exhibits a unique network pattern. Machine Learning-based
(ML-based) solutions automatically identify and classify de-
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vices based on their network behaviours, ensuring consistent
device management, privacy, and updates without manual
intervention [29].

Despite advancements, significant challenges limit network
operators from deploying proposed ML-based IoT identifi-
cation solutions. Such solutions assume static environments
and overlook the diversity of real-world IoT networks, where
devices operate in various modes and evolve behaviours over
time [1-6, 8, 16, 18, 19, 22-28]. Furthermore, ML-based so-
lutions do not account for traffic sampling [30, 31]. Therefore,
network operators need practical evaluations that are relevant
to ML-based solutions.

There have been attempts to evaluate ML solutions for
non-IoT devices in the broader Internet domain in terms of
generalisation, robustness, fairness, and scalability [32-37].
However, this does not account for IoT specific attributes that
set them apart i.e., they are embedded, highly interactive and
potentially battery powered. Prior evaluations consider limited
real-world factors, for example: (1) Limited understanding of
ML-based solutions’ performance across operational modes
(e.g., idle versus active) [25]. (2) Insufficient evaluation of
generalisability across spatial (e.g., identical devices in dif-
ferent networks) and temporal (e.g., changes over time) vari-
ations [38, 39]. (3) Lack of investigation into how traffic
sampling (e.g., sFlow), commonly used to reduce overhead,
affects model performance [2]. For example, Ahmed et al. [39]
shows that Random Forest can avoid performance degradation
across specific environments by using certain features.

In this paper, we conduct a rigorous evaluation to enable
reproducibility of ML-based IoT device identification. In doing
so, we investigate the performance degradation of IoT identi-
fication solutions in different settings. Our investigation shows
to improve feature selection and robustness, which, to the best
of our knowledge, remains unexplored in prior work. We seek
to explore the following research questions:

« RQ1: How effectively can ML-based IoT device iden-
tification solutions operate across different modes of
operation and network environments?

« RQ2: How can performance degradation in ML-based
IoT device identification solutions be pinpointed across
different operational deployments, and what are the un-
derlying causes?

e RQ3: Can the performance of ML-based IoT device
identification solutions be improved by modifying their



TABLE I: Qualitative comparison for selected IoT device identification current literature. Each column corresponds to
a discussion of the comparison aspect of related work. We refer to real-world validation as validation. The v implies
the availability of code or solutions performed for real-world validation.

Category | Network Data | Paper | Venue | Algorithms Features Dataset Devices Public Code  Validation
Fengl8 [1] USENIX Protocol IoT
Rule-based Flow Level Saidi20 [2] IMC Protocol [3] ToT v
Hamza20 [4] IEEE Trans Protocol [5] Mix v v
*Sival8 [5] IEEE Trans. | NB, RF Header Mix v
Marc19 [6] IEEE Jour KNN Periodicity IoT
*Yang19 [7] Elsevier LSTM Header IoT v
Flow Level *Ortiz19 [8] TIoTDI LSTM Protocol [5] IoT
*Meid20 [9] Elsevier LightGBM Header IoT
Cvit21 [10] Springer LogitBoost Header [10] IoT
*Okui22 [11] | COMPSAC LightGBM Protocol [11] IoT
Learning-based Thanl8 [12] | IEEE Trans. | K-means Attributes ToT
*Pinh19[13] Elsevier RF Header [5] Mix
*Dong20[14] AsiaCCS LSTM Header [14] Mix v
Packet Level Yu20 [15] USENIX DL Attributes IoT
*Perd20 [16] EuroS&P TF-IDF Attributes [16] ToT v
*Fan22 [17] IEEE Trans. | CNN Header/Attributes  [5, 16] Mix v
Zhao23[18] IEEE Tran. LR Header [5, 19] IoT

feature selection to address practical challenges?

Answering these questions leads to the following contribu-
tions:

« Reproduction and Evaluation. We reproduce ten state-
of-the-art ML-based IoT identification solutions and eval-
uate their performance across different operational con-
texts. This analysis identifies key factors limiting their
deployment.

o Practicality Analysis. We introduce a framework for
evaluating the practicality of ML-based solutions using
three attributes: Mode of operation, transferability, and
observability.

o Feature Analysis and Improvement Recommenda-
tions. We pinpoint the causes of performance degrada-
tion and provide actionable recommendations for feature
selection to guide future research.

Our evaluations reveal that ML-based IoT device identification
solutions assuming generalisable communication patterns [3,
39] can fail significantly. Spatial transferability for identical
devices in different environments reduces performance by
7.5% to 74%. Temporal transferability shows performance
reduction as early as one week by 19.32%, and up to 85.90%
after 52 weeks. Additionally, many solutions perform poorly
with sampled network traffic like sFlow, where model per-
formance reduces by an average of 70.09%. These findings
highlight the need for continuous model training and mainte-
nance.

II. MACHINE LEARNING-BASED IOT IDENTIFICATION

Literature Review. Identification solutions, such as those by
Kohno et al. (2005) [40] and others [41-46], identify general
network devices, relying on the TCP / IP clock skew or similar
attributes and did not consider the specific attributes of IoT
devices. IoT devices have distinct attributes, including various
modes of operation, evolving capabilities (e.g., functionality,
update) and specialised communication protocols. Traditional

identification solutions must be adapted for IoT identification
to provide accurate, scalable, and robust identification [47, 48].
Some IoT devices have constraints on power (battery-powered)
that make their network behaviour nondeterministic or event-
driven. Traditional network device identification solutions do
not consider such scenarios because a common assumption
is that communication of devices occurs periodically [49-54].
However, this may not apply to IoT devices. For example,
a motion sensor only activates when triggered by motion
(event-driven). A key difference between ML-based traditional
identification and IoT-specific identification is that IoT devices
exhibit diverse behaviour, which requires tailored modelling.

The first discussions on the identification of IoT were found
in Sivanathan er al. (2017) [55], and Lopez et al. (2017) [56].
Sivanathan et al. and Lopez et al. compared their approaches
with Internet traffic and machine-to-machine communication
classification approaches [49-54]. Thus, we thoroughly sur-
veyed the literature in top security, Internet measurement,
and network and system conferences and journals from 2017
onwards. We used IEEE Xplore and Google Scholar, with
keywords such as “IoT devices,” “smart home devices,” “iden-
tification,” “fingerprinting,” “traffic analysis,” “traffic classifi-
cation,” “machine learning,” “deep learning,” and “automated.”
This process identified over 200 papers (2017 to present). This
results in 96 papers with the scope of IoT device identification.

For each paper, we documented the problem, methodology,
and results. We grouped the papers by applications, such
as anomaly detection and device behaviour. This grouping
allowed us to identify common applications that rely on
IoT device identification. Additionally, we categorised the
methodologies to identify common ML algorithms. Overall,
we selected 17 recent papers representative of IoT device
identification. The selection of the papers was based on the
number of citations, visibility of the conference in which they
appear, application, and novelty. Lastly, we categorised these
papers by technique, covering rule-based methods [1, 2, 4]



and ML-based methods [5—18]. Many of these papers are ML-
based (14 out of 17).

We summarised the 17 papers in Table I and compared
the network data used, algorithms, features, datasets, device
settings, code availability, and validation. We find that many
papers use flow-based network data as input. This usage relates
to the prevalence of encrypted traffic and the overhead associ-
ated with packet-level inspection [57]. Few papers performed
empirical validation with public datasets or published their
code. Many papers favour deep-learning techniques for ML
algorithms that rely on header information such as packet size,
timing, and statistical features.

Researchers often choose deep-learning techniques over

traditional ML techniques for IoT device identification, see
Table 1. Deep-learning techniques can automatically learn
complex features from high-dimensional data, reducing the
need for extensive manual feature engineering. Architectures
such as Convolutional Neural Networks (CNNs) and Long-
Short-Term Memory (LSTMs) excel at capturing intricate
patterns and temporal dependencies inherent in network traffic.
In the surveyed literature, Fan et al. [17] employed CNN with
features such as time interval, traffic, protocol, and Transport
Layer Security (TLS) handshake. Dong e al. [14] utilised a
bidirectional LSTM model with packet size, sequence, timing,
and traffic volume. On the other hand, Ortiz et al. [8] repre-
sented TCP connections using autoencoders before training
with LSTM. The advantages of deep-learning include supe-
rior performance with large and heterogeneous datasets and
adaptability to new device types and traffic patterns. However,
these benefits come with drawbacks such as significant compu-
tational resource requirements, longer training times, and the
need for large volumes of labelled data. In contrast, traditional
ML models are more computationally efficient, require fewer
data samples, and offer greater interpretability. However, tra-
ditional ML struggles with accurately capturing the complex
patterns in the data features necessary to identify IoT devices.
Our work empirically documents these differences between
traditional and deep-learning models.
Evaluating ML-based IoT Identification. Researchers have
studied many evaluation attributes of ML solutions. For exam-
ple, Beltiukov et al. [35] introduced a closed-loop ML pipeline
to collect high-quality datasets and created a generalisable
approach to network security. Jacobs er al. [36] focused
on high-fidelity, low-complexity decision trees to help users
identify under-specification in their models [37]. Evaluation
of ML models expands beyond performance metrics such as
accuracy and F1-score. The following is a set of attributes that
researchers have studied in prior works:

1) Generalisation and Robustness: Evaluating a model’s
ability to generalise and transfer across different do-
mains [32-34].

2) Fairness and Accountability: Evaluating interpretabil-
ity and potential bias against specific demographic
groups [32, 33].

3) Model Scalability: Measuring effectiveness in handling
increasing data volumes in distributed environments [32—

34].
4) Data Efficiency: Learning from small datasets is crucial
in real-world scenarios [33, 34].

5) Deployment Compatibility: Evaluating ease of integration

across various hardware platforms.
6) Stability Over Time: Examining consistent performance
amid shifting data distributions [33, 34].

7) Ethics and Societal Impact: Considering consequences
such as energy consumption and societal effects, such as
job displacement [32].

8) Cost Metric: Evaluating deployment and maintenance
costs, including hardware, software, and retraining [32-
34].

However, not all these attributes account for identifying
IoT specific attributes. Only some prior efforts IoT device
identification reflect certain 10T attributes. Dadkhah et al. [25]
captured network traffic from IoT devices in lab environments
and analysed device behaviour in different modes of operation.
However, they did not investigate how different modes affect
device identification. Saidi et al. [2] identify IoT devices
in real-world conditions by using sampled data from large
networks, but their approach performed poorly when the data
was incomplete or limited.

Few papers on IoT device identification evaluation reflect
certain 10T attributes. Kolcun et al. [38] investigated perfor-
mance degradation by evaluating three solutions [5, 16, 18]
for IoT device identification, evaluating each model across
separate time frames to ensure consistency by using the same
datasets, features, and environments. Kolcun et al. showed that
performance degradation was due to the models, not external
factors such as modes of operation. Ahmed et al. [39], the
closest work to ours, evaluated six publicly available datasets
and found that Random Forest (RF) can effectively identify de-
vices across all datasets. While reproducing Ahmed et al. [39],
we found that the published code [58] did not adequately
separate the dataset for training and testing. We contacted the
authors, and they provided a technical solution with a sample
configuration to reproduce their results. The code contained
two methods for specifying the training and testing dataset.
The first approach used an explicit variable and pointed to
the training and testing dataset. The second approach used
five-fold cross-validation to evaluate the dataset. However,
after inspecting the code, we found that the function will
reuse the training dataset as the testing dataset, regardless of
the configured parameters. Technically, the loadData function
always returns a None value for the test dataset, and the caller
function will only use the training dataset [59]. We could not
reconcile the paper’s claims and findings. Thus, we excluded
Ahmed et al. [39] from our evaluation.

Although these studies explore related evaluation attributes
in IoT device identification and behaviour, they differ in
scope (identification vs. behaviour modelling), evaluation con-
ditions (controlled vs. unconstrained), and data completeness
(sampled vs. full data). As a result, it is challenging to
combine prior works into a single evaluation for operational
deployments. We aim to evaluate the practicality of IoT device



=+ USA-flowCon UK-flowCon
1‘0 - + + + + I
0.8 H
§ 0.6 4 " H'r\v"!‘.'.lﬁjgk‘.“ VM'\;“.‘J-“M&-MM i\
o ' I i
s B
N | !
= .
£ 0.4 - | |
2 i
B
0.2 1 | |
i |
0.0 - Ll
T T T T T T
© *) > A 3 S
\9‘0 G’O Niie Niis \Ibﬂ 0'1

Datetime (Year: 2022)

Fig. 1: The UK and USA testbed devices’ number of flows
per day between 5" — 27" December, and the devices’
mode of operation was idle.

identification by considering the following attributes:

o Mode of Operation reflects the variability introduced by
the life cycle of IoT devices (e.g., active vs. idle modes).
This attribute aligns with stability and robustness over
time.

o Transferability is the model’s ability to generalise across
different environments (spatial) and over time (temporal).
This attribute aligns with generalisation [32-34].

« Observability is the model’s ability to maintain accuracy
across different network conditions and sampling rates
(i.e., congestion, packet loss or incomplete data). This
attribute aligns with robustness [32-34].

We exclude other attributes since they are less relevant to
deploying IoT identification solutions. For example, it may
be unnecessary to evaluate adversarial robustness if the IoT
identification techniques suffer in a trusted environment. Sim-
ilarly, demographic bias focuses on human factors, which is
less relevant for deployment considerations.

III. METHODOLOGY

In this section, we describe our data collection, reproducibil-
ity, features, performance metrics, practicality attributes, ex-
plainability analysis, and statistical analysis.

A. Dataset Collection and Labelling

Testbed Setup. To rigorously evaluate IoT device identifi-
cation solutions we need to capture temporal, geographical,
and behavioural diversity. We build two testbeds that reflect
real-world scenarios across geographically distinct regions.
This dual testbed approach exposes differences in market
availability, network infrastructure, and user interaction pat-
terns across regions, including overlapping and region-specific

devices. The two testbeds in the UK and the USA collect
data from 90 IoT devices. The USA has 75 devices, and
the UK has 15 devices. See Appendix A Table VIII for a
complete list that reflected popular consumer choices [60-63],
and represented the major vendors for the US and UK markets.
Both testbeds have 13 common IoT devices with some non-IoT
devices such as tablets, smartphones, and laptops, spanning the
following categories: Cameras (security and video doorbells),
smart hubs (home automation bridges for Zigbee, Z-wave,
Insteon devices), home automation (smart lights, outlets, ther-
mostats), TVs (including dongles), audio (smart speakers with
voice assistants), and appliances (cleaning, cooking, weather
stations). Each testbed has a Linux gateway (Ubuntu 20.04.4)
with two wired network interfaces: One for Internet access
via a public IP and another for the IoT devices on a private
network. The testbeds have Wi-Fi adapters that connect to
the IoT network and support 2.4GHz and 5GHz wireless
devices. We connected the wired devices directly to a network
switch. All devices communicate through standard Network
Address Translation (NAT) implemented at the gateway. We
used fcpdump to capture incoming and outgoing Wi-Fi traffic
on the gateway. We configured the DHCP service on the
gateway to assign static IP addresses to each device based
on their MAC address.

Testbed Instrumentation. We ran idle experiments from 6"
to the 27" of December 2022 while students were on break
to capture the baseline behaviour of devices with no user
interference. Figure 1 shows the daily traffic in the UK and
the US testbeds. The average flow on the UK testbed is 6, 177
per day, while the US testbed is 33,843 per day. We ran
active experiments on the UK testbed from the 6* to the
27" of February 2024. Users interacted with the devices by
issuing commands to smart speakers and activating lights. On
average, we recorded 20 lab accesses daily, each involving at
least one device interaction. See Appendix B Table IX for a
summary of device activities. To simulate different network
conditions such as congestion and interference [64-66], we
collected traffic data in April 2024 using four sampling rates
to represent data loss, which we used in our evaluation. We
also collected traffic traces from both testbeds in January 2023,
March 2023, June 2023, and December 2023. We divided all
of them into continuous 21-day periods to capture IoT devices’
behavioural patterns [47, 48]. We labelled all these traffic
traces by year, location, device mode of operation, sample rate,
and device model. This approach accounted for both temporal
and geographical variability. We considered public datasets
as [67—69] but found their collection periods are short.
Testbed Validity. To systematically control different variables
and enhance the reliability of the results, our testbeds of-
fer a controlled environment that mimics real-world home
deployments. This approach improves the accuracy of the
evaluation and ensures the reproducibility and repeatability
of experiments, which are essential for empirical research.
Our testbeds instrument everyday tasks typical of home users
and provide diverse evaluation scenarios, allowing us to set
an upper bound on ML-based IoT identification performance



under pristine conditions. Real-world datasets such as [69]
may contain uncontrolled and latent factors that impact the
evaluation of IoT identification. Lastly, the lab-based nature
of the testbeds avoids the privacy concerns inherent in real-
world data collection while still allowing the simulation of
diverse network conditions and real-world interactions.

TABLE II: List of features used in each experimental setup
under evaluation.

Experiments  Set

Algorithm Setup of Features

Incoming bytes, incoming packets,
TCP flags, flow duration,

dst/src ports, Prot. src_TOS

IPv4 dst address

octet Total Count Bytes

reverse Octet Total Count Bytes,
packet Total Count ,

reverse Packet Total Count

LighGBM = Meid20 [9]

Okui22 [11]

Flow volume, flow duration
SLD entropy, sleep time
src/dst port, Cipher-suites
DNS/NTP-intervals

Total, mean, and

standard deviation

bytes transmitted

TOS field, TTL, IP DF,

src/dst port, TCP Win,

TCP RTO, TCP MSS, TCP OPT
TCP connection fields

Dst port, protocol,

frame length

time interval

Random
Forest

Sival8 [5]

Pinh19 [13]

Yang19 [7]
LSTM
Ortiz19 [8]

Dong20 [14]

Total packets, total bytes
flow rate, flow duration
min/MAX/AVG time interval
NTP/DNS duration

entropy (10 domains)
number of DNS queries

TLS handshaking count

CNN Fan22 [17]

TF-IDF Perd20 [16] DNS-domain frequency

B. Features and Features Extraction

We must account for the different features used by ML-
based IoT identification solutions to enable a rigorous eval-
vation. Thus, we must be consistent with features employed
in existing literature in IoT device identification. Features are
commonly extracted at three distinct levels of abstraction:
(1) Packet-level features, which describe individual packet
attributes. (2) Flow-level features, which capture aggregated
patterns over communication sessions. (3) Deep-learning fea-
tures designed to leverage advanced representation-learning
techniques [32, 70].

In practice, we used tshark [71] to parse raw packets and
extract flows. We used the feature extraction tools YAF [72]
and CICFlowmeter [68]. We used Softflowd [73] to sample
traffic for observability evaluation. Note that Softflowd ex-
tracts only simple features e.g., packet size or time between
packets. This extraction balances the trade-off between detail
and volume of data storage and processing [30, 31, 74]. To

ensure compatibility with ML models and preserve categorical
variable information, we used standard encoding (e.g., one-hot
or label encoding) [32, 75].

C. Reproducibility of Prior Work

To ensure that the models and configurations were as
consistent as possible, we matched hyper-parameters and data
preprocessing steps and directly used code where publicly
available, e.g., [39]. Code was only modified when we
encountered an outdated library, such as [14], to ensure library
compatibility. For [17], we used a docker container with the
same library version found in the original code. Where code
was unavailable [7-9, 11, 13, 16, 55], we re-implemented the
code described in the original papers assuring configurations
were as consistent as possible.

Similarly, some datasets used in the papers were private.
Therefore, we reused the code on our datasets and carefully
adjusted parameters to maintain the integrity of the experi-
ments, such as input size or preprocessing steps, to align with
the structure of our data. For example, we modified window
size parameters to match the sampling frequency of our dataset
and ensured that this change did not affect the overall feature
extraction process. Reproducing prior work is challenging - we
made conservative parameter assumptions and chose the best-
performing results. We aimed to align with published results,
and of the top 14 papers, we reproduced 10. The remaining
four needed more feature extraction information.

D. Performance Metrics

It is well established that accuracy metrics are unsuitable
for evaluating imbalanced datasets because the majority class
can dominate predictions [34, 76]. The True Positive Rate
(TPR) and False Positive Rate (TPR) are the established
approach [34, 76-78]. For our experiments, we use the
area under the Precision-Recall Curve (AUCPR) metric to
provide insights into a model’s ability to correctly identify
instances, particularly those belonging to the minority class in
imbalanced datasets [77, 78].

E. Practicality Attributes

As mentioned in Section II, our work focuses on practical
attributes that are relevant to IoT deployment, thus:

Mode of Operation: 10T devices, once powered on, exhibit
four possible modes: Setup, idle, active, and update [47].
However, in typical operating environments, [oT devices are
predominantly idle or active [47, 55]. To simplify our evalua-
tion, we focus on the two fundamental modes, idle and active,
to reduce complexity while demonstrating our evaluation. We
initially train the original model on a mixed-mode dataset that
contains idle and active samples and test the model for (1) Idle
scenario, (2) active scenario, and (3) mixed scenario, both idle
and active samples. We evaluated traffic from the two testbeds
and averaged the results across each scenario.



Transferability: This attribute evaluates the temporal or
spatial generalisability of the model. Temporal Transferability
evaluates a model’s capacity to maintain accurate predictions
over different periods. ML solutions try to learn the statistical
properties of the target variable, which may change over time.
This change is known as concept drift [34, 79]. We evaluated
the performance of IoT identification papers with the following
time delta periods between training and testing: 1 week, 2
weeks, 3 weeks and 1 month, 3 months, 6 months and 12
months. We tested the same devices across different time
deltas while keeping the mode of operations mixed for both
labs. Spatial Transferability evaluates a model in a different
environment setting. We performed the spatial transferability
experiment in two distinct geographical locations focusing on
common IoT devices overlapped in the collection time: (1)
Trained on the UK testbed and tested on the US testbed, and
(2) trained on the USA testbed and tested on the UK testbed.
In both scenarios, the devices’ mode of operation was idle.

Observability: This attribute evaluates the robustness of IoT
identification solutions when limited data is available. Most
scenarios in the current ML-based IoT identification solutions
use full sample rates (1:1). The default sampling rate for large
networks such as sFlow is 1:100 [31]. However, to reflect real-
world sampling, we performed experiments using three further
rates to represent data loss: 1:100, 1:1000, and 1:5000 [30,
31]. These sampling rates provide an upper limit for network
congestion, interference, and packet loss.

F. Explainability Analysis

To indicate features that are more influential for the model’s
predictions, we relied on ML explainability [75, 80, 81]
and tailored them to study IoT identification solutions. We
designed our ML explainability around fundamental princi-
ples for interpreting ML-based systems: t-Distributed Stochas-
tic Neighbour Embedding [81], Shapley Additive exPlana-
tions [80] and feature importance [75]. We do not claim
any of the techniques as a novel contribution. We limit our
ML explainability to traditional ML features and not deep-
learning. Deep-learning features have complex transformations
and interactions within neural network architectures. Interpret-
ing feature importance is challenging [82, 83]. For example,
a deep-learning model may accurately classify an IoT device,
but it is difficult to determine which specific features—like
packet size or flow volume—were most critical. This diffi-
culty arises because the model processes these features across
multiple and embedded layers, making it hard to trace their
contributions to the final decision [82, 83]. We shall explore
deep-learning explainability in future work.

t-Distributed Stochastic Neighbour Embedding: To eval-
uate how effectively feature sets, drawn from various studies,
differentiate between device categories (e.g., type or vendor).
We used t-Distributed Stochastic Neighbour Embedding (t-
SNE), a dimensionality reduction technique commonly used
to visualise high-dimensional data in two or three-dimensional
space [81]. We evaluate the degree of separation between these
categories in the training datasets. Well-separated clusters in

the visualisation indicate that the feature set captures relevant
patterns effectively while overlapping points suggest less dis-
criminatory power between clusters.

Shapley Additive exPlanations: To understand how each
group of features collectively influences the model’s predic-
tions, we treated the ML-based IoT device identification as
a black-box model, i.e., we do not examine internal work-
ings [80]. We used Shapley Additive exPlanations (SHAP),
a local explainability technique. A positive SHAP value for
a feature indicates that its presence increases the prediction
(i.e., more important), while a negative value suggests that
its absence increases the prediction (not so influential). SHAP
values reveal how a group of features interact with each other
to influence predictions. We optimised SHAP calculations by
leveraging efficient implementations from the SHAP library,
designed explicitly for tree-based models. We ensured the
features represent the correct sequence of events, keeping the
order in which data points occur, thus preserving temporal
relationships and applying SHAP values to these features.
This optimisation ensures we effectively indicate the model’s
behaviour while handling time-dependent data.

Feature Importance: To evaluate whether the patterns
learned from the training data generalise to new instances, we
conducted permutation importance tests. These tests determine
feature importance by shuffling the values of each feature and
measuring the resulting impact on model performance [75, 77].
Features with more significant performance drops when shuf-
fled are considered more important. We perform permuta-
tion importance: First, for each feature independently while
keeping the values of other features constant to evaluate its
importance. Secondly, we shuffle the full feature vector for
each sample in the dataset to evaluate the importance of the
whole feature set collectively rather than individual features.

G. Statistical Analysis

To identify changes in feature distributions that may indicate
model degradation or feature instability. We relied on com-
paring distributions. We designed our distribution comparison
based on the fundamental principle of similarity: Population
Stability Index [84], and Kolmogorov-Smirnov Test [85]. We
do not claim any of these techniques as novel contributions.

Population Stability Index: We seek to detect the feature
distribution shifts that influence the performance of ML mod-
els. We used the Population Stability Index (PSI), a statistical
measure used to quantify changes in the distribution of a
variable over time or between different datasets [84]. PSI
provides insight into the model’s adaptability and potential
performance when exposed to new data by assessing whether
the characteristics of a training and testing dataset remain
consistent. The PSI results are interpreted across three ranges.
A PSI value below 0.1 indicates a negligible shift. Values
between 0.1 and 0.25 indicate a slight shift, while a PSI value
of 0.30 or greater is a major shift [84].

Kolmogorov-Smirnov Test: We seek to measure distribu-
tional shifts and evaluate whether the training data adequately
represents the testing environment, a factor in determining the



TABLE III: Reproducibility and mode of operation eval-
uation for learning-based IoT identification solutions. We
serve reproducibility results as a baseline for comparison
throughout practicality metric scenarios.

Algorithm Experiments  Reported Reproduced Train: Mix
Setup Results AUCPR Test: Idle  Test: Active  Test: Mix
. Meid20 [9] AUCPR 0.96 0.88 0.54 0.57 0.78
LightGBM Okui22 [11] AUCPR 0.98 0.90 0.59 0.57 0.78
Random Sival8 [5] Accura. 0.99 0.87 0.49 0.27 0.86
Forest Pinh19 [13] F-score 0.95 0.89 0.74 0.58 0.87
Yang19 [7] Precis. 0.95 0.78 0.11 0.12 0.11
LSTM Ortiz19 [8] F-score 0.82 0.76 0.11 0.11 0.10
Dong20 [14]  Accura. 0.99 0.67 0.11 0.10 0.11
CNN Fan22 [17] Accura. 0.99 0.68 0.12 0.12 0.12
TF-IDF Perd20 [16] pAUC 0.99 0.80 0.56 0.59 0.59

robustness of models across varied conditions. We used the
Kolmogorov-Smirnov (K-S) Test, a non-parametric statistical
test used to evaluate the similarity between two distribu-
tions [85]. The (K-S) test measures the maximum distance
between the cumulative distribution functions (CDFs) of two
datasets, providing a way to determine whether they differ
significantly. The (K-S) test results are interpreted using the
p-value. A p-value < 0.05 indicates that the distributions
are significantly different, while a p-value > 0.05 suggests
negligible difference [85].

IV. EVALUATION RESULTS
A. Experimental Setup

Environment. For all experiments, we deployed ML models
on a local server running Ubuntu 20.04.4, with Nvidia GPU
RTX A5000, Intel CPU 11th Gen Intel(R) Core(TM) i9-
11900K @ 3.50GH z, and 128GB RAM.

Learning Models. We implemented the ML model for
LightGBM, Random Forest (RF), Long Short-Term Memory
(LSTM), Convolutional Neural Network (CNN), and Term
Frequency-Inverse Document Frequency (TF-IDF) in Python
3.9 using scikit-learn for RF, TensorFlow for LSTMs and
CNNs, and LightGBM. The parameters were inherited from
the baseline model to provide a fair comparison, and no hyper-
parameters tuning was performed.

B. Reproducibility of Prior Work

We reproduced all results using a baseline dataset with full
sampling (1:1), mixed (idle and active), and testbed locations.
Table III shows the reported results in the 3rd column and
our reproduced results in the 4th column. We use this as
the baseline for all subsequent comparisons. For example,
Meid20 [9] reported an AUCPR of 0.96 while we produced
an AUCPR of 0.88. Sival8 [5] reported an accuracy of 0.99.
Our reproduction achieved an AUCPR of 0.87. Pinh19 [13]
reported an F-score of 0.95, and our reproduction achieved
an AUCPR of 0.89. Pred20 [16], the pAUC 0.99, and our
reproduction produced an AUCPR of 0.80.

C. Mode of Operation

We train all models baseline using a dataset with full
sampling (1:1), mixed (idle and active), and from both testbed

locations. Idle scenario data ranges from the 6" to 27" of
December 2022, and active scenario data from the 6" to 27t
of February 2024.

Table III shows that the AUCPR of LightGBM reduced by
~ 35.23% in both idle and active scenarios compared with
an AUCPR of 0.78 in the mixed scenario for Meid20 [9]
and Okui22 [11]. In the mixed scenario, the testing samples
resemble those of the training dataset (both idle and active
mode). Interestingly, we observed that devices such as Amazon
Echo Show, Roku TV, and Facebook Portal exhibit multiple
levels of idleness. For example, the Amazon Echo Show can
perform background tasks without receiving user commands,
e.g., shuffling photos on display. Alternatively, it can be com-
pletely idle and not engage in any activity. Indeed, a device-
wise statistical analysis of the multiple idleness levels confirms
different distributions, i.e., p-values of the (K-S) test were
< 0.01. In active mode, IoT devices exhibit more frequent
and varied communication patterns based on user behaviour,
i.e., users activate a smart speaker to play music or an e-book.
These wide ranges introduce non-static behaviour observed
when devices transit between different active patterns. In these
cases, static feature-based models such as LightGBM struggle
to learn changing patterns, causing a reduction in performance.
For example, the Amazon Echo Show has an average daily
inter-arrival time for packets of 48.75 seconds and a standard
deviation of 154.08. Yet, Google Home shows an inter-arrival
time of 7.51 seconds and a standard deviation of 33.20.

For RF, Sival8 [5] AUCPR was reduced by 43.68% and
68.97% in idle and active scenarios, respectively, and achieved
an AUCPR of 0.86 in the mixed scenario. We investigated this
behaviour by comparing the test-train distribution in the mixed
scenario using features from Sival8 [5] listed in Table III
We find PSI < 0.001 in the mix scenario, indicating no
change in the test-train feature distribution. Yet, in idle and
active scenarios, some devices did exhibit a change in their
distribution, such as the Google Home Mini with a PSI value
of 0.34 and the TP-Link plug with a PSI value of 3.09. While
RF with Pinh19 [13], AUCPR reduced by 16.85% for idle
and 34.83% for active mode, and achieved an AUCPR of
0.87. We measured PSI values using features from Pinh19 [13]
(Table III) for both idle and mixed datasets, again observing
no change in the test-train distribution, i.e., PSI < 0.001.
However, in active mode, we observe a change in one feature
(the mean of the transmitted bytes) with a PSI of 0.15,
indicating a slight shift in distribution. Overall, these results
show that RF performs well in specific operation modes but
does not adapt to changes in active mode.

For LSTM and CNN in Yangl9 [7], Ortizl19 [8],
Dong20 [14] and Fan22 [17], the AUCPR reduced by 82.35%
in idle, active, and mix scenario. The AUCPR reduction
indicates that LSTM and CNN models overfit or memorise
patterns in the training modes. We can see the lack of
generalisation between idle to active modes concretely in the
Amazon Echo Show, where packet sizes change from 9.89 K B
to 14.36 K B, and packet frequency changes from 2pps to
5pps. Lastly, for TF-IDF in Pred20 [16], the AUCPR reduced



TABLE IV: Temporal transferability detailed Area Under the Precision-Recall Curve (AUCPR) assessment for learning-
based IoT identification solutions. We refer to Week as *W’, meanwhile "M’ for Month.

. Experiments Baseline Train: Now
Algorithm Set AUCPR
etup Test: 1W Test: 2W Test: 3W Test: 1M Test: 3M Test: 6M Test: 12M

. Meid20 [9] 0.88 0.71 0.73 0.70 0.76 0.72 0.65 0.65

LightGBM Okui22 [11] 0.90 0.81 0.82 0.80 0.60 0.59 0.53 052

Random Forest Sival8 [5] 0.87 0.87 0.87 0.87 0.83 0.80 0.29 0.37

Pinh19 [13] 0.89 0.89 0.87 0.87 0.84 0.84 0.64 0.67

Yang19 [7] 0.78 0.14 0.14 0.11 0.11 0.11 0.12 0.11

LSTM Ortiz19 [8] 0.76 0.11 0.11 0.11 0.11 0.11 0.11 0.11

Dong20 [14] 0.67 0.11 0.11 0.10 0.11 0.10 0.11 0.16

CNN Fan22 [17] 0.68 0.14 0.14 0.14 0.11 0.10 0.11 0.11

TF-IDF Perd20 [16] 0.80 0.60 0.60 0.60 0.65 0.61 0.62 0.54

by 30% in idle, active, and mixed scenarios. The cosine
similarity of the TF-IDF feature vectors for all devices in all
scenarios is between 0.1 —0.3. These similarity values indicate
a change in DNS frequency patterns across different modes,
which results in performance reduction.

D. Temporal Transferability

We train all models baseline using a dataset with full
sampling (1:1), mixed (idle and active), and from both testbed
locations. For training, we used December 2022, while for
testing, we used datasets on the following dates: January 2023,
March 2023, June 2023, and December 2023, using mixed-
mode operations in both testbeds.

Table IV shows that for periods < 3 months the LightGBM
AUCPR in Meid20 [9] reduced by 20.45%, and by 11.11% in
Okui22 [11]. Equally, for periods > 3 months we see a reduced
by 26.14% and 42.22% for Meid20 [9] and Okui22 [11],
respectively. We measured PSI values using features from
Meid20 [9] and Okui22 [11] for all train-test periods, ob-
serving slight change in the test-train distribution, i.e., PSI
0.1 — 0.25. Notably, AUCPR of LightGBM in Meid20 [9]
varies over the first month, from 0.73 at 2 weeks, 0.70 by 3
weeks, and increases to 0.76 in 1 month. LightGBM attempts
to adjust to new patterns in Meid20 [9], causing this behaviour.
Between 2-3 weeks, there is a change in the test-train data,
causing a PSI value of > 0.35. LightGBM adjusts to these
patterns to improve performance between 3 weeks and 1
month to increase the AUCPR. However, beyond 1 month,
there was a change in the test-train distribution PSI value,
which was > 0.25. While LightGBM attempts to adjust for
this change in distribution, it is too great, causing a reduction
in AUCPR value.

RF in Sival8 [5] results in a reduce of AUCPR in both
periods < 6 months (by 8.05%) and > 6 months (by 57.47%).
For features in Sival8 [5], we measure PSI values for periods
< 6 months, observing no change in the train-test distribution
(PSI < 0.001). Conversely, there is a change in the train-
test distribution when > 6 months, i.e., PSI > 0.35. The
AUCPR for RF in Pinh19 [13] reduced by in both periods
< 6 months (by 5.62%) and > 6 months (by 28.09%). PSI
values reveal stability in train-test distributions as the PSI

value is < 0.25. The variable performance of RF in both
Sival8 [5] and Pinh19 [13] indicate the model’s sensitivity to
temporal change, especially when PSI values indicate greater
than moderate drift (PSI 0.1 — 0.25).

The AUCPR of LSTM and CNN in Yang19 [7], Ortiz19 [8],
Dong20 [14], and Fan22 [17] reduce by 85.90% across all
periods. When evaluating the feature distribution, we observe
a significant change in train-test distribution in all experiment
setups, i.e., PSI > 0.35. Indeed, the reduction in AUCPR
(0.16 to 0.10) again indicates that LSTMs and CNNs overfit
training patterns, failing to generalise to new patterns over
time. Lastly, the AUCPR of TF-IDF in Perd20 [16] initially
reduced from 0.80 during the 3 weeks to 0.60 before rising
to 0.65 (i.e., TF-IDF score < 0.05 — 0.1) in the 1 month,
then reduced again to 0.54 (i.e., TF-IDF score > 0.05 — 0.1).
By empirical observation, DNS records change in the first 3
weeks and repeat at 1 month. This phenomenon is known
as Domain Cycling [86, 87], where domains undergo regular
changes or rotations, often reverting to previous states after
certain intervals. Furthermore, this indicates that DNS domain
frequency can effectively be used to distinguish between IoT
devices over long temporal periods.

TABLE V: Spatial transferability detailed Area Under the
Precision-Recall Curve (AUCPR) evaluation for learning-
based IoT identification solutions.

Algorithm Experiments Baseline Train: US  Train: UK
Setup AUCPR - “pest: UK Test: US
} Meid20 [9] 0.88 0.27 0.31
LightGEM Okui22 [11] 0.90 0.26 0.50
Sival8 [5] 0.87 0.50 0.64
Random Forest " p. 1119 113 0.89 0.50 034
Yang19 [7] 0.78 0.20 0.20
LSTM Ortiz19 [8] 0.76 0.20 0.20
Dong20 [14] 0.67 0.20 0.20
CNN Fan22 [17] 0.68 0.20 0.20
TE-IDF Perd20 [16] 0.80 0.74 0.57




E. Spatial Transferability

We train all models baseline using a dataset with full
sampling (1:1), mixed (idle and active), and from both testbed
locations. For both training and testing, we used devices
common in both testbeds, examining idle mode data collected
on the 6" — 27" of December 2022 with full sampling (1:1).

Table V shows that LightGBM AUCPR in Meid20 [9]
reduced by 69.32% in “train: USA, test: UK” and reduced
by 64.77% in “train: UK, test: USA”. Similarly, the AUCPR
in Okui22 [11] reduced by 71.11% in “train: USA, test:
UK*“ and reduced by 44.44% in “train: UK, test: USA“. For
each of these train-test combinations, we observe a difference
in distribution as PSI values are > 0.35. Such distribution
changes indicate LightGBM’s difficulty in capturing changes
in different spatial features.

The AUCPR of RF in Sival8 [5] reduced by 42.53% in the
“train: USA, test: UK“ scenario and by 26.44% in “train: UK,
test: USA*. The AUCPR of RF in Pinh19 [13] also reduced by
43.82% in “train: USA, test: UK* and in the “train: UK, test:
USA* scenarios reduced by 61.80%. Again, we observe that
these train-test combinations have differences in distribution
(PSI values > 0.35). Interestingly, we can see this shift using
the port feature used in Sival8 [5]. For example, the Google
Home Mini’s average daily frequency for destination port 123
(Network Time Protocol (NTP) [88]) was 37 in the UK and 97
in the USA. Similarly, port usage varies spatially, concretely:
Ring Doorbell uses port 5001 in the UK, and Amazon Echo
Show uses port 5000 in the USA. Such changes indicate
challenges in generalising to different locations.

For LSTM and CNN in Yangl9 [7], Ortizl9 [8],
Dong20 [14], and Fan22 [17], we observe the same pattern as
in previous cases the inability to generalise (AUCPR reduced
by 73.68% to a consistent AUCPR of 0.20), due to the change
in distribution between locations (PSI values > 0.35). Lastly,
the AUCPR of TF-IDF in Perd20 [16] reduced by 7.5% in the
“train: USA, test: UK* scenario, and reduced by 29% in the
“train: UK, test: USA™ scenario. Our empirical observations
show that devices query more domains in the US than in the
UK. We observed 56 unique domains in the USA and 35 in the
UK during the same 21-day observation period, with all de-
vices across both testbeds operating in idle mode. Concretely,
Amazon Echo Show queries 25 domains in the US and 22
in the UK. Additionally, there are uneven queries per domain
across regions, e.g., DNS queries to ’amazonalexa.com’ are
more frequent in the USA (442 per day) than in the UK
(180 per day). This is further evident by the similarity scores
between the USA and UK domains being < 0.05, but > 0.05
between the UK and USA domains. Such variance is due
to several factors. USA domains act as testing grounds for
updates and beta testing, so devices access more Sservers,
causing more DNS queries [89]. Complex Content Delivery
Network (CDN) routing in the USA allows connections to a
broader range of endpoints, increasing diversity in how DNS
queries are resolved [90]. Lastly, USA data privacy laws permit
frequent data collection, causing numerous DNS queries for

TABLE VI: Observability detailed Area Under the
Precision-Recall Curve (AUCPR) evaluation for learning-
based IoT identification solutions. We use / when the
features are packet-based the Softflowd could not capture
it.

Algorithm Experiments  Baseline Train: 1:1
Setup AUCPR - “pot 1:100 1:1000  1:5000
4 Meid20 [9] 0.88 030 023 025
LightGEM Okui22 [11] 0.90 / / /
Sival8 [5] 0.87 0.29 025 025
Random Forest b, 119 [13] 0.89 / / /
Yang19 [7] 0.78 / / /
LSTM Ortiz19 (8] 0.76 0.071 0072 0071
Dong20 [14] 0.67 0.071 0072 0071
CNN Fan22 [17] 0.68 / / /
TF-IDF Perd20 [16] 0.80 / / /

analytics, while UK laws are less permissive [89-91]. These
variations indicate that TF-IDF lacks the flexibility to adapt
to the distinct characteristics of IoT data across different
geographical regions.

E. Observability

We train all models baseline using a dataset with full
sampling (1:1), mixed (idle and active), and from both testbed
locations. We test 1:1 against sample rates of 1:100, 1:1000,
and 1:5000 collected in April 2024. Table VI shows the
AUCPR of LightGBM in Meid20 [9] reduced with the sample
rate (65.91% at 1:100, by 73.86% at 1:1000, by 71.59% at
1:5000). Our empirical observation that the increased number
of packets reduced the granularity of IoT device behaviours.
For example, the number of packets sampled per-flow for
Amazon Echo Show at at full sample(1:1) the mean is p =
1.0438 x 10° with a standard deviation of o = 3.9539 x 10*
of mean packet frequency increase by 11983.8% at 1:100,
by 93949.1% at 1:1000, by 396057.3% at 1:5000). In such
cases, static feature-based models such as LightGBM struggle
to capture changing patterns, causing a reduce in performance
when varying data sampling. The AUCPR of RF in Sival8 [5]
also reduced with the sample rate (66.67% in 1:100, by
71.26% in both 1:1000 and 1:5000). Similarly to LightGBM,
we observe high variance in features in Sival8 [5], particularly
between the 100- and 1000-second intervals. For example, flow
volume for the TP-Link Lightbulb increased from 0.0004M B
(c = 0.001MB) at 1s to 0.44MB (¢ = 7.59MB) at
1:100, to 1.93MB (o = 3.33M B) at 1:1000, to 0.39M B
(0 = 0.66M B) at 1:5000. This makes it harder to identify
the patterns, preventing RF from fully capturing the necessary
dynamics. Lastly, for LSTM in Ortiz19 [8] and Dong20 [14],
we observe a reduction in AUCPR (by 90.66% to a consistent
AUCPR of 0.0071). For example, in Ortiz19 [8], the increased
number of TCP packets reduces the granularity of IoT device
behaviours. The number of TCP packets sampled per-flow
for WEMO Plug at at full sample(1:1) the mean is p =
1.2289 x 10* with a standard deviation of o = 3.6884 x 103
increase by 7382.5% at 1:100, by 179742.3% at 1:1000, by



382868.6% at 1:5000. In such cases, the increase in sampled
data results in losing important temporal patterns on which the
LSTM was trained, leading to a significant reduce and lack of
generalisation.

G. Takeaways

The results in this section indicate that network opera-
tors would benefit from RF models with feature sets that
reflect device outbound traffic patterns such as those seen
in Pinh19 [13] as they generalise well, particularly across
modes of operation. Training the model in idle mode and then
conducting predictions for different periods was also beneficial
as IoT devices remain idle for extended periods, and the range
of possible behaviours beyond that are too large to model.

Models generally degrade in performance over time due to
the changes in device capability, e.g., updates or functional-
ities. Combining LightGBM for longer-term predictions and
RF for shorter-term identification can achieve more consistent
temporal performance, as seen from their AUCPR in Table IV.
Additionally, retaining models more frequently (e.g., every two
weeks) helps prevent the drop-off in temporal degradation.

We observe models with DNS query (as in Sival8 [55])
features reduce temporal degradation. As such, we suggest
using RF with DNS frequency. We reason this is due to the
cyclical nature of DNS domains combined with the reduced
overfitting from the ensemble learning of RF. We also see DN'S
frequency as a useful feature for spatial generalisation using
TF-IDF. This is because TF-IDF represents DNS domains
more nuancedly, capturing the significance of specific domains
for spatial identification.

Our results (Table VI) show that full packet captures sample
and transferring to higher sample rates reduces performance.
While using full packet sampling benefits test time identifica-
tion, it can be impractical in larger networks (e.g., overhead,
packet loss, packet delay). Thus, alternative techniques can be
employed, such as network segmentation, where networks can
be divided into smaller segments.

V. EXPLAINABILITY RESULTS

In this section, we explain the reduction in AUCPR perfor-
mance observed in Section IV using ML explainability.

We selected experiments using packet- or flow-level fea-
tures, as explained in Section III-F. We analyse the following
papers, Meid20 [9], Okui22 [11], Sival8 [5], and Pinh19 [13].
See Table II for the full features of each paper.

Figure 2 (a-d) shows Meid20 [9], Okui22 [11], Sival8 [5],
and Pinh19 [13] projected into a 2D space using t-SNE
features from the original papers. We use Amazon Echo Show,
Google Home Mini, Ring Doorbell, TP-Link Lightbulb, TP-
Link Plug, Philips Hub, Wansview Camera, WEMO Plug, and
Yi Camera. We focused on device-type instead of vendors
because our primary goal is to evaluate features. Device-
type identification presents more distinct and separable char-
acteristics than vendor-specific identification. For example, a
smart thermostat and a smart speaker exhibit different network
traffic patterns based on their functions, making them easier
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to differentiate by device type. Two smart speakers from
different brands (e.g., Amazon and Google) perform similar
functions with subtle network differences, making vendor-
specific identification far less distinct. However, we observe
no clear separation by device-type. The clusters are neither
tightly grouped nor distinctly separated.

Figure 2 (e-h) shows the SHAP beeswarm plot for
Meid20 [9], Okui22 [11], Sival8 [5], and Pinh19 [13] for the
baseline training dataset. Figure 2(e-h) shows that 0.33% of the
total features have zero SHAP values in different experiments.
The zero SHAP value features do not contribute to the model
predictions. In Meid20 [9], features such as TCP Urgent
(URG), Congestion Window Reduced (CWR) and Explicit
Congestion Notification (ECN) flags have zero SHAP values.
In Okui22 [11], the fotal forward packet count feature has zero
SHAP value. In Sival8 [5], the duration of NTP/DNS features
have zero SHAP values. We observed features with higher
absolute SHAP values, which indicates their significance. For
example, in Meid20 [9] TCP Finish (FIN) flag showed a high
SHAP value, in Sival8 [5] second level domain (SLD) entropy
a high SHAP value. Other features, such as destination port
in Meid20 [9] and Sival8 [5], have minimal impact on the
model’s predictions.

The lack of distinct clustering in the t-SNE analysis and
the presence of zero SHAP values show that the features used
in the training datasets lack sufficient discriminatory power to
differentiate between device categories.

Next, for Meid20 [9], Okui22 [11], Sival8 [5], and
Pinh19 [13], we present the most important features for the
testing datasets. For space limitation, we provide empirical
interpretations for each feature only once, unless a feature’s
behaviour changes across different practicality attributes.

A. Mode of Operation

For the full permutation of the three modes of operation
using Meidan20 [9] we find that TCP CWR flag is the most
important feature with a median of 2.60. The TCP ECN-Echo
(ECE) flag is the least important with a median of 0.0. In the
single permutation of the three modes of operation, the TCP
Push (PSH) flag is the most important feature with a median
of 0.006, while the TCP ECE flag is the least important feature
with a median 0.0. The above results occurred because devices
with high data rates, such as Yi Camera, Wansview Camera,
and Ring Doorbell, set TCP CWR flag more frequently than
devices with lower data rates, such as TP-Link Lightbulb
or a thermostat. The Yi Camera set the TCP CWR flag 10
times per hour in idle mode and 5 times per hour in active
mode while streaming video. The TP-LINK Lightbulb set TCP
CWR flag, 1-3 times per day in both idle and active modes.
Similarly, devices such as Yi Camera and Wansview Camera
use TCP PSH flag more frequently than devices such as TP-
Link Lightbulb or Plug. We observed that all devices set TCP
ECE flag in response to congestion in the same way, regardless
of their type.

For the full permutation of the three modes of operation
using Okui22 [11] we find that total forward packet is the
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Fig. 2: t-SNE analysis, and SHAP of IoT devices from the UK testbed, from 6‘" to the 27" of December 2022. Devices’
modes of operation were mixed. We use 0: Amazon Echo Show, 1: Google Home Mini, 2: Ring Doorbell, 3: TP-Link
Lightbulb, 4: TP-Link Plug, 5: Philips Hue Hub, 6: Wansview Camera, 7: WEMO Plug, 8: Yi Camera.

most important feature with a median of 0.50. The total
reverse packet is the least important with a median of 0.12.
In the single permutation of the three modes of operation,
total forward packet is the most important with a median of
0.51. The total reverse packet remains the least important with
a median of 0.12. total forward packet is the total sending
packet. The above results occurred because devices such as
Philips Hue Hub, TP-Link Lightbulb, and WEMO Plug report
usage data every hour to their manufacturer’s cloud. Devices
such as Amazon Echo Show, Google Home Mini, and Roku
TV generate traffic based on user interactions, causing event-
triggered traffic patterns. The fotal reverse packet are the
packets the device receives. In idle mode, devices from the
same vendor, such as the TP-Link Lightbulb and TP-Link plug,
receive approximately 50 packets from the TP-Link Server.

For the full permutation of the three modes of operation
using Sival8 [5], the SLD entropy is the most important feature
with a median of 0.11. The flow duration is the least important
with a median of —0.02. However, for the single permutation,
flow rate becomes the most important with a median of 0.06,
and cipher suites is the least important with a median of
0.03. Sival8 [5] used entropy to measure the most common
internet domain contacted by the device. The top domain
used by Yi Camera in idle mode is *www.yitechnology.com’
for status updates. While in active mode, while steaming
video, the Yi Camera connects to 'www.yitechnology.com’
and ’www.yicloud.com’. The top domains used by the
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Amazon Echo Show in idle mode are ’alexa.amazon.com’,
’api.amazonalexa.com’, and ’devices.amazon.com’, and in ac-
tive mode are ’alexa.amazon.com’, ’video.amazon.com’, and
’api.music.amazon.com’. The top domain for the TP-Link
Lightbulb in idle and active modes is ’cloud.tplinkwifi.com’.

For the full permutation of the three modes of operation
using Pinh19 [13], the fotal transmitted bytes in one minute
is the most important feature with a median of 0.15. The
mean of transmitted bytes in one minute is the least important
with a median of 0.09. For the single permutation of the
three modes of operation, the mean of transmitted bytes in
one minute is the most important feature with a median of
0.07, and fotal transmitted bytes in one minute is the least
important with a median of 0.04, showing a reversal in feature
importance. fotal transmitted bytes in one minute and total
forward packets are different names for the same feature and
exhibit the same behaviour. However, toral transmitted bytes
in one minute and mean of transmitted bytes in one minute
are perfectly correlated. This correlation explains the reversal
in feature importance.

B. Temporal Transferability

For the full permutation of the seven periods using
Meid20 [9], the TCP CWR flag is the most important feature
with a median of 3.3. The TCP ECE flag is the least important
with a median of 0.0. For the single permutation of the seven
periods, the total bidirectional bytes is the most important
feature with a median of 0.002. The TCP ECE flag is the least



important with a median of 0.0. The above results occurred
because devices such as Yi Camera, Wansview Camera, and
Ring Doorbell set TCP CWR flag more frequently than devices
such as TP-Link Lightbulb over the seven periods. We observe
a trend of consistent bytes traffic from scheduled devices such
as Philips Hue Hub and TP-Link Lightbulb. Interactive devices
such as the Amazon Echo Show have a sporadic traffic pattern.

For the full and single permutations of the seven periods
using Sival8 [5], the destination port is the most important
feature with a median of 0.07. For the full permutation
of the seven periods, the sleep time is the least important
with a median of 0.05. For the single permutation, the flow
rate is the least important with a median of —0.003. The
above results occurred because TP-Link devices use port
9999 for communication with their cloud services over the
seven periods. Amazon Echo Show uses port 3478 for STUN
(Session Traversal Utilities for NAT), which helps with NAT
traversal for VoIP and video calls, and Wansview Cameras uses
port 8899 for their cloud communication and for accessing
the camera’s stream. We observed that devices such as the
Philips Hue Hub might have had fixed sleep times, resulting
in predictable intervals of activity (e.g., sending packets every
hour). Later, after a set of inactivity duration, the device enters
sleep mode (longer than the initial interval). We observed a
significant overlap between devices’ flow rate (ratio between
flow volume and flow duration), for example, Amazon Echo
Show and Google Home Mini, Amazon Echo Show and Yi
Camera.

For the full and single permutations of the seven periods
using Okui22 [11], the fotal forward bytes is the important
feature with a median of 0.23. The packet total count and
packet total count are the least important, with a median of
0.0. We observe consistent byte traffic (total forward bytes)
from scheduled devices such as Philips Hue Hub and TP-Link
Lightbulb. Interactive devices such as the Amazon Echo Show
have a sporadic traffic pattern. We observed the same total
packet count for the Amazon Echo Show, Google Home Mini,
Wansview Camera, Yi Camera, TP-Link Plug, and WEMO
Plug.

For the full and single permutations of the seven periods
using Pinh19 [13], the fotal transmitted bytes in one minute
is the most important feature with a median of 0.31. The
standard deviation of transmitted bytes in one minute is
the least important with a median of 0.20. For the single
permutation of the seven periods, the standard deviation of
transmitted bytes in one minute is the most important with a
median of 0.16. The transmitted bytes in one minute is the least
important with a median of 0.09. The above results occurred
because we observed a trend of consistent transmitted bytes
traffic from scheduled devices such as Philips Hue Hub and
TP-Link Lightbulb. Interactive devices such as the Amazon
Echo Show have a sporadic traffic pattern. However, total
transmitted bytes in one minute and standard deviation of
transmitted bytes in one minute are perfectly correlated. This
correlation explained the reversal in feature importance.

C. Spatial Transferability

For the single and full permutations of both the UK and
the USA datasets Meid20 [9], the destination port is the
most important feature with a median of 0.10. The TCP
ECE flag and TCP CWR flag are the least important, with a
median of 0.0. The above results occurred because we observe
that in both the UK and USA, devices such as Yi Camera,
Wansview Camera, and Ring Doorbell, which have a high
data transmission rate, set TCP CWR flag more frequently than
devices such as TP-Link Lightbulb or thermostat, which have
low data transmission rate. Devices in the USA are more likely
to set TCP CWR flag than devices in the UK. The USA does
not have a robust regulatory framework for IoT device services
and advertisement.

For the single and full permutations of both the UK and the
USA datasets using Okui22 [11], the fotal forward bytes is
the most important feature, with a median of 0.50. The packet
total count is the least important with a median of 0.0. The
above results occurred because we observe that fotal forward
bytes in the USA is higher than in the UK, even though both
regions show similar trends. This difference is mainly due to
the greater freedom that devices in the USA have regarding
GDPR and the range of connections they can establish. We
observed the same devices’ packet count in both locations,
for example, TP-Link Lightbulb (US) and Google Home Mini
(UK).

For the single and full permutations of both the UK and the
USA datasets using Sival8 [5], the flow volume is the most
important feature with a median of 0.13. The cipher suites is
the least important with a median of —0.003. For the single
permutation of the UK and the USA datasets, the flow rate is
the most important feature with a median of 0.07. The flow
duration is the least important with a median of —0.05. The
above results occurred because of an observed flow volume in
the USA that is more than double that in the UK, although
both regions show similar trends. This difference is mainly due
to the greater freedom that devices in the USA have regarding
GDPR and the range of connections they can establish. We
observed cipher suites for the same device in the UK and
USA are different, again due to the existence of GDPR in the
UK. We observed the same value for devices’ flow rate and
flow duration in both locations, for example, YeeLight (US)
and TP-Link Lightbulb (UK).

For the single and full permutations of both the UK and the
USA datasets using Pinh19 [13], the total transmitted bytes
in one minute is the most important feature with a median
of 0.11. The standard deviation of transmitted bytes in one
minute is the least important feature with a median of 0.023.

D. Observability

Our observability results are limited to Meid20 [9] and
Sival8 [5] because the sampling rate used in the experimental
set-up decreased the number of features [30, 31, 74] (see
Section IV-F).

For the single and full permutations of four sampling rates
using Meidan20 [9], the flow duration is the most important
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feature with a median of 0.31. The incoming bytes is the
least important feature with a median of 0.002. For the
single permutation, the incoming bytes is the most important
feature with a median of 0.14. The flow duration is the
least important feature with a median of 0.04. At a 1:100
sampling rate with a single permutation, we lost the exact
flow duration due to sampling gaps compared to a sampling
rate of 1:1. We observed only flow duration from devices
that transmitted continuously (e.g., Yi Camera). We could still
observe information for incoming bytes. The disrupted data
pattern makes incoming bytes more stable and indicative of
device type. At 1:1000 and 1:5000 sampling rates with full
permutations, incoming bytes vary widely compared to a 1:1
sampling rate. We observed that the Yi Camera has a longer
flow duration because it streams video, while the TP-Link Plug
has a shorter flow duration, only sending intermittent data for
status updates. We were able to observe how long each device
transmits data continuously.

For the full permutations of four sampling rates using
Sival8 [5], the flow duration is the most important feature
with a median of 0.11. The flow rate is the least important
feature with a median of —0.01. For the single permutation of
four sampling rates, the flow rate is the most important with a
median importance of 0.07. The flow rate and flow duration are
perfectly correlated. This correlation explains the reversal in
feature importance. The destination port is the least important
with a median of 0.02. With sampling, we could not observe
the ports 9999 used by TP-Link devices, 3478 for the Amazon
Echo Show, and port 8899 for the Wansview Camera.

E. Takeaways

The results in this section indicate the significance of fea-
ture representation. Simple first-order statistical features (e.g.,
mean, variance) may not capture distributional information
effectively, and instead, features such as entropy are more
suitable. Features with high variance between high- and low-
transmission devices should also be avoided. Such variance
can lead to overlapping patterns, reducing the ability to distin-
guish device types accurately. We suggest using features with
binary values, such as being set or not set. An example is the
TCP congestion windowing flag, which can provide a clear,
non-overlapping indicator of device transmission behaviour.

VI. EVALUATION IMPROVEMENTS

In this section, we explore feature selection modifications
aimed at enhancing IoT device identification performance.

A. Experimental Setup

Collected Dataset. We used the same traffic traces from the
two testbeds at different periods (i.e., 2022, 2023, 2024). We
used 21 days to capture the behaviours of IoT devices.

Learning Model. Section IV-G showed that RF consistently
shows the least decline in performance for IoT device identifi-
cation performance across all practicality evaluation scenarios.
Through the practicality of implementing the improvement
process, we used an RF model as a baseline using tailored
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features and hyper-parameter tuning the model. The resulting
model is an RF with 121 trees, each with a maximum depth
of 13.

Tailored Features. We compiled a list of over 117 features
from the literature review, removed duplicates, and eliminated
correlated features to ensure independence Figure 3 in Ap-
pendix C. This process reduced the feature set to 81. We
evaluated the importance of these features, discarding any with
zero importance. Only features with an importance score above
0.5, which significantly impact the model’s predictions, were
retained. Using the Pareto Principle (80/20 rule) [75, 92],
we identified that 20% of the features often explain 80% of
the performance. From the 81 features, we identified 17 that
aligned with this principle. Further feature importance analysis
showed that only 10 features consistently dominated. Conse-
quently, we removed seven features with zero importance to
finalise the selection. We focused on the top 10 because fewer
features allow us to understand decision-making better. For
example, the feature ’sleep time’ may suggest a device is a
TP-Link Lightbulb. When the feature ’sleep time’ is combined
with ’packet size’, it becomes clear that the device is an
Amazon Echo Show. The final tailored feature list is: source
port, destination port, second level domain entropy, sleep
time, flow volume, TCP flags, DNS queries, cipher-suites,
maximum inter-arrival time, TLS handshaking.

Baseline. The baseline samples were from both geographical
locations, with devices operating in mixed modes at a 1:1
sample rate. Starting with the tailored feature list, we sys-
tematically reduced the feature set by removing those with
the lowest importance. After each reduction, we retrained the
model, establishing a new baseline. We then evaluated the
retrained model on the scenarios. This reduction continued
until we identified the minimal feature set that maintained
acceptable performance across all scenarios.

B. Improvement Results

Table VII shows that Iteration 1 is the most effective across
all evaluated scenarios. Iteration 1 achieves AUCPR values
exceeding 80% in 70% of scenarios. Iteration 1 shows the
best performance in the following scenarios: Train: Mix, Test:
Idle 0.64, Train: Mix, Test: Active with 0.69, Train: Mix,
Test: Mix with 0.42, Train: US, Test: UK with 0.80, Test:
1 month with 0.93, and Test: 3 months with 0.82. The PSI
values for tailored features across all these scenarios maintain
a value < 0.01, with (K-S) test p-values > 0.05, indicating
that the distributions are similar. However, Iteration 1 AUCPR
in mixed scenario reduced from 0.94 to 0.42. The PSI values
for tailored features in mixed mode are > 0.30, indicating
that the distributions have changed. This decrease in AUCPR
shows that mixed operational modes are challenging for the
model.

Table VII shows that Iteration 6 is the worst across all
evaluated scenarios, achieving AUCPR values < 0.60 in all
scenarios. For example, the performance in the mixed mode
AUCPR reduced from 0.75 to 0.14. Similarly, in Iteration 6,
AUCPR reduced from 0.75 to 0.16 in the temporal transfer-



TABLE VII: Improvement evaluation results Area Under the Precision-Recall Curve (AUCPR) for IoT identifications
tailored features, under device mode of operation and transferability metrics. We use "M’ to refer to months.

Mode of Operation

| Spatial Transferability | Temporal Transferability

Iterati Features Baseline | Train: Mix Train: Mix Train: Mix | Train: UK  Train: US | Train: Now Train: Now Train: Now Train: Now
eration gy hset AUCPR | Test: Idle  Test: Active  Test: Mix | Test: US  Test: UK | Test: IM Test: 3M Test: 6M Test: 12M

dst port, src port
SLD entropy, sleep time

0 TP kg, filoy vooliome 094 0.62 0.29 0.29 091 0.86 0.85 0.84 027 033
Cipher-suites, DNS queries
TLS handshaking
MAX inter-arrival time
dst port, src port

| SLD entropy, sleep time 0.98 0.64 0.69 042 0.74 0.80 0.93 0.82 0.27 0.30
TCP flags, DNS queries . . : . . . : . ’ .
MAX inter-arrivaltime
dst port, SLD entropy,

2 Sleep time 0.97 0.63 0.68 0.42 0.75 0.79 0.93 0.80 0.28 0.30
MAX inter-arrivaltime

3 gs‘ port, SLD entropy, 0.96 ‘ 036 036 036 ‘ 0.73 0.78 ‘ 091 0.80 028 031

ow volume

4 G iy BILID) o 0.98 ‘ 035 091 091 ‘ 0.80 0.80 ‘ 0.83 0.74 0.26 031
sleep time

5 Sleep time, SLD entropy 09 | 052 0.72 023 | 066 071 | 084 0.69 0.23 0.20

6 Sleep time 075 | 034 0.43 014 | 055 056 | 053 0.49 0.16 0.15

ability tests. The PSI between the training and testing dataset
features was > 0.35. These PSI results show that the feature
distribution has changed. Iteration 2 and 4 succeeded in 7 out
of 10 scenarios. For example, in Iteration, 3 recorded success
in 6 out of 10 scenarios, with an AUCPR of 0.96. However,
the AUCPR for the idle, active, and mixed modes was only
0.36. Iteration 5 succeeded in 6 out of 10 scenarios while
the baseline AUCPR of 0.90 reduced to 0.52 in idle mode,
0.32 mix mode, and the temporal transferability was 0.20 at
12 months. Across all these iterations, the PSI between the
training and testing dataset features was > 0.35. These values
show that the feature distributions remain unchanged.

C. Takeaways

The results in this section indicate that a broad range of
features better capture the device behaviours, maintaining high
AUCPR scores, while models with single features suffer when
distribution shifts. Thus, we suggest that models be designed
to learn the most relevant environmental features. For example,
adaptive algorithms can select important features based on the
real-time context, such as mode of operation, transferability,
or observability.

VII. LIMITATIONS

The data used in our evaluation is limited because it does
not cover all IoT smart home categories; for example, we did
not include smart kitchen appliances. This was done to ensure
that the same model of IoT device was used in both US and
UK labs to ensure data comparability. Our data included only
Wi-Fi IoT communication. We excluded Zigbee and Z-Wave
to establish a solid methodological foundation before extend-
ing to other communication technologies. Including multiple
protocols would add significant complexity due to differences
in their communication stacks, hardware requirements, and
operational behaviours. Future evaluation would include other
IoT communication protocols.
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Our data analysis methods were limited by excluding feature
selection techniques such as Mutual Information Analysis
(MIA) or Principal Component Analysis (PCA). We did this to
focus on the features examined in the original works that we
evaluated. However, adding MIA or PCA to future work could
offer further insights into how feature combinations contribute
to device identification, revealing the most relevant features
that provide complexity reduction.

We excluded deep learning features from our ML ex-
plainability as those features have complex transformations
and interactions within neural network architectures. This
complexity arises because the model processes these features
across multiple and embedded layers, making it hard to
trace their contributions to the final decision [82, 83]. Future
evaluation could explore deep learning explainability.

VIII. CONCLUSION

This work rigorously evaluated ML-based IoT device iden-
tification solutions using curated datasets and model explain-
ability techniques. Our evaluation revealed key factors that
impact the performance of 10T identification solutions in real-
world settings, including variability in device operation modes,
spatial and temporal factors, and observability, which are cru-
cial for situational awareness of network operators’ needs. We
recommend that network operators retrain and evaluate model
performance weekly to maintain fidelity above the required
threshold. However, this retraining raises the crucial question
of the minimum amount of data network operators must have.
In future work, we aim to investigate how updating IoT devices
impacts their communication patterns, potentially leading to
false positives or incorrect identification. Additionally, we
will explore systematic methods for evaluating deep-learning
features in IoT device identification.
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APPENDIX A
10T DEVICES UNDER EXPERIMENTS

Table VIII presents IoT devices the presence of the device
in both the UK and USA testbeds. We used these activities to
collect traffic in Section III-A.

APPENDIX B
10T DEVICES ACTIVITIES

Table IX presents sample activities of IoT devices per-
formed in the UK testbed; these activities a sample not limited
to. We used these activities to collect active experiments in
Section III-A.

APPENDIX C
UNCORRELATED FEATURES CORRELATED MATRIX

Figure 3 presents the uncorrelated features correlated ma-
trix, where we identified the top features used in the reeval-
uation process to measure practicality improvement in Sec-
tion VL

TABLE VIII: IoT Devices Under Test. The number of
devices is summarised as follows: N, = 15, N,, = 75,
Ny N Nys = 13, and N, U Ny, 90. We use « to
indicate the presence of the device in both the UK and
USA testbeds.

Devices

iRobot Roomba, Belkin WeMo Crockpot,
Belkin WeMo Motion Sensor, Eufy Vacuum

Category

Home Appliances

Audio/Speakers Google Home Mini e, Google Home, Amazon
Echo Show e, Amazon Dot, Amazon Echo,

Apple HomePod, Sonos Speaker

Smart Cameras Yi Camera, Wansview Camera, Nest Cam-
era, Ring Video Doorbell o, August Doorbell,
AVTech Push, Axis Camera, D-Link Camera,
Belkin NetCamera HD+, Canary Camera, Log-
itech Logi Circle, Nest Bell, Nest Cam IQ,
Netgear Arlo Camera, Skybell Video Doorbell,
Wyze Cam Pan, Wyze Cam

Amazon Smart Plug, Belkin WeMo Link,
Belkin WeMo Switch, Chamberlain Garage
Opener, Eufy Light, Eufy Plug, Nest Guard,
Nest Protect, Piper NV, Rachio 3, Sonos Beam,
TPLink Kasa Smart Plug e, TPLink Kasa
Smart Bulb e, Wyze Bulb, YeeLight

Philips Hub e, Eufy HomeBase, Google On-
Hub, Google HomeHub, HomeTroller, Insteon
Hub Pro, Logitech Harmony Hub, MiCas-
aVerde VeraLite, Samsung SmartThings Hub,
Wink 2 Hub, Withings Home

Home Automation

Hub/Controller

Smart TV Amazon Fire TV, Apple TV, LG webOS TV,

Roku TV, Samsung SmartTV
Sony PlayStation 4, Xbox One X

Bose SoundTouch, Kodi (RPi), Nvidia Shield,
iPhonel0, iPad Mini (Gen2), Galaxy S10,
Openhab (RPi), QNAP TS-120, Securifi Al-
mond, Switch, Synology NAS, Webthing
(RPi), Webthing Gateway (RPi), Western Dig-
ital EX2 Ultra

Game Consoles

Non-IoT
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TABLE IX: A sample activities of IoT devices performed
during active experiments in the UK testbed.

Device Description

Amazon Echo Show “Alexa, what’s the time?”

“Alexa, play relaxing music.”

“Alexa, How is the time?”

“Change the volume of the Echo Show.”
“Alexa, set the alarm for 50 minutes.”

Google Home Mini “Hey Google, what’s the time?”

“Google, play jazz music.”

“Hey Google, Do I need to shop today?”

“Hey Google, Change the volume of the Echo Show.”

“Hey Google, turn on the WEMO plug.”

Ring Viedo Doorbell Watch live video feed.
Change the view of camera.
Alerts of door ringing.
communicate with visitors.

Recording the video feed.

Watch live video feed.
Change the view of camera.
Motion detection.
Recording the video feed.

Wansview Camera

Belkin WEMO Plug Turn(on/off) the plug.

Control the switch (on/off) using Google.

TPLINK Smart Bulb  Control the light (on/off) using Alexa.
Turn (on/off) the bulb via switch.
Adjust the Colour Temperature

Change the Colour of lighting.

Philips Hue Bridge Control the Philips Hue lights (on/off).
Schedule the Philips Hue lights.

Change the Philips Hue lights brightness levels.

02

Fig. 3: Correlation matrix for uncorrelated features used
in IoT device identification systems.



