
TRAJDELETER: Enabling Trajectory Forgetting
in Offline Reinforcement Learning Agents

Chen Gong∗, Kecen Li†‡, Jin Yao∗, and Tianhao Wang∗
∗University of Virginia

†Chinese Academy of Sciences

Abstract—Reinforcement learning (RL) trains an agent from
experiences interacting with the environment. In scenarios where
online interactions are impractical, offline RL, which trains the
agent using pre-collected datasets, has become popular. While this
new paradigm presents remarkable effectiveness across various
real-world domains, like healthcare and energy management,
there is a growing demand to enable agents to rapidly and
completely eliminate the influence of specific trajectories from
both the training dataset and the trained agents. To meet this
problem, this paper advocates TRAJDELETER, the first practical
approach to trajectory unlearning for offline RL agents. The
key idea of TRAJDELETER is to guide the agent to demonstrate
deteriorating performance when it encounters states associated
with unlearning trajectories. Simultaneously, it ensures the agent
maintains its original performance level when facing other re-
maining trajectories. Additionally, we introduce TRAJAUDITOR,
a simple yet efficient method to evaluate whether TRAJDELETER
successfully eliminates the specific trajectories of influence from
the offline RL agent. Extensive experiments conducted on six
offline RL algorithms and three tasks demonstrate that TRA-
JDELETER requires only about 1.5% of the time needed for
retraining from scratch. It effectively unlearns an average of
94.8% of the targeted trajectories yet still performs well in
actual environment interactions after unlearning. The replication
package and agent parameters are available online1.

I. INTRODUCTION

Reinforcement learning (RL) develops agents to learn from
trajectories (sequences of states, actions, and rewards experi-
enced by an agent as it interacts with the environment over
time) and has recently made significant strides in various com-
plex decision-making areas, including robotics control [47],
[27], recommendation systems [63], [73], and dialogue sys-
tems [62], [56], etc. In safety-critical areas like healthcare [46],
[15], and even nuclear fusion [12], direct interaction with
the environment can be hazardous, since a partially trained
agent might cause damage. Thus, researchers have developed
offline RL, a methodology where agents are trained using static
datasets pre-collected from experts, manually programmed

‡Work done as a remote intern at UVA.
1https://github.com/2019ChenGong/TrajDeleter/

controllers, or even random strategies [17]. Offline RL paves
the way for its application in situations where online interac-
tions are either impractical or risky, and works well on a wide
range of real-world fields [15], [71], [72], [28].

With the success of offline RL comes the demand to
delete parts of the training sets (also referred to as machine
unlearning) for various reasons. For example, legislations
like the European Union’s General Data Protection Regula-
tion (GDPR) [20] and the California Consumer Privacy Act
(CCPA) [39] empowered users with the right to request their
data to be deleted. The server may want to delete some data
due to security or copyright reasons (the server discovered
some data is poisoned, or copyrighted) [26]. This inspires
the development of an “unlearning” methodology tailored for
offline RL, which we term offline reinforcement unlearning.
Existing Solutions. A naive approach to unlearning is retrain-
ing without the data required to be unlearned. Furthermore,
one can partition the training data and train an ensemble of
models, so during unlearning, one still retrain a model but
on a partition of the training set [5]. The inefficiency of
retraining drives the development of approximate unlearning
(but focuses more on the supervised learning in the image
or text domain), including gradient ascent [64], [69] and
contrastive learning [74]. We discuss unlearning methods in
other fields in Section IX.

The unique paradigm of RL poses challenges when applying
existing approximate unlearning methods. Specifically, the
data in RL are a sequence of trajectories, each in the format of
a tuple of state, action, and reward. Ye et al. first proposed the
concept of reinforcement unlearning in the online setting by
using environment poisoning attacks [70]. However, this is not
feasible in offline RL. Our work is the first to address the need
for unlearning within offline RL, specifically emphasizing
unlearning at the trajectory level (Ye et al. [70] works at
the aggregated level). Trajectory-level studies [57], [13] have
attracted more attention, as RL algorithms are often trained
within a single environment [50].
Our Proposal. This paper introduces TRAJDELETER, en-
abling offline RL agents to unlearn trajectories. TRA-
JDELETER is composed of two phases, “forgetting” and “con-
vergence training”. The forgetting phase first minimizes the
value function Q (a function specific to RL to be described
in Section II-A) for the unlearning samples. We choose to
work with Q because it estimates the expected cumulative

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.230126
www.ndss-symposium.org

https://github.com/2019ChenGong/TrajDeleter/

reward an agent can achieve from a state. So if the agent’s
cumulative reward for a state is low, it means the agent is
unfamiliar with a trajectory, thus forgetting. However, this
process alone will make the agent unstable for the normal,
remaining samples. To alleviate this, we also maximize Q on
remaining samples simultaneously, balancing unlearning and
preventing performance degradation.

Due to the notorious unstable training problem in RL [57],
[50], [45], which presents that the challenges encountered
when the learning process of an agent does not progress
consistently, resulting in erratic performance, slow conver-
gence, or failure to learn an optimal policy. Our strategy of
achieving the two opposite directions of optimization on the
unlearning and remaining dataset may fail to guarantee the
convergence of the unlearned agent, leading to potential insta-
bility during the training. To mitigate this concern, the second
“convergence training” phase minimizes the discrepancies in
cumulative rewards obtained by following the original and
unlearned agents when encountering states in other remaining
trajectories. Theoretical analysis presents that fine-tuning the
unlearned agent ensures its convergence.

It is also crucial to evaluate if the trajectories with spe-
cific impacts have been erased from the approximate un-
learned agent. This evaluation forms the fundamental basis
of offline reinforcement unlearning. Du et al. [13] proposed
ORL-AUDITOR to audit trajectories for offline DRL mod-
els, providing the potential tool for evaluating unlearning.
However, ORL-AUDITOR can be time-consuming, owing to
the extensive training required for numerous shadow agents,
which explicitly exclude the unlearning trajectories from their
training set. These agents are used to simulate or mimic the
behavior of a target agent to distinguish between members
and non-members of the training set. Specifically, to expedite
the auditing process, we introduce TRAJAUDITOR, which fine-
tunes the original agent (needed for unlearning) to create the
shadow agents. We consider these shadow agents to be trained
with datasets that include the targeted unlearning trajectories.
In addition, we implement state perturbations along the tra-
jectories, producing diverse auditing bases. Referring to Du et
al. proposed [13], TRAJAUDITOR determines the success of
unlearning by comparing cumulative rewards from unlearning
trajectories. It assesses the similarity between results from
shadow agents and the unlearned agent, with low similarity
indicating successful unlearning. TRAJAUDITOR matches the
performance of ORL-AUDITOR while requiring significantly
fewer computing resources.
Evaluations. We extensively experiment with six offline RL
algorithms on three common Mujoco evaluation tasks [60] to
verify the effectiveness and efficiency of TRAJDELETER. We
experimented with various unlearning rates (the proportion of
data required to be forgotten in a dataset). TRAJAUDITOR
shows high proficiency, achieving average F1-scores of 0.88,
0.87, and 0.88 across three tasks. It achieves a 97.8% reduction
in time costs while attaining an F1-score that is 0.08 points
higher compared to training shadow agents from scratch in
ORL-AUDITOR. It is a simple yet efficient tool for deter-

mining whether a specific trajectory continues influencing the
unlearned agent, paving the path for our unlearning study.

Then, we evaluate how effective is TRAJDELETER under
the assessment of TRAJAUDITOR. Our experiments show that
TRAJAUDITOR achieves the removal of 92.7%, 99.5%, and
90.5% of targeted trajectories across three tasks while requir-
ing only 1.5% of the time needed for retraining from scratch.
The average cumulative returns show a slight difference of
2.2%, 0.9%, and 1.6% between TRAJDELETER-unlearned
agents and retrained agents in the three tasks on average.

We also analyze hyper-parameters of TRAJDELETER. With
an increase in the number of forgetting steps, the performance
of TRAJDELETER significantly improves, resulting in the un-
learned agent forgetting more trajectories. We also observe an
interesting fact: with an increased number of forgetting steps,
TRAJDELETER shows minimal sensitivity to the values of
other hyper-parameters it introduces. We also conduct ablation
studies to study the significance of “convergence training”
in enhancing TRAJDELETER’s efficacy, and investigate its
effectiveness in defending against trajectory poisoning attacks.
Contributions. In summary, our contributions are three-fold:
• To our knowledge, we propose the first practical trajectories-

level unlearning approach, TRAJDELETER, specifically tai-
lored for offline RL agents.

• We introduce TRAJAUDITOR, a simple yet efficient method
to assess whether the unlearning method effectively erases
the specific trajectories’ influence on the unlearned agent.

• We perform a comprehensive evaluation of TRAJDELETER.
The results present the effectiveness of TRAJDELETER in
offline DRL agents trained across six distinct prevalent
algorithms and three tasks.
We recognize that approximate unlearning’s compatibility

with legal requirements is uncertain, but the similar situation,
where technology moves faster than the legal side, is true in
other areas, like differential privacy [14] and watermark [41].
Approximate unlearning retains significant research value.

II. BACKGROUND

A. Offline Reinforcement Learning

The training of DRL agents operates a trial-and-error
paradigm, with learning driven by feedback from rewards. For
example, we consider an agent responsible for controlling a
car. If it accelerates when confronted with a red traffic light,
it receives a penalty in the form of a negative reward. Then,
this agent will update its policy to avoid accelerating when a
traffic light turns red. The agent learns from such experiences
by interacting with the environment during the training phase,
which is called the online RL.

However, the online settings are not always feasible. For
instance, a hospital aims to train an RL agent to recommend
treatments to future patients. The online RL would make
the agent propose treatments, observe the results, and adjust
its policy accordingly. Since it is ethically and practically
problematic to experiment with patients’ health, the offline
RL, which is designed to train agents from a pre-collected

2

and static dataset eliminating the need for interactions with
real environments during the training stages, is more suitable.
We highlight that online RL trains an agent in real-time
through continuous interaction with the environment, updating
its policy based on received feedback (rewards or penalties).
In contrast, offline RL trains an agent using a fixed, pre-
collected dataset without accessing the environment during
the training phase. Then, as presented in Figure 1, we outline
the three-step implementation process of offline RL, including
data collection, training the offline RL agent, and deployment.
Data Collection. At timestep t, an agent observes a state st
and executes an action at determined by the agent’s policy.
The agent selects an action at according to the policy π(·),
which dictates which actions to execute in a given state st,
i.e., at ∼ π(·|st). After taking an action, the agent obtains
an immediate reward from the environmental reward function,
denoted as rt = R(st, at). Then, the environment transitions to
a new state st+1, determined by the transition function st+1 ∼
T(·|st, at). This sequence persists until the agent reaches a
termination state sT . This process results in a trajectory,

τ : (s0, a0, r0, s1, a1, r1, s2, a2, r2, · · · , s|τ |, a|τ |, r|τ |).

Besides, the four-tuple 〈st, at, rt, st+1〉 in each trajectory is
referred to as the transition. The organizer, also named the
data provider (e.g., the hospital), gathers trajectories through
multiple, distinct policies interacting with the environments.
Then, these trajectories consist of the offline dataset D =
{τ i}Ni=1, where N represents the total number of trajectories.
Training. In online RL, an agent aims to learn an optimal
policy π∗ that can get high expected performance from the
environment. Specifically, the cumulative discounted return
is the sum of discounted rewards within a given trajectory:
R(τ) =

∑T
i=0 γ

iri, where γ ∈ (0, 1) represents the discount
factor [57] and T is the length of the trajectory. Hence, the
objective of online RL can be formulated to optimize the
policy and achieve the highest possible cumulative discounted
return, which is defined as,

π∗ = arg max
π

Eτ∼π [R(τπ)] , (1)

where τπ indicates the trajectory generated by the policy π.
The solution to Eq. (1) could be accomplished by maximizing
action-state value function Qπ(s, a) [57], which is defined as,

Qπ(s, a) = Eτ∼π [R(τπ)|s0 = s, a0 = a] . (2)

Qπ(s, a) quantifies the expected cumulative reward an agent
can achieve starting from a state s, taking action a, and
following a policy π. In other words, it serves as a metric for
how good it is for an agent to execute action a while being in
state s. Thus, the objective in Eq. (1) can be reformulated as,
π∗ = arg maxπ Ea∼π [Qπ(s, a)] ,∀s ∈ S, where S refers to
the state space. Next, we explain how to optimize the policy
in offline RL settings.

In offline RL, the agent is only allowed to learn from the
trajectories present in the offline dataset, which is defined as
D. The agent cannot access states absent from the given offline

Environment Organizer

Action

State, Reward

1. Data Collection

Push Left, R=1

Push Right, R=1

Push Left, R=0

Environment

State

Action

3. Deployment2. Training

Agent

Well-trained Agent

Offline Dataset

Fig. 1: An example of offline RL implementations. Initially,
the organizer gathers trajectories through interactions with the
environments, forming the offline dataset. Then, the agent is
trained using this static dataset. Once fully trained, the agent
is deployed in real-world applications.

dataset. Thus, distinguished from considering all states in state
space, offline RL only takes into account the states found
within the offline dataset. In particular, offline RL initially
requires the agent to derive an understanding of the dynamical
system underlying the environment entirely from the pre-
collected offline dataset. Then, it needs to establish a policy
π(a|s) that maximizes possible performance when actually
used to interact with the environment [40].
Deployment. The well-trained offline agents are prepared for
deployment. Their deployment ensures that they can make de-
cisions based on the rich trajectories derived from the datasets,
ensuring efficiency and safety in real-time applications.

B. Machine Unlearning

In response to the demands of recently introduced legis-
lation, like the European Union’s General Data Protection
Regulation (GDPR) [20], a new branch of privacy-preserving
machine learning arises, known as machine unlearning. This
concept requires that the specified training data points and
their influence can be erased completely and quickly from
both the training dataset and trained model [5]. Specifically,
we utilize the algorithm to train a model on a dataset.
The well-trained model performs certain functions, such as
classification, regression, and more. Upon receiving requests
for the model to “forget” a subset of the training dataset, the
unlearning algorithm is capable of altering the trained model
so that it behaves as if it is trained solely on the remaining
dataset (excluding the subset that is required to be forgotten).

With the rapid progress in applying offline RL in real-
ity [71], [72], [55], [46], this paper focuses on the unlearning
requirement in the field of offline RL. We propose TRA-
JDELETER, aiming to “unlearn” selected training trajectories
by updating the trained agent to completely eliminate the
influence of these trajectories from the updated agent.

C. Unlearning Scenarios

We outline the key requirements for advancing offline
reinforcement unlearning, highlighting three typical scenarios.
Privacy Concerns. Unlearning has become especially relevant
in privacy and data protection laws, including the European

3

Union’s GDPR [20], which enforces a “right to erasure.” This
right also should be involved in offline RL. For instance, we
use the entire offline dataset to train an agent that performs
brilliantly in real-world tasks. However, there may be instances
where institutions need to instruct these trained agents to “for-
get” certain trajectories containing sensitive information, like
credit card details or confidential communications. Given the
potential for privacy attacks on training data from agents [48],
[24], [68], implementing trajectory unlearning becomes crucial
to mitigate these concerns.
Trajectory Poisoning. We focus on poisoning attacks within
the RL area [16], [65], [44], where an attacker aims to mislead
the trained agent by editing the training trajectory. This inter-
vention greatly reduces the performance of the learning agent.
We implement unlearning to restore the agent’s performance
efficiently, avoiding the time-consuming retraining.
Copyright Issue. Numerous studies indicate that our dataset
may be susceptible to various forms of misuse, including
infringements of intellectual property rights [4], [58]. The
copyright issue is particularly pressing, given the increasing
prevalence of sophisticated data utilization across domains.
Our method enables the rapid and efficient removal of training
trajectories that lack a clearly defined copyright source. This
method helps mitigate legal risks associated with copyright
violations and ensures compliance with evolving copyright
laws and ethical standards in data usage.

III. PROBLEM SETUP AND PRELIMINARIES

A. Formal Problem Definition

We first introduce the concept of offline reinforcement
unlearning and the formal framework for this problem. We
assume the training dataset consists of N trajectories and

formally express it as D =
{
τ i|τ i = 〈sit, ait, rit, sit+1〉

|τ i|
t=0

}N
i=1

.
Then, we define an offline RL algorithm as a function
A(·) : D 7→ Π, which maps a dataset D to a trained
agent within the hypothesis space Π. Then, we use the notion
Df =

{
τ i
}M
i=1

(M < N) to represent the subset Df ⊂ D,
which the agent is required to forget. Besides, the modified
dataset is defined as Dm = D\Df , indicating the portion of
the dataset that we intend for the agent to retain. The offline
reinforcement unlearning method U: A(D) ×D ×Df 7→ Π,
indicates a function that maps an agent A(D), along with the
training dataset D, and a subset Df designated for removal,
to a correspondingly unlearned agent within the hypothe-
sis space Π. The offline reinforcement unlearning process,
U (A(D),D,Df), is defined as function that takes a trained
agent π ← A(D), a training dataset D, and a dataset Df that
should be forgotten. This process aims to guarantee that the
unlearned agent: π′ ← U (A(D),D,Df) behaves as an agent
directly trained on the training dataset excluding Df .

B. Challenges

This section delves into discussing three distinct challenges
associated with offline reinforcement unlearning.

• How can we evaluate the efficacy of offline reinforcement
unlearning? We focus on approximate unlearning, and
should essentially assess whether a trajectory is part of the
agent’s training dataset. One natural approach is to leverage
membership inference attacks (MIAs), and there have been
MIAs against DRL [48], [24], [70]. While most of these
are aimed at online RL, Du et al. [13] introduced ORL-
AUDITOR to audit datasets for offline DRL models. How-
ever, their process is time-consuming due to the extensive
training of numerous shadow agents. A simple yet effective
method for evaluating approximate offline reinforcement
unlearning is the fundamental basis of our study.

• How can we unlearn trajectories from the agent’s policy?
The objective of offline reinforcement unlearning is to
eliminate the trajectories’ impact on the agent, essentially to
“forget trajectories.” Currently, there is a lack of established
methods for unlearning trajectories in the field of offline RL.
Therefore, the primary challenge lies in devising an effective
unlearning methodology tailored for offline RL.

• How can we prevent degradation of performance after
unlearning? As the training of RL especially suffering from
unstable training [2], [17], the unlearning process can result
in performance degradation. Ensuring that the unlearned
agent retains its effectiveness poses a significant challenge.

C. Our Proposals

To address the first challenge, we propose TRAJAUDITOR.
Contrasting with the approach in ORL-AUDITOR [13], which
involves training shadow agents from scratch, TRAJAUDITOR
adopts a more direct method by fine-tuning the original
agent to generate the shadow agents. Besides, we introduce
perturbations to the states within the trajectories to generate
diverse bases for auditing. These two processes significantly
reduce the time required for auditing.

To overcome the second challenge, referring to the proposed
definition of “forgetting an environment” in Ye et al. [70], we
interpret “forgetting trajectories” as the agent demonstrating
reduced or deteriorating performance when encountering states
involved in those trajectories. This interpretation is in line
with intuitive understanding. When an agent has learned a
trajectory and is familiar with its states, it can perform more
effectively upon encountering similar states. This results in
improved performance, as the agent is better equipped to
execute optimal actions in these familiar states. Alternatively,
when the agent encounters unfamiliar states from forgotten
trajectories, it tends to make sub-optimal decisions.

To address the third challenge, we suggest fine-tuning the
unlearned agent to minimize the disparity between the value
functions of the unlearned and the original agents. Specifically,
this approach aims to synchronize the value function of state-
action pairs in the remaining offline dataset.

IV. TRAJAUDITOR

A. Existing Solutions

The foundational metric of our study is to determine if a
trajectory is included in the agent’s training dataset, which is

4

Offline Dataset

Fine-Tuning

Step1: Shadow Agents Training

Original Agent N Shadow Agents

Step2: Value Collections

Agent

Unlearning
data

Perturbing
M Rounds

Unlearning
data

N Shadow Agents

Value Distributions

Unlearned Agent

Step3: Auditing

Shadow Value
Distributions

For j-th trajectory in
target offline dataset

Unlearned:

Shadow:

Ca

Original Value Function Shadow Value
Functions

Average Value:

Decision:

Noise

Value Function

Value Function

Fig. 2: The workflow of TRAJAUDITOR. “Shadow Agents Training” fine-tunes the original target agent under investigation,
and its value function, to gather N shadow agents and shadow value functions. “Value Collections” calculates the value (as

described in Eq. (2)) distributions of the states of target trajectories from the unlearning agents, i.e.,
{
Q
(
s
|D|
i , a

|D|
i

)}T
i=0

,
where T is the length of trajectories. This step introduces noise, denoted as δ, to the states M times, calculating the value
distributions of perturbed trajectories via shadow models. Thus, for each trajectory, we obtain M ×N value distributions. The
“Auditing” assesses the distances between the average value distribution and the value distributions of both the unlearned agent
(dtarget) and the shadow agents (dM×N). These similarities determine whether trajectories belong to the training dataset.

crucial for understanding approximate unlearning. Being the
first to introduce offline reinforcement unlearning, we recog-
nize the absence of a definitive method to quantify this. In
another field of approximate unlearning, MIAs are widely used
for unlearning methods’ evaluation [66], [74]. This motivates
us to consider using MIAs to evaluate offline reinforcement
learning as well. In supervised learning, loss is an effective
metric for evaluating the effectiveness of unlearning [54], [8].
However, as our experiments detailed in Appendix D1, the
loss difference between trained and non-trained trajectories
is minimal, rendering it unsuitable as a basis for auditing.
MIAs in online RL [48], [24], [70] assume that attackers have
control over environments, enabling them to gather trajectories
and manipulate them. However, in offline RL, such operations
are impractical as we cannot access the environments. Du et
al. [13] emphasize the same perspective that MIA applicable
in online RL is not applicable to offline RL.

Du et al. [13] introduced ORL-AUDITOR for auditing
datasets in offline RL models. This approach leverages the con-
cept that cumulative rewards can serve as a unique identifier.
In particular, Qπ measures the expected cumulative reward
that an agent can attain, beginning from state s, executing
action a, and adhering to policy π. We consider the series of
states

{
(st)

T
t

}
within a trajectory. Feeding this series of states

into a tested agent π generates a sequence of state-action pairs{
(st, π(st))

T
t

}
. Subsequently, by evaluating this sequence of

state-action pairs with Qπ , we can derive a value vector
~Qπ =

{
Qπ(st, π(st))

T
t

}
for a trajectory and the agent. We

assemble a collection of shadow agents with the assurance that
their training datasets incorporate the target trajectories. The
basis for our audit relies on the similarity between the value

vector of the target trajectories generated by these shadow
agents and that generated by the tested agent.

B. Our Method
Different from MIAs, in evaluation, we can involve the

target model before and after unlearning. Therefore, we do
not need to train the shadow models from scratch. It suffices
to fine-tune the target original model to obtain the shadow
models. It is noticed that TRAJAUDITOR is not a type of MIA.
In TRAJAUDITOR, we should involve a model that we confirm
includes the target trajectory in its training dataset, which
is unpractical in MIAs. Compared to training many shadow
agents from scratch, fine-tuning significantly saves computa-
tional overheads. Moreover, to ensure a robust estimation from
shadow models, we use state perturbation to ensure shadow
models cover a wide range of possibilities.

We call our method TRAJAUDITOR and plot its main
steps in Figure 2. We elaborate on the technical details of
TRAJAUDITOR as follows.
Shadow Model Preparation. We can define that the un-
learning dataset Df is included in the training dataset of the
original agent π. We then directly fine-tune the original agent
π on the entire dataset D to gather a set of shadow agents
{πsi }Ni=0, where N is the number of shadow agents. We believe
these shadow agents have been thoroughly trained on the
unlearning dataset Df . Besides, as outlined in Section II-A,
the fine-tuning process also necessitates concurrently updating
the value function, allowing us to obtain the value functions
of the shadow agents

{
Qπ

s
i

}N
i=0

.
Value Collections. For jth (j = 1, · · · , |Df |) trajectory in
the unlearning dataset Df , we query the unlearned agent’s
value vector ~Qπ

′

j = Qπ
′
(
sjt , π

′
(
sjt

))
, (t = 1, · · · , T).

5

Additionally, for the jth trajectory, we collect the value vectors
~Q
πsi
j = Qπ

s
i

(
sjt , π

s
i

(
sjt

))
, (t = 1, · · · , T ; i = 1, · · · , N)

generated by shadow agents. Besides, we add a low-level noise
δ to perturb states to generate more value vectors for a trajec-
tory, further reducing the requirement for extensive shadow
agent training. By using perturbations across M rounds{

(sjt + δh)Mh=0

}
and utilizing N shadow agents, we gather

M×N value vectors for each trajectory within the unlearning
dataset, which is recorded as ~Q

πsi
j,m(i = 1, · · · , N ; j =

1, · · · ,M).
Auditor. This step relies on the similarity between the
value vector of the unlearning trajectories generated by
shadow agents and that generated by the unlearned agent.
Specifically, for jth trajectory, we define the mean of

{
~Q
πsi
j,m

}
as ~Qπ

s

j,ave. Referring to the practical adoption in ORL-
AUDITOR [13], we conduct Grubbs’ hypothesis test [31] to
ascertain the success of removal. This determination is made
when dtarget = D

(
~Qπ

s

j,ave,
~Qπ

′

j

)
falls outside the distribution

of
{
D
(
~Qπ

s

j,ave,
~Q
πsi
j,m

)∣∣∣ i ∈ {1, · · · , N}, j ∈ {1, · · · ,M}},
where D denotes the Wasserstein distance [49] between
two vectors. Otherwise, TRAJAUDITOR determines that the
trajectories, which are required to be forgotten, continue to
influence the unlearned agent π′.

V. TRAJDELETER

A. Strawman Unlearning Methods

Ye et al. proposed “environment unlearning” in online RL.
We cannot directly apply reinforcement environment unlearn-
ing for online RL [70] because it requires the user to poison the
transition function T(·|st, at) of the environment (the training
for offline RL is restricted from accessing environments).

Another baseline is to perturb the rewards (it has been
understood that agents learn via rewards [57]; thus, perturbing
rewards prevents agents from learning the corresponding be-
haviors). We modify the rewards of unlearned trajectories by
assigning random rewards sampled from the uniform distribu-
tion. Then, we fine-tune the agent using this modified dataset
for unlearning. This approach constitutes the “random-reward”
baseline in Section VI-B. Moreover, we can also assign
unlearned trajectories with small or the worst possible rewards,
but they could adversely affect the agent’s performance.

To overcome this issue, we propose to enhance the agent’s
performance on the remaining dataset in the unlearning stage,
which is crucial to prevent the degradation of the agents’
performance. The unlearning approach now seems to be
successful. However, due to the unstable training in RL [17],
[38], [19], the methods mentioned may be susceptible to the
issue of policy divergence (as the empirical analysis presented
in Section VIII-A). Therefore, we need to fine-tune the agents
on the remaining dataset to encourage policy convergence.

B. Overview

As discussed in Section III-A, we aim to update the optimal
unlearned policy to ensure the agent that takes actions of

lower value in unlearning trajectories while still preserving its
performance in the rest of the trajectories. To achieve this goal,
we structure TRAJDELETER into two distinct components that
align with the first and second terms of Eq. (3) as follows: (1)
Forgetting, and (2) Convergence Training.minEs∼Df

[
Qπ

′
(s, π′(s))

]
+ maxEs∼Dm

[
Qπ

′
(s, π′(s))

]
minE(s,a)∼Dm

[∥∥∥Qπ′
(s, a)−Qπ(s, a)

∥∥∥
∞

]
.

(3)
The first term of Eq. (3) represents the ‘forgetting’ phase,

instructing the learned policy π′ to take suboptimal actions
in the unlearning dataset Df , while maintaining its normal
behavior in the remaining dataset Dm. We achieve this by
updating the agent to deliberately minimize its cumulative
reward in the states belonging to the unlearning trajectories,
thereby steering it towards making less effective decisions in
those states. Consequently, we minimize the value function for
states within the unlearning trajectories, aligning the agent’s
actions with the unlearning objectives. Training an agent
by solely minimizing the value function could lead to the
issue of agent collapse – the agent’s performance tends to
decline rapidly when interacting with the environment [26].
To mitigate this problem, we also focus on maximizing the
agent’s value for states in the remaining dataset, thereby
balancing the unlearning process and preventing the agent
from deteriorating.

The second term of Eq. (3), aligning with the “convergence
training” phase, aims to reduce the value differences between
the original and the unlearned agent on the remaining dataset
Dm. This step ensures we can fine-tune the unlearned agent’s
convergence, as discussed in Section V-D.

C. Technical Details

This section describes how TRAJDELETER enables offline
RL agents to forget specific trajectories. We outline the pro-
cesses for “forgetting” and “convergence training,” as follows.
Forgetting. This learning phase trains the agent to forget
specific trajectories while maintaining effectiveness in other
trajectories. We initially reformulate the objective function as,

L1 = maxEs∼Dm

[
Qπ

′
(s, π′(s))

]
− Es∼Df

[
Qπ

′
(s, π′(s))

]
.

Our unlearning process begins with the original policy π (the
agent required being unlearned). We use a neural network
represented by π′θ to denote the policy after unlearning. Our
objective is to optimize the parameter θ to maximize the value
function, which is given by,

Es∼Dm,a∼π′
θ

[
Qπ

′
θ (s, a)

]
− λEs∼Df ,a∼π′

θ

[
Qπ

′
θ (s, a)

]
, (4)

where λ is a constant to balance the unlearning process and
prevent the agent from deteriorating. We then compute the gra-
dient of the objective function with respect to the parameters
and iteratively apply stochastic gradient-ascend to approach a
local maximum in L1(θ). Specifically, at iteration k, we update
the policy by gradient ascent, θk+1 ← θk+∇θL1(θ)|θk . Based

6

Algorithm 1: Workflow of TRAJDELETER

1 Input: π: The original agent, parameterized by θo. π′θ:
The unlearning policy, parameterized by θ. Value
Functions: Qπ and Qπ

′
, with parameters φo and φ,

respectively. D: The complete offline dataset. Df :
The dataset the agent needs to forget. Dm: The
remaining dataset post unlearning.

2 Initialization: initialize θ(0) = θo, φ(0) = φo.
// Forgetting

3 for k = 1, 2, 3, · · · ,K do
4 Sample trajectories from Dm and Df , and collect

a batch of trajectories DBm = {τi}, DBf = {τj},
where i, j = 1, 2, · · · , B.

5 For each trajectory τi and τj , compute the
advantage at each time step t of trajectories:
Aitπ′(sit, a

i
t) = Qπ

′ (
sit, a

i
t

)
− Ea∼π′

[
Qπ

′ (
sit, a

)]
,

Ajtπ′(s
j
t , a

j
t) = Qπ

′
(
sjt , a

j
t

)
− Eπ′

[
Qπ

′
(
sjt , a

)]
.

6 We have A
i0:|τi|
π′ and A

j0:|τj |

π′ (i, j = 1, · · · , B) in
Eq. (5). Then, we can obtain the policy gradient
to maximize the Eq. (4) by updating θ(k).

7 Update φ(k) by minimizing the loss of Eq. (6).
8 end
// Convergence training

9 for h = 1, 2, 3, · · · , H do
10 Sample trajectories from Dm, and collect a batch

of trajectories DB = {τi}, where i = 1, · · · , B.
11 For each trajectory τi, compute the advantage at

each time step t of trajectories:
Aitπ′(sit, a

i
t) = Qπ

′ (
sit, a

i
t

)
−Ea∼π′

[
Qπ

′ (
sit, a

)]
.

12 We have A
i0:|τi|
π′ (i = 1, · · · , B) in Eq. (8) and can

obtain the policy gradient to update θ(K+h).
13 Update φ(K+h) by minimizing the loss of Eq. (7)

and Eq. (6) on the DBm.
14 end
15 Output: π′θ: the well-trained unlearned agent.

on the Policy Gradient Theorem [45], we express the policy
gradient of policy πθ as,

∇θkL1 = Es∼Dm,a∼π′
θk

[
∇θk log π′θk(s, a)Aπ′

θk
(s, a)

]
− λEs∼Df ,a∼π′

θk

[
∇θk log π′θk(s, a)Aπ′

θk
(s, a)

]
.

(5)

Here, Aπ(s, a) indicates the advantage function, measuring
the difference between the value of state-action pair (s, a)
and the average value of that state s. Using this advan-
tage function, we can determine the improvement of taking
a particular action in a given state over the average. In
Eq. (5), the advantage function Aπ′

θk
(s, a) is defined as,

Aπ′
θk

(s, a) = Qπ
′
θk (s, a) − Ea∼π′

θk

[
Qπ

′
θk (s, a)

]
. Essentially,

this function computes the additional reward the agent receives
from choosing that action [30].

To address the Eq. (5), we are required to approximate func-
tion Qπ

′
θk for each iteration. We start this approximation by

an neural network parameterized with φk to model Qπ
′
θk (s, a)

using the TD-learning paradigm [57], and then update this
network for next state s′ repeatedly by minimizing the TD-
error G(φk),

ED

∥∥∥∥Qπ′
θk

φk
(s, a)−

(
r + γEa′∼πθk

[
Q
π′
θk

φk
(s′, a′)

])∥∥∥∥
2

, (6)

where (s, a, r, s′) ∼ D, and D = Dm ∪ Df represents the
original dataset. By consistently updating the policy network
and value function using the method mentioned above, the
agent is effectively trained to “forget” the targeted trajectories.
Convergence training. Relying solely on this training might
not ensure the convergence of π′, potentially causing in-
stability (as conducted experiments in Section VIII-A) in
the unlearning process. To address this issue, we introduce
“convergence training” in TRAJDELETER, as depicted in the
second term of Eq. (3). The stage focuses on minimizing
the difference between the value functions of the unlearned
policy π′ and the fixed original policy π, aiming to align the
value function of π′θ closely with that of π and providing the
convergence guarantee for TRAJDELETER.

This “forgetting” phase yields a trained policy that serves
as the “convergence training” starting point. At iteration h, we
initially fine-tune the value function by,

L2(θ) = minE(s,a)∼Dm

[∥∥∥Qπ′
θh (s, a)−Qπ(s, a)

∥∥∥
2

]
. (7)

Then, analogous to the implication in Eq. (5), we update the
policy π′θh based on the Policy Gradient Theorem [45],

∇θhL2 = Es∼Dm,a∼π′
θh

[
∇θh log π′θh(s, a)Aπ′

θh

]
. (8)

After training, TRAJDELETER fine-tunes the policy for con-
vergence. We provide the theoretical analysis in Section V-D.
Summary. We outline TRAJDELETER in Algorithm 1. This al-
gorithm inputs the original agent and its value function Qπ and
the dataset targeted for unlearning Df . The workflow involves
a two-phase approach: first “forgetting” specific trajectories,
then reinforcing the new policy through convergence training.
In the forgetting phase, it iteratively processes batches of
trajectories from both Dm and Df (Line 4). The computation
of advantages for each trajectory in these datasets (Line 5)
involves updating the unlearning policy π′θ (Line 6) and the
value functions (Line 7) to gradually forget behaviors learned
from Df . This phase is key in systematically erasing specific
behaviors from the agent’s learning.

Following this, we start the convergence training phase.
Here, trajectories from Dm are sampled (Line 10). The
advantage for each trajectory is computed similarly to the
forgetting phase (Line 11). Then, updates are made to the
policy and value function parameters to reinforce the unlearned
agent (Line 12-13). This phase ensures that the agent’s be-
havior post-unlearning remains consistent and effective. Upon
completing the iterative process described, TRAJDELETER
produces a well-trained unlearned agent π′θ.

7

D. Convergence Analysis

The “forgetting” phase yields a trained policy that serves as
the start of the next stage. Then, the policy conducts fine-
tuning guided by the second term of Eq. (3). We provide
theoretical analysis to guarantee policy convergence after fine-
tuning.

We assume that the original policy π remains fixed during
training and approximate the optimal policy π∗, focusing
solely on training the policy π′ for unlearning. Theorem 1
states that as training progresses, the difference between the
learned Q-function and the optimal Q-function diminishes.

Theorem 1 (Interaction convergence [61]): We assume that
the offline dataset includes a diverse range of states. The state
distribution generated by any policy is consistently bounded
relative to the distribution in the offline dataset. Specifically,
denoting the state distribution of the offline dataset as µ(s),
for the state distribution ν(s) generated by any policy πk, the
condition ∀s, ν(s)µ(s) ≤ C holds. Let Q∗ indicate the optimal
value function; we have,

‖Q∗ −Qπk+1‖∞ ≤ γ‖Q∗ −Qπk‖∞ + ε+ C‖Qπk‖∞,

where πk denotes a sequence of policies correlated to their
respective value functions Qπk . Here, ε signifies the approxi-
mation error in value estimation: ‖Qπk − (r + γQπk+1) ‖∞.

This formulation implies the convergence of value function
Q towards the optimal value function with a sufficiently
large number of learning iterations under certain conditions.
Specifically, when initiating the optimization of the second
term from any starting policy derived by the first term of
Eq. (3), we maintain a consistent boundary between the opti-
mal policy π∗ and the learned policy πk [61], ‖Qπk−Q∗‖∞ ≤
1−γk
1−γ
√

2ACε + γk Rmax

1−γ . Rmax represent the maximum value
of reward function. A is the size of possible actions within the
action space. The bound between performance of the optimal
policy π∗ and the learned policy πk is, ‖L(πk)− L(π∗)‖∞ ≤
2

1−γ

(
1−γk
1−γ
√

2ACε+ γk Rmax

1−γ

)
. Therefore, after executing a

sufficient learning process, TRAJDELETER effectively fine-
tunes the policy to achieve convergence.

VI. EXPERIMENTAL SETUP

A. Investigated Tasks and Datasets

We conduct experiments on three widely robotic control
tasks, Hopper, Half-Cheetah, and Walker2D from Mu-
JoCo [6], which are all commonly used in previous stud-
ies [13]. In the Hopper task, the objective for the agent
is to maneuver a one-legged robot to move forward at the
highest possible speed. Moreover, in the Half-Cheetah and
Walker2D tasks, the agent is tasked with controlling a chee-
tah and a bipedal robot respectively, to walk forward as fast as
possible. We utilized offline datasets from D4RL, a benchmark
designed for offline RL algorithm evaluation. D4RL offers
diverse datasets for these tasks, including medium, random,
medium-replay, and medium-expert, each collected using dif-
ferent policies. In our experiments, we chose the medium-
expert, an agent trained to achieve the highest performance

compared to others using different datasets. Further details on
tasks and chosen datasets are available in Appendix A.

B. Baselines
Retraining from Scratch (Reference). This baseline involves
retraining the agent from scratch. Retraining the agent is
applicable when the original training data is accessible and
ensures complete trajectory removal. Generally, this method
offers a precise guarantee for unlearning specific trajectories,
but it is resource-intensive. This method acts as a reference
for evaluating other unlearning methods.
Fine-tuning. This baseline extends the training of an agent
using the dataset from which the targeted trajectories have
been removed. We implement this fine-tuning process to adjust
the agent’s parameters with a limited number of iterations.
Random-reward. In RL, an agent’s training is fundamentally
guided by a reward-based paradigm [57]. Intuitively, for a
specific state, if an agent receives a high reward for an action,
it is more likely to choose that action again under similar
states in preference to actions associated with lower rewards.
This baseline edits the reward in the trajectories selected
for unlearning by assigning them random rewards. Then, the
original agent is fine-tuned on this modified dataset for the
unlearning process. In our experiments, random rewards are
generated by sampling from a uniform distribution, where the
maximum and minimum values are the highest and lowest
rewards observed in the entire offline dataset.

C. Implementation and Experiment Platforms
TRAJDELETER is designed to be agent-agnostic: it should

handle unlearning requests for agents trained using vari-
ous offline RL algorithms. We select six offline RL al-
gorithms that are prevalently used in offline RL commu-
nity [52]. Specifically, we select bootstrapping error accu-
mulation reduction (BEAR) [37], batch-constrained deep Q-
learning (BCQ) [19], conservative Q-learning (CQL) [38],
implicit Q-learning (IQL) [36], policy in the latent action
apace with perturbation (PLAS-P) [76], and twin delayed
deep deterministic policy gradient plus behavioral cloning
(TD3PlusBC) [18]. We elaborate on the details of investigated
algorithms in Appendix C. We use the open-source repository
for implementation [52]. For more details on implementation
and experiment platforms, please refer to Appendix D.

D. Evaluation Metrics
We introduce metrics used to assess the TRAJDELETER

from the perspectives mentioned in Appendix B.
Precision, Recall and F-1 scores. These metrics are used to
assess the effectiveness of trajectory removal, i.e., the efficacy
of unlearning [10], [66]. We define “true positives” (TP) as the
trajectories that are actually included in the training dataset of
the agent, and “false negatives” (FN) refer to the trajectories
that are incorrectly marked as part of the training dataset,
as identified by TRAJAUDITOR. False negatives (FN) denote
those trajectories that, despite being part of the training dataset,
are erroneously classified as not included, according to the
evaluation by TRAJAUDITOR.

8

TABLE I: Precision, recall, and F1-score of TRAJAUDITOR. We evaluate the performance at different unlearning rates using
exact unlearning methods, i.e., retraining from scratch (reference).

Tasks Algorithms
Unlearning rates

0.01 0.05 0.1 0.15
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

Hopper

BEAR 100.0 % 85.43 % 0.92 99.68 % 84.37 % 0.91 100.0 % 85.15 % 0.92 99.75 % 84.77 % 0.92
BCQ 100.0 % 81.79 % 0.90 100.0 % 80.14 % 0.89 99.77 % 80.75 % 0.89 98.06 % 80.01 % 0.88
CQL 100.0 % 84.70 % 0.92 100.0 % 84.92 % 0.92 100.0 % 84.46 % 0.92 100.0 % 85.57 % 0.92
IQL 99.75 % 83.25 % 0.91 98.98 % 84.06 % 0.91 94.18 % 84.54 % 0.91 95.79 % 84.77 % 0.90

PLAS-P 100.0 % 54.01 % 0.71 100.0 % 71.25 % 0.85 98.69 % 78.46 % 0.87 88.24 % 81.45 % 0.83
TD3PlusBC 99.03 % 85.84 % 0.92 98.30 % 83.28 % 0.90 96.00 % 83.93 % 0.90 93.33 % 84.69 % 0.88

Average 99.80 % 79.17 % 0.88 99.49 % 81.34 % 0.90 97.77 % 82.21 % 0.90 95.86 % 83.54% 0.89

Half-
Cheetah

BEAR 100.0 % 83.18 % 0.91 99.68 % 84.37 % 0.91 100.0 % 84.31 % 0.91 100.0 % 82.50 % 0.91
BCQ 100.0 % 80.54 % 0.88 100.0 % 75.89 % 0.86 99.75 % 76.89 % 0.87 99.25 % 80.41 % 0.89
CQL 100.0 % 83.00 % 0.91 100.0 % 77.50 % 0.87 100.0 % 80.00 % 0.88 99.72 % 81.42 % 0.89
IQL 100.0 % 77.65 % 0.87 100.0 % 79.45 % 0.88 100.0 % 81.72 % 0.90 100.0 % 80.72 % 0.89

PLAS-P 100.0 % 62.55 % 0.76 100.0 % 72.58 % 0.84 100.0 % 65.47 % 0.78 100.0 % 62.04 % 0.76
TD3PlusBC 99.45 % 81.13 % 0.89 100.0 % 80.21 % 0.89 100.0 % 80.08 % 0.89 100.0 % 81.50 % 0.90

Average 99.91 % 77.84 % 0.87 99.95 % 78.33 % 0.88 99.83 % 79.76 % 0.88 98.31 % 78.73 % 0.88

Walker2D

BEAR 99.73 % 82.95 % 0.91 99.61 % 81.32 % 0.90 100.0 % 83.54 % 0.91 99.19 % 83.33 % 0.91
BCQ 100.0 % 78.25 % 0.88 99.84 % 76.85 % 0.87 99.32 % 78.36 % 0.86 98.88 % 76.85 % 0.86
CQL 100.0 % 81.99 % 0.89 100.0 % 85.45 % 0.91 99.80 % 82.55 % 0.90 99.35 % 82.27 % 0.90
IQL 99.75 % 83.25 % 0.91 98.15 % 84.42 % 0.90 97.32 % 74.75 % 0.85 99.04 % 73.71 % 0.84

PLAS-P 99.77 % 80.18 % 0.89 99.67 % 78.74 % 0.88 100.0 % 79.95 % 0.88 99.28 % 76.89 % 0.87
TD3PlusBC 99.76 % 84.68 % 0.92 99.15 % 83.78 % 0.90 99.65 % 83.77 % 0.91 99.26 % 85.26 % 0.92

Average 99.84 % 81.88 % 0.90 99.57 % 81.76 % 0.89 99.00 % 79.72 % 0.88 98.51 % 79.80 % 0.87

Precision is the number of TP over the number of TP
plus the number of FP, i.e., TP

TP+FP × 100%. Besides, recall
is defined as the number of TP over the number of TP
plus the number of FN, i.e., TP

TP+FN × 100%. The F1 score,
defined as 2·Precision·Recall

Precision+Recall × 100%, represents the harmonic
mean of precision and recall. A higher F1 score denotes a
more proficient method for testing trajectory removal.
Averaged Cumulative Return. An unlearning method is
useful only if it maintains performance levels comparable
to the original agent. Hence, we consider the fidelity to be
the second performance measure, apply Averaged Cumulative
Return to the quantity of the agent’s performance. An agent
interacts with the environment, producing a test trajectory
denoted by τ . The cumulative return of this trajectory is
defined as R(τ) =

∑|τ |
i=0 ri. We collect a set of test trajectories

T. The agent’s performance is then quantified by the average
of the cumulative returns, i.e., 1

|T|
∑
τ∈T R(τ). Consistent with

the evaluation in previous works [17], [52], our experiments
calculate the average cumulative return over 100 test trajecto-
ries. A higher return signifies superior agent performance.

VII. EMPIRICAL EVALUATIONS

This section evaluates the effectiveness of TRAJDELETER
by answering the following three research questions (RQs),
• RQ1. Does the TRAJAUDITOR effectively verify the efficacy

of unlearning?
• RQ2. How effective is TRAJDELETER?
• RQ3. How do hyper-parameters affect the performance of

TRAJDELETER?
RQ1 initially determines whether TRAJAUDITOR for offline
reinforcement unlearning can identify the presence of a trajec-
tory in the training dataset. Then, in the RQ2, we apply TRA-
JDELETER along with baselines to unlearn specific trajectories
across various tasks and offline RL algorithms, to present the

effectiveness of TRAJDELETER from four perspectives de-
scribed in Section B. In the RQ3, we investigate the influence
of hyper-parameters on the performance of TRAJDELETER.

RQ1. Does the proposed TRAJAUDITOR effectively verify
the efficacy of unlearning?

Experiment Design. We define the unlearning rate as the
proportion of trajectories that need to be forgotten within
the entire dataset (i.e., original dataset). We split the en-
tire offline dataset, collected for the mixture of medium-
expert offline dataset of each task, to the remaining dataset
and unlearning dataset across different unlearning rates, i.e.,
{0.01, 0.05, 0.10, 0.15}. We ensure that the unlearning and the
remaining datasets are collected using the same policy. The
original agent is trained on the complete offline dataset, while
the unlearned agent is trained from scratch using the remaining
dataset with 1 × 106 timesteps. Thus, the unlearning dataset
is definitely excluded from the training dataset of unlearned
agents. The number of shadow agents is 5; each fine-tuned
for only 5 × 103 timesteps starting from original agents. We
perturb the states of the trajectories over 4 rounds using noise
sampled from a Gaussian distribution with a mean of 0 and a
standard deviation of 0.05.
Result Analysis. Table I presents the precision, recall, and
F1-scores achieved by TRAJAUDITOR across agents, each
trained using distinct offline RL algorithms and subjected to
the dataset with various unlearning rates. This table shows
that TRAJAUDITOR consistently attains high F1-scores of
0.85 across agents we tested, showing its efficacy and ro-
bustness. The average precision across the investigated tasks
and unlearning rates stands at 98.9%, significantly higher
than the recall rate of 80.3%. We derive these results by
averaging the precision and recall values presented in the last
row of Table I. These results suggest that TRAJAUDITOR is

9

TABLE II: Percentages of positive predictions by TRAJAUDITOR for the unlearning dataset post unlearning method application.
Dm indicates that the remaining dataset is not subjected to unlearning. The Df,0.01 and Df,0.05 denote the unlearning dataset
with the size of 1% and 5% of the original dataset.

Tasks Algorithms Retraining (reference) Fine-tuning Random-reward TrajDeleter
Dm Df,0.01 Df,0.05 Dm Df,0.01 Df,0.05 Dm Df,0.01 Df,0.05 Dm Df,0.01 Df,0.05

Hopper

BEAR 89.0 % 2.1 % 4.2 % 87.8 % 90.9 % 79.4 % 84.2 % 62.2 30.5 % 85.1 % 0.0 % 0.0 %
BCQ 82.1 % 0.0 % 2.9 % 83.4 % 40.6 % 47.1 % 83.2 % 36.4 % 28.4 % 80.2 % 0.0 % 0.0 %
CQL 85.2 % 0.0 % 0.0 % 84.9 % 80.6 % 75.1 % 88.1 % 77.2 % 43.5 % 83.2 % 0.0 % 0.0 %
IQL 88.1 % 0.0 % 5.4 % 84.5 % 81.1 % 82.4 % 84.5 % 58.4 % 36.7 % 85.2 % 0.0 % 0.0 %

PLAS-P 45.8 % 0.0 % 0.0 % 54.3 % 77.6 % 80.7 % 57.8 % 57.1 % 46.7 % 56.3 % 40.5 % 47.5 %
TD3PlusBC 82.4 % 7.2 % 9.8 % 83.1 % 75.4 % 74.3 % 83.8 % 77.3 % 60.1 % 84.3 % 0.0 % 0.0 %

Average 78.8 % 1.6 % 3.7 % 79.7 % 74.4 % 73.2 % 80.3 % 61.4 % 41.8 % 79.1 % 6.8 % 7.9 %

Half-
Cheetah

BEAR 80.1 % 0.0 % 6.5 % 82.8 % 60.8 % 51.3 % 82.9 % 40.5 % 10.2 % 80.1 % 0.0 % 0.0 %
BCQ 80.0 % 0.0 % 0.0 % 82.7 % 70.0 % 28.0 % 79.5 % 0.0 % 0.0 % 83.1 % 0.0 % 0.0 %
CQL 82.7 % 0.0 % 0.0 % 81.7 % 66.6 % 52.6 % 81.3 % 24.6 % 0.0 % 77.9 % 0.0 % 0.0 %
IQL 78.9 % 0.0 % 0.0 % 80.7 % 0.0 % 0.0 % 84.4 % 0.0 % 0.0 % 82.0 % 0.0 % 0.0 %

PLAS-P 53.7 % 0.0 % 0.0 % 64.2 % 74.0 % 87.2 % 56.7 % 74.5 % 77.2 % 58.3 % 1.8 % 3.5 %
TD3PlusBC 75.3 % 0.0 % 0.0 % 75.6 % 45.5 % 54.7 % 82.2 % 80.0 % 25.6 % 78.2 % 0.0 % 0.0%

Average 75.1 % 0.0 % 1.1 % 78.1 % 52.8 % 45.6 % 77.8 % 36.6 % 18.8 % 76.6 % 0.3 % 0.6 %

Walker2D

BEAR 82.5 % 6.2 % 5.2 % 83.6 % 69.5 % 71.9 % 84.5 % 29.5 % 8.6 % 84.3 % 0.0 % 0.6 %
BCQ 80.2 % 0.0 % 1.4 % 78.5 % 40.6 % 31.5 % 79.8 % 21.6 % 0.0 % 79.5 % 0.0 % 0.2 %
CQL 79.3 % 0.0 % 0.9 % 84.2 % 52.7 % 64.5 % 81.5 % 46.5 % 5.3 % 82.3 % 0.0 % 0.0 %
IQL 78.9 % 0.0 % 0.0 % 78.5 % 65.2 % 49.9 % 78.0 % 48.6 % 3.5 % 77.5 % 0.0 % 0.3 %

PLAS-P 80.6 % 1.4 % 4.3 % 81.6 % 66.7 % 70.8 % 81.9 % 69.6 % 74.5 % 83.2 % 51.6 % 60.7 %
TD3PlusBC 84.6 % 1.5 % 2.1 % 84.3 % 79.7 % 58.1 % 82.8 % 79.5 % 10.5 % 84.7 % 0.0 % 1.3 %

Average 81.0 % 1.5 % 2.3 % 81.8 % 62.4 % 57.8 % 81.4 % 49.2 % 17.1 % 81.9 % 8.6 % 10.3 %

Fig. 3: The time costs (left) and F1-scores (right) achieved by
(1) our proposed TRAJAUDITOR, (2) TRAJAUDITOR without
the fine-tuning component and excluding state perturbations.
The ‘Avg’ means the average of three tasks.

more likely to identify tested trajectories not included in the
agents’ training dataset. Offline RL algorithms often suffer
from overestimating value function training [19], [38], [76],
leading to inaccurate computations of the value vectors for
trajectories, mistakenly categorizing them as excluded from
the training dataset. We study the robustness of TRAJAUDITOR
in Appendix E1.

We conduct ablation studies to highlight the importance of
generating shadow agents by fine-tuning original agents and
applying state perturbation in TRAJAUDITOR. TRAJAUDITOR-
WFP denotes the removal of state perturbations in the tested
trajectory and fine-tuning of agents from the original agents.
By directly training shadow models from scratch without
fine-tuning or state perturbation, TRAJAUDITOR is essentially
reduced to ORL-AUDITOR. Thus, we equate TRAJAUDITOR-
WFP with ORL-AUDITOR. Figure 3 shows that, on aver-
age across three tasks, TRAJAUDITOR reduces time costs
by 97.8% while achieving an F1-score that is 0.08 higher
compared to TRAJAUDITOR-WFP. These results present that
our method can enhance the TRAJAUDITOR’s performance.
Answers to RQ1: TRAJAUDITOR achieves average F1-scores
of 0.88, 0.87, and 0.88 across three tasks, tested at four differ-

ent unlearning rates. These results present that TRAJAUDITOR
accurately identifies trajectories involved in agents’ training
datasets. It is a simple yet efficient tool for assessing the
efficacy of offline reinforcement unlearning.

RQ2. How effective is TRAJDELETER?

Experiment Design. We evaluate TRAJDELETER from four
perspectives as we described in Section B. Given that the
unlearning dataset is typically a small portion of the original
dataset, we examine scenarios where 1% and 5% of the offline
dataset (i.e., unlearning rates of 0.01 and 0.05) are segregated
as unlearning datasets. The remaining portion of the dataset
is then considered as the remaining dataset. For retraining
from scratch, we follow the methodology detailed in RQ1.
The retrained agents serve as a reference for comparing other
unlearning methods (i.e., fine-tuning, random-reward, and
TRAJDELETER). The unlearning steps for the other methods
are set at 1×104, amounting to only 1% of the steps required
for retraining (1×106). The durations for “forgetting” (K) and
“convergence training” (H) are set at 8000 and 2000 timesteps,
respectively. Additionally, we set the balancing factor λ at 1
(as detailed in Section V-C).
Result Analysis. We evaluate the performance of TRA-
JDELETER from four distinct perspectives as follows.
Efficacy evaluation. Table II presents the Percentage of Posi-
tive pRedictions (PPR) made by TRAJAUDITOR, reflecting the
extent to which the target dataset continues to influence the
agents after the implementation of various unlearning methods.
The last two columns in Table II present that excluding the
average values, only 40.5%, 47.5%, 51.6%, and 60.7% of the
settings exceeded the 3.5% in these 36 values. These results
show that TRAJDELETER can efficiently eliminate the impact
of target trajectories on agents, with 32 out of 36 settings
exhibiting a PPR below 3.5% after unlearning.

10

Retraining (Reference) Fine-Tuning Random-reward TrajDeleter.Original agent

BEAR BCQ CQL IQL PLAS-P TD3+BC
0

1000

2000

3000

4000

C
um

ul
at

iv
e

R
et

ur
ns

2496

3331 3575 3570 3578 3564
Hopper, 0.01

BEAR BCQ CQL IQL PLAS-P TD3+BC
0

2500

5000

7500

10000

4358

7182

2039

6368 6047

10794
Half-Cheetah, 0.01

BEAR BCQ CQL IQL PLAS-P TD3+BC
0

1000

2000

3000

4000

5000

3015
2802

4511 4240
4065 4177

Walker2D, 0.01

BEAR BCQ CQL IQL PLAS-P TD3+BC
0

1000

2000

3000

4000

C
um

ul
at

iv
e

R
et

ur
ns

2496

3331 3575 3570 3578 3564
Hopper, 0.05

BEAR BCQ CQL IQL PLAS-P TD3+BC
0

2500

5000

7500

10000

4358

7182

2039

6368
6047

10794
Half-Cheetah, 0.05

BEAR BCQ CQL IQL PLAS-P TD3+BC
0

1000

2000

3000

4000

5000

3015
2802

4511
4240 4065 4177

Walker2D, 0.05

Fig. 4: The cumulative returns are averaged over 100 test trajectories, collected using unlearned agents trained with 5 different
random seeds. “0.01” and “0.05” represent the unlearning rates. The values beyond the gray bars indicate the cumulative
returns of the original agents.

TABLE III: The time costs required for unlearning across
TRAJDELETER and its baselines in the three tasks.

Methods Tasks
Hopper Half-Cheetah Walker2D

Retraining 200.4 min 223.4 min 199.4 min
Fine-tuning 3.7 min 3.6 min 3.2 min
Random-reward 3.5 min 3.4 min 3.2 min
TrajDeleter 3.4 min 3.2 min 3.4 min

Table II shows that the variance in PPR made by agents
unlearned using TRAJDELETER is minimal compared to the
outcomes achieved by retraining from scratch. Specifically,
after retraining, TRAJAUDITOR predicts that on average, only
2.7%, 0.55%, and 1.9%2 of the unlearned dataset continues
to influence the agent for the three tasks under investiga-
tion. In contrast, for TRAJDELETER, the average PPRs after
unlearning are 7.35%, 0.45%, and 9.45%. These results are
significantly lower than those of the baseline methods – after
fine-tuning, the PPRs are 73.8%, 44.2%, and 60.1%; while fol-
lowing the random-reward approach, the PPRs stand at 51.6%,
27.7%, and 33.2%. By calculating the difference in average
PPRs across the remaining dataset Dm for three tasks, the
PPRs for the remaining dataset exhibit only slight variations
post-retraining, with a mere 0.9% increase compared to the
retraining method. TRAJDELETER maintains the integrity of
the trajectories’ memory within the remaining dataset.

Fidelity evaluation. Figure 4 displays the averaged cumulative
returns, calculated by averaging both the mean and variance
across 100 test trajectories. As illustrated in Figure 4, the un-
learned agents have a comparable performance level compared
to those of the agents retrained from scratch. Specifically, the
average cumulative returns demonstrate a marginal difference

2Note that these figures are calculated as the mean value of PPR across two
unlearning rates: (1.6% + 3.7%) / 2 = 2.7%, (0.0% + 1.1%) / 2 = 0.55%, and
(1.5% + 2.3%) / 2 = 1.9%. The other percentages mentioned in this paragraph
are derived using the same method.

2.0 3.0 4.0 5.0 6.0
N

6.0

5.0

4.0

3.0

2.0

M

0.88 0.90 0.89 0.90 0.90

0.85 0.88 0.88 0.88 0.90

0.83 0.89 0.89 0.89 0.89

0.77 0.72 0.89 0.87 0.87

0.72 0.76 0.87 0.71 0.72
0.70

0.75

0.80

0.85

0.90

0.95

Fig. 5: The average F1-score of TRAJAUDITOR (the unlearning
rate is 0.01) for the Half-Cheetah task across M and N .

of 2.2%, 0.9%, and 1.6% between the unlearned agents using
TRAJDELETER and those subjected to the retraining method.
These results suggest that TRAJDELETER does not negatively
impact the performance of unlearned agents in real-world
interactions, demonstrating the high practicality of our method.
More analysis are provided in Appendix D2.

Efficiency evaluation. Table III presents the averaged time
costs required for unlearning across TRAJDELETER and its
baselines in three tasks. TRAJDELETER requires only 3.4, 3.2,
and 3.4 minutes for tasks, significantly less than the 200.4,
223.4, and 100.4 minutes required for retraining from scratch.
These results present that TRAJDELETER requires only 1.5%
of the time compared to retraining from scratch.
Agent agnostic evaluation. We have selected six offline RL
algorithms to train agents, determining the efficacy of TRA-
JDELETER in unlearning specific trajectories. Most agents (32
out of 36) can effectively forget the target trajectories without
substantial degradation in performance. However, Table II
shows that TRAJDELETER achieves over 40.5% PPR when
unlearning agents trained using the PLAS-P algorithm in
Hopper and Walker2D. These results could be attributed
to inaccuracies in TRAJAUDITOR. As shown in Table I,
TRAJAUDITOR gets explicitly low recall rates (e.g., with an
unlearning rate of 0.01, the recall rate for the Hopper task is
54.01%) for agents trained using PLAS-P.

11

TABLE IV: The relative changes in percentages of positive
predictions of TRAJAUDITOR on remaining dataset Dm and
unlearning dataset Df , and average returns of unlearned agents
just using “forgetting”, when compared with its performance
after doing “convergence training”. The symbols ‘↓’, ‘↑’, and
‘-’ denote decreases, increases, and no changes.

Tasks Algorithms Dm

Unlearning rates
0.01 0.05

Df Returns Df Returns

Hopper

BEAR ↓2.1% - 0.0 % ↓1499 - 0.0 % ↓1429
BCQ ↓7.2% - 0.0 % ↓2271 - 0.0 % ↓2562
CQL ↓1.3% - 0.0 % ↓1903 - 0.0 % ↓852
IQL - 0.0% - 0.0 % ↓345 - 0.0 % ↓980

PLAS-P ↓45.5% ↑0.7 % ↓1783 - 0.0 % ↓1732
TD3PlusBC ↓1.4% - 0.0 % ↑20 - 0.0 % ↓75

Average ↓9.6% ↑ 0.1% ↓1297 -0.0% ↓1272

Half-
Cheetah

BEAR - 0.0% - 0.0 % ↑772 - 0.0 % ↑611
BCQ ↓13.2% - 0.0 % ↑535 - 0.0 % ↑451
CQL ↓4.2% - 0.0 % ↓100 - 0.0 % ↓344
IQL - 0.0% - 0.0 % ↑382 - 0.0 % ↑431

PLAS-P ↓1.9% ↑0.1 % ↓102 - 0.0 % ↓105
TD3PlusBC ↓32.1% - 0.0 % ↑218 - 0.0 % ↓312

Average ↓8.6% - 0.0% ↑284 - 0.0% ↑122

Walk-
er2D

BEAR ↓5.9% - 0.0 % ↓134 - 0.0 % ↓755
BCQ ↓6.1% - 0.0 % ↑258 - 0.0 % ↑104
CQL ↓10.1% - 0.0 % ↓2712 - 0.0 % ↓2064
IQL - 0.0 % - 0.0 % ↓101 - 0.0 % ↑289

PLAS-P ↓2.1% ↑3.1 % ↑121 ↑2.9 % ↓885
TD3PlusBC - 0.0% - 0.0 % ↓488 - 0.0 % ↓144

Average ↓4.0% ↑0.5% ↓509 ↑0.5% ↓576

Answers to RQ2: The average PPRs after unlearning are
7.35%, 0.45%, and 9.45% for investigated tasks, meaning that
TRAJDELETER unlearns 92.7%, 99.5%, 90.5% of the target
trajectories. Yet TRAJDELETER maintains robust performance
in actual environment interactions. The fact that 32 out of 36
settings display a PPR below 3.5% shows the superior agent-
agnostic capability of TRAJDELETER.

RQ3. How do hyper-parameters affect the TRAJDELETER?

Experiment Design. This section first explores the impact
of the forgetting learning steps, K, and the balancing factor,
λ, on the unlearning performance of TRAJDELETER. The
forgetting steps, K = {0, 2000, 4000, 6000, 8000}. The bal-
ancing factor λ is to balance the unlearning on forgetting
datasets and training on remaining datasets, thereby preventing
deterioration in the agent’s performance. We have configured
it with values {0.25, 0.5, 0.75, 1.0, 1.5}. Then, to explore the
impact of the number of shadow models and perturbation
rounds in TRAJAUDITOR, denoted as N and M , we vary these
parameters across the values {2, 3, 4, 5, 6}.
Result Analysis. The first, second, and third subfigures in
Figure 6 present the average trends in cumulative reward
and Percentage of Positive pRedictions (PPR) as obtained
by TRAJAUDITOR for the unlearned agents across varying
forgetting training steps. As the number of forgetting steps
increases from 0 to 8000, the average PPRs of unlearned
agents decrease from 74.4%, 52.8%, and 62.4% to 7.9%, 0.6%,
and 10.5% for the three tasks, respectively. In contrast, the
agents’ performance remains consistent. As illustrated in the
fourth subfigure of Figure 6, when the forgetting training is
adequate, the λ exerts minimal influence on the performance

TABLE V: The average returns of the poisoned and unlearned
agents. The values in parentheses are the relative changes
compared to agents retrained on a non-poisoned dataset.

Methods Poisoning
rates

Tasks
Hopper Half-Cheetah Walker2D

Retraining - 3357 5761 3868

Poisoning
0.01 2169 (-35.4%) 5263 (-8.6%) 3127 (-19.2%)
0.05 2059 (-38.6%) 5455 (-5.3%) 3158 (-18.4%)

Average 2114 (-37.0%) 5359 (-7.0%) 3158 (-18.8%)

Trajdeleter
0.01 3299 (-1.7%) 6029 (+4.6%) 3949 (+2.1%)
0.05 3421 (+1.9%) 5679 (-1.4%) 3855 (-0.3%)

Average 3360 (+0.1%) 5854 (+1.6%) 3902 (+0.9%)

of TRAJDELETER. Moreover, the last subfigure in Figure 6
indicates that when the number of forgetting steps is small,
an increase in λ can enhance the unlearning efficiency of
TRAJDELETER. Overall, K exhibits greater sensitivity than
λ, suggesting that the primary focus should be tuning K.
Figure 5 presents the average F1-score of TRAJAUDITOR
across agents trained with six offline RL algorithms for the
Half-Cheetah task, varying the parameters M and N . In
this figure, we observe that as the numbers of M and N
increase, the F1 scores rise from 0.71 to a plateau of 0.90.
We provide a more comprehensive analysis in Appendix D3.

Answers to RQ3: With an increase in the number of forgetting
steps, the performance of TRAJDELETER improves, leading
to the unlearned agent forgetting more trajectories. When the
number of forgetting steps is high, TRAJDELETER exhibits
minimal sensitivity to changes in the balancing factor’s value.

VIII. DISCUSSIONS

A. Ablation Studies

This section conducts ablation studies to emphasize the
importance of “convergence training” in the effectiveness
of TRAJDELETER. Our experiments focus solely on imple-
menting “forgetting” training with TRAJDELETER, aimed at
unlearning the 1% dataset, without engaging in convergence
training. In this experiment, the unlearning rates are set
at 0.01 and 0.05. The results are illustrated in Table IV.
We observe that “convergence training” leads to stronger
TRAJDELETER. We attribute the observed outcomes to the
following reasons: In the absence of convergence training
for the three tasks: (1) at an unlearning rate of 0.05, the
average cumulative returns of agents show changes of 1272,
122, and 576, respectively, with corresponding PPR changes
on the unlearning dataset Df of 0.0%, 0.0%, and 0.5%; (2)
TRAJAUDITOR experiences reductions in the average per-
centages of positive predictions by 9.6%, 8.6%, and 4.0%
on the remaining dataset. These findings suggest that while
convergence training has a minimal impact on the unlearning
trajectories, it assists in enhancing the performance of the
unlearned agent. Furthermore, it helps in preventing adverse
effects on the trajectories within the remaining dataset.

B. Defending Against Trajectory Poisoning

We also conduct experiments to investigate the effectiveness
of TRAJDELETER in defending against trajectory poisoning
attacks. We poison the original dataset by adjusting the action

12

Fig. 6: The influence of forgetting learning steps, K, and the balancing factor, λ, on the unlearning performance of
TRAJDELETER. Yellow points denote the average percentages of Positive Predictions (Post. Pred.) by TRAJAUDITOR for
unlearned agents, aligning with the left y-axis. Shaded areas denote the standard deviation. Light blue bars illustrate the
average returns, corresponding to the right y-axis, with the error bars meaning standard deviations. The unlearning rate is 0.05.

values in the trajectories to be 1.5 times their mean value.
This modification is applied to only 5% of the whole dataset.
Poisoning rates denote the fraction of generated poisoned
trajectories in the whole dataset.

All other experimental settings remain consistent with those
used for training the original agent. Table V shows the
averaged returns of the poisoned agents, compared with those
of agents after unlearning poisoned trajectories. After training
the agents on a poisoned dataset, we observe a decrease in
their average performance, which is 37.0%, 7.0%, and 18.8%
across the three tasks under investigation. TRAJDELETER can
mitigate the effects of poisoning in agents, thereby enhancing
their performance to match that of agents who have been
retrained on a non-poisoned dataset from scratch.

C. The Impact of Repeated Unlearning

This section explores how repeated learning and unlearning
of the same trajectories impact the averaged returns of agents.
We repeatedly unlearn and learn the same trajectories with
unlearning rates of 0.01 and 0.05, doing so {1, 3, 7, 10} times
respectively, and record the averaged returns of agents trained
using six offline RL algorithms in Table VI. Referring to the
experiments in RQ1 and RQ2, the learning and unlearning
phases consist of 1×106 and 1×104 timesteps, respectively.
Table VI shows no decreasing trend in the agent’s cumulative
returns with an increasing number of repeated learning cycles.
In particular, compared to the original agents, the largest
relative change in this table for agents that have repeatedly
learned and removed the same trajectories is 4.0%. In most
cases, the relative changes are less than 2%. While the agent’s
performance exhibits fluctuations, this variability is a natural
aspect of training, commonly observed in offline RL [40].
We believe that repeatedly unlearning and relearning the same
trajectories do not lead to damage to agents’ performance.

D. Limitation

Legal Uncertainty. The approach most aligned with require-
ments of data protection regulations is to retrain the ML model.
However, this approach is overly expensive in modern ML.
Approximate unlearning has been proposed as a compromise
that does not fully delete every impact of the data to be deleted,
but is much more efficient [64], [74], and TRAJDELETER fol-
lows these works. Certified unlearning [64] offers a theoretical

TABLE VI: The averaged returns of the agents which are mea-
sured through the repeatedly addition and removal of learning
specific trajectories. The values in parentheses represent the
relative changes compared to the original agent’s return.

Times Unlearning
rates

Tasks
Hopper Half-Cheetah Walker2D

1 0.01 3473 (+3.4%) 5788 (+0.4%) 3946 (+2.5%)
0.05 3493 (+4.0%) 5692 (-1.1%) 3929 (+1.6%)

3 0.01 3294 (-1.8%) 5832 (+1.2%) 3829 (-1.0%)
0.05 3401 (+1.3%) 5701 (-1.0%) 3782 (-2.2%)

7 0.01 3449 (+2.7%) 5678 (-1.4%) 3892 (+0.6%)
0.05 3378 (+0.6%) 5636 (-2.1%) 3832 (-0.9%)

10 0.01 3411 (+1.6%) 5712 (-0.8%) 3910 (+1.1%)
0.05 3409 (+1.5%) 5865 (+1.8%) 3783 (-2.2%)

guarantee that the output of unlearned models closely matches
that of retrained models, potentially aiding legal compliance.
We discuss more in Appendix E4.
Potential Attacks. One potential attack is recovery, where
an adversary attempts to reconstruct individual data entries
from the training datasets of models [3]. While unlearning
complicates the data recovery process, the frequent application
of unlearning and subsequent parameter modifications increase
the difficulty for attackers attempting to retrieve specific data.
However, preventing data recovery from unlearned models is
a challenging problem [9], [43], and this attack is possible
even for retraining [3]. In some cases, model owners may
deceive users by not performing unlearning. Even when model
owners genuinely implement unlearning, previous research has
suggested that the output distributions of both learned and
unlearned models can be utilized to construct feature vectors
to train the attack model [43].
Effectiveness Uncertainty. It is noticed that as an approximate
method, the unlearning effect of TRAJDELETER relies on
the effectiveness of the trajectories auditing method, i.e.,
TRAJAUDITOR; this is a common practice [64], [66]. We
advocate enhancing the auditor tool to improve the reliability
of unlearning effectiveness. We discuss more in Appendix E3.

IX. RELATED WORKS

We discuss related work briefly here, and we provide a more
comprehensive discussion in Appendix F.
Offline RL for Real Applications Recently, offline RL
systems work brilliantly on a wide range of real-world
fields, including healthcare [46], [15], energy management

13

systems [71], [75], and autonomous driving [72], [28]. In
healthcare, online RL is not suitable, as it is ethically and
practically problematic to experiment with patients’ health.
Mila et al. [46] used advanced offline RL to develop a policy
for sepsis treatment optimization. In various areas, offline RL
methods are more efficient than online RL methods [71], [35].
Deep Machine Unlearning Deep machine unlearning [5], [7],
[64], [59] refers to eliminating the knowledge of specific data
point(s) on the already trained Deep Neural Networks (DNNs).
In general, deep machine unlearning is categorized into two
main groups: exact unlearning [5], [29], [67] and approximate
unlearning methods [23], [22], [11]. Exact unlearning involves
retraining the DNN from scratch without the data meant to
be forgotten, which is computationally demanding due to
large datasets [53]. Bourtoule et al. [5] proposed the SISA
method by splitting the dataset into non-overlapping shards,
allowing retraining on just one shard. Unlike exact unlearning,
approximate unlearning estimates DNN parameters similar to
retraining from scratch [66], [23], [21], [59]. Various recent
works also studied certified unlearning definitions [32], [34].
Certified Unlearning Certified unlearning ensures that un-
learned models are theoretically indistinguishable from those
retrained from scratch [32], [34], [64]. Guo et al.[32] have
made the distributions of unlearned and retrained models
nearly identical. Warnecke et al. [64] introduced a certified
unlearning for the features and labels unlearning.

X. CONCLUSIONS

This paper introduces TRAJDELETER, the first practical
trajectory-level unlearning method designed specifically for
offline RL agents. TRAJDELETER enables agents to erase the
influence of the target trajectory and “forget” it. This paper
emphasizes approximate unlearning, which focuses more on
classic supervised learning. To verify if trajectories are truly
forgotten, we introduce TRAJAUDITOR to evaluate the success
of TRAJDELETER in completely removing the influence of
specific trajectories from the offline RL agent, paving the
path for unlearning study. For unlearning target trajectories,
TRAJDELETER is to prompt the agent to exhibit declining
performance when encountering states linked to unlearning
trajectories while preserving its original performance level
for other remaining trajectories. Our evaluations present that
TRAJDELETER consistently forgets the trajectories efficiently
while maintaining strong performance in real interactions.

ACKNOWLEDGMENT

We thank anonymous reviewers for valuable comments.
This paper was partially supported by NSF CNS-2350333.

REFERENCES

[1] N. AlHinai, “Introduction to biomedical signal processing and artificial
intelligence,” in Biomedical signal processing and artificial intelligence
in healthcare. Elsevier, 2020, pp. 1–28.

[2] M. Andrychowicz, A. Raichuk, P. Stańczyk et al., “What matters
for on-policy deep actor-critic methods? a large-scale study,” in The
International Conference on Learning Representations (ICLR), 2021.

[3] M. Bertran, S. Tang, M. Kearns, J. Morgenstern, A. Roth, and Z. S.
Wu, “Reconstruction attacks on machine unlearning: Simple models are
vulnerable,” arXiv preprint arXiv:2405.20272, 2024.

[4] F. Boenisch, “A systematic review on model watermarking for neural
networks,” Frontiers in big Data, vol. 4, p. 729663, 2021.

[5] L. Bourtoule, V. Chandrasekaran, C. A. Choquette-Choo et al., “Machine
unlearning,” in 2021 IEEE Symposium on Security and Privacy (SP),
2021, pp. 141–159.

[6] G. Brockman, V. Cheung, L. Pettersson et al., “Openai gym,” arXiv
preprint arXiv:1606.01540, 2016.

[7] J. Brophy and D. Lowd, “Machine unlearning for random forests,” in
Proceedings of the 38th International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, M. Meila and T. Zhang,
Eds., vol. 139, 18–24 Jul 2021, pp. 1092–1104.

[8] N. Carlini, S. Chien, M. Nasr et al., “Membership inference attacks from
first principles,” in 2022 IEEE Symposium on Security and Privacy (SP),
2022, pp. 1897–1914.

[9] M. Chen, Z. Zhang, T. Wang, M. Backes, M. Humbert, and Y. Zhang,
“When machine unlearning jeopardizes privacy,” in Proceedings of
the 2021 ACM SIGSAC conference on computer and communications
security, 2021, pp. 896–911.

[10] M. Chen, Z. Zhang, T. Wang et al., “Graph unlearning,” in Proceedings
of the 2022 ACM SIGSAC Conference on Computer and Communica-
tions Security, 2022, p. 499–513.

[11] V. S. Chundawat, A. K. Tarun, M. Mandal, and M. Kankanhalli, “Zero-
shot machine unlearning,” IEEE Transactions on Information Forensics
and Security, vol. 18, pp. 2345–2354, 2023.

[12] J. Degrave, F. Felici, J. Buchli et al., “Magnetic control of tokamak
plasmas through deep reinforcement learning,” Nature, vol. 602, no.
7897, pp. 414–419, 2022.

[13] L. Du, M. Chen, M. Sun et al., “Orl-auditor: Dataset auditing in offline
deep reinforcement learning,” arXiv preprint arXiv:2309.03081, 2023.

[14] C. Dwork, F. McSherry, K. Nissim, and A. D. Smith, “Calibrating noise
to sensitivity in private data analysis,” in TCC, 2006, pp. 265–284.

[15] H. Emerson, M. Guy, and R. McConville, “Offline reinforcement learn-
ing for safer blood glucose control in people with type 1 diabetes,” J.
Biomed. Informatics, 2023.

[16] H. Foley, L. Fowl, T. Goldstein, and G. Taylor, “Execute order 66:
Targeted data poisoning for reinforcement learning,” CoRR, 2022.
[Online]. Available: https://arxiv.org/abs/2201.00762

[17] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine, “D4rl: Datasets
for deep data-driven reinforcement learning,” 2021.

[18] S. Fujimoto and S. S. Gu, “A minimalist approach to offline reinforce-
ment learning,” in Advances in Neural Information Processing Systems,
vol. 34. Curran Associates, Inc., 2021, pp. 20 132–20 145.

[19] S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep reinforcement
learning without exploration,” in International Conference on Machine
Learning, 2019, pp. 2052–2062.

[20] D. Georgiou and C. Lambrinoudakis, “Compatibility of a security policy
for a cloud-based healthcare system with the EU general data protection
regulation (GDPR),” Inf., vol. 11, no. 12, p. 586, 2020.

[21] A. Golatkar and A. Achille, “Forgetting outside the box: Scrubbing deep
networks of information accessible from input-output observations,” in
ECCV 2020, vol. 12374, 2020, pp. 383–398.

[22] A. Golatkar, A. Achille, A. Ravichandran et al., “Mixed-privacy forget-
ting in deep networks,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2021, pp. 792–801.

[23] A. Golatkar, A. Achille, and S. Soatto, “Eternal sunshine of the spotless
net: Selective forgetting in deep networks,” in IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 9301–9309.

[24] M. Gomrokchi, S. Amin, H. Aboutalebi, A. Wong, and D. Precup,
“Membership inference attacks against temporally correlated data in
deep reinforcement learning,” 2022.

[25] C. Gong, K. Li, J. Yao, and T. Wang, “Trajdeleter: Enabling trajectory
forgetting in offline reinforcement learning agents,” arXiv preprint
arXiv:2404.12530, 2024.

[26] C. Gong, Z. Yang, Y. Bai et al., “Mind your data! hiding backdoors in
offline reinforcement learning datasets,” arXiv:2210.04688, 2022.

[27] C. Gong, Z. Yang, Y. Bai, J. Shi, A. Sinha, B. Xu, D. Lo, X. Hou,
and G. Fan, “Curiosity-driven and victim-aware adversarial policies,”
in Proceedings of the 38th Annual Computer Security Applications
Conference, ser. ACSAC ’22, 2022, p. 186–200.

[28] D. Graves, N. M. Nguyen, K. Hassanzadeh et al., “Learning robust
driving policies without online exploration,” in IEEE International
Conference on Robotics and Automation, ICRA, 2021.

14

https://arxiv.org/abs/2201.00762

[29] L. Graves, V. Nagisetty, and V. Ganesh, “Amnesiac machine learning,”
in Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021.
AAAI Press, 2021, pp. 11 516–11 524.

[30] E. Greensmith, P. L. Bartlett, and J. Baxter, “Variance reduction tech-
niques for gradient estimates in reinforcement learning,” J. Mach. Learn.
Res., vol. 5, pp. 1471–1530, 2004.

[31] F. E. Grubbs, “Sample criteria for testing outlying observations,” The
Annals of Mathematical Statistics, vol. 21, no. 1, pp. 27–58, 1950.

[32] C. Guo, T. Goldstein, A. Hannun, and L. Van Der Maaten, “Certified
data removal from machine learning models,” in Proceedings of the
37th International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, vol. 119, 2020, pp. 3832–3842.

[33] T. Guo, S. Guo, J. Zhang, W. Xu, and J. Wang, “Efficient attribute
unlearning: Towards selective removal of input attributes from feature
representations,” arXiv preprint arXiv:2202.13295, 2022.

[34] Z. Izzo, M. Anne Smart, K. Chaudhuri et al., “Approximate data
deletion from machine learning models,” in Proceedings of The 24th
International Conference on Artificial Intelligence and Statistics, vol.
130. PMLR, 2021, pp. 2008–2016.

[35] H. Kim, M. Kim, F. Berto et al., “Devformer: A symmetric transformer
for context-aware device placement,” in International Conference on
Machine Learning, ICML, vol. 202, pp. 16 541–16 566.

[36] I. Kostrikov, A. Nair, and S. Levine, “Offline reinforcement learning
with implicit q-learning,” in International Conference on Learning
Representations, 2022.

[37] A. Kumar, J. Fu, M. Soh, G. Tucker, and S. Levine, “Stabilizing off-
policy q-learning via bootstrapping error reduction,” Advances in Neural
Information Processing Systems, vol. 32, 2019.

[38] A. Kumar, A. Zhou, G. Tucker, and S. Levine, “Conservative q-learning
for offline reinforcement learning,” in NeurIPS, 2020.

[39] M. Lejeune, “California consumer privacy act - erste ansätze einer
annäherung zu prinzipien der DSGVO in den USA,” Comput. und Recht,
vol. 34, no. 9, pp. 569–576, 2018.

[40] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement
learning: Tutorial, review, and perspectives on open problems,” 2020.

[41] Y. Li, Y. Bai, Y. Jiang et al., “Untargeted backdoor watermark: Towards
harmless and stealthy dataset copyright protection,” Advances in Neural
Information Processing Systems, vol. 35, pp. 13 238–13 250, 2022.

[42] Z. Li, F. Nie, Q. Sun et al., “Boosting offline reinforcement learning for
autonomous driving with hierarchical latent skills,” 2023.

[43] H. Liu, P. Xiong, T. Zhu, and P. S. Yu, “A survey on machine
unlearning: Techniques and new emerged privacy risks,” arXiv preprint
arXiv:2406.06186, 2024.

[44] Y. Ma, X. Zhang, W. Sun, and J. Zhu, “Policy poisoning in batch
reinforcement learning and control,” in Advances in Neural Information
Processing Systems, 2019, pp. 14 543–14 553.

[45] V. Mnih, A. P. Badia, M. Mirza et al., “Asynchronous methods for
deep reinforcement learning,” in Proceedings of The 33rd International
Conference on Machine Learning, 2016, pp. 1928–1937.

[46] M. Nambiar, S. Ghosh, P. Ong et al., “Deep offline reinforcement learn-
ing for real-world treatment optimization applications,” in Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, 2023.

[47] OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej et al., “Solving
rubik’s cube with a robot hand,” CoRR, vol. abs/1910.07113, 2019.

[48] X. Pan, W. Wang, X. Zhang, B. Li, J. Yi, and D. Song, “How you act
tells a lot: Privacy-leaking attack on deep reinforcement learning.” in
AAMAS, vol. 19, no. 2019, 2019, pp. 368–376.

[49] V. M. Panaretos and Y. Zemel, “Statistical aspects of wasserstein
distances,” Annual review of statistics and its application, 2019.

[50] R. F. Prudencio, M. R. O. A. Maximo, and E. L. Colombini, “A survey
on offline reinforcement learning: Taxonomy, review, and open prob-
lems,” IEEE Transactions on Neural Networks and Learning Systems,
2023.

[51] A. Sekhari, J. Acharya, G. Kamath, and A. T. Suresh, “Remember what
you want to forget: Algorithms for machine unlearning,” Advances in
Neural Information Processing Systems, pp. 18 075–18 086, 2021.

[52] T. Seno and M. Imai, “d3rlpy: An offline deep reinforcement learning
library,” Journal of Machine Learning Research, vol. 23, pp. 1–20, 2022.

[53] M. Shoeybi, M. Patwary, R. Puri et al., “Megatron-lm: Training multi-
billion parameter language models using model parallelism,” CoRR, vol.
abs/1909.08053, 2019.

[54] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in 2017 IEEE
Symposium on Security and Privacy (SP), 2017, pp. 3–18.

[55] B. Singh, R. Kumar, and V. P. Singh, “Reinforcement learning in robotic
applications: a comprehensive survey,” Artif. Intell. Rev., 2022.

[56] P. Sodhi, F. Wu, E. R. Elenberg et al., “On the effectiveness of offline
RL for dialogue response generation,” in International Conference on
Machine Learning, ICML, vol. 202, 2023, pp. 32 088–32 104.

[57] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[58] Tessian, “How the great resignation is creating more security
challenges.” 2021. [Online]. Available: https://www.tessian.com/blog/
how-the-great-resignation-is-creating-more-security-challenges/

[59] A. Thudi, G. Deza, V. Chandrasekaran et al., “Unrolling SGD: under-
standing factors influencing machine unlearning,” in 7th IEEE European
Symposium on Security and Privacy. IEEE, 2022, pp. 303–319.

[60] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2012, pp. 5026–5033.

[61] S. Tosatto, M. Pirotta, C. D’Eramo, and M. Restelli, “Boosted fitted
q-iteration,” in Proceedings of the 34th International Conference on
Machine Learning, vol. 70. PMLR, 2017, pp. 3434–3443.

[62] S. Verma, J. Fu, S. Yang, and S. Levine, “CHAI: A chatbot AI for task-
oriented dialogue with offline reinforcement learning,” in Proceedings
of the North American Chapter of the Association for Computational
Linguistics, NAACL, 2022.

[63] S. Wang, X. Chen, D. Jannach, and L. Yao, “Causal decision transformer
for recommender systems via offline reinforcement learning,” 2023.

[64] A. Warnecke, L. Pirch, C. Wressnegger et al., “Machine unlearning of
features and labels,” in 30th Annual Network and Distributed System
Security Symposium, NDSS, 2023.

[65] Y. Wu, J. McMahan, X. Zhu et al., “Reward poisoning attacks on offline
multi-agent reinforcement learning,” in Thirty-Seventh AAAI Conference
on Artificial Intelligence, AAAI, 2023, pp. 10 426–10 434.

[66] H. Xu, T. Zhu, L. Zhang, W. Zhou, and P. S. Yu, “Machine unlearning:
A survey,” ACM Comput. Surv., vol. 56, no. 1, pp. 9:1–9:36, 2024.

[67] H. Yan, X. Li, Z. Guo et al., “ARCANE: an efficient architecture for ex-
act machine unlearning,” in Proceedings of the Thirty-First International
Joint Conference on Artificial Intelligence, IJCAI 2022, pp. 4006–4013.

[68] Y. Yang and ufuk topcu, “Value-based membership inference attack
on actor-critic reinforcement learning,” 2023. [Online]. Available:
https://openreview.net/forum?id=wKIxJKTDmX-

[69] J. Yao, E. Chien, M. Du, X. Niu, T. Wang, Z. Cheng, and X. Yue,
“Machine unlearning of pre-trained large language models,” 2024.

[70] D. Ye, T. Zhu, C. Zhu, D. Wang, S. Shen, W. Zhou et al., “Reinforcement
unlearning,” arXiv preprint arXiv:2312.15910, 2023.

[71] X. Zhan, H. Xu, Y. Zhang, X. Zhu, H. Yin, and Y. Zheng, “Deepthermal:
Combustion optimization for thermal power generating units using
offline reinforcement learning,” in AAAI, 2022.

[72] L. Zhang, R. Zhang, T. Wu, R. Weng, M. Han, and Y. Zhao, “Safe
reinforcement learning with stability guarantee for motion planning of
autonomous vehicles,” IEEE Trans. Neural Networks Learn. Syst., 2021.

[73] Q. Zhang, J. Liu, Y. Dai et al., “Multi-task fusion via reinforcement
learning for long-term user satisfaction in recommender systems,” in
The 28th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, 2022, pp. 4510–4520.

[74] Q. Zhang, C. Yang, J. Lou et al., “Contrastive unlearning: A contrastive
approach to machine unlearning,” arXiv:2401.10458, 2024.

[75] X. Zhang, J. Sun, C. Gong et al., “Mutual information as intrinsic reward
of reinforcement learning agents for on-demand ride pooling,” arXiv
preprint arXiv:2312.15195, 2023.

[76] W. Zhou, S. Bajracharya, and D. Held, “Plas: Latent action space for
offline reinforcement learning,” in Proceedings of the 2020 Conference
on Robot Learning, 2021, pp. 1719–1735.

APPENDIX

Due to space limitations, please refer to the full ver-
sion [25] for more detailed appendices.

A. Investigated Tasks and the Dataset

We carry out experiments across three of MuJoCo’s
robotic control tasks (Hopper, Half-Cheetah, and

15

https://www.tessian.com/blog/how-the-great-resignation-is-creating-more-security-challenges/
https://www.tessian.com/blog/how-the-great-resignation-is-creating-more-security-challenges/
https://openreview.net/forum?id=wKIxJKTDmX-

TABLE VII: Information of each task and the dataset.

Environments Tasks Chosen Datasets Observations Action Shape Action Type Data Size Task Type

MuJoCo [60]
Hopper “hopper-medium-expert” 11 3 Continuous 2× 106 Robotic Control
Half-Cheetah “halfcheetah-medium-expert” 17 6 Continuous 2× 106 Robotic Control
Walker2D “walker2d-medium-expert” 17 6 Continuous 2× 106 Robotic Control

Walker2D) [60]. In the three robotic control tasks, there is a
sensor to monitor the state of the game, collecting information
about the robot. Information collected from the sensor is used
to observe the agent. In particular, the observation in Hopper
is a vector of size 11. Observation in Half-Cheetah and
Walker2D is a 17-dimensional vector. These vectors record
the positions, velocities, angles, and angular velocities of
different components of a robot.

The datasets used for these tasks are sourced from
D4RL [17], a recently introduced and mostly studied bench-
mark for evaluating offline RL algorithms. D4RL provides a
variety of datasets for four tasks, gathered through diverse poli-
cies, including medium, random, medium-replay, and medium-
expert. We select the dataset that yields the highest returns for
each task. We summarize the overview of datasets investigated
in our experiments in Table VII.

B. Principles in Offline Reinforcement Unlearning

Drawing upon principles from unlearning in supervised
learning [64], [33], we define that an optimal offline reinforce-
ment unlearning method must adhere to properties as follows.
Efficacy. The primary objective for successful offline rein-
forcement learning is to erase as much as possible the agent’s
memory of the target trajectories. As this paper pioneers the
concept of an unlearning method for offline RL, there is no
established criterion to verify the effectiveness of unlearning
within this area. Consequently, Section IV introduces a metric
designed to assess unlearning in offline reinforcement learning.
Fidelity. An unlearning method is valuable only when it
retains the performance of unlearned agents closely aligned
with the original agents. Our objective is that the unlearned
agent will not experience significant performance degradation.
This property evaluates how well the model retains knowledge
of the trajectories that are not intended to be forgotten.
Efficiency. A direct unlearning approach involves retraining
agents from scratch on a dataset that excludes the target
trajectories. However, this approach entails substantial runtime
and storage overheads. The ideal unlearning method should
minimize computational resource usage while ensuring that
the unlearned agents perform as the retrained agent.
Agent Agnostic. The optimal approach for implementing of-
fline reinforcement unlearning should be universally applicable
across agents trained with various algorithms, which means
that the objectives mentioned above should be met by any
agent performing that unlearning strategy.

C. Offline RL Algorithms

This section introduces six investigated offline RL algo-
rithms in our experiments. We provide a detailed discussion of

the offline RL algorithms in Appendix D of our full paper [25].

D. Supplementary experiments

1) Error-Based Auditing: This section investigates the vari-
ations in expected TD error (as described in Eq. (6)) between
trajectories that are included in and excluded from the agent’s
training dataset. Thus, we can assess whether TD error is an
effective auditing metric. TD error quantifies the difference
between the expected reward that a model anticipates for
a specific action in a given state and the actual reward it
observes, in addition to the predicted reward for the next
state. This prediction relies on the agent’s current policy and
value function. This error shares similar concepts with loss
in supervised learning. The ideal assumption is that the TD
errors of trajectories included in the tested agents’ training
dataset would be significantly smaller than those obtained from
trajectories excluded from the tested agents’ training dataset.

Appendix E.1 our full paper [25] presents that there is
minimal difference in TD errors between trajectories included
in the agents’ training dataset and those excluded from it.
When the trajectories in the unlearning dataset and remaining
dataset are collected using different behavior policies (unlearn-
ing dataset from the ‘expert’ policy and remaining dataset from
the ‘medium’ policy), a significant difference is observed.

As shown in Table X of the full version of our paper [25],
the difference in TD errors may simply caused by the trajec-
tories’ collected policies. These results suggest that TD error
may not be a suitable metric for auditing.

2) Fidelity evaluation of TRAJDELETER: Appendix E.2
our full paper [25] presents that agents unlearned through
TRAJDELETER exhibit a performance level that closely
matches that of agents retrained from the ground up. Specif-
ically, the average cumulative returns reveal only a slight
variance when comparing the unlearned agents using TRA-
JDELETER to those undergoing the retraining process. This
finding implies that TRAJDELETER does not detrimentally
affect the agents’ operational effectiveness in actual environ-
ments, thus underscoring the practical viability of our method.
When using the random-reward method for unlearning, there
is an average performance decrease of 11.4% (we derived
this figure by averaging the performance changes relative
to those of retrained agents) in the agents, indicating that
trajectories involving random rewards can detrimentally affect
the performance of unlearned agents. Employing the fine-
tuning method for unlearning agents results in only minimal
performance degradation. However, as illustrated in Table II,
fine-tuning fails to effectively eliminate the impact of target
trajectories on the original agents. Consequently, the fine-
tuning approach is not an optimal method for unlearning.

16

0 2000 4000 6000 8000 10000
H

0

1000

2000

3000

C
um

ul
at

iv
e

R
et

ur
ns Hopper

0 2000 4000 6000 8000 10000
H

0

2000

4000

6000

Half-Cheetah

0 2000 4000 6000 8000 10000
H

0

2000

4000
Walker-2D

8.0 7.9 7.9 7.8 8.0 7.8
0.6 0.6 0.6 0.7 0.6 0.6

0

25

50

Po
st

.P
re

d.
 (%

)

11.0 10.5 10.8 10.2 10.8 10.6

Fig. 7: The influence of convergence learning steps, H , on the unlearning performance of TRAJDELETER. Yellow points denote
the average percentages of Positive Predictions (Post. Pred.) by TRAJAUDITOR for unlearned agents, aligning with the left
y-axis. Shaded areas denote the standard deviation. Light blue bars illustrate the average returns, corresponding to the right
y-axis, with the error bars indicating their standard deviation. The unlearning rate is 0.01.

3) Hyper-Parameter Analysis: As defined in Section VI-D,
higher averaged cumulative returns indicate better overall
utility of the unlearned agent, while a lower percentage of pos-
itive predictions means more complete forgetting of targeted
trajectories. Appendix E.3 of Table XII of our full paper [25]
illustrates the impact of forgetting learning steps K on the
unlearning efficacy in TRAJDELETER. These results indicate
a strong sensitivity of unlearning efficacy to the magnitude of
forgetting learning steps K, suggesting that higher K values
enhance unlearning effectiveness. Figure 7 also presents that
with only 2000 steps of convergence training, the unlearned
agents can recover their performance and achieve a level of
average cumulative returns comparable to that of agents before
unlearning. The cumulative returns and average percentages
of Positive Prediction (Post. Pred.) remain stable for agents
trained with an increasing number of convergence steps.
Furthermore, the utility of the unlearned agents is largely
unaffected by changes in K, implying that a higher K may
be beneficial for the overall unlearning processes.

Table XIII of our full paper [25] delineates the influence of
the balancing factor λ on TRAJDELETER’s unlearning efficacy
with a constant forgetting training step count of 8000. Most
algorithms, excluding PLAS-P, exhibit nearly zero positive
predictions, indicating robust unlearning efficacy that remains
stable as λ increases. Conversely, when the forgetting training
steps are set at 4000, as shown in Table XIV of our full version
paper [25], a larger λ value leads to improved unlearning
efficacy when the number of forgetting steps is small.

In summary, the forgetting learning steps K exert a more
significant impact on unlearning efficacy compared to the
balancing factor λ. A higher K enhances unlearning efficacy
while maintaining the utility of the agent. Conversely, an
increased λ value improves unlearning efficacy only when K
is moderate, but it may negatively affect unlearned agents.

E. Additional Discussions

This section explores the robustness of TRAJAUDITOR and
threats to validity, and the limitations of our paper.

1) Robustness of TRAJAUDITOR: Prior studies also explore
the robustness of the auditing [13]: whether trajectory with
some random noises can still be accurately identified as part
of an agent’s training dataset. For example, the MuJoCo envi-
ronments also add small random noises to sensor information
(i.e., observing states). Additionally, the offline RL agent
deployed in real-world decision-making tasks that frequently

utilizes Gaussian noise to improve the agents’ generalization
capabilities [1]. Thus, introducing Gaussian noise into the
states of trajectories is a subtle approach to evade detection
by an auditor. An effective trajectory auditing method expects
to detect trajectories reliably, even if such noise exists.

We follow the MuJoCo [60] documentation to introduce
Gaussian noise into each state of the trajectories. This noise
follows a distribution with a mean of 0 and a standard devia-
tion of 0.05. Our experimental results presented in Table VIII
reveal that TRAJAUDITOR is only slightly affected by the
Gaussian noise. When processing trajectories that have been
perturbed with this noise, the average F1-score of TRAJAU-
DITOR decreases by both 0.02 across the three evaluated
tasks compared to the performance on original trajectories.
This consistency in performance highlights the robustness
of TRAJAUDITOR to maintain accuracy and reliability under
varying conditions.

2) Threats to Validity: To reduce the impact of environ-
mental randomness and enhance the construct validity, we
train the agents using five different random seeds, and each
agent is allowed to interact with the environment to generate
100 trajectories. We then use the average cumulative returns
from these trajectories to measure the agent’s performance.
The findings presented in this paper might have limited
applicability to other offline datasets or algorithms. Our exper-
iments are performed using the dataset from the benchmark
recently introduced in [17], as well as six advanced offline RL
algorithms, to relieve the threats to external validity.

3) Effectiveness Uncertainty.: We agree that, as proposed
in TRAJDELETER, poor performance on specific trajectories
cannot ensure that the agents have forgotten the trajectories.
It is noticed that as an approximate method, the unlearning
effect relies more on empirical evaluations; this is a common
practice. In addition, the evaluation of TRAJDELETER depends
on the effectiveness of the trajectories auditing method, i.e.,
TRAJAUDITOR. This issue is also a common challenge in
previous unlearning research across various fields [64], [66].
We propose potential solutions by enhancing the auditor tools.
Improving the auditor tool enhances unlearning methods and
increases their trustworthiness. We remain open-minded about
this issue, emphasizing that our conclusions are based on the
presented effectiveness of TRAJAUDITOR.

4) Towards Legal Requirements: We focus on approximate
unlearning. We summarize challenges and limitations that need
further exploration to satisfy legal requirements.

17

TABLE VIII: The relative changes in precision, recall, and f1-
score of TRAJAUDITOR after perturbing the tested trajectories,
when compared with its performance on unaltered trajectories.

Tasks Algorithms Precision Recall F1-score

Hopper

BEAR -4.0 % -0.5 % -0.02
BCQ -2.7 % 0.0 % -0.01
CQL -5.9 % 0.0 % -0.03
IQL -4.9 % 0.0 % -0.01

PLAS-P -3.0 % -1.2 % -0.01
TD3PlusBC -9.1 % 0.0 % -0.05

Average -4.9 % -0.3 % -0.02

Half-Cheetah

BEAR +12.0 % -13.8 % -0.02
BCQ -1.3 % -1.5 % -0.01
CQL -3.0 % +2.0 % -0.01
IQL +2.9 % +1.6 % +0.02

PLAS-P -3.9 % 0.0 % -0.02
TD3PlusBC -6.0 % -0.5 % -0.04

Average +0.8 % -2.0 % -0.02

Walker2D

BEAR -1.8 % -1.8 % -0.02
BCQ 0.0 % 0.0 % 0.0
CQL -0.3 % -1.9 % -0.01
IQL +0.4 % -1.8 % -0.01

PLAS-P +0.6 % -4.7 % -0.03
TD3PlusBC -1.5 % 0.0 % -0.01

Average -0.4 % -1.7 % -0.02

• Adequacy of Data Removal: Approximate unlearning may
not effectively remove all influence of an individual’s data
from the model as GDPR and other data protection regula-
tions require, potentially leaving residual data that could still
affect the model’s output. We need to verify and validate the
effectiveness of data unlearning methods.

• Legal Acceptance: Legal standards require both trans-
parency and demonstrable efficacy; thus, developers of ap-
proximate unlearning techniques need to ensure that their
methods are transparent and understandable to regulators.

• Evolving Legal Standards: Changes in data protection
laws could impact the acceptance of approximate unlearning
methods. Legal reforms or clarifications could either facili-
tate or hinder the adoption of these methods.
Despite these uncertainties, approximate unlearning reduces

computational overhead and enables more dynamic data man-
agement practices, making it a valuable research area. En-
suring that approximate unlearning meets the same standards
as full retraining is challenging. We have made every effort to
address this issue in our paper. We also recommend developing
certified unlearning methods to advance practical unlearning
applications. Interdisciplinary research that includes legal ex-
perts and technologists is crucial for navigating the compliance
landscape and crafting approximate unlearning methods that
are technically effective and legally robust.

F. Related works

1) Offline RL for Real-World Applications: Recently, of-
fline RL systems work brilliantly on a wide range of real-
world fields, including healthcare [46], [15], energy manage-
ment systems [71], autonomous driving [72], [28], and dialog
systems [62], [56]. In healthcare, online RL is not suitable, as it
is ethically and practically problematic to experiment with pa-
tients’ health. Thus, Mila et al. [46] used advanced offline RL

methods to develop a policy for recommending diabetes and
sepsis treatment optimization. Meanwhile, Emerson et al. [15]
applied offline RL to determine the optimal insulin dose for
maintaining blood glucose levels within a healthy range. In
various areas, using existing data to learn a policy proved
significantly more efficient than online RL methods [71], [72].
In energy management, Zhan et al. [71] introduced offline RL
algorithms aimed at refining the energy combustion control
strategy for thermal power generating units. An autonomous
driving, researchers gather diverse driving behaviors from
multiple drivers and then train the planning algorithm using
offline RL methods [72], [28], [42].

2) Machine Unlearning: Deep machine unlearning [5], [7],
[64], [59] refers to eliminating the knowledge of specific data
point(s) on the already trained Deep Neural Networks (DNNs).
This concept gains particular significance in privacy and data
protection legislation, such as the European Union’s General
Data Protection Regulation (GDPR) [20], which mandates a
“right to erasure.” Deep machine unlearning is categorized
into two main groups: exact unlearning [5], [29], [67] and
approximate unlearning methods [59], [23], [22], [11]. In exact
unlearning, the most straightforward approach is retraining the
DNN from scratch thought, excluding the data that is requested
to be forgotten from the training set. This is computationally
intensive, especially considering DNNs are typically trained
on large datasets [53]. Bourtoule et al. [5] introduced the
SISA method for training DNNs by dividing the dataset into
non-overlapping shards, thereby diminishing the necessity for
complete retraining since the DNN can be retrained on just
one of these shards. Leveraging the one-class classifier, Yan
et al. [67] developed a method that accelerates the SISA while
also ensuring the accuracy of the retrained model.

Unlike exact unlearning guaranteeing that the outputs of
an unlearned DNN and a fully retrained DNN are indis-
tinguishable, approximate unlearning aims to estimate the
parameters of DNNs in a manner analogous to retraining the
network from scratch [66]. Warnecke et al. [64] established
changes in the training dataset to closed-form updates of the
DNN parameters, enabling direct adjustments to the DNN
parameters in response to unlearning requests. However, this
method is only applicable to tabular data. Golatkar et al. [23],
[21] presented an approximation of the training process based
on the neural tangent kernel and used it to predict the updated
DNNs parameters. Unrolling SGD [59] operated approximate
unlearning by direct stochastic ascent using unlearned data.

3) Certified Unlearning: A range of recent works studied
certified unlearning definitions [32], [34]. Certified unlearning
offers the theoretical guarantee that the unlearned model is
indistinguishable from a DNN retrained from scratch on the
remaining dataset. Besides, for approximate unlearning, Guo
et al. [32], and Sekhari et al. [51] have proposed methods
to ensure that the distributions of an unlearned model and a
retrained model are nearly indistinguishable, using differential
privacy techniques. Warnecke et al. [64] introduced a cer-
tified unlearning scheme for systematically removing learned
features and labels from models.

18

Artifact Appendix

Abstract. This artifact contains the implementations for the
paper “TRAJDELETER: Enabling Trajectory Forgetting in
Offline Reinforcement Learning Agents” [25]. It introduces
how to conduct experiments on six offline RL algorithms and
three tasks to demonstrate that TRAJDELETER requires only
about 1.5% of the time needed for retraining from scratch. It
effectively unlearns an average of 94.8% of the targeted trajec-
tories yet still performs well in actual environment interactions
after unlearning.

A. Description & Requirements

1) How to access: Our code can be pulled from the public
repository on GitHub. Please refer to the link: https://github.
com/2019ChenGong/TrajDeleter.

2) Hardware dependencies: The training of all offline RL
agents is conducted on a server configured with Python 3.7.11,
equipped with one NVIDIA GeForce A6000 GPU and 512GB
of memory. Actually, our experiments only require a GPU with
more than 4GB of memory.

3) Software dependencies: Our artifact requires the installa-
tion of MUJOCO3, D3RLPY4, and D4RL5.

B. Artifact Installation & Configuration

For installation, please refer to the link: https://github.
com/2019ChenGong/TrajDeleter/README.md. We elaborate
on each step in this “README.md” file. The training of
all offline RL agents is conducted on a server configured
with Python 3.7.11. We provide a step-by-step guide on
how to install our repository using both Anaconda and
Docker images. We conduct experiments on three offline
datasets, “hopper-medium-expert-v0”, “halfcheetah-medium-
v0”, and “walker2d-medium-v0”. This repository can be easily
extended to other datasets in D4RL. Besides, users can also
utilize other algorithms implemented in D3RLPY4.

The codes and scripts for replicating our experiments can
be found in “README.md” under the “unlearning” folder.

C. Experiment Workflow

Firstly, please download the model from Google Drive:
https://drive.google.com/drive/folders/1MeGkaGAZa
NXJUuk7GhfzyS bsUHm8Z3, and please move these
folders to the “unlearning” folder. This link provides access
to three types of models: (1) Shadow Models, shadow agents
used for auditing; (2) Exact Unlearning Agents, agents
retrained from scratch; and (3) Fully Trained Agents, agents
trained using the entire dataset.

After installation, please run python “env test.py” to down-
load and test the offline dataset. We describe the process for
obtaining the experimental results in our paper as follows:
• For training the original agents, the hyper-parameters

settings of offline RL algorithms are recorded in

3https://github.com/google-deepmind/mujoco/releases/tag/2.1.0
4https://github.com/takuseno/d3rlpy
5https://github.com/Farama-Foundation/D4RL

fold “./params”. Please run the code: “python mu-
joco fully training.py”. After training, the trained mod-
els are saved into the folder “./Fully trained/ <
dataset name >”. You can download the well-trained orig-
inal agents from our provided link.

• For Table 2 of RQ1, please run the code: “python script-
auditor.py”. After auditing, the results are saved into the
folder “./ < output csv >”.

• For Table 3 of RQ2, the agents used for the unlearning
experiments in the “./Fully trained/ < dataset name >”
folder. The weights of the agents are named “model.pt”,
and the hyper-parameters settings of the offline RL al-
gorithm are named “.json”. Please run the code: “python
mujoco trajdeleter.py”. After unlearning, the unlearned
agents are saved into the folder “./Mujoco our method/ <
dataset name >”. Besides, you could run “python script-
mujoco-trajdeleter.py” for all algorithms and tasks.

• For Table 4 of RQ2, if you want to test the performance of
an agent, please run the code: “python performance test.py”.
Besides, you could run “bash script-mujoco-test.py”. To
test the successful unlearning rates of the unlearned agents,
please run the code: “python script-trajauditor.py”.

• For RQ3 hyper-parameters analysis, you can edit line 58 and
line 71 to change the “stage1 step” and “lamda” variable,
which controls the number of steps for unlearning and the
balancing factor, to obtain the experimental results.

• For defending against trajectory poisoning, please run “bash
script-poisoning.sh” to poison the agents. This script is
designed to poison the agents across all datasets and agents.
Additionally, you can run “python poisoning training.py” to
target specific algorithms and tasks.

• To retrain the agents on a clean dataset and obtain agents
without any poisoning, please run “bash script-poisoning-
retain.sh”.
For more details on the code, we highly recommend readers

refer to our GitHub repository.
RL agents usually face the notorious problem of unstable

performance. To reduce the impact of environmental random-
ness and enhance the construct validity, we train the agents
using five different random seeds, and each agent is allowed to
interact with the environment to generate 100 trajectories. We
then use the average cumulative returns from these trajectories
to measure the agent’s performance. Therefore, it is normal for
the results to fluctuate across different experiments, even when
using the same experimental settings.

D. Copyright

We have migrated the code repository from
GitHub to Figshare. The DOI for the repository is
“10.6084/m9.figshare.26928706”.

E. Acknowledgement

We thank the authors of D3RLPY4 for providing the code for
the offline RL algorithms and D4RL4 for the offline datasets
used in our evaluations.

19

https://github.com/2019ChenGong/TrajDeleter
https://github.com/2019ChenGong/TrajDeleter
https://github.com/2019ChenGong/TrajDeleter/README.md
https://github.com/2019ChenGong/TrajDeleter/README.md
https://drive.google.com/drive/folders/1MeGkaGAZa_NXJUuk7GhfzyS_bsUHm8Z3
https://drive.google.com/drive/folders/1MeGkaGAZa_NXJUuk7GhfzyS_bsUHm8Z3
https://github.com/google-deepmind/mujoco/releases/tag/2.1.0
https://github.com/takuseno/d3rlpy
https://github.com/Farama-Foundation/D4RL

	Introduction
	Background
	Offline Reinforcement Learning
	Machine Unlearning
	Unlearning Scenarios

	Problem Setup and Preliminaries
	Formal Problem Definition
	Challenges
	Our Proposals

	TrajAuditor
	Existing Solutions
	Our Method

	TrajDeleter
	Strawman Unlearning Methods
	Overview
	Technical Details
	Convergence Analysis

	Experimental Setup
	Investigated Tasks and Datasets
	Baselines
	Implementation and Experiment Platforms
	Evaluation Metrics

	EMPIRICAL EVALUATIONS
	Discussions
	Ablation Studies
	Defending Against Trajectory Poisoning
	black The Impact of Repeated Unlearning
	Limitation

	Related works
	Conclusions
	References
	Appendix
	Investigated Tasks and the Dataset
	Principles in Offline Reinforcement Unlearning
	Offline RL Algorithms
	Supplementary experiments
	Error-Based Auditing
	Fidelity evaluation of TrajDeleter
	Hyper-Parameter Analysis

	Additional Discussions
	Robustness of TrajAuditor
	Threats to Validity
	Effectiveness Uncertainty.
	Towards Legal Requirements

	Related works
	Offline RL for Real-World Applications
	Machine Unlearning
	Certified Unlearning

	Description & Requirements
	Artifact Installation & Configuration
	Experiment Workflow
	Copyright
	Acknowledgement

