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Abstract—Over the past decade, cryptocurrencies have gar-
nered attention from academia and industry alike, fostering a
diverse blockchain ecosystem and novel applications. The incep-
tion of bridges improved interoperability, enabling asset trans-
fers across different blockchains to capitalize on their unique
features. Despite their surge in popularity and the emergence of
Decentralized Finance (DeFi), trustless bridge protocols remain
inefficient, either relaying too much information (e.g. light-client-
based bridges) or demanding expensive computation (e.g. zk-
based bridges). These inefficiencies arise because existing bridges
securely prove a transaction’s on-chain inclusion on another
blockchain. Yet this is unnecessary as off-chain solutions, like
payment and state channels, permit safe transactions without
on-chain publication. However, existing bridges do not support
the verification of off-chain payments.

This paper fills this gap by introducing the concept of
Pay2Chain bridges that leverage the advantages of off-chain
solutions like payment channels to overcome current bridges’
limitations. Our proposed Pay2Chain bridge, named Alba, facil-
itates the efficient, secure, and trustless execution of conditional
payments or smart contracts on a target blockchain based on off-
chain events. Alba, besides its technical advantages, enriches the
source blockchain’s ecosystem by facilitating DeFi applications,
multi-asset payment channels, and optimistic stateful off-chain
computation.

We formalize the security of Alba against Byzantine adver-
saries in the UC framework and complement it with a game
theoretic analysis. We further introduce formal scalability met-
rics to demonstrate Alba’s efficiency. Our empirical evaluation
confirms Alba’s efficiency in terms of communication complexity
and on-chain costs, with its optimistic case incurring only twice
the cost of a standard Ethereum transaction of token ownership
transfer.

I. INTRODUCTION

Fourteen years after its genesis block was mined, Bit-
coin [55] remains the leading blockchain in terms of market
capitalization. However, a diverse range of other blockchains
have emerged, each appealing to users due to their specific
design goals such as enhanced privacy (e.g., Monero, ZCash),
high transaction throughput (e.g., Algorand), DeFi support
(e.g., Ethereum), and unique technical features such as their

scripting language, consensus mechanism, and cryptographic
primitives. In response to the diverse ecosystem, several so-
lutions have been introduced to facilitate cross-chain func-
tionalities – e.g., atomic swaps, cross-chain lending – thereby
enabling users to exploit the unique benefits and features each
blockchain offers. These solutions are called bridges and their
fundamental goal is to condition the occurrence of an event
(e.g., transaction execution) on a target blockchain LD on the
occurrence of a specific event on a source blockchain LS .

Bridges can generally be classified as centralized or decen-
tralized. Centralized bridges based on trusted exchanges, are
efficient but have often led to significant financial losses due to
hacks [5], [37], [38], fraudulent activities, or bankruptcy [11].
On the other hand, decentralized bridges, based on cryp-
tographic protocols [58], [23], [6], [49], [59] or smart
contracts [46], [61], typically trade off between expressive-
ness and efficiency to maintain security. In particular, atomic
swaps [6], [49], [59] relay and store minimal information
but do not go beyond token swaps. The most popular light-
client-based bridges are fully expressive but either incur a
high computational overhead (e.g., zk-based bridges [61])
or relay and store information proportional to the length
of LS (e.g., Simplified Payment Verification (SPV)-based
bridges [33], [64]). Recent improvements on light clients [51],
[34] cannot yield practical bridges as they are not compatible
with major existing blockchains, requiring instead a new
consensus protocol. In addition, at least a logarithmic amount
of information with respect to the length of LS must be
relayed to maintain security, even in the latest PoW light-
client-based bridge, Glimpse [47], [57]. More importantly, all
LC-based bridges, including [57], [51], [34], are consensus-
specific, hence connecting two different blockchains depends
on their unique technical features (e.g., consensus choice of
LS , scripting language expressiveness, and cost of LD), which
makes their design complex and time-consuming.

The inefficiencies of current bridging solutions stem from
the fact that the triggering event has to occur on-chain, and
then one has to reliably and securely relay its occurrence on
another blockchain. The first operation exacerbates an exist-
ing problem of major blockchains: their limited transaction
capacity. The second task imposes significant overhead on the
bridge, that either relays a lot of information or wastes sub-
stantial computational resources to generate succinct proofs.
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Both these problems can potentially be mitigated by lifting
LS’s event off-chain, leveraging Layer 2 (L2) solutions [48].
For instance, the Lightning Network [56], Bitcoin’s premier
scalability solution holding more than $200M, enables parties
to transact with each other securely without publishing any
information on the Bitcoin blockchain. Nevertheless, existing
bridges do not support off-chain protocols: in other words, it
is currently not possible to prove on a target chain LD that
an off-chain payment occurred on an L2 network.

It is an open question whether or not such bridge protocols,
referred to as Pay2Chain, can be designed at all, since all
existing solutions aim to prove that a transaction has been
validated on-chain, i.e., by the consensus protocol itself. In
contrast, off-chain transactions are ideally never posted on-
chain (except in case of disputes); hence, proving their validity
requires fundamentally new ideas. Moreover, the economic
security of a Pay2Chain bridge should account for the game-
theoretic arguments tailored to off-chain protocols. Finally,
Pay2Chain bridges’ foremost challenge is to improve the scal-
ability and overall efficiency of bridge protocols, overcoming
the limitations of current solutions.

In the pursuit of scalable Pay2Chain bridges,we explore two
distinct design options based on leading L2 solutions: pay-
ment channel networks and rollups. Rollups, rapidly gaining
momentum as an efficient off-chain solution, leverage the base
blockchain (L1) for data availability, meaning transactions are
sequenced on-chain but execution is off-chain [10], [18], [15].
This structure means verifying a rollup transaction is akin
to verifying a transaction in a “dirty ledger”, a blockchain
that logs transactions including potentially invalid ones. Thus,
rollups inherit its L1’s bridging limitations. Given these con-
straints, our focus shifts to payment channels, that effectively
lift the transaction workload and storage off-chain. This shift
not only proposes a novel blueprint for bridge construc-
tion but also ensures compatibility with a wide spectrum of
blockchains, as payment channels are virtually compatible
with any chain that supports signature verification [60], [23].
Our Contributions. In this work, we present Alba, the first
scalable Pay2Chain bridge connecting the Lightning Network
to EVM-based chains. At its core, Alba encodes the logic
to verify that a specific transaction occurred in a Lightning
channel in a smart contract on a target chain LD, e.g.,
Ethereum. Unlike traditional bridges, Alba verifies off-chain
transactions instead of on-chain ones, thus offering several key
advantages.

Alba leverages the nature of payment channels that enable
two parties to securely transact with each other by exchanging
their signatures on a message. These signatures along with two
transactions are the only data the Alba smart contract verifies
on the target chain. As a result, the relayed information of the
bridge is easily computable, constant in size, and independent
of the source chain’s length or its consensus mechanism. Thus,
Alba offers the first lightweight bridge that scales in storage,
computation, and communication.

Moreover, Alba’s consensus-agnostic nature enables its
seamless deployment on any chain with a payment channel

network, regardless of its underlying consensus mechanism.
Unlike on-chain bridges, Alba achieves instant finality of pay-
ments, solely bounded by network delay, rather than relying
on the liveness guarantees of the LS’s consensus protocol.

Besides its improved technical features, Alba enhances
the functionalities of payment channel networks, such as
the Lighting Network. It serves as a trustless protocol for
bringing backed assets from the target chain, e.g. Ethereum,
into Lightning. As a result, users can transact off-chain vir-
tual representations of their (LD) tokens, known as wrapped
tokens, thereby reducing fees. Moreover, Alba can be used
for collateralized, trustless, cross-chain lending, allowing users
to hold coins on one chain but participate in applications of
another chain. Another benefit of this functionality is bringing
arbitrary, stateful computation to scriptless blockchains. Users
can now perform arbitrary computations off-chain (e.g., play
chess), store, and optimistically settle the outcome in their L2
channel. Security is ensured because the correct outcome can
always be enforced on the target chain in case of disagreement.

Finally, by employing Alba, the source blockchain is re-
lieved of on-chain transactions as all transactions remain off-
chain within the Lighting Network. Additionally, lifting the
Alba smart contract off-chain, as outlined in [57], can offer
similar advantages to the destination chain, promoting the
adoption of L2-L2 interoperable solutions.

We summarize the advantages of Alba over state-of-the-art
trustless bridge solutions in Table I.

Our contributions are summarized as follows:
• We present the key building blocks of Alba, including

formal definitions of bridge security and scalability, fol-
lowed by an overview of the Alba protocol (Section II).

• We give an instantiation of Alba between the LN and
Ethereum (Section III), and we describe the rationale
behind its design choices.

• We identify three novel classes of applications which are
enabled by Alba (Section IV) and we demonstrate how
they improve the state-of-the-art of both the LN and the
target chain. In particular, we describe how to use Alba
for DeFi applications, trustless backed assets in payment
channels, and to optimistically offload arbitrary, stateful
computations to L2.

• We prove Alba is scalable (Section V-A), as well as
secure under two different models. We first prove the
security of Alba in the UC framework [35] (Section V-B)
showing that honest users do not lose money even against
byzantine adversaries (balance security property). We
then prove via game-theoretic tools that rational parties
follow correctly the protocol specification (Section V-C).

• We conduct a performance evaluation (Section VI), char-
acterizing Alba’s communication complexity, and its on-
chain costs on EVM-based chains, demonstrating its
practicality. In the optimistic scenario, Alba costs only
twice as much as the simplest Ethereum transaction.

• We compare Alba with state-of-the-art bridges (Sec-
tion VII), showing how Alba improves on prior construc-
tions introduced in Table I.
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SPV-Based Bridges [64], [33], [46] ZK-Based Bridges [61], [63] Glimpse [57] Multi-Hop Cross-Chain Atomic Swap [52] Alba
Consensus Agnostic: ✗ ✗ ✗ ✓ ✓

Instant Finality: ✗ ✗ ✗ ✓ ✓

Transactions on LS : 1 1 1 0† 0†
Transaction Units on LD : O(|LS |) O(|LS |) O(log|LS |) O(1) O(1)

Expressiveness: Arbitrary logic Arbitrary logic DNF formulas Secret-based logic Arbitrary logic

TABLE I: Comparison of Alba with other state-of-the-art trustless bridges regarding their consensus agnosticism, finality
property, on chain transactions on LS and LD, and expressiveness. We define the transactions on LD in terms of transaction
units, i.e., the size of a standard transaction of token ownership transfer on LD. We denote the length of a ledger L as |L|. †

For multi-hop cross-chain atomic swaps and Alba we omit considering the two transactions posted on-chain for opening and
closing the channel, as they are posted only once for any arbitrary number of off-chain transactions.

II. PRELIMINARIES & OVERVIEW

A. Preliminaries and Key Building Blocks

The UTXO Transaction Model. On a blockchain, each user
U is identified by the public key of a digital signature key pair
(pkU , skU ), proving ownership over a coin. In the Unspent
Transaction Output (UTXO) model, a UTXO object holds
some units of currency, coins, and a set of instructions that
specify the requirements in order to spend those coins, e.g.,
the signature corresponding to which public key can spend the
coins. A transaction Tx is an atomic update of the state of the
blockchain and maps a non-empty list of inputs, i.e., unspent
outputs, to a non-empty list of newly created outputs. In other
words, a transaction consumes some UTXOs and creates new
UTXOs. In Bitcoin, a transaction includes (i) inputs, which
uniquely identify unspent outputs, (ii) outputs, which specify
the amount of currency held by the output and the conditions
under which the coins can be spent, and (iii) witnesses, which
store the data fulfilling the spending conditions of the inputs.
The Lightning Network. The core idea of payment channels
is to let two users lock funds in a shared account – the payment
channel – and thereafter execute transactions off-chain by
adjusting the allocation of these funds between them, e.g.
[56], [41], [29], [53], [22], [30], [43], [31]. Upon establishing
the channel, the users can perform as many transactions as
they want off-chain and only post one on-chain when closing
the channel or when a disagreement arises. As a result, users
forgo expensive transaction fees while the blockchain’s limited
capacity is relieved.

The Lightning Network (LN) [56] is the state-of-the-art
payment channel solution operating on top of Bitcoin, moving
funds worth more than 200M USD and counting more than
60k channels [4]. Concretely, the LN protocol consists of three
phases: open, update, and close. These phases are shown in
Figure 1. In the opening phase, two users, e.g., Alice and
Bob, post the funding transaction Txf on the blockchain,
where they jointly lock up some coins in a shared output.
For example, in Figure 1 Alice locks x1 coins, Bob locks
y1 coins, and they create an output θ holding x1 + y1 coins.
This output can only be spent if both Alice and Bob provide
their signatures σA,B := {σA, σB} over the transaction that
spends the shared output, thus expressing their agreement on
how the coins should be spent. Before posting Txf on-chain,
Alice creates a transaction that spends the shared output θ and
returns to her and Bob their initial funds (of value x1 and y1

respectively, in our example). Alice signs this transaction – the
first commitment transaction or channel state – and sends it
along with her signature to Bob. Similarly, Bob creates, signs,
and sends Alice an (asymmetric) commitment transaction,
which spends the shared output and returns their initial funds.
Upon exchanging the first commitment transactions, the users
can post Txf on-chain, safely opening their channel, certain
that their counterparty cannot hold their funds hostage.

After Txf is published on-chain, the update phase begins:
Users can now perform arbitrarily many payments by simply
exchanging commitment transactions spending the shared out-
put of Txf and holding new balance distributions. Specifically,
for each channel update, Alice and Bob sign and exchange an
asymmetric version of the commitment transaction, denoted by
TxA and TxB [56], [54]. Both transactions spend the funding
output θ, and create two new outputs that allocate to each
user their currently agreed share of the channel funds, albeit
with different spending conditions. TxA allows Alice to redeem
her coins only after a timeout T (timelocked output), while
Bob can redeem his coins immediately. Additionally, Bob may
spend Alice’s coins if he provides the preimage of a specific
hash (hashlocked output). TxB is asymmetric meaning that the
timelocked and hashlocked outputs are the ones holding Bob’s
coins, while Alice can redeem her coins immediately providing
only her signature.

Apart from the spending conditions, the safety of a channel
also relies on the order of operations that take place during
each update. In particular, a channel update si consists of three
steps: (i) Alice chooses a secret rA,i, Bob chooses a secret rB,i

and they hash their respective (revocation) secrets obtaining
RA,i := H(rA,i) and RB,i := H(rB,i), where H is a hash
function modeled as a random oracle. Alice gives RA,i to
Bob and Bob gives RB,i to Alice. (ii) Alice and Bob exchange
signed commitment transactions, which means that they create
new commitment transactions TxAi and TxBi , and Alice gives to
Bob TxBi with her signature σA(Tx

B
i ), while Bob gives Alice

TxAi with his signature σB(Tx
A
i ). Finally, (iii) they exchange

their old revocation secrets, i.e., Alice gives r̄A := rA,i−1

to Bob and Bob gives r̄B := rB,i−1 to Alice. This final step
ensures that the previous state of the channel can be invalidated
(aka revoked) if posted on-chain while the cheating party can
be punished.

Finally, in the closing phase, users can close the channel by
posting the last state of the channel on-chain, either in col-
laboration with the counterparty or unilaterally. In the former
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case, users cooperate and sign a transaction Txc that allows
them to claim their balances immediately. In the latter case,
a user, say Alice, can close the channel single-handedly by
publishing the latest signed commitment transaction, say TxA.
Now, Alice can only spend her output after the dispute period
T elapses. This timelock acts as a protection mechanism for
Bob: If Alice cheats and publishes on-chain an old state of
the channel TxA, Bob can steal Alice’s coins by revealing the
old revocation secret of Alice for that transaction r̄A within
the dispute period T . In this way, LN channels guarantee that
honest users are always able to enforce on-chain either the
latest agreed state of the channel or a state where they get all
the funds of the channel.

Payment channel protocols offer several beneficial fea-
tures. First, they guarantee balance security, meaning that
an honest user will not lose money, even in the presence of
arbitrarily many byzantine adversaries. Second, in a rational
setting, instant finality is guaranteed: a channel update can
be considered final as soon as users exchange their respective
commitment transactions. Instant finality is solely constrained
by the communication bandwidth.
Bridges. A blockchain is the output of a Byzantine fault-
tolerant state machine replication (BFT-SMR) protocol. Break-
ing down this definition, a state machine stores, at any point
in time, the state of the system. It receives a set of inputs,
e.g., transactions, and it applies these inputs in a sequential
order using a state transition function to generate an output
and the newly updated state. BFT-SMR protocols ensure that
a network of nodes, each running a replica of the same state
machine, agree on the order and execution of state transitions
to maintain a consistent state across all replicas, even if some
nodes fail or behave maliciously. In other words, BFT-SMR
protocols yield what we commonly refer to as ledger. We will
use the terms ledger and blockchain interchangeably.

In the following, we refer to states and state transitions bor-
rowing the terminology of distributing computing to provide
formal definitions.

Definition 1 (Ledger). A ledger is a finite ordered list of state
transitions.

Starting from the definition of a ledger, we come to define
what a bridge is, i.e., a protocol that ensures the atomic
execution of events across two different ledgers.

Definition 2 (Bridge). Let Γ(LS ,∆sS) be the algorithm
running on LD that, on input LS and a valid state transition
∆sS of LS , outputs a valid ∆sD to be applied to LD. A
bridge is a protocol which runs Γ(LS ,∆sS) as a subroutine
and enforces ∆sD on LD if and only if ∆sS was previously
enforced on LS .

We now introduce, for the first time, scalability metrics
for bridges, extending [28]. Our metrics capture the required
resources in terms of storage, computational, and communica-
tion complexity per call to the bridge protocol. We denote as
a transaction unit the size of an average state transition, e.g.,
a simple transaction that transfers ownership over a UTXO.

Definition 3 (Storage Complexity). The storage complexity
of one call to the bridge is the amount of data in transaction
units that has to be stored in both LS and LD for that call.

Definition 4 (Computational Complexity). The computational
complexity of one call to the bridge is the runtime of
Γ(LS ,∆sS) with respect to LS .

We observe that ∆sS represents a single state transition
(with polynomial complexity), whereas LS encompasses the
aggregate of all state transitions from the inception of the
ledger. If the computational resources of a bridge depend on
the ever-increasing LS , the necessary resources will contin-
uously grow. Our goal is to design lightweight bridges that
forgo this reliance on the source ledger LS .

Definition 5 (Communication Complexity). The communica-
tion complexity of one call to the bridge is the size of the
output of Γ(LS ,∆sS).

We refer to a bridge as scalable when the storage, compu-
tational, and communication complexity is constant regardless
of the size of the source chain LS .

Definition 6 (Scalable Bridge). A scalable bridge is a bridge
protocol with O(1) storage, computational, and communica-
tion complexity.

We observe now that existing bridges each fail to satisfy
at least one of the complexity measures of scalable bridges.
For example, SPV-based designs relay the entire source chain
and thus have linear storage and communication complexity.
Zk-based bridges improve upon storage and communication
complexity but exhibit excessively high computational com-
plexity to produce succinct proofs.

In the context of L2 solutions (i.e., payment channels, state
channels, and rollups), we highlight that payment channels
currently constitute the only possible choice for designing
scalable bridges. This stems from their distinctive attributes:
state transitions within payment channels (i.e., commitment
transactions) are independent of the consensus protocol of
the underlying ledger. As a result, a bridge can prove to LD

that a state transition occurred by relaying and storing only a
constant amount of data, irrespective of the state of their under-
lying ledger, and with no additional computation. Contrarily,
rollups are intrinsically dependent on the underlying ledger for
their operation, relying on it to ascertain the sequence of the
rollup’s state transitions, which in turn yield the rollup’s state.
Therefore, for rollups, a bridge must relay and store ledger
data as evidence of the execution of a rollup’s state transition.
The storage and communication complexity of a bridge based
on rollups mirrors that of on-chain bridges.

B. Alba Overview

We introduce Alba, a Pay2Chain scalable bridge which
enables users to efficiently, securely, and trustlessly condition
a state transition in an EVM-based destination chain LD on a
specific state transition occurring in a payment channel.
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Fig. 1: Overview of the open, update, and close phase of a LN payment channel. Transactions have inputs on the left and
outputs on the right. Each output is a tuple representing who owns the output, the coins it holds, and the data that unlocks it.
We color in green the shared output of the funding transaction Txf and the inputs spending it. We show the communication
steps of a channel update si and we illustrate the logic of the outputs of TxA and TxB. In blue we outline the punishing
mechanism logic.
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Fig. 2: Abstractly, the flow of our Alba protocol, with a LN
payment channel on the left and Ethereum on the right and
the three mains steps highlighted: (1) the two parties set up
the contract on Ethereum with the Alba logic within, (2) they
update the channel as many times as they want until they reach
the update they want to verify on Ethereum, and (3) they relay
a proof of such an update to the contract.

As depicted in Figure 2, Alba comprises three main phases:
(1) users set up a contract on LD, they lock some coins in it,
they specify to the contract the funding transaction of their
channel as well as the channel update that conditions the
execution of a transaction on LD. Then, (2) users perform
arbitrarily many channel updates until they reach the update
in question. Finally, (3) a user, acting as prover P , relays to
the contract on LD a proof π proving the particular update
occurred. The contract checks the proof and, if it is valid, it
enables the execution of the corresponding transaction.

We stress that P can convince the smart contract by
exhibiting a proof π consisting only of the two signed com-
mitment transactions representing the state of the LN channel
after the update. This is possible because we enforce P ’s
counterparty V , to embed some protocol-relevant information
in the commitment transaction it gives to P , to prevent a
malicious P from creating π out of two arbitrary, perhaps
old, commitment transactions. Notably, Alba remains secure
without verifying that the funding transaction of the channel
has been actually included on LS . This is because in the setup
phase of Alba parties agree on which is the funding transaction
and acknowledge its existence in the contract: Rational parties
will make sure the channel exists and never agree on an
incorrect funding transaction as it conditions the distribution
of funds on LD. For this process, parties do not need to read
and use data from the source chain LS to generate the proof.
Finally, parties can only go on-chain with an old revoked state,
thus exposing a malicious close to punishing. Hence, Alba’s
proof is agnostic of the consensus of LS .

To satisfy Definition 2, the Alba smart contract implements
a punishing mechanism. We prove later that the Alba design
is secure against a Byzantine counterparty, while rational
parties are incentivized to adhere to the protocol specification
(Section V). Furthermore, we demonstrate the superior per-
formance of Alba, proving it scales in storage, computation,
and communication (Section V-A), which we back with the
findings of our evaluation (Section VI) and the comparison
to existing bridges (Section VII). In the rational setting, Alba
additionally achieves instant finality, inherited directly from
the use of payment channels that ensure that any update is final
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as soon as users complete the required communication steps.
Note that instant finality is solely bounded by communication
bandwidth, in contrast to, e.g., fast finality, which is bounded
by the liveness parameter of the consensus mechnanism.
Finally, Alba seamlessly integrates with existing payment
channel solutions by design, offering an opt-in approach: it
only requires one additional round of communication between
parties, which can take place either on the payment channel
system itself or it can occur concurrently.

III. PROTOCOL DESIGN

In this section, we present the construction of Alba and
motivate its design choices by exemplifying Alba for a DeFi
lending protocol, an application which we later describe in
more detail in Section IV-A. Adopting a straw man approach,
we start with a naive construction, delineate its vulnerabilities
and challenges, and present solutions, systematically advanc-
ing towards the final, secure construction. We outline the
protocol steps and the logic of the smart contract in Figure 3.

A. The Alba Protocol

We consider mutually distrusted parties having an open
channel on the LN and an account, i.e., a key pair (sk, pk), on
a destination chain LD, e.g., Ethereum. We assume parties to
continuously monitor LD for the duration of the protocol for
certain transactions to appear: They can achieve this, e.g., by
running a full node, a light client, or by querying a (trusted)
Blockchain Explorer.

For simplicity, from now on, we assume that one coin in
LN (Bitcoin) has the same value as one coin in Ethereum. In
practice, an exchange rate can be fixed, or wrapped Bitcoin
(WBTC) on Ethereum can be used.
A Naive Construction. Imagine that Bob wants to grant Alice
a loan of 5 BTC on the LN, on the condition that Alice locks,
e.g., 5 ETH in an Ethereum smart contract as collateral. Alice
gets back her collateral only if she can prove, within a certain
finite time T0, to the smart contract that she has returned the
loan to Bob by updating the channel accordingly, i.e., A 5−→ B.
If she defaults on the loan, Bob keeps the collateral. We expand
on this application in Section IV-A, while for now we focus
on the specific design choices of Alba.

In a preliminary setup phase, Alice and Bob inform the con-
tract of their channel’s funding transaction Txf, of timelocks
T0 (timeout for submitting a proof), T1 (timeout for resolving
a dispute), T2 (timeout for closing Alba in case no proof has
been submitted nor dispute has been raised), and a function
f that maps the distribution of coins in their channel to the
balance distribution in the contract.

Let us demonstrate the potential vulnerabilities of a naive
construction. Consider the case where Alice and Bob update
their channel with A

5−→ B, and then Alice naively proves to
the smart contract that the update occurred by presenting TxA

signed by her and by Bob. This exposes Alice and Bob to a
significant risk: if the commitment transaction TxA and the two
signatures σA(Tx

A), σB(Tx
A) are submitted to the contract,

they are published on-chain and leaked to everyone, also to

users external to the protocol. By having a commitment trans-
action and Alice’s and Bob’s signatures, anyone could close
the channel between Alice and Bob. To prevent this, Alice
could, instead, provide to the contract the two commitment
transactions TxA and TxB, along with σB(Tx

A) and σA(Tx
B).

This naive approach still presents some caveats: (i) the
contract has no means to check whether Alice has indeed sent
5 coins to Bob within the update, as commitment transactions
only contain information about the current channel’s balance
distribution, and not about the amount transferred from one
party to the other. Then, a dishonest Alice could fool the
contract in multiple ways: (ii) by submitting an old channel
update, e.g., occurred prior to setting up the Alba contract, and
(iii) by submitting commitment transactions corresponding to
different channel updates, e.g., TxA and TxB corresponding to
the i-th and (i− 4)-th update of the channel, respectively.
Relay Channel Balance to LD. To verify that the channel
update presented by Alice corresponds to A

5−→ B, the contract
needs to know the parties’ balance distribution before the
update. For instance, Alice and Bob could inform the contract
about their channel balance distribution during the setup phase
and then proceed with the update A

5−→ B. This approach
has, however, a major drawback: after setting up the contract,
Alice and Bob have to update with A

5−→ B immediately
after, without being able to perform any other intermediary
update until Alba is resolved. To avoid this, one could give
the contract access to the channel state prior to A

5−→ B.
For instance, if the contract had access to the commitment
transactions of the latest update where, e.g., Alice holds
8 coins and Bob 2 coins, and then the contract is given
the commitment transactions of the new update A

5−→ B
where, e.g., Alice holds 3 coins and Bob holds 7 coins, the
contract can infer that Alice has sent 5 coins to Bob. While
solving problem (i), this approach requires a large proof (four
commitment transactions) and still suffers from caveat (ii)
where a dishonest Alice may submit old updates.
Embed Protocol-Relevant Information in TxA. To prevent
Alice from cheating and, at the same time, to enable the
contract to verify the validity of the update A

5−→ B, we
propose a solution that allows for arbitrarily many channel
updates while the contract is active and requires a succinct
proof π consisting of only two transactions. We ask Bob
to embed protocol-relevant information in the commitment
transaction TxA of the update A

5−→ B.
First, a unique identifier id for the update, which allows

parties to perform as many updates as they want, and then
mark the one they want the contract to verify, and also
prevents Alice from submitting a fake proof consisting of
an old update, addressing caveats (i) and (ii). Second, Bob
embeds in TxA the hash RB := H(rB) of Bob’s revocation
secret rB , the same one that in the LN, by default, is
included in TxB for the punishment mechanism. This allows
the contract to recognize TxB as the commitment transaction
matching TxA, addressing caveat (iii). In the UTXO transaction
model, where transactions map a non-empty list of inputs
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Fig. 3: Overview of the Alba protocol Π and of the smart contract on LD (light blue). First, P and V agree on Alba’s
parameters and create a smart contract on LD according to these (Setup). They perform an arbitrary number of LN channel
updates until they hit the update conditioning the execution of a transaction on LD. If the update is successful within T0,
P relays π to the contract (SubmitProof), otherwise it opens a dispute (Dispute). Meanwhile, V monitors LD looking for
disputes: if P opened one, V can resolve it before T1. If no π was submitted nor dispute raised before T2, V get all the coins
in the contract (Settle). In our protocol formalization, LD and the LN are captured by generic ideal functionalities GLedger

and PC respectively (see Section V). To extract LN-protocol-specific information for π (transactions and signatures), P and
V internally run the simulator code SLN .

(i.e., unspent outputs) to a non-empty list of newly created
outputs, an easy way to store information in a transaction is
to use OP_RETURN outputs, which can hold 0 coins and store
arbitrary data of maximum 80 bytes. In Bitcoin, and therefore
in the LN as well, such an output θ would look as follows:
θ = (0,OP_RETURN(id,RB)).

However, embedding information in TxA does not lead us
to a complete solution yet, as it does not prevent a malicious
party from closing the channel with an old, un-revoked state
before settling the contract, see below.

Impose Transaction-Level Timelocks on Updates. While
the Alba contract is active, parties should not be able to go
on-chain and close the channel with an old, unrevoked state.
In normal channel operation, the latest state of the channel
is an un-revoked state. However, during channel updates, one
party will receive the counterparty’s revocation secret before
revealing its own (fair exchange problem). This results in one
party having an advantage over the other, holding two un-
revoked, valid states, and being able to close the channel with
either of them without being punished. Note here that if a
cheating party closes the channel with an old, revoked state,
the security of Alba is not affected as the counterparty can
punish it and claim its funds on the payment channel.

To avoid parties from closing the channel with an old, un-
revoked state, we impose timelocks at the transaction level
on all commitment transactions exchanged from the creation
of Alba until its settlement. By definition, a transaction-level
timelock invalidates a transaction until a certain time, even if
its script and witness are correct.

During Alba, a channel update now consists of the following
steps: first, parties exchange their new revocation keys; second,
they exchange signed locked commitment transactions (TxAl

and TxBl); third, they exchange their old revocation secrets.
Finally, when parties reach the update they want to verify
via Alba, i.e., A

5−→ B, an extra communication round
occurs where parties exchange signed unlocked commitment
transactions (TxAunl and TxBunl). The transaction-level timelock
expires after the Alba contract has been settled (after T2), and
prevents malicious parties from going on-chain and closing the
channel while Alba is still active. Since the Alba instance is
closed upon revealing unlocked transactions, as soon as Alba
is settled, standard LN updates and closure resume.

To summarize, the proof π given as input to the function of
the Alba contract that verifies said proof, called SubmitProof,
is

π := (TxAunl, σB(Tx
A
unl), Tx

B
unl, σA(Tx

B
unl)),

with TxAunl embedding id and RB .1

Yet another issue remains unresolved: if one party does not
cooperate in an update, e.g., by refusing to send the commit-
ment transaction or the old revocation secret, the counterparty
cannot immediately close the channel due to the transaction-
level timelock we introduced, thus yielding a hostage situation.
For example, Bob may not respond to Alice’s request to update
the channel, to keep the collateral on the Ethereum, and forfeit
the money he lent on the LN. In this situation, Alice is at the
mercy of Bob, as she cannot update or close the channel as
well as redeem the coins in the contract.
Incentivize Cooperation in Channel Updates. To protect
honest users from such hostage attacks, we empower Alice
with some leverage to exert economic pressure on an unco-
operative Bob, ensuring that updates can be carried out and

1When verifying the current latest state of the channel, all inputs refer to
the current latest state. When verifying the occurrence of a new update, all
inputs refer to the new update.
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successfully completed. Specifically, we economically force
(a rational) Bob to update the channel by introducing the
following incentive mechanism. If Bob does not honestly
update the channel within time T0, Alice can open a dispute
by calling the Dispute function of the contract. Alice inputs
to this function the latest signed locked commitment transac-
tion TxAl received from Bob, and the new signed unlocked
commitment transaction TxBunl she created for the update
A

5−→ B she wants to enforce.2 Bob has now time until
T1 to call the ResolveDispute function and reveal the signed
unlocked commitment transaction TxAunl, thereby completing
the proof π to the smart contract. If, however, Alice cheats
and opens a dispute with an old state Tx

A
l, Bob can punish

Alice by calling the ResolveDispute function and revealing
the revocation secret for TxAl.

Let us now examine a critical but subtle case where Alice
halts during a channel update and subsequently claims on
the Alba contract that Bob did so. In detail, suppose Alice
does not share with Bob the revocation secret for the previous
state during a channel update. Bob will then not share with
Alice the unlocked transaction (i.e., timelock-free transaction)
as for Bob this update is not complete. In turn, Alice opens a
dispute on LD, reclaiming the unlocked transaction. Observe
now that Alice cannot close the channel on-chain with the old
state since the commitment transaction is locked until after T2.
Bob can now obtain the unlocked transaction TxBunl from the
contract, close the channel (as Alice proved to be malicious)
and disclose TxAunl. Thus, even in this case, the closing state
of the channel correctly reflects the outcome on LD.

B. Observations and Technical Features

The Alba protocol exposes two functionalities: (i) it enables
parties to verify specific channel updates (as for the loan
payback transaction); (ii) it enables parties to verify which
is the current state of a channel. Note (ii) is a subcase of (i)
where the channel is updated with the identity function which
transforms a state into itself.

We observe that Alba, as described above, is a uni-
directional bridge. It can be made bi-directional by simply
instantiating it twice, symmetrically on L2-L1, where L2 is a
payment channel and L1 is a chain supporting the scripting
requirement described in detail in Section B of the full paper
[1] .We also note that, generally, both parties can submit the
proof to the smart contract: whoever submits the proof first or,
alternatively, opens a dispute, acts as the prover P . The other
party, instead, acts as the verifier V . Note that even though
both parties can submit proofs and the other party reacts, there
is still one party in this case, that gets all the funds after T2,
to incentivize the other party to close. We now look at how to
remove this timelock.

Unlimited Lifetime of Alba. If Alice and Bob omit to specify
T0 and T2 during setup, no time limit is imposed on parties for
the submission of a proof, thereby deeming the lifetime of the

2For this, the smart contract needs to be able to check what constitutes a
valid update, e.g., A 5−→ B in our lending example.

Alba contract unlimited. In this case, should a dispute arise,
a relative timelock T1 starts counting from the moment the
dispute is raised. Users simply need to ensure that do not exist
un-revoked commitment transactions with an expired timelock
(unless they wish to close Alba). This timelock acts as T0 and
can be repeatedly extended with state updates. With this, the
contract is more flexible, while preventing hostage situations.
Compatibility of Alba. Many payment channel constructions
beside the LN exist, and Alba can be run on top of all of them
with only minor adjustments.

Furthermore, by construction, Alba is compatible with vir-
tual channel constructions [26]. Virtual channels are protocols
for payment channel networks that allow the exchange of
off-chain transactions over multi-hop paths without involving
intermediary users. One can think of a virtual channel as a
payment channel within a payment channel, with the funding
and closing transactions of the virtual channel remaining off-
chain. Parties can use Alba for virtual channels exactly as they
would use it for payment channels.
Alba for Stateful Applications. As we will see in the
next section, our protocol can be used as a building block in
different applications. In complex applications, commitment
transactions store a succinct state of the application, and the
smart contract needs to be able to verify that that state is a
valid transition from the previous state. We stress that the Alba
contract might need to encode the application logic in order
to allow parties to reach the application’s final state in case a
dispute is raised before it is reached. For instance, consider the
case where Alice and Bob are playing chess (Section IV-C)
and Bob stops responding when he realizes that Alice will
inevitably checkmate his king in a few moves. In this case,
all the remaining moves must be enforced on-chain by the
contract, until the game is over.

IV. APPLICATIONS OF ALBA

Perhaps surprisingly, this relatively simple idea of bridging
payment channel state updates enables a plethora of novel
applications which can be divided into three main categories:
decentralized finance, multi-asset payment channels, and op-
timistic stateful computation on scriptless blockchains.

A. Decentralized Finance

DeFi applications such as automated market makers
(AMMs), liquidity pools, lending protocols, or flash loans,
typically take place on-chain, mainly on Ethereum, resulting in
a huge amount of transactions being broadcast to the network
and competing for a limited block space [13]. Partially shifting
the DeFi ecosystem off-chain would benefit users and the
security of the chain itself, threatened by MEV-specific attacks
[39], e.g., the undercutting attack.

In the following, we demonstrate how to enable collateral-
ized lending protocols via Alba, by exposing a functionality
that allows users to prove to a smart contract on LD that a
specific channel update took place.
Collateralized Lending with Alba. Assume Alice and Bob
have an account on Ethereum and have a payment channel on
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the LN. Alice wishes to borrow 5 BTC on the LN from Bob
to participate, e.g., in online games [14]. Bob agrees to that
on the condition that Alice locks, e.g., 5 ETH in an Ethereum
smart contract as collateral. The smart contract’s logic is as
follows: (1) Alice locks the collateral while providing the
contract with the signed commitment transaction TxB where
Bob grants her the loan; (2) Bob provides the contract with
the signed commitment transaction TxA where he grants Alice
the loan, and the revocation secret r̄B for the previous state of
the channel; (3) If step (2) fails to take place within a timeout
TB , the contract gives back the collateral to Alice; (4) Alice
provides the contract with her old revocation secret r̄A, thus
revoking the previous state of the channel; (5) if step (4) fails
to take place within a timeout TA, the contract gives back
the collateral to Bob. In other words, we have two actions
which have to take place atomically: Alice locks collateral in
the Ethereum contract, Bob grants the loan to Alice. To be
sure that these two actions are taking place atomically, with
the logic above, we require the users to grant the loan within
a channel update whose communication steps take place on-
chain. Alternatively, one could use an atomic swap.

Now, Alice is free to use the 5 BTC she borrowed from
Bob in the way she desires. Finally, upon Alice paying back
the loan, the contract needs to be able to give back to Alice
her collateral. Therefore, the contract has two more steps in its
logic: Alice can have back her collateral upon proving she paid
back the loan. She can do this by providing the contract with
a valid proof π as presented in Section III. After a timeout
Tloan, if no valid proof has been submitted to the contract,
Bob can redeem the collateral.

We note that the collateral locked in the contract could be
used for flash loans, thus mitigating opportunity costs.
Lending to Participate in DeFi. This lending occurs between
two chains, and indeed, the chain that holds the locked collat-
eral in the ALBA contract requires Turing-complete scripting.
Recent proposals, i.e., BitVM [20], [21], conjecture that it
is possible to have stateful and Turing-complete computation
on Bitcoin. Should this hold, we can, in fact, use ALBA for
a lending scenario that is even more interesting. Following
the example above, Alice could give 5 BTC as collateral,
and borrow 5 ETH on Ethereum from Bob. On Ethereum,
there are many payment channel constructions, e.g., [9], [43],
that facilitate this borrowing. This would effectively bring
DeFi to Bitcoin, where people can hold Bitcoin, and then
temporarily lend ETH to participate, e.g., in Ethereum-based
DeFi applications.

B. Multi-Asset Payment Channels

By default, existing payment channels only allow transac-
tions with the native currency of their underlying blockchain.

Recent developments such as Taproot Assets [16] and RGB
[17] enable users to issue and transfer assets on Bitcoin and on
the LN. However, assets issued with these two approaches are
not provably backed by any fiat nor crypto asset: if an issuer
claims that its Taproot Assets represent ETH, the issuer needs
to be trusted to (i) hold an equal amount of ETH as collateral

on Ethereum and (ii) allow users to change their Taproot Asset
back to ETH on Ethereum.

Alba trustlessy enables backed assets into the LN, finally
allowing users to (1) issue and transfer on the LN (and
therefore, indirectly, on Bitcoin) wrapped assets, e.g., assets
representation of non-native assets, (2) exchange them back
and forth as many times as they want, and then (3) get back
a corresponding amount of the original token in its native
chain. Contrarily to the lending example, Alba achieves this by
exposing a functionality that allows users to prove to a smart
contract on LD which is the (balance distribution in their)
latest state of their channel. This application brings new life
to the payment channel ecosystem by finally allowing users to
transact in their own, desired tokens, while avoiding on-chain
fees.
Issuing Non-Native Tokens on the LN. Consider two
users who share an LN channel and wish to top it up with,
e.g., some ETH. Since ETH is not a native currency in the
LN, users create virtual representations of ETH, also known
as wrapped ETH (WETH). They can do this by locking
some ETH in an Alba contract on Ethereum (using it for
flash loans to mitigate opportunity costs) and, for instance,
naively representing WETH in their channel within a dedi-
cated OP_RETURN output in their commitment transactions.
Alternative solutions to the OP_RETURN can be found in [16],
[17]. To create the lock on Ethereum and introduce WETH in
the state of the channel atomically, similar solutions to the ones
presented in Section IV-A can be used. Then, the users can
transact WETH on the LN by exchanging new commitment
transactions reflecting a new distribution thereof.
Back to the Token’s Native Chain. To trustlessly transfer
their WETH from their channel back to Ethereum, Alice or
Bob can present to the smart contract a valid proof π for the
latest state of their channel and the contract distributes the
locked ETH according to their WETH.
Payment Channel Networks. We conjecture that in case
WETH are used in several different channels of the LN,
they can be sent across these channels via intermediaries,
thus leveraging the payment channel network. Alternatively,
if WETH exists in a payment A-B-C in channel A-B but not
in B-C, A could send WETH to C via B only if B offers an
ad-hoc exchange of WETH to BTC. We leave it to future work
to explore this in more detail.

C. Stateful Computation on Scriptless Chains
Alba allows for the first time to build state channels on

blockchains with limited-scripting capabilities, without relying
on additional trust assumptions external to the target chain
LD, contrarily to other existing solutions which use trusted
execution environments [40], [45], trusted executioners, or
honest majority of a quorum [62]. With Alba, one can have
stateful and quasi-Turing complete smart contracts optimisti-
cally executed fully off-chain, with the outcome of the compu-
tation stored in an LN channel, while in case of misbehavior,
the correct execution enforced by the smart contract on another
chain.
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Playing Chess on LN. A playful but nevertheless interesting
example of stateful computation is the game of chess, where
the state of the game (position of all non-captured pieces in
the chessboard) has to be stored move after move, and the
rules of the game have to be enforced by checking the validity
of each move with respect to the current state of the game
and the capabilities of the pieces. This is not possible with
standard LN channels, as the underlying chain, i.e., Bitcoin,
lacks statefulness and cannot enforce the rules of the game.
We show how Alba enables users to play chess on the LN
by exposing the two functionalities introduced for the two
previous examples respectively: (i) users need to be able to
prove that a specific channel update occurred, and (ii) users
need to be able to prove which is the current latest state of
their channel.

Our proposed construction involves two parties and an
untrusted hub, which collateralizes the state channel on a
Turing-complete blockchain. The hub is not strictly necessary,
but we use it to remove the need for users to own and lock
coins on a contract on LD. To understand how it works, we
give the following example.

Setting Up the Game. Assume that two parties, Alice and
Bob, wish to play a chess game in their LN channel on top
of Bitcoin. We also assume that each party stakes 5 coins in
the game, and the winner cashes in 10 coins.

A hub H has a LN channel with Alice and Bob (outbound
capacity≥ 10, inbound capacity ≥ 5) and some collateral≥ 10
on Ethereum. All three parties are mutually distrusted. Alice,
Bob, and the hub perform the following transaction atomically
(e.g., with a secret-based atomic swap): (i) Alice pays 5 coins
to the hub in the channel A-H, (ii) Bob pays 5 coins to the hub
in the channel B-H, and (iii) the hub creates an Alba contract
holding 10 coins on Ethereum.

Now, Alice and Bob start playing chess in their A-B
channel, by storing in a dedicated output of their commitment
transactions the current state of the game, i.e., an efficient
representation of the chessboard [12]. In case both parties
honestly cooperate, every time a player makes a move, parties
exchange a new channel update, containing the new represen-
tation of the state of the game. Honest parties will only sign
states corresponding to a valid chess move, i.e., representing
a valid state transition.

Forcing Unresponsive Players to Move. The main challenge
is if one player, say Bob, stops making moves, yielding
to a stale situation where the game is not over, and Alice
must wait for Bob’s turn. This could happen, for instance,
if Bob realizes he is going to lose. In this case, Alice can
rationally motivate Bob to respond with a valid move by
opening a dispute and posting the channel’s current state (i.e.,
of the game) to the Alba contract on Ethereum. Bob, if he
does not want to lose money, needs to make a move and
post the new state of the game. Since the smart contract on
Ethereum is Turing-complete, it can verify the validity of any
chess move. Provided Bob’s new commitment transaction, the
game is not stale anymore, and parties can either continue

playing off-chain, or, in the worst case, need to enforce every
subsequent move on-chain (which essentially results in playing
on Ethereum). If Alice opened the dispute by posting an old,
revoked state of the game, Bob can prove that this is an old
state using the properties of channel updates, and get away
with all the money. We observe that honest users need to
monitor the Alba contract on Ethereum to not lose money,
as a malicious user can submit a claim even though the
counterparty is responsive. At the end of the game, the smart
contract can always acknowledge the winner and proceed with
the payout.

Payout of Winnings in the LN. Since Alice and Bob started
playing chess in the LN, they presumably want to cash in
their winnings in LN as well. When the game is over, players
provide the hub with the commitment transactions reporting
the final state of the chessboard. If the hub is honest, it pays the
winner 10 coins via a channel update and then discloses to the
smart contract the commitment transactions of such an update.
In this way, the hub gets back its collateral on Ethereum. If
the hub is malicious and does not reward the correct amount
of coins to the winner in LN, the winner can still cash in the
ETH via the smart contract on Ethereum.

V. ANALYSIS

In this section, we initially analyze Alba’s efficiency before
delving into its security aspects. We aim to demonstrate
that Alba adheres to Definition 2, ensuring the atomicity of
operations across participating ledgers despite potential mali-
cious parties. Subsequently, we illustrate that, provided parties
remain active (online and responsive) and behave rationally,
the protocol’s correct execution is assured.

To the best of our knowledge, no practical framework
integrating Byzantine adversaries and rational agents yields
meaningful results for complex protocols instantiated across
multiple blockchains such as ours. Therefore, we split our
proof technique into two parts: we first provide a standard UC
proof to show Alba remains secure against Byzantine parties
(Section V-B), and then perform a game theoretic analysis to
demonstrate rational parties will adhere to the correct protocol
execution (Section V-C).

A. Efficiency Analysis

Following the scalability metrics of Section II, we now
prove that Alba has constant storage, computation, and com-
munication complexity in the length of the source chain LS .

Theorem 1. Alba has O(1) storage, computation, and com-
munication complexity with respect to LS , and it is therefore
a scalable bridge according to Definition 6.

Proof. The storage complexity of Alba is constant with respect
to the length of LS , i.e., no data are stored on LS and
only two signed transactions are stored on LD (see inputs to
the SubmitProof function and sp variable in the Alba smart
contract pseudocode in Section B of [1]. The computation
complexity of Alba with respect to LS is constant (zero),
as Alba is independent on LS and the proof is generated
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out of the data of the payment channel. The communication
complexity of Alba with respect to LS is constant, as only two
signed transactions are relayed to LD. For the computation
and communication complexity of Alba see step 7 in the
Channel Update and Proof phase of the protocol in Section
C of [1].

B. Security in the UC Framework

To formally model our construction, we use the global
universal composability (GUC) framework [36]. Our analysis
follows [44], [42], [43], [23], [25]. We use the ideal function-
ality of generalized channels [23] to capture the functionality
of payment channels. Exactly as in the model of generalized
channels, we model synchrony with a global clock [50], au-
thenticated communication with guaranteed delivery [42], and,
finally, the ledger as an idealized append-only data structure
keeping track of all published transactions [23]. We instantiate
the ledger twice, once for the destination chain (which holds
the Alba contract), and once indirectly for the source chain,
via the channel functionality on top of the source chain. The
ledger is parameterized by a delay ∆, which is an upper bound
for the time it takes for a valid transaction to appear on the
ledger. Due to space constraints, we defer the full security
analysis in Section A-C and only give an overview.

We present the ideal functionality FAlba, which formally de-
fines the input/output behavior, any side-effects on the ledger,
and the properties we want to capture. More specifically, we
capture the atomicity with punish property. Informally, this
property ensures consistency between the current state of the
payment channel and the target ledger, or in case of a cheating
party posting either an old state or refusing to perform a valid
update, all the funds go to the non-cheating party (punish).
Provided this property it is straightforward to show Alba
satisfies Definition 2.

We assume static corruption, i.e., the adversary A chooses
at the beginning of the protocol execution whom to corrupt.
There is an environment Z that captures anything external
to the protocol execution. The UC proof aims to show that
the formalized Alba protocol Π is as secure as the ideal
functionality FAlba, or GUC-realizes FAlba, thus having the
same security properties. This is done by defining a simulator
S, that can convert any attack on the real-world protocol Π
to an attack on the ideal-world functionality FAlba. In other
words, it should be computationally indistinguishable for any
PPT environment Z whether it is interacting with Π or with
FAlba and S. We give formal definitions of FAlba, Π, GUC
security, and the proof of the following main security theorem
in the extended version of this work [1], in Section A.3, B,
and D respectively.

Theorem 2. The Alba protocol Π GUC-realizes the ideal
functionality FAlba.

C. Game Theoretic Analysis

While our UC-based analysis shows that our protocol is
secure against Byzantine parties, we now explore Alba’s
robustness against rational players who may deviate from

the correct protocol execution if they are to gain from it.
This analysis assumes parties are rational utility-maximizing
agents, capturing better the behavior of parties who generally
do not engage in irrational decisions that will cost them money
(Byzantine adversaries) nor blindly adhere to the protocol
when a more profitable strategy exists (honest parties assump-
tion). In the following, we present a summary of our analysis,
while the complete analysis, including formal definitions and
omitted proofs, can be found in Section E of [1].

To model the decision-making process of Alba, our fo-
cus narrows to Alba’s smart contract interactions. Since the
channel cannot be closed with an un-revoked state while the
Alba instance remains active on the contract, we can infer
the decisions of players with respect to the channel from
the smart contract execution. Deviations from the channel
protocol are limited to refusal to update or halting cooperation
during updates. Both scenarios allow for enforcing the correct
outcome through disputes or proof submissions to the smart
contract.

We adopt extensive form games to map out Alba ’s decision-
making process, identifying players, possible actions, and
payoffs. This model, characterized by perfect information,
means every player is fully informed of other players’ past
actions and outcomes, enabling strategy optimization at every
decision point. The game’s extensive form is visualized as a
tree, with nodes representing players’ decisions and edges their
actions, leading to payoffs at terminal nodes. Figure 4 depicts
the game tree of Alba’s smart contract.

Using the game tree, we can now identify the SPNE, which
is the set of players’ strategies from which active, utility-
maximizing parties do not deviate at any point in the game,
regardless of what happened before. We do so by applying
backward induction to the tree of Figure 4: Starting from
terminal nodes going upwards toward the root of the tree,
we select the action with the highest payoff for the decision-
making player, based on the future decisions that are already
determined (as they are lower in the depth of the tree).

In Theorem 3, we prove Alba has one SPNE, where P
and V cooperate to submit a valid proof to the smart contract
(action (i) in the tree). Thus, Alba adheres to Definition 2
even under rational participants.

Theorem 3. Consider the tree in Figure 4 reflecting the game
between two parties (P, V ). For at least one of two parties,
say P , the following always holds: cP < (fP + uP )(s2). The
following strategy profile Σ is the SPNE of the game:

Σ(P, V ) = {[(i)]P , [(v), (viii)]V }.

VI. EVALUATION

We evaluate Alba’ s performance regarding communication
and on-chain costs. We further discuss possible optimizations.

LN Transaction Size. We recall from Section III that in
Alba, the two protocol parties need to embed, for security
reasons, some protocol-relevant information within their com-
mitment transactions. In particular, compared to standard LN
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(P, t < T0)

submit proof (i) go idle (iv)dispute (ii)

resolve(𝚃𝚡𝙿𝚞𝚗𝚕) (v) resolve(r̄P) (viii) go idle (ix)resolve(𝚃𝚡𝙿
𝚞𝚗𝚕) (vii)

(( fP + uP)(s2),( fV + uV)(s2))

(( fP + uP)(s2) − y,
( fV + uV)(s2) − y)

(cP + cV + uP(s2) − y,
uV(s2) − y)

go idle (vi)

(cP + cV − y,
0)

dispute (iii)

(0,
cP + cV − y)

(( fP + uP)(s′￼2) − y,
( fV + uV)(s′￼2) − y)

(V, t < T1) (V, t < T1) (0,
cP + cV − y)

Fig. 4: P and V deposit cP and cV ≥ 0 coins, updating channel from s1 to s2 = s1 + ∆s before T0. Without proof or
dispute by T0, cP + cV go to V . Utility in state si and on the contract on LD are denoted by u(si) = (uP (si), uV (si)) and
f(si) = (fP (si), fV (si)), respectively. s′2 denotes state after applying ∆s to revoked state sr. Game tree: P actions comprise
submitting a valid proof (i), opening a valid dispute with the latest channel state (ii), presenting an old, revoked state (iii), or
going idle (iv). V responds to a valid dispute with an unlocked transaction (v) or goes idle (vi), and to an invalid dispute with
the old state (vii), the revocation secret r̄P (viii), or by going idle (ix). y denotes the opportunity and fee costs. The SPNE is
illustrated in red.

transactions, the commitment transaction of P has to include
an additional OP_RETURN output which stores the hash of V’s
revocation secret, i.e., RV := H(rV ). Another OP_RETURN
output storing a unique update identifier might be needed
depending on the application. We have generated such an
augmented commitment transaction using a Python library
[8], broadcast it to the Bitcoin testnet [3], and compared its
size to LN transactions. Adding the two OP_RETURN outputs
results in a 406-byte transaction, i.e., 126 bytes larger than
the 280-byte standard ones, whereas including the hash of the
revocation secret alone results in a 395-byte transaction. We
also recall that this larger transaction needs to be exchanged
only once, as all other channel updates can be performed by
simply exchanging locked versions of standard transactions.

The size of commitment transactions also depends on the
application: for instance, when two parties are playing chess,
they also need to store an efficient representation of the state of
the game. If the application state exceeds the 80 bytes allowed
by the OP_RETURN, additional outputs can be created.

Communication Overhead. When updating the LN channel,
our protocol requires one more round of communication with
respect to standard LN updates. This is because parties must
exchange locked and unlocked versions of signed commitment
transactions. This additional step takes place entirely off-chain,
incurring no additional cost.

On-Chain Costs in Ethereum. To give insights on the
overhead introduced by our smart contract, we spin up a
local blockchain instance using Hardhat network 2.17.4, a
development environment for Ethereum that allows to deploy,
run, and test smart contracts and provides per-function detailed

reports on gas costs. A proof-of-concept implementation and
evaluation of the ALBA contract is publicly available at [2].
We have evaluated the gas consumption, which verifies that a
simple coin transfer occurred in the channel as, for instance,
in the case of a payback transaction within a lending protocol.
For more sophisticated applications, the gas costs pertaining to
the on-chain application logic have to be taken into account.

We specifically look at the gas consumption of the Setup,
SubmitProof, Dispute, ResolveDispute, and Settle functions,
presented in Table II.

We observe that the Setup function consumes 390k gas as a
result of initializing the state variables and storing the protocol
specifics, such as the hash of the funding transaction, index of
the funding output, parties’ public keys, and timelocks. The
SubmitProof and Dispute functions consume 250k and 515k
gas, respectively, as they need to parse both commitment trans-
actions: this means that from raw transactions they (i) extract
the timelock and check whether transactions are locked or
unlocked, (ii) extract the input and verify that they spend from
the funding transaction output, (iii) extract the outputs and
check their well-formedness, their balances, and the data in
the OP_RETURN, (iv) verify parties’ signatures. The Dispute
function incurs some additional storage cost, as it stores the
commitment transaction state in global variables, which needs
to be checked against the state of the transaction provided
when resolving the dispute. The ResolveDispute functions
require 168k gas in the optimistic case (the dispute was opened
with the latest state), and 37k gas in the pessimistic case (the
dispute was opened with an old state). Resolving a dispute
is significantly cheaper compared to the gas consumption of
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Gas Cost
Setup 393401

SubmitProof 253566
OptimisticSubmitProof 48027

Dispute 515860
ResolveDispute(TxPunl, σV ) 168046

ResolveDispute(r̄P ) 37333
Settle 49814

TABLE II: On-chain
gas costs evaluation
for EVM-based
blockchains. For
more details, see our
implementation and
evaluation [2].

verifying a proof because only a single commitment trans-
action needs to be checked (optimistic case), or a hash’s
preimage must be verified (pessimistic case). Finally, funds
in the contract can be unlocked by calling the Settle function,
which has an overhead of 50k gas.
Optimizations. From Table II, on-chain costs incurred
by Alba are on par with those of other cross-chain pro-
tocols: zkBridge uses 230k gas for zk-proof verification
[63], Glimpse 290k gas [57], and SPV-based bridges 205k
gas [33] or more [46], [61]. On top of these, SPV-
based bridges, have high maintenance costs which greatly
increase overall users’ costs. Nonetheless, any optimizations
to bring the costs down towards the costs of a standard
transaction of token ownership transfer (a transaction unit),
which is 21k gas in Ethereum, are desirable. A natural
optimization involves utilizing the optimistic scenario where
parties act honestly and collaboratively. In this case, parties
can simply replace the proof π with their signatures over
a message of the form, e.g., (id,ProofSubmitted, true) or
(id,GameOver, (Winner, P )), where they both acknowledge
that some event occurred within the channel. The smart
contract only needs to verify two signatures (consuming 48k
gas, see OptimisticSubmitProof in Table II), before unlocking
the coins, significantly reducing by 5x the cost of Alba in the
optimistic case. Additional cost optimizations may be feasible
in a production-level implementation as our smart contract in
[2] is a research prototype.

VII. RELATED WORK

SPV-Based Bridges. SPV light clients have been presented in
Nakamoto’s original paper itself [55]. The idea is to store and
verify block headers, as opposed to whole blocks, to identify
which chain carries the most Proof-of-Work. SPV-based light
clients are at the core of chain relays [7], [46], which run a
light client protocol of a source chain within a smart contract
on a target chain. However, the high maintenance costs of these
constructions (100k gas per block header submitted + 62k gas
per transaction inclusion verification [7]), associated with the
lack of incentives for relaying blocks from one chain to the
other, are arguably the reasons why relays are not widely used
in practice. Some bridge constructions, such as [64], [33] used
by Interlay, however, heavily subsidize relayers, and still use
BTC-Relay.

Contrary to SPV-based bridges, Alba’s smart contract does
not need to verify any information related to the consensus
mechanism of the source chain. Instead, it only has to parse
two transactions and their signatures, with all necessary incen-
tives for parties embedded directly within the smart contract.

ZK-Based Bridges. More recently, zero-knowledge (zk)
interoperability solutions have emerged, leveraging the com-
pleteness and soundness properties of zk protocols to ensure
security. While zk-based chain relays have been proposed [61]
but not used in practice, zkBridge [63] is getting attention from
the community. zkBridge is an EVM-compatible bridge with
constant size storage, where a zk-SNARK proof guarantees
that the blockchain has undergone a state update (either a
single block or a batch of them). Each verified state update is
stored within a stateful contract, and recent block headers of
the source chain are relayed to and stored within the contract
until a zero-knowledge proof is made available to finalize and
verify the state update. Similarly to SPV-based bridges, also
zkBridge incurs high maintenance costs (230k gas per zk proof
verification, without considering the non-reported costs for
storage of recent blocks) and suffers from lack of incentives
(authors leave incentives for future work) for relayers. In
addition, given the high computation complexity of zk proof
generation, generating the zk proof is very resource intensive
on the prover’s side, and it can only be computed with very
high-performance (and expensive) hardware machines.

Contrarily, Alba being agnostic to LS’s consensus elim-
inates the need to account for maintenance costs during
incentive design and allows for the generation of an Alba
proof that is not computationally expensive to the point that it
can be done in resource-constrained environments. Moreover,
the on-chain verification of zk proofs requires LD to support
complicated crypto operations, whereas Alba only requires LD

to allow for signature verification.
Cryptographic Constructions. A radically different ap-
proach is taken by interoperability solutions relying on cryp-
tographic primitives such as Hashed TimeLock Contracts
(HTLCs) and adaptor signatures. These solutions are solely
used for simple applications like atomic swaps [6], [49], [23],
[52], [58], as they favor a simple design over expressiveness.
Surprisingly, despite their simplicity, their gas fees are still
high (270k gas per HTLC [59]). Similarly to Alba, these
solutions exhibit good properties: they are agnostic to the
consensus of the blockchains they operate between, they have
instant finality, and a lightweight on-chain footprint on both
LS and LD. Nonetheless, their application is confined to token
swaps only, whereas Alba can be used for a wide spectrum of
applications, from multi-asset swaps to DeFi protocols.

VIII. CONCLUSION

In this work, we introduced, for the first time, Pay2Chain
bridges, i.e., bridges supporting the verification of off-chain
transactions. We defined the advantages of scalable bridges
over existing ones and instantiated them for payment channels,
which are among the most well-established, decentralized,
effective, and compatible off-chain solutions.

In particular, we presented Alba, a new, Pay2Chain bridge
which enables users to efficiently, securely, and trustlessly
condition the execution of a transaction in a target chain
LD on a specific transaction occurring in a payment channel.
We illustrated how Alba serves as a building block for new,
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exciting applications in the realm of DeFi (e.g., trustless
lending protocols for borrowing assets from another chain
in order to use its features, such as DeFi applications), but
also towards multi-asset payment channels, and optimistic off-
chain computation (e.g., bringing stateful, Turing-complete to
limited chains like Bitcoin).

We formally analyzed Alba in the UC framework. Further-
more, we completed the analysis by incorporating a game-
theoretic study, capturing the case where participants act ra-
tionally. Lastly, we assessed the performance of Alba in terms
of communication complexity and on-chain costs. Notably, in
optimistic scenarios, Alba only costs twice as much as the
simplest Ethereum transactions.
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APPENDIX A
MODELING ALBA IN THE UC-FRAMEWORK

A. Extended Notation

A transaction Tx = (cntrin, inputs, cntrout, outputs,witnesses)
is an atomic update of the blockchain state and is
associated to a unique identifier txid ∈ {0, 1}256

defined as the hash H([Tx]) of the transaction, where
[Tx] := (cntrin, inputs, cntrout, outputs) is the body of the
transaction. Intuitively, a transaction maps a non-empty
list of inputs to a non-empty list of newly created outputs,
describing a redistribution of funds from the users identified
in the inputs to those identified in the outputs.

cntrin, cntrout ∈ N>0 represent the number of elements in
the inputs and outputs lists. Any input ζ in the list of inputs
is an unspent output from an older transaction, defined by the
tuple ζ := (txid, outid), with txid ∈ {0, 1}256 representing the
hash of the old transaction containing the to-be-spent output,
and outid ∈ R≥0 the index of such an output within the
output list of the old transaction. These two fields uniquely
identify the to-be-spent output. For short, we use the notation
Tx.txid∥1, to refer to the first output of a transaction Tx.
witnesses ∈ {0, 1}∗, also known as scriptSig or unlocking
script, is a list of witnesses ω, i.e., the data that only the entity
entitled to spend the output can provide, thereby authenticating
and validating the transaction. Any output θ in the list of
outputs is a pair θ := (coins, ϕ) and can be consumed by
at most one transaction (i.e., no double-spend). The amount
of coins in an output θ is denoted by coins ∈ R≥0, whereas
the spendability of θ is restricted by the conditions in ϕ, also
known as the scriptPubKey or locking script.

B. Modeling in the UC-Framework

To analyze Alba’s security, we make use of the global uni-
versal composability (GUC) framework [36], i.e., an extension
to the original UC framework [35]. We closely follow [44],
[42], [43], [23], [24], [25], [27], [26], [19].

1) Preliminaries: Our protocol Π is executed between a
set of parties P (interactive Turing machines), who exchange
messages in the presence of an adversary A. We assume static
corruption, which means that A announces at the beginning
of the protocol execution which parties out of P she wants
to corrupt. Corrupting a party P means taking control of P ,
its internal state and being able to send any message and
execute code on P ’s behalf. There is a special entity called
the environment Z , which can send inputs to every party in P
and the adversary and which observes every response output
by those parties. The intuition behind Z is to capture anything
external to the protocol execution. Z and in extension A, are
given as input a security parameter λ ∈ N and an auxiliary
input z ∈ {0, 1}∗.
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Communication. To model synchronous communication, we
assume there is a global clock, which divides the protocol
execution into discrete rounds and allows for a more intuitive
arguing about time. This is captured by the functionality Gclock
(defined in [50]), which ticks off each round after every honest
party reports they are completed with the current time. Note
that every party is aware of the current round. Additionally,
we make use of the functionality FGDC (defined in [42]) to
model communication channels that are authenticated and have
guaranteed delivery. Any message m sent in round t from
one party A ∈ P to another party B ∈ P , is received by
B exactly in round t + 1. The adversary can see messages
sent between parties and reorder messages sent in the same
round, but cannot drop, delay, or modify them. Any other
message that is not sent between two protocol parties of P ,
but instead involves one other entity, for example, Z or A,
takes zero rounds to be delivered. We further assume that all
computations can be executed in the same round.

To ease readability, we use Gclock and FGDC implicitly
in the following way. We denote (msg)

t
↪−→ A as sending

a message msg to party A in round t. Similarly, we denote
(msg)

t+1←−−↩ B as B receiving a message msg in round t+1.

Ledgers and Contracts. For the ledger, we take the function-
ality defined in [23]. This idealized ledger keeps an append-
only list of transactions. The functionality allows the environ-
ment Z to generate and register public keys for users to the
ledger. Further, users can post transactions, which if valid, are
added to the ledger L after at most ∆ rounds; the exact number
is chosen by the adversary. The ledger is global, publicly
accessible by parties and from it, the current state of the ledger
can be derived. Aside from ∆, the ledger is parameterized by
a digital signature scheme Σ (used to register parties). We note
that there are models that more accurately capture ledgers, e.g.,
[32], [47]. These functionalities introduce a lot of additional
complexity. To increase readability, we opt for this simplified
ledger functionality.

Ledgers can support smart contracts. Following [42], [44],
smart contracts (or simply contracts) are self-executing agree-
ments specified in some programming language. A contract
is deployed by one party on the ledger, which can receive,
store, and send coins. It has a dynamic, internal storage which
represents the contract’s current state. A contract is idle by
default, which means that a contract never acts on its own
accord, but only when a party calls a function defined by its
code. A function executes the code according to its current
internal state. Finally, a contract lives on a unique address
{0, 1}∗ and can be called via this address. We capture these
smart contract capabilities, as well as the rules by which a
transaction is considered valid, as parameter V of the ledger.

In our case, we need two specific ledger functionalities.
One of them we call LD, which represents the destination
ledger. We consider this ledger to have Turing-complete smart
contract capabilities (similar to Ethereum) and write its smart
contracts in pseudocode. We write function calls to a smart
contract as (CallFunction, address = address, function =

functionName, args = arguments, coins = coins), where
address specifies the address of the contract, function the
name of the to-be-called function, args the (optional) argu-
ments passed to the function and coins the optional amount
of coins passed to the function. A function can return a value.
There is a special function (InitiateContract, code = code,
function = Constructor, args = arguments, coins = coins)
which creates a new contract with the specified code, runs
the Constructor function with the specified args and returns
the address where the smart contract was created. A call to
a contract function (including contract creation) can fail and
return ⊥. A contract can learn the value and sender of a
message via msg.value() and msg.sender().

The other ledger instance we use is for the payment channels
and is used by the payment channel functionalities we define
in Section A-B3 of the full paper [1]. It does not (necessarily)
have the capability for Turing-complete smart contracts, but
can be thought of as more similar to Bitcoin. Indeed, this
instance is the same as the one used in [23]. We proceed now
to give the API of the GLedger functionality.

Interface of GLedger(∆,Σ,V) [23]

This functionality keeps a record of the public keys of parties. Also,
all transactions that are posted (and accpeted, see below) are stored
in the publicly accessible set L containing tuples of all accepted
transactions.
Parameters:

∆: upper bound on the number of rounds it takes a
valid transaction to be published on L

Σ: a digital signature scheme
C: the smart contract capabilities and transaction va-

lidity rules of the ledger
API: Messages from Z via a dummy user A ∈ P:

• (sid,REGISTER, pkA)
δ←−↩ A:

This function adds an entry (pkA, A) to PKI consisting of the
public key pkA and the user A, if it does not already exist.

• (sid,POST, [Tx])
δ←−↩ A:

This function checks if [Tx] is a valid transaction and if yes,
accepts it on L after at most ∆ rounds.

2) UC-Security Definition: We proceed to present UC-
security definition. Let Π denote some hybrid protocol which
has access to a set of auxiliary ideal functionalities Faux. An
environment interacting with A will on input λ and z sees
the transcript or execution ensemble EXECFaux

Π,A,Z(λ, z) as the
set of all outputs and side-effects produced by the interacting
with Π observable by Z . Further, let ϕF denote the idealized
protocol of some ideal functionality F , where the messages
between F and Z are sent through dummy parties. Say ϕF
also has access to some ideal functionalities Faux. We define
the execution ensemble observed by Z when interacting with
ϕF , a simulator S and on input λ and z as EXECFaux

ϕF,A,Z(λ, z).
If a protocol Π GUC-realizes a functionality F , it means that
any attack on the real world protocol Π can be carried out
against the idealized protocol ϕF , and vice versa. In other
words, Π shares the security properties of ϕF . The formal
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security is as follows.

Definition 7. A protocol Π GUC-realizes an ideal function-
ality F , w.r.t. Faux, if for every adversary A there exists a
simulator S such that

{
EXECFaux

Π,A,Z(λ, z)
}

λ∈N,
z∈{0,1}∗

c
≈
{
EXECFaux

ϕF,S,Z(λ, z)
}

λ∈N,
z∈{0,1}∗

where ≈c denotes computational indistinguishability.

We now put forth the Alba ideal functionality. Due to space
constraints, we formally define the Alba smart contract, the
Alba protocol as well as the proof in the UC in Section B, C,
and D respectively, of the full version of this paper [1].

C. Alba Ideal Functionality

We start by (re-) introducing the following variables. Let
α be the total money locked in the contract, r ⊆ S × S is
the (application-dependent) reflexive state transition relation,
where (s1, s2) ∈ r indicates a valid transition from s1 of the
set of all valid states S of the payment channel in PC between
the two users {P, V } to another valid state s2, and f : S → O
is the outcome mapping, which assigns a balance for a valid
(final) state to each user (i.e., a tuple giving each user a non-
negative balance, in total α coins). As a special case, we note
that here (and in the protocol description later), an outcome
mapping can map a state to an intermediate state on-chain
on LD, which needs to be resolved via on-chain transactions
on LD. An example of this is a chess game, where a party
enforces a state that still needs to be played out.

The security property we aim to achieve with our Alba
protocol is atomicity. On a high level, atomicity says that
given the latest valid state s on PC, an honest user U ∈ {P, V }
is ensured that (i) the according outcome f(s) can be enforced
by P on LD and (ii) no other outcome can be enforced on
LD as long as s is the latest valid state, or else U gets all
the money α on LD. For a formal definition of atomicity,
we define an ideal functionality, FAlba, that specifies the
expected input/output behavior as well as the side effects
on the ledger(s) and payment channel functionalities. The
functionality proceeds in the following phases. During the
setup, FAlba receives a request from V to start an instance of
Alba for some unique identifier id. This request is forwarded
to P , and, if P (or rather the environment interacting via this
dummy party) agrees and an according contract appears on
LD on some address Addr (which is given by the simulator),
the setup is considered complete and the functionality moves
to the next phase.

This next phase, the channel update and proof phase, is the
core of the ideal functionality and formally defines its atom-
icity (with punish) property. For each instance (identified by
id), the functionality defines a variable tx which is initially ⊥.
This variable tracks which transaction the functionality expects
to appear on LD. If set, i.e., tx ̸= ⊥, the functionality expects
any transaction that spends the money stored in Addr to be
tx. If not set, i.e., tx = ⊥, the functionality expects either

TXpayout, which is the correct payout according to the latest
valid state of the channel, if the current time is before T2, or
TXV , which is giving all money to V , if the current time is
after T2. This ensures part (ii) of the atomicity property, i.e.,
that no other outcome can be enforced.

For part (i), the functionality will try to determine which tx
should appear, which can be upon receiving a message from
an honest P either TXpayout, TXP , or ⊥. This depends on
whether the request was for a state s2, such that given the
current state s1, (s1, s2) ∈ r and with enough time to perform
the necessary steps (outcome TXpayout), an invalid request
or not enough time (outcome ⊥), or the V not cooperating
(outcome TXP ). This is determined by the subprocedures
DetermineReceiver and HandleClaim. For a dishonest P ,
the functionality only cares about whether P made an invalid
claim, in which case the outcome is TXV . Finally, an honest
V can enforce the current tx as well at time T2, which is TXV

if tx = ⊥ by then. Note that this formalization also captures
the fact that a dishonest P can submit a valid proof, in this
case tx = ⊥, but TXpayout appears.

We note that we can modify the functionality (and the
protocol later), such that both parties can take the role of P and
V . For this, the times T0 and T2 are set to∞ initially, i.e., both
parties can close Alba at any time. Once they do the initial
call, T0 is set to now, and to some time T2 > T0 + 2∆D.
For simplicity, we omit the formalization of this. We also
do not make any claims about the privacy of our protocol
and assume that messages sent or received by FAlba are
implicitly forwarded to S. In Figure 5 we showcase on a
high level of the behaviour of the Alba ideal functionality
presented in the following. We use the names dispute and
claim interchangeably.

Ideal functionality of the Alba protocol FAlba

Parameters:
LD . . . an instance of GLedger representing the destination
blockchain.
PC . . . an instance of the payment channel ideal functionality
which itself is parameterized by a ledger LS . We have access
to the internal channel space storage of PC and we denote the
channel space of channel idch by Γ(idch),
∆D . . . the blockchain delay of LD .

Variables:
ϕ(.) . . . a mapping of id to (idCh, T0, T2, α, α

′,Addr), where
id ∈ {0, 1}∗ is an identifier unique to the pair P and V . idch is the
id of the payment channel. Further T0, T2 ∈ N, α′ = (r, f), where
r is the state transition relation and f the outcome mapping, as
defined at the beginning of this section. Addr is the address of the
instance of the Alba contract.
tupdateDelay . . . The time it takes to perform a channel update,
given by PC

Setup
1) Upon (A–SETUP, id, idch, P, T0, T2, α, α

′)
τ←−↩ V , read Γ(idch)

from the storage of PC and parse the output as ({γ}, TXf, . . . ),
then check the followings:

17



SETUP

• identities( )

• coins-locked( )

• outcome-mapping 

• timeouts 

P, V
α

f
T0, T2

ATOMICITY( ): at every round, if  coins are spent by  on : TXA α txD ℒD

1. if and current time  <  : assert( )

2. if and current time   , assert( )

3. else assert( )

TXA = ⊥ t T2 txD = = TXP,V
TXA = ⊥ t ≥ T2 txD = = txV

txD = = TXA

ℒD

check if  coins are spent by α txD

UPDATE CHANNEL & PROOF
1. if  <  open dispute, than update the channel

2. if the update was successful, then  := 

3. if the update failed, call RAISE DISPUTE

4. else, go to RAISE DISPUTE  go idle

t T0 − Δ ∧ ∄
TXA txP,V

∨

ℒ𝒩

HANDLE DISPUTE

1. if  < the update is successfully completed, then  := 

2. if  < an invalid update was attempted, then  := 

3. if  >  and none of the two above occurred, then  := 

t T2 ∧ TXA txP,V
t T2 ∧ TXA txV
t T2 TXA txP

s1

sn

⋮

Fig. 5: High-level illustration of the behavior of the Alba ideal functionality FAlba defined in Section A-C. We use the names
dispute and claim interchangeably.

• γ.otherParty(V ) = P
• γ.cash ≥ α
• T0 + 2∆D < T2 holds and T0, T2 are times in the future.

2) Send (A–CREATED, id, idch, T0, T2, α, α
′)

τ+1
↪−−→ P .

3) At round τ1 ≤ τ + 1 + ∆D if received
(CONTRACT–INCLUDED,Addr)

τ1←−↩ S, store (idCh, T0, T2, α, α
′,

Addr) in ϕ(id) and continue. Otherwise, stop.
4) Send (A–CREATED, id, idch, T0, T2, α, α

′)
τ1
↪−→ V .

5) Set γ.Aid← id.
6) Run the code below “Channel Update and Proof” for id

Channel Update and Proof (executed in every round, for id)

Variables

• TXpayout : Let st be the current state of the channel γ
between P and V in PC. Define transaction TXpayout as a
transaction that distributes the α coins from the smart contract
with address Addr according to α′.f(γ.st) on LD .

• TXU : Define transaction TXU that transfers α from the smart
contract with address Addr to U ∈ {P, V } on the chain LD .

• tx specifies the transaction that should appear on LD , initially
tx := ⊥.

Atomicity
Let t0 be the current round. Monitor LD , if a transaction that spends
the money of the contract on Addr appears, either this transaction
has to be tx if tx ̸= ⊥, or TXpayout if tx = ⊥∧ t0 < T2, or TXV

if tx = ⊥ ∧ t0 ≥ T2. Else output ERROR.

Execute the following steps:
1) If P is honest, upon receiving (A–INITIATE–PAYMENT, id, θ⃗)

t0←−↩ P , run DetermineReceiver(id) and wait for it to return
TX ∈ {TXpayout,TXP ,⊥} in round t1. If TX ̸= ⊥, set tx :=
TX. Go to step 5.

2) Else if P is not honest, upon receiving (InvalidClaim) from
S, define t1 := t0 and set tx := TXV . Go to step 5.

3) Else if V is honest and t0 = T2, define t1 := t0 and go to step
5.

4) Else (if none of the above happened), go idle for this round.
5) Distinguish the following cases.

a) If tx ̸= ⊥, the transaction tx should appear on LD at time
t ≤ t1 +∆D . Else, output ERROR.

b) If tx = ⊥ ∧ t1 ≥ T2, the transaction TXV should appear
on LD at time t ≤ t1 +∆D . Else, output ERROR.

c) If tx = ⊥ ∧ t1 < T2, go idle.

Subprocedures

DetermineReceiver(id): ▷ returns TX
1) Read ϕ(id) from the storage and parse it as (idch, T0, T2, α,

α′,Addr) and then read Γ(idch) = (γ, TXf, ) from the storage
of PC. Let γ.st be the current state of the channel. If θ⃗ ̸=
α′.r(γ.st), Return(⊥).

2) If (γ.idle == True), distinguish the time. If (now >
T0 − ∆D), Return(⊥), otherwise if (now ≤ T0 − ∆D),
Return(HandleClaim(id))

3) If (γ.idle == False) and (now > T0 − tupdateDelay −∆D)
Return(⊥), otherwise if (now ≤ T0 − tupdateDelay − ∆D)
continue.

4) Send (UPDATE, idch, θ⃗, T rue)
now
↪−−→ PC to initiate the channel

update and proceed with the update until it is either successful
(outputs UPDATED) or stops unsuccessfully.

5) If the update was successful, Return(TXpayout).
6) Else, Return(HandleClaim(id)).

HandleClaim(id) : ▷ Returns TX in the case of a claim.
Let t be the round in which this function is called. Send message
(Claim) to S and wait for S to reply with one of the following
messages:
• If S sends a message (ClaimOk) in round t1 where t ≤ t1 ≤
t+ 3∆D , Return(TXpayout).

• If S sends a message (NoResponse) in round T2,
Return(TXP ).

• If neither of these messages is received by time T2, output
(ERROR).
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APPENDIX F
ARTIFACT APPENDIX

We introduce the bridge Alba (based on our novel
Pay2Chain concept), a new 2-party protocol that enables
interoperability between layer-1 and layer-2 of different
blockchains by allowing verification and enforcement of an
update of a payment channel on a smart contract. Given the
mutual distrust between the two parties, Alba leverages an
on-chain smart contract to verify the state of the channel and
issue a corresponding transaction on the blockchain, but also
to settle any dispute that may arise between the users, thereby
enforcing on-chain the outcome matching the relevant event
in the payment channel.

We claim that the Alba smart contract can be efficiently
used by users of any Ethereum-like blockchains. While in the
optimistic case, i.e., when users follow the protocol, the fees
users incur are 2 times lower than the ones of other standard
bridges the costs of Alba are on par with other standard bridges
in the pessimitic case. Our Alba smart contract implementation
aims to evaluate the costs of calls to Alba functions, both in
an optimistic and in a pessimistic execution.

A. Description & Requirements

1) How to access: The artifact is avail-
able at this Digital Object Identifier (DOI):
https://doi.org/10.5281/zenodo.14249987.

2) Hardware dependencies: The artifact can be evaluated
on commodity hardware.

3) Software dependencies: The evaluation of the artifact
requires to have Docker installed.

4) Benchmarks: None.

B. Artifact Installation & Configuration

To have a consistent environment that runs all components
without requiring additional configuration or dependencies,
please ensure that Docker is installed on your commodity
laptop. You can download Docker from here.

C. Major Claims

In the blockchain world, any on-chain action requires is-
suing transactions. By design, validators and miners of the
blockchains are motivated to include transactions in blocks be-
cause they are compensated by transaction fees. In Ethereum,
transaction fees are measured in gas units, that provide a cost
for the on-chain storage and for the amount of computational
work. Our artifact measures the gas cost incurred by users
when interacting with the Alba contract. In the paper, we make
the following claims:

• C1: The Alba-specific logic can be implemented in an
on-chain smart contract efficiently, with a call to each
function incurring the costs presented in Table II of the
paper. To ease the evaluation of the artifact, we copy-
paste such table in Table I of this document.

• C2: In the optimistic case, the on-chain costs of Alba are
lower than the ones of standard bridges such as zkBridge
(230k gas), Glimpse (290k gas), and SPV-based bridges

Gas Cost
Setup 393401

SubmitProof 253566
OptimisticProof 48027

Dispute 515860
ResolveInvalidDispute 168046
ResolveValidDispute 37333

Settle 49814

TABLE I
ON-CHAIN GAS COSTS EVALUATION FOR EVM-BASED BLOCKCHAINS.

(205k gas). In the pessimistic case, the costs of Alba are
on-par with the ones of the aforementioned bridges, if
not lower, as zk techniques require very high off-chain
computational costs, and SPV necessitates to relay and
verify all block headers, thus incurring continuous high
maintenance costs.

D. Evaluation

The Alba contract internally verifies the well-formedness
and the correctness of Lightning Network transactions. There-
fore, we created some of these transactions, with the purpose
of emulating both an optimistic and pessimistic execution of
Alba, as well as testing it. The Lightning Network transactions
have been created by using the python-bitcoin-utils library, and
they are provided in Alba-Bridge/data/jsonTestData.json.

We implemented the on-chain component of Alba in Solid-
ity and evaluated its gas costs using Hardhat, a development
environment designed for building, debugging, and testing
Ethereum-based smart contracts. The gas computed by Hard-
hat faithfully mimics the gas in Ethereum, as one can see
from comparing the costs in Hardhat/revm with, e.g., the ones
in the Ethereum yellowpaper and in the Go implementation
of Ethereum. We use the hardhat-gas-reporter plugin to obtain
detailed gas usage reports for function calls to Ethereum smart
contracts.

1) Experiment: [Gas costs evaluation] [approx 2 minutes]:
this experiment computes the gas consumed by calls to each
Alba function.

[How to] Once Docker is installed and the Alba repository
is downloaded from here, open a terminal and navigate to the
project folder by typing:

1 cd /path/to/the/cloned/repository

[Preparation] Build the Docker image by typing the fol-
lowing command within the Alba-Bridge folder:

1 docker build --no-cache -t alba .

[Execution] Run the gas cost evaluation of Alba within
Docker by executing the following command in your terminal:

1 docker run alba

[Results] The experiment outputs a table similar to the one
in Fig. 1 showcasing a gas report per call to the Alba function.
In our evaluation, we are interested in the average costs (Avg
column). For a quantitative comparison, we recall that the
simplest transaction in Ethereum requires 21k gas.
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Assessing claim C1: The on-chain costs of each Alba
function (Fig. 1) correspond to the ones claimed in the paper
(Table I).

Assessing claim C2: In the optimistic case, Alba is more
cost effective than the standard bridges mentioned in Sec-
tion F-C: the OptimisticProof function combined with the
Settle function require approx 100k gas, while other bridges
approx 250k gas.

In the pessimistic case, Alba requires one party to call the
Dispute function and the counter party to close it by either
calling ResolveInvalidDispute or ResolveValidDispute. While
opening a dispute is quite costly (500k gas), closing it is rather
cheap (168k gas or 37k gas). However, we note that these are
one-time costs, while other bridges have to bear additional
computational or maintenance costs. We further note that a
pessimistic execution never takes place in the presence of
rational users, i.e., users maximizing their profit, as motivated
in the paper in Section V.C.

The function SubmitProof and its associated costs showcase
how expensive it is to verify on-chain on Ethereum the
correctness of a Lightning Network transaction; this function
however, is superseded by OptimisticProof.

Fig. 1. Per-function gas report of Alba.
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