
DiStefano: Decentralized Infrastructure for Sharing
Trusted Encrypted Facts and Nothing More

Private and Efficient Commitments for TLS-encrypted Data

Sofı́a Celi∗, Alex Davidson†, Hamed Haddadi∗¶, Gonçalo Pestana‡ and Joe Rowell§
∗ Brave Software, cherenkov@riseup.net, hamed@brave.com

† NOVA LINCS & Universidade NOVA de Lisboa, a.davidson@fct.unl.pt
‡ Hashmatter, gpestana@hashmatter.com

§Information Security Group, Royal Holloway, University of London, joe.rowell@rhul.ac.uk
¶Imperial College London, h.haddadi@imperial.ac.uk

Abstract—We design DiStefano: an efficient, maliciously-
secure framework for generating private commitments over TLS-
encrypted web traffic, for verification by a designated third-
party. DiStefano provides many improvements over previous
TLS commitment systems, including: a modular protocol specific
to TLS 1.3, support for arbitrary verifiable claims over encrypted
data, client browsing history privacy amongst pre-approved
TLS servers, and various optimisations to ensure fast online
performance of the TLS 1.3 session. We build a permissive
open-source implementation of DiStefano integrated into the
BoringSSL cryptographic library (used by Chromium-based
Internet browsers). We show that DiStefano is practical in both
LAN and WAN settings for committing to facts in arbitrary TLS
traffic, requiring < 1 s and ≤ 80KiB to execute the complete
online phase of the protocol.

I. INTRODUCTION

The Transport-Layer Security (TLS) protocol [1] provides
encrypted and authenticated channels between clients and
servers on the Internet. Such channels commonly transmit
trusted information about users behind clients such as proofs
of age [2], social security statuses [3], and accepted purchase
information. While various applications would benefit from
learning such data points, doing so represents an obvious
privacy concern [4]–[9]. Exporting such information as anony-
mous credentials is non-trivial since the information resides
in an encrypted and authenticated channel. Meanwhile, both
legislation (such as GDPR [10]) and standards bodies (such
as W3C [11]) have made usage of privacy-preserving data
credentials a priority.

Designated-Commitment TLS (DCTLS) protocols (also
known as three-party handshake protocols) provide modified
TLS handshakes that allow exporting certain claims on the
TLS channel to a designated verifier. The protocols perform
handshakes that secret-share private session data amongst
a client and a verifier, and compute the handshake and
record-layer phases in two-party computation (2PC). Examples

of DCTLS protocols include DECO [2], TLSNotary/Page-
Signer [12]1, TownCrier [13], Garble-then-Prove [14], and
Janus [15]. Similar techniques are also used to produce zero-
knowledge middleboxes [16] (for proving that client traffic
adheres to corporate browsing policies, for example), and for
devising multi-party TLS clients/servers. Prominent examples
of the latter are Oblivious TLS [17] and MPCAuth [18].

Unfortunately, while previous works claim practicality, all
such DCTLS protocols appear insufficient for wide-scale us-
age. First, no protocol explicitly provides secure support for
TLS 1.3. Support for TLS 1.3 surpassed that of 1.2 around
December 2020 [19] and, according to Cloudflare Radar [20],
TLS 1.3 now accounts for 63% of secure network traffic as
opposed to 8.7% for TLS 1.2, so it is imperative that protocols
support this version. When DCTLS protocols do support
TLS 1.3, the security analysis is lacking and/or efficiency
concerns that surround implementing TLS 1.3 ciphersuites
and protocol steps in (maliciously-secure) 2PC are overlooked.
Existing security arguments also lack in agility, meaning that
they only apply for a static protocol, ciphersuite and 2PC
primitives. This is a critical concern: primitives used by DECO
have been already shown to be insecure [21], [22]. Client
privacy is also neglected as the protocols reveal the server
that clients communicate with to the verifier, revealing their
browsing history. Second, from a deployability perspective,
no fully-featured open-source implementation of a DCTLS
protocol exists that achieves strong security guarantees, or
much less one that interoperates with Internet browsing tools.
Our work. We design DiStefano (Fig. 1), a DCTLS protocol
that securely generates private commitments over TLS 1.3
data. Security is proven using a novel standalone model that
permits cryptographic agility by allowing to swap various
schemes depending on the desired ciphersuite. DiStefano
is provided as a permissive open-source implementation2

integrated into the widely-used BoringSSL library,3 where
2PC functionality is provided by emp [23]. With respect

1We refer exclusively here to original PageSigner as TLSNotary does not
appear to have a fixed cryptographic design.

2https://github.com/brave-experiments/DiStefano
3This library is used by most Chromium-based Internet browsers, that make

up a dominant share of all browser usage.

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.241367
www.ndss-symposium.org

https://github.com/brave-experiments/DiStefano


Figure 1. An overview of the DiStefano protocol. In the handshake and query phases, the client performs the TLS 1.3 handshake and record-layer phases
in conjunction with the verifier using 2PC to secret-share traffic keys and other session data for establishing a secure session with the server (secret-shared
keys are represented with a square over the key). In the commitment phase, the client authenticates the server to the verifier using a zero-knowledge proof of
valid TLS signatures (denoted by ZKPVS, see Section A-C), and commits to some encrypted session data, before receiving the verifier’s secret TLS session
shares.

to the client’s privacy, DiStefano supports zero-knowledge
authentication amongst N verifier-approved TLS servers by
using a zero-knowledge proof of valid signatures. Finally, the
commitments generated by DiStefano can be used to produce
any type of verifiable private claim, either non-interactively
using zero-knowledge proofs or interactively using 2PC. Note
that, in this work, we value the building of a modular frame-
work for solving the core commitment functionality, and leave
the implementation of the subsequent proving stage up to the
implementer, as this can differ significantly depending on the
application (see Section IV-D). To ensure high performance,
a number of optimisations were made to the cryptographic
functionality and software implementation of DiStefano. We
show that the online portions of the handshake and record-
layer phases can be executed in 500 ms and ∼ 750 ms in a
LAN setting, and with 5 KiB and around 4 KiB of bandwidth,
respectively, for 2 KiB of TLS communication. In a WAN
setting, there are modest increases in timing that are largely
explained by the increase in latency. All in all, the online costs
of DiStefano fall way under a second, which is far below
standard TLS handshake timeout times of 10-20 seconds [24].

Formal contributions. Our formal contributions are:
• A private Designated-Commitment TLS 1.3 (DCTLS)

protocol, DiStefano (Section IV), with a modular, stan-
dalone security framework that guarantees security in the
presence of malicious adversaries (Section VI).

• Novel optimisations that allow running secure 2PC
TLS 1.3 clients with higher efficiency (Section V).

• An open-source, Chromium-compliant implementation
integrated into BoringSSL.

• Experimental analysis showing that DiStefano is prac-
tical (in LAN/WAN settings) for committing to various
sizes of Internet traffic (Section VII).

II. BACKGROUND

A. General Notation

Vectors are denoted by lower-case bold letters. We use
len(s) to denote the length of s ∈ {0, 1}∗. The symbol [m]

indicates the set {1, 2, . . . ,m}. We write a← b to assign the
value of b to a, and a←$S to assign a uniformly sampled
element from the set S. λ denotes the security parameter.

We denote a finite field of characteristic q as Fq and
the m-dimensional vector space over Fq as Fqm . We are
primarily concerned with the smallest field, F2, where the
additive operation on a, b ∈ F2 is simply an exclusive-or
operation, a⊕b, with multiplication corresponding to the AND
operation. We extend this notation to refer to operations on m-
dimensional vectors a,b ∈ F2m , writing a⊕b and a ·b to refer
to addition and multiplication, respectively. Note that while
addition in F2m is simply m XOR operations, multiplication
over F2m requires extra logic compared to multiplications over
F2. We write elliptic curves with a generator G over Fq as
EC(Fq).

For a security game Game used by a cryptographic scheme
∆, we denote the advantage of an algorithm A in ∆ by
Advgame

A,∆ (λ), where:

Advgame
A,∆ (λ) = Pr[A succeeds]− Pr[A fails]. (1)

We say that ∆ is secure with respect to Game, iff
Advgame

A,∆ (λ) ≤ negl(λ), for some negligible function negl(λ)
and security parameter λ.

B. Background on DCTLS Protocols

Designated-Commitment (DCTLS) TLS protocols allow a
client (C) to generate commitments to TLS session data
communicated with a server (S) that can be sent to a des-
ignated third-party verifier (V). They consist of the following
phases (which are described in Appendix B): a (V-assisted)
handshake phase, a (V-assisted) query execution phase, and a
commitment phase. Previous work, such as in DECO and tools
like PageSigner, provide explicit attestation functionality for
proving facts about the committed TLS session (using zero-
knowledge proofs). Note that, without such commitments,
proving statements that use TLS data as sources of truth must
assume either a trustworthy client, or C must allow V to read
their TLS traffic in the clear.

2



DCTLS over TLS 1.3. Previous DCTLS protocols focused
on TLS 1.2, with an informal (and mostly incomplete) exten-
sion to TLS 1.3. Recall that TLS 1.3 emerged in response
to dissatisfaction with the outdated design of the TLS 1.2
handshake, its two-round-trip overhead, and the increasing
number of practical attacks [25]–[28]. The necessary changes
introduced by TLS 1.3 to improve performance and deploy-
ability are significant stumbling blocks for applying previous
DCTLS protocols directly. Thus, in this work, we focus on
TLS 1.3, and highlight explicit changes to DCTLS protocols
that are required for handling the substantial protocol-level
differences. We provide an overview of the standard TLS 1.3
handshake, and its standard notation defined in [29], in the
full version [30].

Description of DCTLS phases. In Fig. 1, we summarise the
stages of DCTLS for establishing commitments to TLS 1.3
encrypted traffic between C and S to be sent to a designated
V . In the following, we describe how the different stages of
the protocol function in relation to the various stages of the
TLS 1.3 protocol [1]. The following is an informal description
of TLS 1.3 (1-RTT with certificate-based authentication) when
extended to support DCTLS-like protocols.

Handshake phase. In this phase, S learns the same secret
session parameters as in standard TLS 1.3, while C and V learn
shares of the session parameters that only C would normally
learn. This requires C and V to engage in the core TLS 1.3
protocol using a series of 2PC functionalities.

We focus on the default mode for establishing a secure
TLS 1.3 session using (EC)DH ciphersuites, and certificate-
based authentication between C and S. In this mode, the
handshake starts with C sending a ClientHello (CH) mes-
sage to S. This message advertises the supported (EC)DH
groups and the ephemeral (EC)DH keyshares specified in
the supported_groups and key_shares extensions,
respectively. The CH message also advertises the signature
algorithms supported. It also contains a nonce and a list
of supported symmetric-key algorithms (ciphersuites). Note
that for DCTLS protocols, the ephemeral keyshares Z ∈
EC(Fc) are generated as a combination of additive shares
(zX ←$Fc, ZX = zX · G) for X ∈ {C,V}, where Z =
ZC + ZV ∈ EC(Fc).
S processes the CH message and chooses cryptographic

parameters for the session. If (EC)DH key exchange is
used, S sends a ServerHello (SH) message containing a
key_share extension with their (EC)DH key, corresponding
to one of the key_shares advertised by C. The SH message
also contains a S-generated nonce and the ciphersuite chosen.
An ephemeral shared secret is computed at both ends, which
requires C and V to engage in 2PC computation. Afterwards,
all subsequent handshake messages are encrypted using keys
derived from this secret. Once this derivation is performed,
V’s keys can be revealed to C to perform local encryption/de-
cryption of handshake messages, as these keys are considered
independent from the eventual session secret derived at the
end of the handshake [29].

The server S then sends a certificate chain (in the
ServerCertificate message -SCRT-), and a message that
contains a proof that they possess the private key correspond-
ing to the public key advertised in the leaf certificate. This
proof is a signature over the handshake transcript and it is sent
in the ServerCertificateVerify (SCV) message. S also
sends the ServerFinished (SF) message that provides in-
tegrity of the handshake up to this point. It contains a message
authentication code (MAC) over the entire transcript, provid-
ing key confirmation and binding S’s identity to any computed
keys. Optionally, S can send a CertificateRequest (CR)
message, prior the SCRT message, requesting a certificate from
C.

At this point, S can immediately send application data to
the unauthenticated C. Upon receiving S’s messages, C verifies
the signature of the SCV message and the MAC of SF. If
requested, C responds with their own authentication messages,
ClientCertificate and ClientCertificateVerify, to
achieve mutual authentication. Finally, C must confirm their
view of the handshake by sending a MAC over the handshake
transcript in the ClientFinished (CF) message. The MAC
generation must also be computed in 2PC.

Now, the handshake is completed, and C and S can derive
the key material required by the subsequent record layer to
exchange authenticated and encrypted application data. This
derivation is performed in 2PC, and C and V both hold shares
of all the secret parameters needed to encrypt traffic using the
specified encryption ciphersuite. In this work, we specifically
target AES-GCM, since over 90% of TLS 1.3 traffic uses this
ciphersuite [31].

Record Layer (Query Execution) phase. C sends a query q (in
encrypted form q̂) to S with help from V . Specifically, since
the session keys are secret-shared, C and V jointly compute
the encryptions of these queries in 2PC. Encrypted responses,
r̂, can then be decrypted using a similar procedure to reveal
S’s response r to C. This is important for running tools in
a browser, or any multi-round protocol, where subsequent
queries depend on previous responses.

Commitment phase. After querying S and receiving a response
r, C commits to the session by forwarding the ciphertexts to
V , and receives V’s session key shares in exchange. Hence, C
can verify the integrity of r, and later prove statements about
it. The fact that C sends commitments before they receive V’s
shares means that V can trust subsequent attestations over the
commitments.

Limitations of approaches. Existing DCTLS schemes have
serious security, performance, and deployability limitations.
They either only work with old/deprecated TLS versions
(1.2 and under) and offer no privacy from the oracle (Page-
Signer [32]), or rely on trusted hardware (Town Crier [13])
against which various attacks exist [33]. Another class of
oracle schemes assumes cooperation from S by installing TLS
extensions [34], or by changing application-layer logic [35].
These approaches suffer from two fundamental problems: they
break legacy compatibility, causing a significant barrier to

3



wide adoption; and only provide conditional exportability as
S has the sole discretion to determine which data can be
exported, and can censor export attempts. While DECO [2]
promises to solve these problems, its non-modular security
design, combining all of the individual phases of the protocol,
makes it impossible to swap individual pieces of functionality
(without rewriting the entire security proof). These limitations
have the following repercussions.
Security. Some primitives used by DECO have since been
shown to be insecure [21], [22], and the security proof only
targets TLS 1.2. General guidance is offered for handling
TLS 1.3, but is not formally specified. More worryingly, the
security argument is all-encompassing, proving security for a
combined session involving the TLS handshake, subsequent
record protocol, and the zero-knowledge attestation layer
(this is common in other constructions too [13], [18]). This
significantly harms cryptographic agility, since any change
to the utilised primitives, protocol, or ciphersuites theoreti-
cally dictates that an entirely new proof be written. Lack of
cryptographic agility is a significant source of cryptographic
vulnerabilities in real-world systems [36].
Privacy. Explicit authentication of S to V during the hand-
shake is mandated due to the non-modular security proof,
which is harmful for C’s browsing privacy. This is somewhat
necessitated by TLS 1.2’s handshake flow, where the identity
of S is sent in the clear in the first message they sent. By
contrast, TLS 1.3 rearranges the handshake flow slightly, and
the certificate is only exchanged in an encrypted form on
later messages. Because of this, DiStefano achieves modular
privacy properties and retains the privacy of C (we never
disclose the identity S to V , as this will reveal the client’s
browsing history, for example).
Performance. Certain underlying cryptographic tools (such as
oblivious transfer protocols) have seen remarkable improve-
ments following DECO’s publication [37], [38]. However,
certain parts of the transformations needed to handle the AES-
GCM ciphersuite detailed by DECO are underspecified, and
naively lead to high costs during 2PC execution.
Deployability. Recent DCTLS protocols [14], [15], [39],
[40] are either aimed entirely at TLS 1.2 [14], are entirely
theoretical [39], or use semi-honest 2PC to achieve reasonable
performance [15], [40]. We note that the use of semi-honest
2PC must be applied carefully to guarantee overall malicious
security of the protocol, and (to the best of our knowledge)
no TLS 1.3 attestation mechanism has yet been proposed
that completely satisfies this. In fact, we discuss in the full
version [30] that using semi-honest 2PC primitives may lead
to potential attacks. Moreover, even when semi-honest 2PC
is used, performance is lacking and public implementations
are rare. One recent example is the recently proposed Janus
protocol [15], which is accompanied by a reference imple-
mentation, but without integration into existing TLS libraries.
Janus achieves a reported handshake time of around 0.51 s in
a LAN setting with around 113 KiB of handshake traffic. By
contrast, DiStefano achieves malicious security guarantees,

with around 0.1 ms of online time, and exchanging much less
data: around 28 KiB for the online phase of the handshake.
Thus, we conclude that using malicious 2PC is not a bottleneck
for current protocols.

C. Overview of DiStefano

Due to the limitations of the previous DCTLS protocols,
we aim to build a protocol that works for TLS 1.3, improves
privacy guarantees for C, does not require specific hardware
or extensions, and can be easily integrated into common
applications. Overall, DiStefano achieves the following.
• The creation of a maliciously-secure framework that

generates binding and hiding commitments over data
communicated during TLS 1.3 sessions.

• Cryptographic optimisations that ensure practical running
costs, and experimental analysis showing that DiStefano
is ready for real workflows.

• A publicly-available implementation integrated into the
TLS library that browsers use, with no need for special-
ized hardware or installing extra extensions.

We believe that DiStefano is an essential step-forward for
showing that DCTLS can be implemented in practice.

Overview of required optimisations. Our implementation
of DiStefano requires several optimisations to achieve its
performance. We reduce the number of rounds required to
derive AES-GCM secret shares (cf. Section V) by a factor of
around 500 compared to prior art (PageSigner), and reduce
the required bandwidth by around a factor of 3. Moreover,
we carefully combine multiple sub-circuits used in the TLS
handshake to reduce the number of re-computed secrets and
circuit invocations (cf. Section IV-A). We emphasise that a
significant portion of our engineering effort was dedicated to
fine-tuning at a low level, and we view this as a valuable
contribution in its own regard: we aspire that this facilitates
seamless adaptation of our code by future researchers.

III. SECURE MULTI-PARTY COMPUTATION

Two-party secure computation (2PC) protocols allow parties
p1 and p2 to jointly compute generic functions f(s1, s2)
over their private inputs s1 and s2. The security of the
protocols ensures that nothing of each input is revealed to
the other party, except for what f naturally reveals [41].
There are two common approaches for 2PC protocols. Garbled
circuits protocols [42], [43] encode f as a boolean circuit and
evaluate an encrypted variant of the circuit across two parties.
Threshold secret-sharing protocols (e.g. SPDZ [44], [45], or
MASCOT [46]), typically operate by first producing some
random multiplicative triples (referred to as Beaver triples
[47]) before additively sharing secret inputs with some extra
information. Garbled circuit protocols are particularly well-
suited to secure evaluation of binary circuits, such as AES or
SHA-256. The cost of a garbled circuit is normally evaluated
in terms of the number of AND gates due to the Free-XOR op-
timisation [48]. In contrast, threshold secret-sharing schemes
are typically well-suited for computing arithmetic operations,

4



Figure 2. The DiStefano 1-RTT handshake protocol. Shorthands correspond to those defined in [29]. Purple represents messages sent or calculated by V ,
orange by the client, pink by the server, and black for 2PC calculations between the client and verifier. Messages with an asterisk (*) are optional, and those
within braces ({}) are encrypted.

Verifier Client Server
static (Sig): pkS , skS

ClientHello:ClientHello: ServerHello:
xc←$ Zq, Xc ← gxczv←$ Zq, Zv ← gzv ys←$ Zq

+ClientKeyShare: SSK← Zv +Xc +ClientKeyShare: SSK← Zv +Xc +ServerKeyShare: Ys←$ gys

Forward SKS to Verifier
sskc ← Y xcs , tc ← ECtF(sskc)sskv ← Y zvs , tv ← ECtF(sskv)

DHE← SSKys

HSv ⊕HSc ← HKDF .Extract(∅, tv + tc) HS← HKDF .Extract(∅,DHE)

CHTSv ⊕ CHTSc ← HKDF .Expand(HSv ⊕HSc,Label1 ‖H0) CHTS← HKDF .Expand(HS,Label1 ‖H0)

SHTSv ⊕ SHTSc ← HKDF .Expand(HSv ⊕HSc,Label2 ‖H0) SHTS← HKDF .Expand(HS,Label2 ‖H0)

dHSv ⊕ dHSc ← HKDF .Expand(HSv ⊕HSc,Label3 ‖H1) dHS← HKDF .Expand(HS,Label3 ‖H1)

tkvchs ⊕ tkcchs ← DeriveTK(CHTSv ⊕ CHTSc) tkchs ← DeriveTK(CHTS)

tkvshs ⊕ tkcshs ← DeriveTK(SHTSv ⊕ SHTSc) tkshs ← DeriveTK(SHTS)

{+EncryptedExtensions }
{+CertificateRequest }*

{+ServerCertificate }: pkS
{+ServerCertificateVerify }: SigS ← Sign(skS ,Label7 ‖H3)

fkS ← HKDF .Expand(SHTSv ⊕ SHTSc,Label4 ‖Hε) fkS ← HKDF .Expand(SHTS,Label4 ‖Hε)

{+ServerFinished } : SF ← HMAC(fkS ,H4)

Forward encrypted {EE},. . .,{SF} to Verifier
Reveal SHTSv to Client

Derive tkchsusing SHTSv

abort if Verify(pkS ,Label7 ‖H3,SigS) 6= 1

abort if SF 6= HMAC(fkS ,H4)

Forward SF, σ ← Π.Prove(R,SigS ,Label7 ‖H3) to Verifier
Reveal fkS to Verifier
Forward H4, H3 and H2 to Verifier

abort if SF 6= HMAC(fkS ,H4) or 0← Π.Verify(R, σ,Label7 ‖H3)

MSv ⊕MSc ← HKDF .Extract(dHSv ⊕ dHSc,∅) MS← HKDF .Extract(dHS, 0)

CATSv ⊕ CATSc ← HKDF .Expand(MSv ⊕MSc,Label5 ‖H2) CATS← HKDF .Expand(MS,Label5 ‖H2)

SATSv ⊕ SATSc ← HKDF .Expand(MSv ⊕MSc,Label6 ‖H2) SATS← HKDF .Expand(MS,Label6 ‖H2)
tkvcapp ⊕ tkccapp ← DeriveTK(CATSv ⊕ CATSc) tkcapp ← DeriveTK(CATS)
tkvsapp ⊕ tkcsapp ← DeriveTK(SATSv ⊕ SATSc) tksapp ← DeriveTK(SATS)

{+ClientCertificate }*: pkC
{+ClientCertificateVerify:}*: SigC ← Sign(skC ,Label8 ‖H5))

Reveal CHTSv to Client
fkC ← HKDF .Expand(CHTSv ⊕ CHTSc,Label4 ‖Hε)

fkC ← HKDF .Expand(CHTS,Label4 ‖Hε)

{+ClientFinished:} CF← HMAC(fkC ,H6)

abort if Verify(pkc,Label8 ‖ ‖H5,SigC) 6= 1

abort if CF 6= HMAC(fkC ,H6)

such as modular exponentiation. We calculate their cost in
terms of their number of rounds and bandwidth requirements.

MPC primitives. We use both types of 2PC protocols:
maliciously-secure authenticated garbling implementation pro-
vided by emp [49] for binary operations, and we base 2PC
arithmetic operations on oblivious transfer (OT).

Definition 1 (Oblivious Transfer (OT)). An oblivious transfer
scheme, OT, consists of the following algorithms:
• OT.Gen(1λ): outputs any key material.
• OT.Exec(m0,m1, b): The sender P1 inputs messages m0

and m1, and the receiver P2 inputs a bit b ∈ {0, 1}. The
receiver P2 learns mb, while P1 learns nothing.

5



We realise the OT functionality via the actively secure
IKNP [50], [51] extension and the Ferret [37] OT scheme.
Both rely on the security of information theoretic MACs,
the learning parity with noise (LPN) assumption, and on
randomness assumptions about hash functions, see [52].

Using OT as a building block, we realise the remaining 2PC
functionality needed by using multiplicative-to-additive (MtA)
secret sharing schemes.

Definition 2 (MtA). An MtA scheme, MtA, consists of the
following algorithms:
• MtA.Gen(1λ): outputs any needed key material.
• MtA.Mul(α, β): each Pi supplies ai, learning as output
bi, such that

∑
bi = Πiai.

For malicious security, we expand this definition with an
additional algorithm, MtA.Check(a1, . . . , b1, . . .), to check
share consistency. Existing works [2], [12], [15] realise MtA
with an approach [53] based on Paillier encryption [54]. We
deviate from this approach to improve efficiency [55, §5],
and to mitigate the need for range proofs [21], [22] (neces-
sary for achieving malicious security). We realise the MtA
functionality using the schemes introduced in [56] and [57],
[58] for rings of characteristic > 2 and 2, respectively. The
schemes require OT functionality and are instantiated with
128-bit statistical and computational security. We note that
whilst the security of [57], [58] reduces directly to an NP-
hard encoding problem [59], to the best of our knowledge,
there is no computational hardness proof for [56].

ECtF. During the Key Exchange phase of the handshake
of DCTLS, both V and C hold additive shares Zv and Zc
of a shared ECDH key (x, y) = DHE. Given that all key
derivation operations are carried out on the x co-ordinate of
Z, we use the elliptic curve to field (ECtF) functionality [2]
to produce additive shares tv and tc of the x coordinate,
which is an element in Fq . Using these shares as inputs to
the subsequent 2PC operations to derive the handshake secrets
allows running all computation in a binary circuit, which re-
sults in a substantial performance improvement compared with
attempting to combine arithmetic and binary approaches in a
garbled circuit. We stress that use of the ECtF functionality
improves performance: we estimate that computing just the x
co-ordinate of Zv + Zc in a garbled circuit would be more
expensive than deriving all TLS session secrets, requiring
around 1.7M AND gates for an elliptic curve over a field with
a 256-bit prime. From a security perspective, we remark that
the security of the ECtF functionality reduces to the security
of the underlying secure multiplication protocol. We achieve
malicious security by instantiating the multiplication with a
maliciously-secure MtA scheme.

IV. DISTEFANO PROTOCOL

In this section, we fully describe each of the phases of the
DiStefano protocol (formal ideal functionalities are given in
Appendix B). A diagram of the full protocol is found in Fig. 2.
In the full version of our work [30], for comparison, we

provide a diagram of TLS 1.3 and a summary of the shorthands
used (from [29]). The security analysis is found in Section VI.

A. Handshake Phase: HSP

We use the similar overarching mechanism for the hand-
shake phase as described in Section II-B, but focused ex-
clusively on TLS 1.3 with AES-GCM as the AEAD scheme
(Section A-B), using ECDH for the shared key generation,
and using ECDSA certificates. The 2PC ideal functionalities
that we use are defined in the full version [30]. The protocol
can be adapted to work with any other TLS 1.3-compliant
ciphersuites that are compatible with 2PC.

At a high-level, we adapt the TLS 1.3 handshake by treating
C and V as a single TLS client from the perspective of S.
For this, we reverse the “traditional” flow of the TLS 1.3
handshake by having C and V each prepare an additively
shared ephemeral key share SSK, as seen in Fig. 2. This
can be computed without 2PC.
C then sends the CH and the CKS messages, advertising

SSK as part of the key_shares extension. S then pro-
cesses these messages and, in turn, sends a SH message
back to C containing a freshly sampled ECDH key_share
Zs. At this stage, S computes the shared ECDH key as
DHE = xs · SSK and continues to derive all traffic secrets
(i.e. CHTS,SHTS, tkshs, tkchs). Once C and V receive the
SH message, they derive additive shares of the shared ECDH
key as E = xc · Ys + xv · Ys. As TLS 1.3 key derivation
operates on the x coordinate of the shared key, C and V
convert their additive shares of E = (Ex, Ey) into additive
shares Ex = tc + tv by running the ECtF functionality. With
Ex computed, C and V proceed to run the handshake key
derivation circuit in 2PC, with each party learning shares
HSv ⊕ HSc = HKDF .Extract(∅, tv + tc). In practice, this
process is carried out inside a garbled circuit that produces
shares of CHTS,SHTS and dHS, as well as the SF message
key fkS . This key is provided to both C and V . This circuit
comprises of around 800K AND gates, which is similar to
DECO’s circuit size for TLS 1.2. We delay the derivation of
the traffic keys as it provides authenticity guarantees to V .
Authentication phase. S sends the CR (if wanted), SCRT,
SCV and SF messages. The SF message is computed by first
deriving a finished key fkS from SHTS and then computing a
MAC tag over a hash of all the previous handshake messages.
At this point, S is able to compute the client application traffic
secret, CATS, and the server application traffic secret, SATS.
S can also start sending encrypted application data (under
tksapp) while waiting for the final flight of C messages.
C receives the encrypted messages from S and, in turn,

forwards them (encrypted) to V alongside a commitment to
their share of CHTS/SHTS. This commitment is necessary
to make AES-GCM act as a committing cipher from the
perspective of V , which allows V to disclose their shares of
CHTS and SHTS to C without compromising authenticity
guarantees. As C now knows the entirety of CHTS and
SHTS, they are able to locally derive the handshake keys
tkchs and tkshs, allowing them to check S’s certificate and

6



Figure 3. The DiStefano query phase. Purple represents messages sent or
calculated by V , orange by C, pink by S, and black for 2PC between C and
V .

Verifier Client Server

q̂ ← AEAD .Enc(tkvcapp ⊕ tkccapp, IVc, q)

q ← AEAD .Dec(tkcapp, IVc, q̂)

r̂ ← AEAD .Enc(tksapp, IVs, r)
r ← AEAD .Dec(tkvsapp ⊕ tkcsapp, IVs, r̂)

SF messages without the involvement of V . Moreover, as
C now knows tkchs they are also able to respond to the
CR if one exists. C then forwards an authentic copy of the
hashes H2, H3, and H4 to V , allowing them to check the
SF message as is done in TLS 1.3. Notice that C does not
forward the decrypted SCRT message to V , as this message
reveals the identity of S. Let R be a set of TLS certificates,
corresponding to a set of pre-approved TLS servers (Ss). At
this point, C can (optionally) send to V a zero-knowledge proof
(σ ← Π.Prove(R,Sig,Label7 ‖H3)) of a valid TLS signature
(ZKPVS), Sig, as long as S ∈ R4. V can then check the valid-
ity of the produced ZKPVS proof (if present) by checking that
1← Π.Verify(R, σ,Label7 ‖H3).5 Similarly, C can selectively
reveal the blocks containing the SF message, allowing V to
validate the SF (note that fkS was computed in 2PC, but it is
revealed after the commitment). Finally, C and V derive the
shares of the traffic secrets MS,CATS,SATS and the traffic
keys tksapp, tkcapp in 2PC. In practice, we instantiate this
derivation as a garbled circuit that contains around 700K AND
gates. Note that this circuit cannot cheaply be combined with
the handshake secret derivation circuit, as deriving the traffic
keys requires a hash of the unencrypted handshake transcript.
This would require decrypting and hashing large messages
inside a garbled circuit, which is expensive.

B. Query Execution Phase: QP

Once HSP has completed, C and V move into the query
phase (Fig. 3). For simplicity, we describe this portion of the
protocol in terms of a single round of queries, before extending
the phase to multiple rounds.

During the query phase of the protocol, C produces a series
of queries q = q1, . . . , qn and jointly encrypts these with V ,
with both parties learning a vector of ciphertexts q̂ as output.
Then, C forwards q̂ to S, receiving an encrypted response r̂ in
exchange. At this stage of the protocol, C forwards r̂ to V so
that both parties may verify the tags on r̂: both parties learn a
single bit indicating if the tag check passed or not. In practice,
we instantiate this portion of the protocol using the AES-
GCM approach described in Section V. There is no explicit
dependence on AES-GCM: any AEAD cipher supported by
TLS 1.3 will suffice. We highlight this and provide the general
security formalisation of the phase in Section VI.

4We detail a formalisation of ZKPVS schemes in Section A-C. Practical
variants of such schemes exist for ECDSA signatures [60]–[62].

5Sending and verifying the proof can be alternatively performed later in
the DCTLS protocol, without compromising security.

Extending the query phase to multiple rounds is straightfor-
ward using AES-GCM. We discuss the details of committing
to ciphertexts in Section V-A, but the main idea is that,
as each ciphertext block qi is encrypted with a unique key
ei = AES.Enc(k, IV + i), C and V can arbitrarily reveal
their shares of ei at any stage of the query phase, provided
an appropriate commitment has been made beforehand. As
these key shares are ephemeral, revealing them does not
compromise the shares derived during the HSP. The security
of this approach directly reduces to the difficulty of recovering
an AES key from many known plaintext/ciphertext pairs. This
permits many useful applications, as C and V can now nest
commitment rounds inside of the query phase.

C. Commitment Phase: CP

The objectives of the commitment phase (Fig. 4) are:
i. to assure V of the authenticity of S (as belonging to the
pre-approved set R) without revealing the exact server C
communicated with; and ii. to allow C to learn secrets held
by V only after producing binding commitments to a specific
portion of the TLS session with S.6

To validate the authenticity of the server, V verifies a
proof (with a ZKPVS scheme) of the TLS server that they
communicated with as one of N servers from which V accepts
attestations.7 After verification, C can now commit to and
reveal information about the application traffic they witness.
For this, first, we define a commitment scheme (Γ) that can
be implicitly constructed using the outputs of QP with the
following algorithms.
• (q̂i, r̂i) ← Γ.Commit(spC , (q̂, r̂, i)): For the input i,

output the ciphertexts (q̂i, r̂i) corresponding to the ith

query qi, and the response ri.
• spV ← Γ.Challenge((q̂i, r̂i)): Output the secret parame-

ters of V: reveals V’s key share and a challenge.
• b ← Γ.Open((spC , spV), (q̂i, r̂i), (qi, ri)): Check that

(q̂i, r̂i) decrypts to (qi, ri), and output b = 1 on success,
and b = 0 otherwise.

Note that the client simply commits to encrypted traffic
exchanged during QP (using 2PC to encrypt and decrypt
the traffic). When it comes to opening the encrypted traffic,
the protocol requires V to reveal their key secret share, so
that C can decrypt and then reveal the plaintext values. We
give a concrete construction of Γ that is perfectly hiding and
computationally binding, based on AES-GCM, in Section C-B.

D. Subsequent Phases

It is important to note that in the real DiStefano protocol,
C does not send any unencrypted values to V . Instead, both
parties should execute a protocol that proves certain facts about
the DCTLS commitments, without revealing anything else.
This could be done using zero-knowledge proofs, selective
opening strategies (as is used in DECO), or subsequent 2PC.

6Note this applies for both the handshake and record phases.
7This could be performed during the handshake phase. For performance

reasons, it is preferable to do so in the commitment phase, when online
communication is no longer constrained by potential handshake time-outs.

7



Figure 4. The DiStefano commitment phase with a commitment scheme, Γ,
and a ZKPVS scheme, Π for TLS signatures under a set R of pre-approved
servers. Purple represents messages sent or calculated by V , and orange by
C.

Verifier Client

σ ← Π.Prove(R,Sig,Label7 ‖H3)
abort if 1 6= Π.Verify(R, σ,Label7 ‖H3)

c← Γ.Commit((tkccapp, tk
c
sapp), (q̂, r̂))

Forward tkvcapp, tk
v
sapp to Client

The formal commitment opening process that we described
previously can be used for this, since C can now use the
combined secret parameters (spC , spV) to prove any statement
about the commitment (q̂i, r̂i). Note that the proving process
can inadvertently leak the identity of S (invalidating the
ZKPVS proof) if a certain data is assumed from S’s traffic.
See the full version [30] for a wider discussion.

V. ADAPTING AES-GCM FOR 2PC

AES-GCM is an authenticated encryption with associated
data (AEAD) cipher that features prominently inside TLS
implementations, with some works reporting that over 90%
of all TLS1.3 traffic is encrypted using AES-GCM [31]. We
use this algorithm for both encrypting the corresponding hand-
shake messages and any application traffic. Here we describe
how to commit to decryptions of ciphertexts in AES-GCM
(Section V-A), as well as optimisations that make it more
amenable to 2PC evaluation of the encryption and decryption
procedures (Section V-B). We briefly recall how AES-GCM
operates.

AES-GCM Encryption. Let k and IV refer to an encryption
key and initialisation vector. Given as input a sequence of n
appropriately padded plaintext blocks M = (M1, . . . ,Mn),
AES-GCM applies counter-mode encryption to produce the ci-
phertext blocks Ci = Mi⊕AES.Enc(k, IV +i). To ensure au-
thenticity, the algorithm outputs a tag τ = Tagk(A,C, k, IV )
computed over C and any associated data A (i.e. any data that
is authenticated but not encrypted [63], e.g, protocol headers
or metadata) as follows:
• Given some vector x ∈ Fm2128 , we define the polynomial
Px =

∑m
i=1 xi · hm−i+1 over F2128 .

• Assuming that C and A are properly padded, we compute
τ (where h = AES.Enc(k, 0)) as: τ(A,C, k, IV ) =
AES.Enc(k, IV )⊕ PA||C||len(A)||len(C)(h).

A. Commitment to AES-GCM Ciphertexts

In DiStefano, both C and V learn all AES-GCM ciphertext
blocks Ci = Mi ⊕ AES.Enc(k, IV + i) produced by S,
where the session key k = kc + kv is secret-shared across
both C and V . We briefly describe how C can commit to
the received ciphertext blocks Ci without revealing their key
share kc. Note first that the use of AES-GCM in an AEAD
setting leads to a non-committing cipher [64], meaning that
an adversary in possession of a key k and a valid ciphertext

block Ci = AES.Enc(k, IV + i) ⊕ Mi can find a distinct
k′ 6= k such that Ci = M ′i ⊕ AES.Enc(k′, IV + i) is a valid
ciphertext. From the perspective of DCTLS protocols, this non-
committing nature of the algorithm presents a challenge, as C
typically only proves statements after learning the entirety of
the key. We circumvent the issue as follows.

Assume that C receives a single tuple of an AES-GCM
ciphertext and tag, (Ci, τ), from S that they wish to decrypt.
As C only holds a share (kc) of k, C cannot decrypt Ci by
themselves. Thus, C forwards (Ci, τ) to V , and they engage
in a maliciously-secure 2PC protocol to validate τ on Ci
(Algorithm 2). If it succeeds, then both C and V are convinced
that Ci is a valid ciphertext under k. Yet, we must be careful
how we reveal Mi = AES.Enc(k, IV + i)⊕Ci to each party
as revealing Mi to C allows them to mount the outlined non-
committing attack, while revealing Mi to V would violate the
privacy guarantees of DCTLS. In order to resolve this issue,
we use a modified 2PC AES decryption protocol that, after
checking that the client input masks match the commitments
held by V and validating τ , outputs ei = AES.Enc(k, IV + i)
to C and a commitment, Ei, to ei to V . With this, notice that C
is unable to exploit the non-committing nature of AES-GCM
as a binding commitment to ei is created and validated by V .
Moreover, C can now reveal individual blocks to V without
requiring either party to reveal their key share: C can reveal
a particular block Ci by simply forwarding ei to V . In other
words, this tweak allows C to engage in a selective opening
protocol with V (we provide details of this technique in the full
version [30]). Producing these set of commitments is cheap
as, in practice, we simply require C to commit to n unique
masks bi and then output Ei = AES.Enc(k, IV + i)⊕ bi. We
formalise this scheme in Section C-B. Checking random-oracle
commitments in 2PC is practical. Using a low-depth hash
function, such as LowMC [65], this would cost 4370 AND
gates for the full commitment check [66], which is cheaper
than a single AES block evaluation (6400 AND gates). Above
all, the practical costs of the 2PC commit scheme are low,
and we demonstrate this using a higher-depth, AES-based hash
(see Section VII).

B. 2PC Performance Optimisations

We now discuss some cryptographic optimisations that
are necessary for ensuring the high performance of AES-
GCM encryption/decryption during online TLS operations.
The ideal functionalities that we use to describe AES-GCM
in 2PC and the security proofs of the optimisations are given
in Section C-A.
Efficiency. Despite its simplicity, executing AES-GCM en-
cryptions in a multi-party setting can be challenging due to the
use of binary and arithmetic operations. For example, whilst
AES operations are well-suited for garbled circuits, a single
multiplication over F2128 typically requires around 16K AND
gates, increasing the cost by nearly a factor of 3. To mitigate
this cost, both [2] and [12] recommend computing shares of
the powers of h (denoted as {hi}) during an offline setup stage,
amortising the cost across the entire session. In certain settings,

8



this cost can be reduced further by restricting how many
powers of h are used: for example, MPCAuth [18] employs
a clever message slicing strategy to minimise the value of
i with the assumption that servers only send rather small
ciphertexts (e.g., at most 4KiB). However, TLS 1.3 servers can
send ciphertexts bigger than that in order to avoid overhead:
web servers, for example, that deliver video stream [67] or
large files [68] might send responses significantly larger than
4KiB, requiring more ciphertext blocks to be handled. It is
recommended [69], for example, that when the connection
congestion window is large and a large stream (e.g., streaming
video) is transferred, that the size of the TLS 1.3 record should
be increased to span multiple TCP packets (up to 16KiB)
to reduce framing and CPU overhead. There is no “optimal”
record size, but rather it is dynamically adjusted based on the
state of the TCP connection. Due to this, in DiStefano we
allow for this flexibility, as we explicitly target the largest
possible TLS ciphertext of 16KiB, which corresponds to
i = 1024.

Assuming that a sharing ({hic}, {hiv}) exists, produc-
ing tags in 2PC is straightforward: tagging n blocks re-
quires two local polynomial evaluations (writing τc =
PA||c||len(A)||len(c)({hic}) and τv = PA||c||len(A)||len(c)({hiv}),
respectively) over F2128 and n+1 2PC evaluations of AES [2],
[12]. The final tag is achieved by simply computing τ =
τc + τv ⊕AES.Enc(kc + kv, IVc). In order to make this more
efficient, it is necessary to initially construct a 2PC protocol
that evaluates the ciphertext c and outputs to both parties, and
then have a subsequent protocol that computes the tag for this
ciphertext, based on the local polynomials submitted by the
client.

Our optimisations. DECO gives few details on how to
compute shares of the powers of h, other than that they
are computed in a 2PC session. We remark that calculating
these shares in a garbled circuit is unlikely to be feasible:
our adapted version of MPCAuth’s share derivation circuit
contained around 17M AND gates, and required over 900MiB
and 18GiB of network traffic and memory, respectively, just
for the pre-processing stage. For comparison, our circuits for
TLS 1.3 secret derivation contain around 1.3M AND gates
in total, which is approximately a factor of 14 smaller. Thus,
using only garbled circuits is unlikely to be feasible.

Several other approaches exist for computing the shares
of {hi}. For instance, PageSigner [12] reduces computing
additive shares of hi to simply computing shares using MtA
computations. Given an initial additive sharing h = hc+hv , C
and V iteratively compute additive shares of `c + `v = hn =
(hc + hv)

n−1
(hc + hv) for 1 < n ≤ 1024. This approach

permits an additional optimisation: as (x+ y)
2

= x2 + y2

over F2128 , each party can compute shares of even powers of h
locally. Taking this optimisation into account, producing shares
in this way costs a total of 1022 MtA operations. However,
as computing shares of any odd hi requires first computing
shares of hi−2, the approach seems to require around 500
rounds, which is likely too slow for a WAN setting.

We improve upon this by replacing the additive sharing h =
h1+h2 with h = h1/h2, i.e. using a multiplicative sharing. By
using multiplicative shares, we can run each MtA computation
in parallel, with each Pi supplying hi, hi3, . . . , hi1023 as input.
This optimisation asymptotically halves the number of MtA
operations and reduces the round complexity to a single round,
as the only costly operation is the share’s computation, which
is not carried out inside the garbled circuit. However, this
tweak does require a slightly more complicated scheme for
computing the initial sharing of h, as we now must compute
multiplication over F2128 , taking the size of the circuit for
deriving the initial shares to around 23K AND gates. In
practice, we reduce the size of this circuit to around 18K AND
gates by instead using a carry-less Karatsuba [70] algorithm.
Whilst this still represents an increase of around a factor
of 3 compared to the additive circuit, the reduction in MtA
operations and rounds means that we are able to achieve an
end-to-end speed-up of around a factor of 3. We discuss these
results in more detail in Section VII.

VI. SECURITY ANALYSIS

Previous DCTLS protocols use all-encompassing ideal
functionalities and Universally-Composable (UC) security
proofs [71], proving that the entire flow from handshake to
attestation is secure. This is problematic for cryptographic
agility, as it means that any modification to the TLS ci-
phersuite, 2PC functionality, or protocol extensions would
necessitate a complete rewrite of the proof. Such agility
is critical for building flexible secure systems, that can be
modified easily even if primitives and systems change [36].

We reimagine the security model for DCTLS protocols
in two ways. First, our analysis breaks the protocol down
into three phases: handshake, query, and commitment; and
guarantees security of each independently. Second, where
possible, we adapt the security analysis to either the stan-
dalone or game-based security models. UC security proofs are
particularly useful when building atomic protocol primitives,
intended for arbitrary composition with other primitives. Since
DCTLS is a high-level protocol that is likely to be used as
a single application, we believe that our approach captures a
natural security requirement, without the added complexity for
ensuring UC security. Without this complexity, modifying both
individual phases of the protocol and cryptographic primitives
is an easier task for future work. We give a short overview
of how we model security for each phase in the following.
The full standalone security model is covered in the full
version [30].
Handshake phase. We model the handshake phase as in
the work of Oblivious TLS [17]. Essentially, this model
proves that we can satisfy the original guarantees proven
about TLS 1.3 [29] (i.e. related to Match and Multi-Stage
security) even when executing certain functionalities in 2PC.
One key difference noted by [17] is that the presence of the
verifier means that potential TLS 1.3 adversaries can alter
the derivation of secrets in the client, and thus security is
based on a modified Shifted PRF ODH assumption, see [17,

9



Definition 2] for more details. Oblivious TLS produces a UC-
security proof for the handshake phase of the protocol, based
on maliciously-secure 2PC primitives, and two parties. In our
setting, we have an information imbalance, in that V has fewer
powers than one of the two parties analysed in [17], as only
C interacts with S directly, while V does not interact with S
directly at all. As a result, the analysis of [17] is sufficient
for covering our required security guarantees, as long as each
2PC primitive is maliciously-secure. We provide an overview
of the protocol execution and a detailed analysis of security
in the full version [30].

Query execution phase. The query phase of DiStefano
essentially amounts to considering a 2PC realisation of the
record-layer of the TLS 1.3 protocol. We define 2PC ideal
functionalities that abstract the core encryption and decryption
functionality for application traffic. We show that we can prove
security of this phase based on the 2PC realisation of the
AES-GCM functionalities that we formalise in Section C-A
(Algorithms 1 and 2), that together implement the functionality
and optimisations described in Section V. To prove security of
alternative ciphersuites, it is simply a matter of implementing
the 2PC ideal functionalities using different primitives.

Commitment phase. We model the commitment phase in
a game-based security model. We provide multiple security
notions that evaluate the capacity of the protocol to satisfy:
session privacy (SPriv), i.e. committed sessions are indistin-
guishable; 1-out-of-N authentication (SAuth1

n), i.e. the client
is forced to successfully authenticate the TLS server amongst
N possible apriori-chosen servers; and session unforgeability
(SUnf), i.e. the client cannot arbitrarily forge sessions that did
not occur.

In the end, we show that DiStefano satisfies these prop-
erties based on the commitment scheme devised from AES-
GCM (Section C-B), and the zero-knowledge proof scheme
(ZKPVS) for valid TLS signatures [61] (Section A-C).

VII. EXPERIMENTAL ANALYSIS

Implementation. In order to enable easy integration with
other cryptographic libraries and browsers, we implemented
a full prototype of DiStefano in C++.8 This implementation
contains around 14k lines of code, tests and documentation,
and implements the whole protocol. We developed this imple-
mentation using C++ best practices, and we hope that this effort
is useful for other researchers. Concretely, our implementation
of DiStefano uses BoringSSL for TLS functionality and emp
for all MPC functionality. BoringSSL is the only cryptographic
library supported by Chromium-based Internet browsers. As
far as we are aware, our implementation contains primitives
and circuits that are not available elsewhere. Our implemen-
tation also contains a modified version of MPCAuth’s circuit
generation to produce the relevant garbled circuits. We further
reduce the online cost of MPCAuth’s secret sharing scheme by

8https://github.com/brave-experiments/DiStefano

using a pre-determined splitting scheme for specific secrets.9

We list the changes made alongside our prototype .10 Note that
further performance improvements, including multithreading,
are not addressed in this implementation and are the subject
of future work.
Results. We evaluated the performance of DiStefano in
LAN and WAN settings. For the LAN environment, we use
a consumer-grade device (a Macbook air M1 with 8 GB of
RAM) for C, and a server-grade device (an Intel Xeon Gold
6138 with 32 GB of RAM) for V and S. All communication
used in TLS 1.3 was carried out using a single thread over a
1 Gbps network with a latency of around 16 ms. For the WAN
setting, we provide various settings depending on regions.
We place C in Paris, France using a AWS EC2 “t2.2xlarge”
machine for all settings, but locate the AWS EC2 “t2.2xlarge”
machine for V and S in three regions: Ohio, USA; London,
UK; and Seoul, South Korea. We report their latency based
on [72]. For the first region, the median round-trip latency is
estimated at 94.15 ms as reported by 13 measurements, and
the first and third quartiles are 92.83 ms and 95.53 ms, respec-
tively. For the second region, the median round-trip latency is
estimated at 9.07 ms as reported by 13 measurements, and the
first and third quartiles are 2.08 ms and 3.31 ms, respectively.
For the thrid region, the median round-trip latency is estimated
at 247.91 ms as reported by 13 measurements, and the first
and third quartiles are 246.57 ms and 248.87 ms, respectively.
Timings and bandwidth measurements are computed as the
mean of 50 samples, and are represented in milliseconds and
mebibytes, respectively (1 MiB is 220 bytes).

Table I gives results for each individual circuit used in
DiStefano. Each circuit is evaluated without amortization,
meaning these timings do not benefit from the amortized pre-
processing available in emp. We note that the 2PC-GCM
circuit includes both encryption and decryption of traffic,
as specified in Algorithms 1 and 2, using a random-oracle
(AES-based) commitment scheme. As the most expensive
operation of these circuits will only be used once per session,
we do not expect that employing amortisation will yield a
substantial speed-up. However, employing amortisations for
common operations (e.g. AES-GCM tagging and verification)
may lead to faster running times (see [49, §7] for concrete
speed-ups). We also compare the offline time using the original
implementation of authenticated garbling (LeakyDeltaOT [49])
against FerretCOT. Our results show that FerretCOT outper-
forms the original OT for large circuit sizes in both bandwidth
and running time. However, for smaller circuits it appears that
the original OT is faster at the cost of more bandwidth. Given
that the pre-processing times are proportional to the size of
the circuits, our results appear to be predominantly network
bound. The results also highlight that our Karatsuba-based
circuit achieves modest gains in both bandwidth and time over
the naive circuit.

9This approach is less flexible than MPCAuth. For example, DiStefano
only supports 2 parties, whereas MPCAuth supports arbitrarily many.

10https://github.com/brave-experiments/DiStefano, section “Changes intro-
duced”.

10

https://github.com/brave-experiments/DiStefano
https://github.com/brave-experiments/DiStefano


Table I
GARBLED CIRCUIT TIMINGS AND BANDWIDTH.

Circuit OT Offline Online Bandwidth

AES-GCM share (K) LD 2340 34.92 21.04
AES-GCM share (K) FC 2683 59.48 9.009
AES-GCM share (N) LD 2678 39.09 25.63
AES-GCM share (N) FC 2853 61.36 10.35
AES-GCM Tag LD 1019 22.30 7.604
AES-GCM Tag FC 2336 22.22 5.010
AES-GCM Verify LD 1032 21.16 7.746
AES-GCM Verify FC 2277 21.24 5.130
TLS 1.3 HS (P256) LD 51470 93.16 305.1
TLS 1.3 HS (P256) FC 19847 88.90 113.3
TLS 1.3 HS (P384) LD 51610 95.38 305.8
TLS 1.3 HS (P384) FC 19940 89.88 113.6
TLS 1.3 TS LD 51450 95.21 243.7
TLS 1.3 TS FC 18820 99.25 91.12
2PC-GCM (256B) LD 18690 82 131.4
2PC-GCM (256B) FC 10971 80 47.5
2PC-GCM (512B) LD 31534 136 206.5
2PC-GCM (512B) FC 16010 142 77.75
2PC-GCM (1KiB) LD 57485 252 409.4
2PC-GCM (1KiB) FC 26154 301 151.2
2PC-GCM (2KiB) LD 114820 728 815.4
2PC-GCM (2KiB) FC 48764 763 299.3

Each garbled circuit is reported in terms of offline/online times
(ms) and total bandwidth (MiB) costs. “K” means Karatsuba and
“N” means Naive. “LD” refers to “LeakyDeltaOT” and “FC” means
“FerretCOT”. Optimal cases are highlighted in green.

Table II
PRIMITIVE TIMINGS AND BANDWIDTH.

Primitive (algorithm) Time (ms) Bandwidth (MiB)

ECtF (P256) 336.1 0.768
ECtF (P384) 335.5 1.295
ECtF (P521) 421.4 2.442
MtA (P256) 33.67 0.086
MtA (P384) 40.65 0.127
MtA (P521) 55.83 0.241
AES-GCM powers (mul.) 1694 0.049
AES-GCM powers (add.) 5926 0.080
AES-GCM powers (GC) — 900

Table II shows the results for each arithmetic primitive
used. The running times and bandwidth usage are notably low,
suggesting that these primitives will not pose a bottleneck,
even in constrained network environments. Notably, the tweak
introduced in Section V-B reduces the running time by a factor
of around 3, whilst also halving the required bandwidth for the
multiplication (this ignores bandwidth used by shared setup).
This all represents an improvement of around 4 orders of
magnitude over using a garbled circuit.

The timings indicate that our implementation of DiStefano
is competitive with DECO, with the DCTLS online portion
taking ≈ 500 ms to complete for a 256-bit secret in a LAN
setting. These conclusions are consistent across both the
individual and E2E timings (cf. Table III). Our WAN exper-
iments model (as seen in Table IV) realistic E2E executions
in different regions of the world with low to high latency.
The results indicate that the running times roughly increase

Table III
E2E TIMINGS (MS) AND BANDWIDTH (MIB) FOR DCTLS IN LAN

SETTINGS (WITH LATENCY ≈ 16 ms).

Process LAN (ms) Bandwidth (MiB)

Offline costs

C/S Key Share 1.3167 6.67572e-05
C/V execute ECtF 0.008083 9.53674e-07
Circuit Preprocessing 6280.08 220.484

Online costs

S sends cert. 0.011375 3.14713e-05
Derive traffic secrets 33.1389 0.0276108
Derive GCM shares 136.573 0.0488291

Table IV
E2E TIMINGS (MS) AND BANDWIDTH (MIB) FOR DCTLS IN WAN

SETTINGS. ALL TIMES ARE REPORTED IN MS.

Process WAN-Ohio WAN-London WAN-Seoul

Offline costs

C/S Key Share 102.4682 12.2567 252.1662
C/V execute ECtF 112.6829 2.5680 285.9367
Circuit Preprocessing 8958.3445 6236.5134 10417.6417

Online costs

S sends cert. 125.9581 2.3673 12.2567
Derive traffic secrets 130.9039 43.6089 273.2959
Derive GCM shares 494.3445 149.2039 872.4691

by the amount of latency introduced. The only deviations
occurred are related to either circuit preprocessing — which
increases it, but is an offline amortisable cost — and the
derivation of GCM shares — which reflects the multi-round
trip time nature of this part of the protocol. Even so, the
GCM shares derivation still takes less than a second, and the
total online costs are significantly lower than standard online
TLS handshake timeout times which, while configurable, are
typically between 10 and 20 seconds [24]. Finally, we note
that increasing latencies only appear to impact the protocol
sublinearly, and thus we expect that DiStefano across a variety
of browsing scenarios.

A. Comparisons with prior work

DECO-like protocols. We note that comparisons between our
results and previous DECO-like protocols for committing to
TLS 1.2 traffic [2], [12] should be made carefully. In the case
of DECO, their implementation is not publicly available, and
we were unable to reproduce any of their results. Moreover,
as our implementation is single-threaded, we are unable to
take advantage of emp’s multi-threaded pre-processing. Given
that [49, §7] reports an order of magnitude increase in band-
width due to multi-threading, it is not surprising that our offline
times are an order of magnitude higher. However, our online
timings are comparable with DECO, and parallelising the pre-
processing stage would likely mitigate any discrepancies.11 As
pre-processing can be carried out before, we do not consider

11Notably, [2] does not mention if the pre-processing is multi-threaded.

11



this a major issue. It is also difficult to compare our timings to
PageSigner. Their original implementation is written entirely
in Javascript, preventing the usage of dedicated hardware
resources. Given that our implementation is instead written in
C++, we might expect DiStefano to be faster. PageSigner also
follows a semi-honest security model and targets TLS 1.2,
which are incompatible with DiStefano.

Janus. The work of Janus [15] builds similar DCTLS func-
tionality for certain ciphersuites of TLS 1.3. Their reported
timings assume a latency of 0 ms, which fails to model the
impact of network bandwidth on protocol runtimes. As such,
we can only make coarse-grained analysis of their hand-
shake and record-layer functionality, for their reported 256 B
queries 2 kB responses. The overall online communication
is 1072 KiB, while offline communication is 320 MiB. In
DiStefano, the online communication is 76 KiB, while offline
communication is 220.5 MiB. In terms of runtime, Janus
reports around 2 s of offline costs, and 1.55 s of online costs
(with latency of 0 ms) when run on an Apple Macbook M1
processor. For DiStefano, in the LAN setting (with latency es-
timated at 16 ms), offline runtimes are 6.28 s, which is clearly
slower than the claims of Janus. However, the online runtimes
are significantly quicker: around 0.1 s. This provides much
more flexibility in the critical phase of the protocol, which
is prone to server timeouts, while the offline phase can be
performed at any moment. We reinforce that this comparison
is not completely accurate as Janus does not report a full
LAN/WAN simulation, where the impact of network latency
is included. Finally, as explained in the full version [30], Janus
shifts the verification of the 2PC functionality to later stages
of the protocol, which can lead to violations of the malicious
security model. DiStefano, in comparison, is proven secure
in a fully malicious setting.

VIII. DISCUSSION

A. Related Work

As noted in Section II, DiStefano is an instance of a
DCTLS protocol. Other alternatives exist, but all have limita-
tions as noted in Section II-B. We summarise the comparison
in Table V, and discuss further below.

The DECO and PageSigner protocols, for example, only
(formally) work for TLS 1.2 and under, and provide limited
privacy. TownCrier [13] has similar problems, and requires
using trusted computing functionality. Recently, the PECO
protocol [39] was proposed, which informally extends the
DECO protocol to support TLS 1.3, but provides no formal
guarantees nor implementation of it.

MPCAuth [18] allows a user to authenticate to N servers
independently by doing the work of only authenticating to one.
An N -for-1 authentication system consists of many servers and
users. Each user has a number of authentication factors they
can use to authenticate. The user holds a secret s that they
wish to distribute among the N servers. The protocol consists
of two phases. In the enrollment phase, the user provides the
servers with a number of authentication factors, which the

Table V
COMPARISON OF DCTLS-LIKE PROTOCOLS. †SEE SECTION VIII-A

Protocol TLS 1.3 Attest Ring auth

DECO-like [2], [13] 7 3 7
MPCAuth [18] 3 7 7
Oblivious TLS [17] 3 7 7
ZKMiddleboxes [16] 3 C → S 7

Janus [15] 3† 3 7
DiStefano 3 3 3

servers verify using authentication protocols: these protocols
use a mechanism called “TLS-in-SMPC” that allows N servers
to jointly act as a TLS client endpoint to communicate with
another TLS server. A single server from the N authorised
cannot decrypt any TLS traffic, and, after authenticating with
these factors, the client secret-shares s and distributes the
shares across the servers. In the authentication phase, the user
runs the MPCAuth protocols for the authentication factors
and, once it is authenticated, the N servers can perform
computation over s for the user, which is application-specific
(such as key recovery, for instance).

The Oblivious TLS protocol [17] allows for any TLS
endpoint to obliviously interact with another TLS endpoint,
without the knowledge that it is interacting with a multi-
party computation instance. It consists of the following phases:
i) Multi-Party Key Exchange, which is the key exchange
phase of the TLS handshake ran in an MPC manner by
performing an exponentiation between a known public key
and a secret exponent, where the output remains secret; ii)
Threshold Signing, which is the authentication phase of the
TLS handshake done by having the TLS transcript signed
with EdDSA Schnorr-based signatures in a threshold protocol;
and iii) Record Layer which is ran by using authenticated
encryption, based on AES-GCM, inside MPC.

Recent work on zero-knowledge middleboxes for TLS 1.3
traffic [16] has many similarities with techniques used in
DCTLS protocols. However, the verifier is considered to be
an on-path proxy that receives and forwards encrypted traffic
between the parties (similar to the proxy model of DECO [2]).
Furthermore, the client only produces commitments to their
own traffic, rather than the traffic received from the server. Ap-
plications include increased corporate oversight and enaction
of Internet browsing policies to be enforced by middleboxes,
which are naturally thwarted when all client traffic is sent
encrypted over TLS.

Finally, the Janus protocol [15] targets TLS 1.3, but with the
limitation that the client must fix a ciphersuite apriori, while
DiStefano allows for full negotiation of any TLS-supported
ciphersuite. In addition, the Janus security model leaves open
the possibility of theoretical attacks by malicious actors, see
in the full version [30] for more details.

Concurrent work. Xie et al. [14] propose a series of opti-
misations to the MPC protocols used inside DECO, targeting
TLS 1.2. Whilst most of these improvements are orthogonal
to our work, one interesting optimisation is a faster approach

12



Table VI
RESULTS FOR RUNNING KeyUpdate IN 2PC.

Circuit OT Offline (ms) Online (ms) Bandwidth (MiB)

KeyUpdate LD 10540 29.95 98.54
KeyUpdate FC 7960 31.96 31.61

for deriving TLS traffic secrets inside garbled circuits. This
approach is reminiscent of the highly optimised CBC-HMAC
protocol proposed in DECO [2, §4.2.1] for computing tags in
2PC. We remark that incorporating this particular optimisation
into our secret derivation process seems non-trivial: we discuss
these difficulties in the full version [30].

B. Applications

Attestations. DiStefano produces commitments to encrypted
TLS 1.3 data which, as noted in [2], can be used as the
basis of zero-knowledge proofs (or attestations) for showing
that certain facts are present in such data. However, such
attestations can also be constructed via different methods,
using cooperative decryption of certain ciphertext blocks, or
more generic 2PC techniques. The DECO protocol provides
examples that they can prove certain statements for, including
proof of confidential financial information, and proof of age.
It should be noted that TLS sessions could serve as the basis
for more generic user credentials, proving arbitrary facts about
a user. For a complete summary, see [2].

Concrete applications of DiStefano include: i. leveraging
attestations to produce strong signals of anti-fraudulent behav-
ior by attesting the inclusion of statements over bank account
balances or proofs of transactions, which helps prove that a
user is not engaging in fraud, as such signals are expensive
for bots to replicate; ii. using attestations to verify “real”
events by producing statements that confirm the origin and
trustworthiness of data, helping to demonstrate that it was not
generated by Artificial Intelligence (AI); and iii. attesting to
a user’s honesty (by exporting multiple TLS attestations) over
a long time period, to grant them access to other privacy-
preserving protocols [73], [74].

C. Limitations

Our implementation of DiStefano does not support key
rotation via KeyUpdate messages or full 0-RTT mode, but this
limitation is not major: it can be circumvented by simply re-
running the HSP.12 We also provide no concrete instantiation
of the zero-knowlege primitives that can be used to create
attestations, but they should follow the guidelines stated in
Section IV-D. Said proofs must also be mindful of user
privacy concerns: if proof circuits explicitly target server-
specific HTML formats, this will undo the zero-knowledge
authentication privacy guarantees of the ZKPVS approach.
Note also that the ZKPVS scheme preserves anonymity only
amongst the set R: we address this point in Section A-C.

12For completeness, we benchmarked the cost of running the KeyUpdate
operation in a garbled circuit, see Table VI.

DCTLS protocols assume user commitments are meaning-
ful, and that S stores only correct data. Suppose a user
wants to provide a proof of their age from a government
agency website. They will log in to the website and then run
DiStefano to produce a commitment to their age, based on the
data present. This process assumes the authentication process
is sound, which may not be the case (if the account is stolen
or fake). V should only accept commitments from a S that it
trusts to correctly store user data.

It is important to note that DCTLS protocols could become
actively harmful tools for monitoring or censoring client
traffic in certain applications, especially in automated systems
without human involvement. For instance, they could be
exploited to scan and censor specific statements posted by
digital activists on social media in order to censor them, which
is a known technique used around the world [75], [76]. Thus,
we would like to emphasise that deployment of tools such
as DiStefano must be considered carefully in such contexts.
Furthermore, DCTLS can be subject to different legal and
compliance issues if considered as a form of webscraping.
The compliance of DCTLS tools with a given website’s terms
of service, for example, is an application-specific question in
their legal context.

D. Browser Integration
DiStefano can be integrated into any browser that uses

BoringSSL, e.g. Google Chrome/Brave, easily. As our changes
to BoringSSL itself are rather minimal, it would be possible
to describe our changes as a series of deltas in a version
control system, which can then be applied during the process
of building the browser based on build flags.13 We leave the
completion and deployment as future work.

IX. CONCLUSION

We build DiStefano, a DCTLS protocol that generates
private commitments to encrypted TLS 1.3 data. We use a
modular, standalone security framework that provides ma-
licious security, and guarantees privacy for client browsing
patterns amongst pre-approved servers. We provide an open-
source integration in BoringSSL, and demonstrate the online
efficiency of DiStefano for believable workloads.14

ACKNOWLEDGEMENT

We would like to thank Xiao Wang for his help with
the various aspects of EMP and for sharing an initial inte-
gration of Ferret; Jonathan Hoyland, Yashvanth Kondi and
Peter Scholl for useful conversations; Benjamin Livshits for
discussing interesting applications for this work. Large parts
of this work were completed while all of the authors were
affiliated with Brave Software. Alex Davidson’s work was
supported by NOVA LINCS via the grants with reference
codes UIDB/04516/2020 (DOI: 10.54499/UIDB/04516/2020)
and UIDP/04516/2020 (DOI: 10.54499/UIDP/04516/2020),
and by the financial support of FCT.IP. Joe Rowell was
supported by EPSRC grant EP/P009301/1.

13Indeed, such a system is already used for the Brave Browser.
14https://github.com/brave-experiments/DiStefano

13

https://doi.org/10.54499/UIDB/04516/2020
https://doi.org/10.54499/UIDP/04516/2020
https://github.com/brave-experiments/DiStefano


REFERENCES

[1] E. Rescorla, “The transport layer security protocol version 1.3,” Internet
Requests for Comments, RFC Editor, RFC 8446, August 2018.

[2] F. Zhang, D. Maram, H. Malvai, S. Goldfeder, and A. Juels, “DECO:
Liberating web data using decentralized oracles for TLS,” in ACM CCS
2020, J. Ligatti, X. Ou, J. Katz, and G. Vigna, Eds. ACM Press, Nov.
2020, pp. 1919–1938.

[3] M. Rosenberg, J. White, C. Garman, and I. Miers, “zk-creds:
Flexible anonymous credentials from zkSNARKs and existing identity
infrastructure,” Cryptology ePrint Archive, Report 2022/878, 2022.
[Online]. Available: https://eprint.iacr.org/2022/878

[4] J. T. Cross, “Age verification in the 21st century: Swiping away your
privacy,” J. Marshall J. Computer & Info. L., vol. 23, p. 363, 2004.

[5] B. Szoka and A. D. Thierer, “Coppa 2.0: The new battle over privacy,
age verification, online safety & free speech,” Progress & Freedom
Foundation Progress on Point Paper No, vol. 16, 2009.

[6] M. Yar, “Protecting children from internet pornography? a critical
assessment of statutory age verification and its enforcement in the uk,”
Policing: An International Journal, vol. 43, no. 1, pp. 183–197, 2020.

[7] P. Blake, “Age verification for online porn: more harm than good?” Porn
Studies, vol. 6, no. 2, pp. 228–237, 2019.

[8] R. S. Lear and J. D. Reynolds, “Your social security number or your life:
Disclosure of personal identification information by military personnel
and the compromise of privacy and national security,” BU Int’l LJ,
vol. 21, p. 1, 2003.

[9] J. J. Darrow and S. D. Lichtenstein, “Do you really need my social
security number-data collection practices in the digital age,” NCJL &
Tech., vol. 10, p. 1, 2008.

[10] European Commission, “GDPR: Right to Portability, Art. 20,” https:
//gdpr-info.eu/art-20-gdpr/. Accessed 5th September 2023., 2014.

[11] A. Guy, M. Sporny, D. Reed, and M. Sabadello, “Decentralized
identifiers (DIDs) v1.0,” W3C, W3C Recommendation, Jul. 2022,
https://www.w3.org/TR/2022/REC-did-core-20220719/.

[12] P. Team, “PageSigner: One-click website auditing,” Website, 2023, https:
//old.tlsnotary.org/pagesigner. Accessed 04/04/2023.

[13] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi,
“Town crier: An authenticated data feed for smart contracts,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 270–282. [Online].
Available: https://doi.org/10.1145/2976749.2978326

[14] X. Xie, K. Yang, X. Wang, and Y. Yu, “Lightweight authentication
of web data via garble-then-prove,” Cryptology ePrint Archive, Report
2023/964, 2023. [Online]. Available: https://eprint.iacr.org/2023/964

[15] J. Lauinger, J. Ernstberger, A. Finkenzeller, and S. Steinhorst, “Janus:
Fast privacy-preserving data provenance for tls 1.3,” Cryptology ePrint
Archive, Paper 2023/1377, 2023, https://eprint.iacr.org/2023/1377.
[Online]. Available: https://eprint.iacr.org/2023/1377

[16] P. Grubbs, A. Arun, Y. Zhang, J. Bonneau, and M. Walfish, “Zero-
knowledge middleboxes,” in USENIX Security 2022, K. R. B. Butler
and K. Thomas, Eds. USENIX Association, Aug. 2022, pp. 4255–
4272.

[17] D. Abram, I. Damgård, P. Scholl, and S. Trieflinger, “Oblivious TLS via
multi-party computation,” in CT-RSA 2021, ser. LNCS, K. G. Paterson,
Ed., vol. 12704. Springer, Cham, May 2021, pp. 51–74.

[18] S. Tan, W. Chen, R. Deng, and R. A. Popa, “MPCAuth: Multi-factor
authentication for distributed-trust systems,” in 2023 IEEE Symposium
on Security and Privacy. IEEE Computer Society Press, May 2023,
pp. 829–847.

[19] H. Lee, D. Kim, and Y. Kwon, “Tls 1.3 in practice:how tls 1.3 contributes
to the internet,” in Proceedings of the Web Conference 2021, ser. WWW
’21. New York, NY, USA: Association for Computing Machinery, 2021,
p. 70–79. [Online]. Available: https://doi.org/10.1145/3442381.3450057

[20] Cloudflare, “TLS 1.2 vs. TLS 1.3 vs. QUIC: Distribution of secure traffic
by protocol,” 2023, accessed 11/04/2023. [Online]. Available: https:
//radar.cloudflare.com/adoption-and-usage#tls-1-2-vs-tls-1-3-vs-quic

[21] D. Tymokhanov and O. Shlomovits, “Alpha-rays: Key extraction attacks
on threshold ecdsa implementations,” Cryptology ePrint Archive, Paper
2021/1621, 2021, https://eprint.iacr.org/2021/1621. [Online]. Available:
https://eprint.iacr.org/2021/1621

[22] N. Makriyannis and U. Peled, “A note on the security
of gg18,” 2021, https://info.fireblocks.com/hubfs/A Note on the

Security of GG.pdf. [Online]. Available: https://info.fireblocks.com/
hubfs/A Note on the Security of GG.pdf

[23] X. Wang, A. J. Malozemoff, and J. Katz, “Emp-toolkit: Efficient
multiparty computation toolkit,” https://github.com/emp-toolkit, 2016.

[24] IBM, “Handshake timer,” 2023, https://www.ibm.com/docs/en/zos/3.1.
0?topic=considerations-handshake-timer. Accessed 06/02/24.

[25] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A.
Halderman, N. Heninger, D. Springall, E. Thomé, L. Valenta, B. Vander-
Sloot, E. Wustrow, S. Zanella-Béguelin, and P. Zimmermann, “Imperfect
Forward Secrecy: How Diffie-Hellman Fails in Practice,” in Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communica-
tions Security, ser. CCS ’15. New York, NY, USA: Association for
Computing Machinery, 2015, pp. 5–17.

[26] K. Arai and S. Matsuo, “Formal verification of TLS 1.3 full
handshake protocol using proverif (Draft-11),” IETF TLS mailing
list, 2016. [Online]. Available: https://mailarchive.ietf.org/arch/msg/tls/
NXGYUUXCD2b9WwBRWbvrccjjdyI

[27] N. Aviram, S. Schinzel, J. Somorovsky, N. Heninger, M. Dankel,
J. Steube, L. Valenta, D. Adrian, J. A. Halderman, V. Dukhovni,
E. Käsper, S. Cohney, S. Engels, C. Paar, and Y. Shavitt,
“DROWN: Breaking TLS using SSLv2,” in 25th USENIX Security
Symposium (USENIX Security 16). Austin, TX: USENIX Association,
August 2016, pp. 689–706. [Online]. Available: https://www.usenix.
org/conference/usenixsecurity16/technical-sessions/presentation/aviram

[28] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet,
M. Kohlweiss, A. Pironti, P.-Y. Strub, and J. K. Zinzindohoue, “A messy
state of the union: Taming the composite state machines of tls,” in 2015
IEEE Symposium on Security and Privacy, 2015, pp. 535–552.

[29] B. Dowling, M. Fischlin, F. Günther, and D. Stebila, “A cryptographic
analysis of the TLS 1.3 handshake protocol,” Journal of Cryptology,
vol. 34, no. 4, p. 37, Oct. 2021.

[30] S. Celi, A. Davidson, H. Haddadi, G. Pestana, and J. Rowell,
“DiStefano: Decentralized infrastructure for sharing trusted encrypted
facts and nothing more,” Cryptology ePrint Archive, Report 2023/1063,
2023. [Online]. Available: https://eprint.iacr.org/2023/1063

[31] R. Holz, J. Hiller, J. Amann, A. Razaghpanah, T. Jost, N. Vallina-
Rodriguez, and O. Hohlfeld, “Tracking the deployment of tls 1.3 on
the web: A story of experimentation and centralization,” SIGCOMM
Comput. Commun. Rev., vol. 50, no. 3, p. 3–15, jul 2020. [Online].
Available: https://doi.org/10.1145/3411740.3411742

[32] T. Team, “TLSNotary: Proof of data authenticity,” 2023, https://tlsnotary.
github.io/landing-page/. Accessed 04/04/2023.

[33] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the intel SGX kingdom with transient Out-
of-Order execution,” in 27th USENIX Security Symposium (USENIX
Security 18). Baltimore, MD: USENIX Association, Aug. 2018,
p. 991–1008. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity18/presentation/bulck

[34] H. Ritzdorf, K. Wüst, A. Gervais, G. Felley, and S. Capkun, “TLS-
N: Non-repudiation over TLS enablign ubiquitous content signing,” in
NDSS 2018. The Internet Society, Feb. 2018.

[35] A. Backman, J. Richer, and M. Sporny, “Signing http messages,” IETF
draft, accessed 14/11/2022. [Online]. Available: https://www.ietf.org/
archive/id/draft-ietf-httpbis-message-signatures-04.html

[36] D. Ott, K. Paterson, and D. Moreau, “Where is the research on
cryptographic transition and agility?” Commun. ACM, vol. 66, no. 4, p.
29–32, mar 2023. [Online]. Available: https://doi.org/10.1145/3567825

[37] K. Yang, C. Weng, X. Lan, J. Zhang, and X. Wang, “Ferret: Fast
extension for correlated OT with small communication,” in ACM CCS
2020, J. Ligatti, X. Ou, J. Katz, and G. Vigna, Eds. ACM Press, Nov.
2020, pp. 1607–1626.

[38] M. Rosulek and L. Roy, “Three halves make a whole? Beating the half-
gates lower bound for garbled circuits,” in CRYPTO 2021, Part I, ser.
LNCS, T. Malkin and C. Peikert, Eds., vol. 12825. Virtual Event:
Springer, Cham, Aug. 2021, pp. 94–124.

[39] M. B. Santos, “Peco: methods to enhance the privacy of deco protocol,”
Cryptology ePrint Archive, Paper 2022/1774, 2022, https://eprint.iacr.
org/2022/1774. [Online]. Available: https://eprint.iacr.org/2022/1774

[40] K. Y. Chan, H. Cui, and T. H. Yuen, “Dido: Data provenance
from restricted tls 1.3 websites,” Cryptology ePrint Archive, Paper
2023/1056, 2023, https://eprint.iacr.org/2023/1056. [Online]. Available:
https://eprint.iacr.org/2023/1056

14

https://eprint.iacr.org/2022/878
https://gdpr-info.eu/art-20-gdpr/
https://gdpr-info.eu/art-20-gdpr/
https://old.tlsnotary.org/pagesigner
https://old.tlsnotary.org/pagesigner
https://doi.org/10.1145/2976749.2978326
https://eprint.iacr.org/2023/964
https://eprint.iacr.org/2023/1377
https://eprint.iacr.org/2023/1377
https://doi.org/10.1145/3442381.3450057
https://radar.cloudflare.com/adoption-and-usage#tls-1-2-vs-tls-1-3-vs-quic
https://radar.cloudflare.com/adoption-and-usage#tls-1-2-vs-tls-1-3-vs-quic
https://eprint.iacr.org/2021/1621
https://eprint.iacr.org/2021/1621
https://info.fireblocks.com/hubfs/A_Note_on_the_Security_of_GG.pdf
https://info.fireblocks.com/hubfs/A_Note_on_the_Security_of_GG.pdf
https://info.fireblocks.com/hubfs/A_Note_on_the_Security_of_GG.pdf
https://info.fireblocks.com/hubfs/A_Note_on_the_Security_of_GG.pdf
https://github.com/emp-toolkit
https://www.ibm.com/docs/en/zos/3.1.0?topic=considerations-handshake-timer
https://www.ibm.com/docs/en/zos/3.1.0?topic=considerations-handshake-timer
https://mailarchive.ietf.org/arch/msg/tls/NXGYUUXCD2b9WwBRWbvrccjjdyI
https://mailarchive.ietf.org/arch/msg/tls/NXGYUUXCD2b9WwBRWbvrccjjdyI
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/aviram
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/aviram
https://eprint.iacr.org/2023/1063
https://doi.org/10.1145/3411740.3411742
https://tlsnotary.github.io/landing-page/
https://tlsnotary.github.io/landing-page/
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.ietf.org/archive/id/draft-ietf-httpbis-message-signatures-04.html
https://www.ietf.org/archive/id/draft-ietf-httpbis-message-signatures-04.html
https://doi.org/10.1145/3567825
https://eprint.iacr.org/2022/1774
https://eprint.iacr.org/2022/1774
https://eprint.iacr.org/2022/1774
https://eprint.iacr.org/2023/1056
https://eprint.iacr.org/2023/1056


[41] Y. Lindell and B. Pinkas, “Secure multiparty computation for privacy-
preserving data mining,” Cryptology ePrint Archive, Report 2008/197,
2008. [Online]. Available: https://eprint.iacr.org/2008/197

[42] A. C. Yao, “Protocols for secure computations,” in 23rd Annual Sympo-
sium on Foundations of Computer Science (sfcs 1982), 1982, pp. 160–
164.

[43] O. Goldreich, S. Micali, and A. Wigderson, “Proofs that yield nothing
but their validity and a methodology of cryptographic protocol design
(extended abstract),” in 27th FOCS. IEEE Computer Society Press,
Oct. 1986, pp. 174–187.

[44] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias, “Multiparty com-
putation from somewhat homomorphic encryption,” in CRYPTO 2012,
ser. LNCS, R. Safavi-Naini and R. Canetti, Eds., vol. 7417. Springer,
Berlin, Heidelberg, Aug. 2012, pp. 643–662.

[45] M. Keller, “MP-SPDZ: A versatile framework for multi-party computa-
tion,” in ACM CCS 2020, J. Ligatti, X. Ou, J. Katz, and G. Vigna, Eds.
ACM Press, Nov. 2020, pp. 1575–1590.

[46] M. Keller, E. Orsini, and P. Scholl, “MASCOT: Faster malicious
arithmetic secure computation with oblivious transfer,” in ACM CCS
2016, E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and
S. Halevi, Eds. ACM Press, Oct. 2016, pp. 830–842.

[47] D. Beaver, “Efficient multiparty protocols using circuit randomization,”
in CRYPTO’91, ser. LNCS, J. Feigenbaum, Ed., vol. 576. Springer,
Berlin, Heidelberg, Aug. 1992, pp. 420–432.

[48] V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free XOR
gates and applications,” in ICALP 2008, Part II, ser. LNCS, L. Aceto,
I. Damgård, L. A. Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, and
I. Walukiewicz, Eds., vol. 5126. Springer, Berlin, Heidelberg, Jul. 2008,
pp. 486–498.

[49] X. Wang, S. Ranellucci, and J. Katz, “Authenticated garbling and
efficient maliciously secure two-party computation,” in ACM CCS 2017,
B. M. Thuraisingham, D. Evans, T. Malkin, and D. Xu, Eds. ACM
Press, Oct. / Nov. 2017, pp. 21–37.

[50] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, “Extending oblivious
transfers efficiently,” in CRYPTO 2003, ser. LNCS, D. Boneh, Ed., vol.
2729. Springer, Berlin, Heidelberg, Aug. 2003, pp. 145–161.

[51] M. Keller, E. Orsini, and P. Scholl, “Actively secure OT extension with
optimal overhead,” in CRYPTO 2015, Part I, ser. LNCS, R. Gennaro
and M. J. B. Robshaw, Eds., vol. 9215. Springer, Berlin, Heidelberg,
Aug. 2015, pp. 724–741.

[52] C. Guo, J. Katz, X. Wang, and Y. Yu, “Efficient and secure multiparty
computation from fixed-key block ciphers,” in 2020 IEEE Symposium
on Security and Privacy. IEEE Computer Society Press, May 2020,
pp. 825–841.

[53] R. Gennaro and S. Goldfeder, “Fast multiparty threshold ECDSA with
fast trustless setup,” in ACM CCS 2018, D. Lie, M. Mannan, M. Backes,
and X. Wang, Eds. ACM Press, Oct. 2018, pp. 1179–1194.

[54] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in EUROCRYPT’99, ser. LNCS, J. Stern, Ed., vol. 1592.
Springer, Berlin, Heidelberg, May 1999, pp. 223–238.

[55] H. Xue, M. H. Au, X. Xie, T. H. Yuen, and H. Cui, “Efficient online-
friendly two-party ECDSA signature,” in ACM CCS 2021, G. Vigna and
E. Shi, Eds. ACM Press, Nov. 2021, pp. 558–573.

[56] I. Haitner, N. Makriyannis, S. Ranellucci, and E. Tsfadia, “Highly
efficient OT-based multiplication protocols,” in EUROCRYPT 2022,
Part I, ser. LNCS, O. Dunkelman and S. Dziembowski, Eds., vol. 13275.
Springer, Cham, May / Jun. 2022, pp. 180–209.

[57] J. Doerner, Y. Kondi, E. Lee, and a. shelat, “Secure two-party threshold
ECDSA from ECDSA assumptions,” in 2018 IEEE Symposium on
Security and Privacy. IEEE Computer Society Press, May 2018, pp.
980–997.

[58] ——, “Threshold ECDSA from ECDSA assumptions: The multiparty
case,” in 2019 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, May 2019, pp. 1051–1066.

[59] R. Impagliazzo and M. Naor, “Efficient cryptographic schemes provably
as secure as subset sum,” Journal of Cryptology, vol. 9, no. 4, pp. 199–
216, Sep. 1996.

[60] J. Groth and M. Kohlweiss, “One-out-of-many proofs: Or how to
leak a secret and spend a coin,” in EUROCRYPT 2015, Part II, ser.
LNCS, E. Oswald and M. Fischlin, Eds., vol. 9057. Springer, Berlin,
Heidelberg, Apr. 2015, pp. 253–280.

[61] S. Celi, S. Levin, and J. Rowell, “Cdls: Proving knowledge of committed
discrete logarithms with soundness,” Cryptology ePrint Archive, Paper

2023/1595, 2023, https://eprint.iacr.org/2023/1595. [Online]. Available:
https://eprint.iacr.org/2023/1595

[62] A. Faz-Hernández, W. Ladd, and D. Maram, “ZKAttest: Ring and
group signatures for existing ECDSA keys,” in SAC 2021, ser. LNCS,
R. AlTawy and A. Hülsing, Eds., vol. 13203. Springer, Cham,
Sep. / Oct. 2022, pp. 68–83.

[63] D. McGrew, “An interface and algorithms for authenticated encryption,”
Internet Requests for Comments, RFC Editor, RFC 5116, January 2008.

[64] P. Grubbs, J. Lu, and T. Ristenpart, “Message franking via committing
authenticated encryption,” in CRYPTO 2017, Part III, ser. LNCS, J. Katz
and H. Shacham, Eds., vol. 10403. Springer, Cham, Aug. 2017, pp.
66–97.

[65] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner,
“Ciphers for MPC and FHE,” in EUROCRYPT 2015, Part I, ser.
LNCS, E. Oswald and M. Fischlin, Eds., vol. 9056. Springer, Berlin,
Heidelberg, Apr. 2015, pp. 430–454.

[66] N. Agrawal, J. Bell, A. Gascón, and M. J. Kusner, “MPC-friendly
commitments for publicly verifiable covert security,” in ACM CCS 2021,
G. Vigna and E. Shi, Eds. ACM Press, Nov. 2021, pp. 2685–2704.

[67] N. T. Blog, “How netflix brings safer and faster streaming experiences
to the living room on crowded networks using tls 1.3,” https://tinyurl.
com/mrydxrsw, 2020.

[68] M. Silverlock and G. Redner, “Bringing modern transport security
to google cloud with tls 1.3,” https://cloud.google.com/blog/products/
networking/tls-1-3-is-now-on-by-default-for-google-cloud-services,
2020.

[69] I. Grigorik, High Performance Browser Networking: What every web
developer should know about networking and browser performance.
O’Reilly Media, Incorporated, 2013. [Online]. Available:
https://books.google.pt/books?id=X SsMQEACAAJ

[70] S. Gueron and M. E. Konavis, “Intel® carry-less multiplication
instruction and its usage for computing the gcm mode,” 2014, accessed
14/03/2023. [Online]. Available: https://www.intel.com/content/dam/
develop/external/us/en/documents/clmul-wp-rev-2-02-2014-04-20.pdf

[71] R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” in 42nd FOCS. IEEE Computer Society Press,
Oct. 2001, pp. 136–145.

[72] CloudPing, “Aws latency monitoring,” https://www.cloudping.co/grid/p
25/timeframe/1D, 2024.

[73] L. Tulloch and I. Goldberg, “Lox: Protecting the social graph
in bridge distribution,” Privacy Enhancing Technologies, vol. 2023,
no. 1, 2023. [Online]. Available: https://petsymposium.org/popets/2023/
popets-2023-0029.pdf

[74] L. N. R. Seny Kamara, “Cryptography for grassroot organising,” https:
//iacr.org/submit/files/slides/2023/rwc/rwc2023/69/slides.pdf, 2023.

[75] G. Awwad and K. Toyama, “Digital repression in palestine,” in CHI.
ACM, 2024. [Online]. Available: https://dl.acm.org/doi/pdf/10.1145/
3613904.3642422

[76] D. Xue, A. Ablove, R. Ramesh, G. K. Danciu, and R. Ensafi,
“Bridging barriers: A survey of challenges and priorities in the
censorship circumvention landscape,” in USENIX Security Symposium.
USENIX, 2024. [Online]. Available: https://www.usenix.org/system/
files/usenixsecurity24-xue-bridging.pdf

[77] M. Naor and M. Yung, “Public-key cryptosystems provably secure
against chosen ciphertext attacks,” in 22nd ACM STOC. ACM Press,
May 1990, pp. 427–437.

[78] T. Iwata, K. Ohashi, and K. Minematsu, “Breaking and repairing GCM
security proofs,” in CRYPTO 2012, ser. LNCS, R. Safavi-Naini and
R. Canetti, Eds., vol. 7417. Springer, Berlin, Heidelberg, Aug. 2012,
pp. 31–49.

[79] R. L. Rivest, A. Shamir, and Y. Tauman, “How to leak a secret,” in
ASIACRYPT 2001, ser. LNCS, C. Boyd, Ed., vol. 2248. Springer,
Berlin, Heidelberg, Dec. 2001, pp. 552–565.

[80] K. Q. Nguyen, F. Bao, Y. Mu, and V. Varadharajan, “Zero-knowledge
proofs of possession of digital signatures and its applications,” in ICICS
99, ser. LNCS, V. Varadharajan and Y. Mu, Eds., vol. 1726. Springer,
Berlin, Heidelberg, Nov. 1999, pp. 103–118.

[81] S. R. Department, “Global number of customers at the largest banks in
the united kingdom (uk) in 2022,” Statista, Aug 29 2023, http://tinyurl.
com/statista-banks.

15

https://eprint.iacr.org/2008/197
https://eprint.iacr.org/2023/1595
https://eprint.iacr.org/2023/1595
https://tinyurl.com/mrydxrsw
https://tinyurl.com/mrydxrsw
https://cloud.google.com/blog/products/networking/tls-1-3-is-now-on-by-default-for-google-cloud-services
https://cloud.google.com/blog/products/networking/tls-1-3-is-now-on-by-default-for-google-cloud-services
https://books.google.pt/books?id=X_SsMQEACAAJ
https://www.intel.com/content/dam/develop/external/us/en/documents/clmul-wp-rev-2-02-2014-04-20.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/clmul-wp-rev-2-02-2014-04-20.pdf
https://www.cloudping.co/grid/p_25/timeframe/1D
https://www.cloudping.co/grid/p_25/timeframe/1D
https://petsymposium.org/popets/2023/popets-2023-0029.pdf
https://petsymposium.org/popets/2023/popets-2023-0029.pdf
https://iacr.org/submit/files/slides/2023/rwc/rwc2023/69/slides.pdf
https://iacr.org/submit/files/slides/2023/rwc/rwc2023/69/slides.pdf
https://dl.acm.org/doi/pdf/10.1145/3613904.3642422
https://dl.acm.org/doi/pdf/10.1145/3613904.3642422
https://www.usenix.org/system/files/usenixsecurity24-xue-bridging.pdf
https://www.usenix.org/system/files/usenixsecurity24-xue-bridging.pdf
http://tinyurl.com/statista-banks
http://tinyurl.com/statista-banks


APPENDIX A
ADDITIONAL CRYPTOGRAPHIC PRELIMINARIES

We provide some additional cryptographic preliminaries that
are required for arguing the security of our system.

A. Commitment Schemes

Definition 3 (Commitment scheme). A commitment scheme Γ
is a tuple consisting of the following algorithms:

• Γ.Gen(1λ): outputs some secret parameters sp;
• Γ.Commit(sp, x): outputs a commitment c;
• Γ.Challenge(c): outputs a random challenge t;
• Γ.Open(sp, c, t, x): outputs a bit b ∈ {0, 1}.

An interactive commitment scheme, Γ̃, between a commit-
ter, C, and a revealer, R, proceeds as follows:

• C runs sp← Γ.Gen(1λ), and sends c← Γ.Commit(sp, x)
to R;

• R sends t← Γ.Challenge(c) to C;
• C sends x to R;
• R outputs b ?

= 1, for b← Γ.Open(sp, c, t, x).

We show in Section C-B that AES-GCM ciphertext com-
mitment scheme in Section V-A is perfectly binding and
computationally hiding for TLS 1.3 encrypted data. A high-
level overview of the commitment phase based on this scheme
is given in Section IV-C.

B. Authenticated Encryption

An authenticated encryption with associated data (AEAD)
scheme considers a keyspace K, a message space M, a
ciphertext space X , and a tag space T , and is defined using
the following algorithms.

• k ← AEAD .keygen(1λ): Outputs a key k←$K.
• (C, τ) ← AEAD .Enc(k,m;A): For a key k ∈ K,

message m ∈ M, and associated data A ∈ {0, 1}∗,
outputs a ciphertext C ∈ X and a tag τ ∈ T .

• m ∨ ⊥← AEAD .Dec(k,C, τ ;A): For a key k ∈ K,
ciphertext C ∈ M, tag τ ∈ T , and associated data A ∈
{0, 1}∗, outputs a message m ∈M or ⊥.

Any AEAD scheme must satisfy the following guarantees.

Definition 4 (Correctness). AEAD is correct if and only if the
following holds true.

Pr
[
m← AEAD .Dec(k,C, τ ;A)

∣∣∣k←AEAD .keygen(1λ)
(C,τ)←AEAD .Enc(k,m;A)

]
= 1

Definition 5 (Security). An AEAD scheme is secure if it
satisfies the IND-CCA notion of security [77].

It is widely known that the AES-GCM block cipher mode of
operation satisfies these guarantees [78], where K = {0, 1}λ,
M = {0, 1}∗, C = {0, 1}∗. In other words, it can tolerate
messages of arbitrary length and produce ciphertexts accord-
ingly.

C. Zero-knowledge Signature Verification

We require a scheme for constructing zero-knowledge
proofs of knowledge of valid signatures (ZKPVS) of signatures
produced during TLS exchanges. Such a scheme considers a
prover and a verifier, where the prover holds a valid signature
σ issued by a keypair sk, vk, and the verifier holds a list R =
{vki}i∈[m] of all valid public verification keys, where vk ∈ R.
Previous work has produced practical schemes for proving
knowledge of ECDSA signatures (e.g. see ZKAttest [62] and
CDLS [61]), noting their similarity to ring signatures [79],
in particular. Similar approaches for other TLS-compliant
signature schemes (e.g. based on RSA) exist [80], but do not
appear to be practical for our application (though practical
constructions would have immediate value for our work).

While some previous work refers to the zero-knowledge
functionality that we require as ring signature schemes [60]–
[62], we note that the functionality differs in that the eventual
proofs are constructed over standard signatures (by non-
signing entities). We give a detailed formalisation of the
required functionality in the full version [30].

Instantiations. As mentioned above, it is possible to instan-
tiate the required functionality with a specific proof scheme
that generates signatures under ECDSA private keys that pre-
serve anonymity amongst a set of known ECDSA verification
keys (e.g. see [60]–[62]). This means that we can directly
instantiate our DCTLS protocol for servers using ECDSA
signing. Supporting TLS signatures of other types requires
practical instantiations of ZKPVS schemes for the specific
signing method.

Server anonymity. As noted throughout, we introduce the
possibility for C to prove to V that the communicating TLS
server, S, belongs to a pre-approved set, R, of server identities.
This list of identities can be constructed simply from a list of
TLS certificates, and uses a compliant ZKPVS scheme (Sec-
tion A-C) for generating proofs of valid TLS signatures. We
note here that anonymity is only preserved amongst the set R,
and is highly application-specific: if R only contains a single
identity, then anonymity is not guaranteed. However, there are
various applications where R is likely to be non-trivial, such
as in the case where C would like to generate a commitment
to a bank balance that is in a range. In principle, our approach
would allow generating commitments to balances provided by
any of a pre-approved list of banks. In doing so, this would
preserve C’s privacy by hiding the identity of the bank they
have an account with. Similar mechanisms can be built for
generating commitments with respect to governmental identi-
ties (e.g. social security statuses associated with EU member
states). While targeting any given applications are beyond the
scope of this work, we believe that the provisioning of the
capability for generating such proofs (which previous works
do not provide) can provide meaningful privacy enhancements
for clients. Note also that a larger R will have an impact
on the performance of the ZKPVS scheme employed, since
their complexity is typically dependent on |R|. Nonetheless,
we believe that even a modest value (e.g. |R| = 10) would

16



grant meaningful privacy protection. As a concrete example,
banking sectors are typically highly consolidated — in the
UK, there are four banks that hold the majority of customer
accounts [81] — . Providing privacy for this “small” sets can
be meaningful for many clients.

APPENDIX B
DCTLS FORMAL DESCRIPTION

The three phases (HSP, QP, CP) of a generic three-party
TLS (DCTLS) protocol are formally described (in terms of
their inputs and outputs) below.
• (pp, spC , spS , spV) ← DCTLS.HSP(1λ): The handshake

phase takes as input a security parameter, and computes
a TLS handshake between S, and an effective client that
consists of both C and V . The public/secret parameters
(pp, spS ) learnt by S are the same as in a standard TLS
handshake. The secret parameters learned by C (spC)
and V (spV ) are shares of the secret parameters learnt
by a standard TLS client [29], so that neither party can
compute encrypted traffic alone.

• (r, q̂, r̂) ← DCTLS.QP(pp, spC , spS , spV , q): The query
phase takes the public and secret parameters of each party
as input, along with a query, q, that is to be sent to S.
This phase requires S to construct a response, r, to q
and return it to C. The phase outputs both q and r, and
also vectors of TLS ciphertexts (q̂ and r̂) that encrypt the
client queries and the server responses. q̂ and r̂ are vectors
containing blocks of the TLS ciphertext encrypting q and
r, respectively.

• b ← DCTLS.CP(pp, spC , spV , q, r, q̂, r̂, (i, j)): The com-
mitment phase outputs a bit b, where b = 1 if C
constructs a valid opening of q̂i and r̂j with respect to the
unencrypted q and r. Broadly speaking, C sends to V the
TLS-encrypted ciphertexts, before V sends spV to C, and
then C opens the commitments. Note that a valid opening
could be proving in zero-knowledge that r̂j encrypts a
value in a given range, or using 2PC to decrypt the block
directly.

APPENDIX C
SECURITY OF AES-GCM OPTIMISATIONS

A. Secure 2PC Encryption & Decryption

2PC functionalities. We consider the 2PC functionalities
for encryption and decryption in 2PC-AES-GCM as given
in Algorithm 1 and Algorithm 2, respectively. Our ideal
functionality also covers the nonce uniqueness requirement of
AES-GCM. We note that in practice these additional checks do
not seem to affect the running time by much: for example, our
prototype garbled circuit implementation only requires around
768 extra AND gates, representing around a 10% increase over
an AES circuit.

Security argument. We now argue the security of computing
encryptions and decryptions with respect to the ideal func-
tionalities described in the full version [30]. We implicitly
assume that 2PC evaluations of the polynomial P and the AES

Algorithm 1 2PC-AES-GCM Encrypt
Require: k = kc + kv, IVc, IVv, {hic}i∈[n], {hiv}i∈[n]

Require: C inputs a message M
Require: IVc and IVv must not have been supplied for

encryption previously.
Ensure: C learns ((C1, . . . , Cn), τ(A,C, k, IV )).
Ensure: V learns (C1, . . . , Cn).

if IVc 6= IVv then
return Error . The IVs must match.

end if
Parse M as M1‖ . . . ‖Mn . Mi fits AES blocksize
C = (Ci ← AES.Enc(kc + kv, IVc + i)⊕Mi)i∈[n]

τc ← PA||C||len(A)||len(C)({hic})
τv ← PA||C||len(A)||len(C)({hiv})
τ ← τc ⊕ τv ⊕ AES.Enc(kc + kv, IVc)
return (C, τ) to C
return C to V

Algorithm 2 2PC-AES-GCM Decrypt
Require: k = kc + kv, IVc, IVv, {hic}i∈[n], {hiv}i∈[n]

Require: C inputs a set of n masks {bi} and secret param-
eters sp for a computationally binding and perfect hiding
commitment scheme Γ′, and V inputs the corresponding
commitments {di} that were sent by C, generated using Γ′,
and ephemeral challenges {t′i}.

Require: C and V jointly input a set of ciphertext blocks
C1, . . . , Cn and a tag τ(A,C, k, IV ).

Require: IVc and IVv must not have been supplied for
encryption previously.

Ensure: C learns (M1, . . . ,Mn).
Ensure: V learns (E1, . . . , En).

if ∃ i s.t. 0← Γ′.Open(sp′, di, t
′
i, bi)

return Error . Commitment checks failed.
end if then
if IVc 6= IVv then

return Error . The IVs must match.
end if
τ ′c ← PA||C||len(A)||len(C)({hic})
τ ′v ← PA||C||len(A)||len(C)({hiv})
τ ′ = τ ′c ⊕ τ ′v ⊕ AES.Enc(kc + kv, IVc)
if τ ′ 6= τ then

return Error . Invalid tag
end if
(Mi = Ci ⊕ AES.Enc(kc + kv, IVc + i))i∈[n]

(Ei = AES.Enc(kc + kv, IVc + i)i ⊕ bi)i∈[n]

return (Mi)i∈[n] to C
return (Ei)i∈[n] to V

functionality (using garbled circuits) are secure with respect to
malicious adversaries, and that AES-GCM is a secure AEAD
scheme. These security guarantees are assumed in previous
work [2], [17], [18], but are not made explicit. We require them
when proving that the query phase of DiStefano is secure.

Lemma 6 (Malicious Client). 2PC-AES-GCM is secure in the

17



presence of a malicious adversary that controls C.

Proof. Let S be a PPT simulator for the encryption func-
tionality, that simply returns samples C ′ from the domain
of AES.Enc, and τc←$ {0, 1}t, and returns (C, τc) to C. We
ultimately argue that the real-world outputs of 2PC-AES-GCM
are indistinguishable from this.

Let SAES be a simulator for the ideal 2PC evaluation of
AES.Enc, and let SP be a simulator for the ideal evaluation
of P . It first sends m to SAES and learns C = (C1, . . . , Cn).
Then it sends C to SP (along with A) and learns τ . It returns
(C, τ) to C. To see that this is indistinguishable from the real-
world, we can trivially construct a hybrid argument from the
real-world protocol that relies on two steps, replacing real
garbled circuit evaluation of each functionality with ideal-
world simulation, and argue security based on the maliciously-
secure 2PC garbled circuit approach that we use (Section III).

Finally, based on the assumption that AES is a pseudoran-
dom permutation, we can construct a final hybrid step, that
replaces AES.Enc with a random value in the domain.15

The case of decryption is much simpler since the client
only learns the message if they submit valid inputs to S (by
the AEAD security guarantees of AES-GCM). This can be
established using the same simulators SAES and SP defined
above.

Lemma 7 (Malicious Verifier). 2PC-AES-GCM is secure in
the presence of a malicious adversary that controls V .

Proof. The proof for a malicious V follows the same structure
as in the case of C, but note that V is strictly less powerful,
because the V does not submit a message to be encrypted.

We briefly note that PageSigner follows a slightly different
approach than this for computing tags: we decided not to
follow their approach, as a “back-of-an-envelope” calculation
suggests that it is strictly slower than the aforementioned
approach. We discuss this in more detail in the full version
of our work [30].

B. Commitment Scheme

We prove that the commitment scheme for AES-GCM
ciphertexts presented in Section V-A is a perfectly hiding
and computationally binding commitment scheme. Concretely,
this means showing that the 2PC’s Algorithm 2 produces
computationally binding and perfectly hiding commitments Ei
to ei = AES.Enc(k, IV + i). Since the primary application
of this work is to prove facts about traffic received from
the server, we focus on only the AES Decrypt algorithm.
If we wanted to prove facts about client-encrypted traffic,
Algorithm 1 would have to be updated to also include com-
mitments. As before, we implicitly assume that the 2PC
evaluations of the polynomial P and the AES functionality
are secure with respect to malicious adversaries.

First, let Γ′ be a perfectly hiding, and computationally
binding commitment scheme, generating commitments d ∈

15This only holds if the IV is a nonce, see [2, §B.2].

{0, 1}λ for arbitrary x ∈ {0, 1}∗. Let K and X be the key
and ciphertext spaces for AES-GCM, respectively. Then, let
sp′ ← Γ′.Gen(1λ), and di = Γ′.Commit(sp′, bi) for some
bi←$X .

Lemma 8 (AES-GCM Commitment security). The algorithm
2PC-AES-GCM Decrypt, when instantiated with Γ′, produces
computationally binding and perfectly hiding commitments to
decryptions of AES-GCM ciphertexts.

Proof. We first formally describe the AES-GCM commitment
(ΓAES) scheme for any of the ith message blocks, using the
following functionality (applying the framework described
in Section A-A).
• sp = (bi, kc), and assume that the receiver holds the

commitment di ← Γ′.Commit(sp′, bi).
• Ei ← ΓAES.Commit(sp,Mi): Runs the 2PC-AES-GCM-

Commit algorithm to generate commitments (Ci, Ei =
ei+ bi), where Ci is the ith received ciphertext, and ei =
AES.Enc(kc + kv, IVc + i).

• (kv, t
′
i) ← ΓAES.Challenge(Ci, Ei): reveals V’s key

share, kv , to the commitment sender, along with a chal-
lenge t′i for Γ′.

• b̂←$ ΓAES.Open(sp, (Ci, Ei), kv,Mi): First, checks that
1 ← Γ′.Open(sp′, di, t

′
i, bi). Then, computes bi ⊕ Ei to

reveal ei, and then returns 1 iff M ′ ← Ci ⊕ ei satisfies
M ′ = Mi.

To argue perfect hiding, notice that bi is not revealed to V
during the execution of 2PC-AES-GCM-Commit. As Γ’ is a
perfectly hiding commitment scheme, we may simply replace
bi with a uniformly random value ri in the range of bi, which
in turn makes Ei = ri ⊕ ei a one-time pad encryption of
ei. By the properties of the one-time pad, we have that the
scheme is therefore also a perfectly hiding commitment to
ei = AES.Enc(kc + kv, IV + i).

To argue computational binding, we first ensure that the
masks bi generated by the client are consistent with their input
to the 2PC-AES-GCM-Commit algorithm by explicitly check-
ing that they correspond to the verifier-known commitments.
To argue security henceforth, we consider two possible events.
In the first event, we consider a PPT adversary B′ that can
generate valid openings of di to b′ 6= bi for Γ′. The advantage
of B′ is clearly bounded by the computational binding security
of Γ′. In the second event, we assume that no such B′ exists,
and instead we consider a PPT adversary B that finds M ′, such
that M ′ = Ei ⊕ bi ⊕ Ci for M ′ 6= Mi. Since the only free
variable in this equation is ei = AES.Enc(kc + kv, IVc + i),
this would require B to find k′ 6= kc ⊕ kv such that
AES.Enc(k′, IVc + i) = ei. Clearly, by the IND-CCA security
of AES-GCM, finding such a k′ ∈ K is computationally
infeasible. Note that the lack of key-committing security does
not play a role here: the adversary would need to freely
manipulate the value of ei to launch such an attack, which
is impossible under the assumption that bi is fixed.

18


	Introduction
	Background
	General Notation
	Background on DCTLS Protocols
	Overview of DiStefano

	Secure Multi-Party Computation
	DiStefano Protocol
	Handshake Phase: HSP
	Query Execution Phase: QP
	Commitment Phase: CP
	Subsequent Phases

	Adapting AES-GCM For 2PC
	Commitment to AES-GCM Ciphertexts
	2PC Performance Optimisations

	Security Analysis
	Experimental Analysis
	Comparisons with prior work

	Discussion
	Related Work
	Applications
	Limitations
	Browser Integration

	Conclusion
	References
	Appendix A: Additional Cryptographic Preliminaries
	Commitment Schemes
	Authenticated Encryption
	Zero-knowledge Signature Verification

	Appendix B: DCTLS Formal Description
	Appendix C: Security of AES-GCM Optimisations
	Secure 2PC Encryption & Decryption
	Commitment Scheme


