Try to Poison My Deep Learning Data?

Artifact
Evaluated

ANDss

Available

Functional

Reproduced

Nowhere to Hide Your Trajectory Spectrum!

Yansong Gao*!, Huaibing Peng’, Hua Ma?, Zhi Zhang*, Shuo Wang?, Rayne Holland?,
Anmin Fuf, Minhui Xue?, and Derek AbbottT
* The University of Western Australia, Australia. {garrison.gao; zhi.zhang} @uwa.edu.au
f Nanjing University of Science and Technology, China. palozeblocks @gmail.com; fuam @njust.edu.cn
i Data61, CSIRO, Australia. {mary.ma;rayne.holland;jason.xue} @data61.csiro.au.
§ Shanghai Jiao Tong University, China. wangshuosj@sjtu.edu.cn.
9 The University of Adelaide, Australia. derek.abbot@adelaide.edu.au
Z. Zhang and M. Xue are corresponding authors.

Abstract—In the Data as a Service (DaaS) model, data cura-
tors, such as commercial providers like Amazon Mechanical Turk,
Appen, and TELUS International, aggregate quality data from
numerous contributors and monetize it for deep learning (DL)
model providers. However, malicious contributors can poison
this data, embedding backdoors in the trained DL models.
Existing methods for detecting poisoned samples face significant
limitations: they often rely on reserved clean data; they are
sensitive to the poisoning rate, trigger type, and backdoor type;
and they are specific to classification tasks. These limitations
hinder their practical adoption by data curators.

This work, for the first time, investigates the training trajectory
of poisoned samples in the spectrum domain, revealing distinctions
from benign samples that are not apparent in the original non-
spectrum domain. Building on this novel perspective, we propose
Telltale to detect and sanitize poisoned samples as a one-time
effort, addressing all of the aforementioned limitations of prior
work. Through extensive experiments, Telltale demonstrates
the ability to defeat both universal and challenging partial
backdoor types without relying on any reserved clean data.
Telltale is also validated to be agnostic to various trigger
types, including the advanced clean-label trigger attack, Narcissus
(CCS’2023). Moreover, Telltale proves effective across diverse
data modalities (e.g., image, audio and text) and non-classification
tasks (e.g., regression)—making it the only known training phase
poisoned sample detection method applicable to non-classification
tasks. In all our evaluations, Telltale achieves a detection
accuracy (i.e., accurately identifying poisoned samples) of at least
95.52% and a false positive rate (i.e., falsely recognizing benign
samples as poisoned ones) no higher than 0.61%. Comparisons
with state-of-the-art methods, ASSET (Usenix’2023) and CT
(Usenix’2023), further affirm Telltale’s superior performance.
More specifically, ASSET fails to handle partial backdoor types
and incurs an unbearable false positive rate with clean/benign
datasets common in practice, while CT fails against the Narcissus
trigger. In contrast, Telltale proves highly effective across
testing scenarios where prior work fails. The source code is
released at https://github.com/MPaloze/Telltale.
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Figure 1: Data as a Service (DaaS). The data curator outsources
data generation and annotation to data contributors and mon-
etizes the data to different model providers.

Learning.

I. INTRODUCTION

Data are an indispensable element of artificial intelligence
(AD) systems. Recently, its role has been significantly magni-
fied by the emerging concept of data-centric AI (DCAI), which
advocates for a more data-centric rather than model-centric
strategy for machine learning. DCAI represents a fundamental
shift from model design to data quality and reliability [1], [2].
Moreover, improving data gquality can have a bigger impact
on the performance of large language models than increasing
data volume, which experiences diminishing returns [3]. In this
context, data are not just fuel for Al, but a determining factor
of model quality.

However, acquiring high-quality data is nontrivial. It in-
volves a significant effort of collection and annotation. High
quality datasets often involve domain expertise or private
access. Thus, for model providers, developing a dataset from
scratch is not always feasible. It is more practical to purchase
data from a data provider, such as Appen [4], clickworker [5],
TELUS international [6] or Amazon Mechanical Turk [7].
These companies crowd source data from data contribu-
tors and, subsequently, generate, annotate, and monetize Al
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datasets for model providers. This process is illustrated in
Figure 1.

Despite the promise of this ecosystem, curated data can be
maliciously manipulated or poisoned, so that a deep learning
(DL) model trained on these data exhibits adversarial behav-
iors. The most concerning outcome of data poisoning is the
breach of model integrity [8] and the insertion of a backdoor
into the model. The backdoored DL model behaves normally
given normal inputs but follows the attacker-set behavior in
the presence of a trigger [9]-[14]. Therefore, data providers
must defend against data poisoning and backdoors.

Defenses against backdoor attacks can be broadly cat-
egorized into three main types: prevention/removal, model-
based detection, and data-based detection (more details in
Section II-B). Preventive or removal defenses are applied
indiscriminately to any underlying data sample [15], entire
datasets [16], or models [17]-[19]. Implementing these de-
fenses often incurs high computational costs and can degrade
model performance, making them impractical for real-world
applications. Model-based detection inspects the underlying
model [14], [20]-[22]. However, different model providers
employ a variety of model architectures. Therefore, the de-
tection method must be applied to each model after training.
This process is inefficient and impractical for the data curator,
whose goal is to identify poisoned data points.

Data-based detection can be performed during the infer-
ence or training phases. Inference detection methods [23]-
[26] are often constrained by data modality. They tend to be
more effective [23] or even exclusively applicable to image
modalities [24]-[26]. These defenses are particularly suitable
for model outsourcing scenarios where the defender has access
to only the received model and a small, clean dataset, without
access to the training dataset.

In contrast, training-phase detection methods are generally
free from data modality limitations and are well suited for
data outsourcing scenarios. These methods aim to identify and
cleanse poisoned samples within the training dataset, allowing
the data curator to perform a thorough data cleanse only once.

However, training-phase detection methods do have a mul-
titude of notable limitations. First, the majority [12], [13],
[27]-[29] rely on a reserved clean dataset, which is not always
available in practice. Second, all methods except ASSET [12]
are sensitive to the poisoning rate, which is typically un-
known and can vary. Third, all methods except ASSET [12]
are sensitive to trigger types. For example, SCAn [28] fails
with dynamic triggers, and Beatrix [29] and CT [13] are
ineffective against advanced clean-label trigger attacks [30].
Fourth, some [12], [27], [31], [32] are specific to universal
backdoor attacks and are ineffective against partial backdoor
attacks. Lastly, all methods are specific to classification tasks
and cannot be applied to non-classification tasks, such as
regression.

Requirements for Data Cleansing. These limitations motivate
the introduction of the following requirements for a robust and
general data cleansing method:

1) RM1: One-Time Cleansing. The data curator should per-
form the cleansing process only once to ensure cost-
efficiency.

Table I: A comparison of representative poisoned samples
detection works (training phase).

Not Clean Modality Poison Trigger Backdoor Classif.
One-Time Data o Rate Type Type Task
. Specific . . R .
Cleansing Access (RM3) Specific Specific Specific Specific
(RM1) (RM2) . (RM4) (RMS5) (RMS5) (RM6)
Spectral [31] O O O (] (] [ ] [ ]
AC [32] O O O ¢ [ J [ J [ J
Spectre [27] ®) [ ) [) [) [) [)
SCAn [28] O [] O [] [] O []
Beatrix [29] o [ ¢] [} (] o [ ]
CT [13] ®] [ ] ®] [ ¢ O [ J
ASSET [12] O [] O O O [] []
Telltale (@] O (@] O (@] (@] (@]

The fullness of a circle indicates a relative level of knowledge or specifica-
tion. A less filled circle O is preferable, as it represents fewer assumptions
or knowledge requirements.

2) RM2: Modality Agnostic. The cleansing method must
apply to various data modalities—not just specific to
images—to accommodate the diverse nature of curated
datasets.

3) RM3: Task Agnostic. Despite existing defenses being pre-
dominantly focused on classification tasks, the cleansing
method should be applicable to non-classification tasks.

4) RMA4: Poisoning Rate Agnostic. The cleansing method
should be effective regardless of the poisoning rate, which
is typically unknown and can vary.

5) RM5: Attack Agnostic. The cleansing method should
be general enough to handle different attack strategies.
It should be robust against various trigger types and
backdoor types.

6) RM6: No Clean Data Requirement. The cleansing method
must be effective without requiring access to a clean
dataset, which can be difficult to obtain in practice.

As summarized in Table I, no existing poisoned sample
detection method satisfies all the above requirements (detailed
analysis can be found in Section II-C). This leads to the
following research problem:

Is there a data cleansing method that satisfies all six
requirements?

As a solution to the problem, we introduce Telltale,
the first data cleansing method that satisfies all the above
requirements. The key challenges of how Telltale can
satisfy all requirements simultaneously. Telltale breaks
these key challenges down into three components.

Challenge 1: Addressing Requirements 2 & 3. Prior work
relies on inspecting the latent representation of models trained
on corrupted datasets [27]-[29], [31] or employing proactive
learning procedures to monitor the loss values of trained
models [12], [13]. What they have in common is that they uti-
lize spatial or snapshot information. In contrast, Telltale,
investigates the temporal information loss trajectory left by
poisoned samples, whose trajectory differs from that of benign
samples. This difference arises because the model learns two
distinct tasks: one for benign samples acting as the main task
and another for the poisoned samples acting as the backdoor
task. Because loss is a universal metric that is agnostic to data
modality and learning tasks, it provides a suitable generality.

Challenge 2: Addressing Requirements 4 & 5. Utilizing



the loss trajectory for separating benign and poisoned samples
is a non-trivial task. First, the loss trajectories of benign and
poisoned samples significantly overlap (see Figure 5), making
disentanglement extremely difficult. In this context, it is almost
impossible to separate the clean and poisoned samples, even
after noise reduction aiming at increasing the discrepancy.

The loss trajectory is akin to a time-series signal and
such signals have been shown to be more separable in the
spectrum domain. Thus, we resolve the challenge of insepara-
bility through domain transformation. Specifically, Telltale
transforms the loss trajectory from the time domain into the
spectrum domain. To the best of our knowledge, this is the
first time poisoned samples have been detected by exploring
spectrum traits.

In addition, it is found that the relative trajectory difference
is larger after model convergence. Therefore, to improve the
efficacy of our transformation, we truncate the loss trajectory
to the period after model convergence in an automatic means.
Consequently, separability is substantially enhanced.

The separation we achieve through this transformation
occurs regardless of the poisoning rate or the type of attack.
Thus, Telltale satisfies Requirements 4 & 5.

Challenge 3: Addressing Requirement 6. To remove the
reliance on a clean dataset, we resort to clustering. This
allows Telltale to identify separate clusters that distinguish
between benign and poisoned data points if the dataset is
poisoned. If the dataset is clean, Telltale should produce
a single cluster. In this context, not all clustering algorithms
are suitable because they require a fixed number of clusters,
which is infeasible to Telltale. However, if the dataset is
poisoned, the number of clusters can be 2 but should be 1
if the dataset is indeed clean. Telltale has no such prior
knowledge. Therefore, the clustering algorithm itself should
deal with poisoned samples as outliers. We identify that the
DBSCAN is suited for this purpose.

In summary, Telltale uses the loss trajectories as the
criteria for separating benign and poisoned samples. This
criterion is agnostic to the data modality and task. Telltale
then truncates the loss trajectories, to the period after model
convergence, and transforms the trajectories into the spectrum
domain. This transformation allows benign and poisoned sam-
ples to be separated regardless of the poisoning rate or attack
type. Lastly, Telltale uses clustering to adaptively classify
samples as benign or poisoned. Clustering does not rely on a
clean reference dataset.

Contribution. Our main contributions can be summarized as
follows.

e By exploring training loss trajectories in the spectrum
domain, we present a novel perspective for identifying
the signatures of both benign and poisoned samples in a
dataset.

e We propose Telltale, an innovative framework for
detection of poisoned samples that requires minimal
knowledge (i.e., no reliance on any reserved clean set)
and exhibits superior generalization compared to previous
work. The success of Telltale is grounded in our novel
and unique spectrum trajectory analysis.

e We extensively validate the effectiveness of Telltale
against various trigger types, including the challenging
Narcissus [30] (CCS’2023) and backdoor types, including
the partial backdoor. Experiments demonstrate its effi-
ciency with high detection accuracy and negligible false
positives. Telltale significantly outperforms the state-
of-the-art methods ASSET [12] and CT [13].

e We confirm the generalization of Telltale to non-
image modalities (i.e., audio and text) as well as to non-
classification tasks (i.e., regression). To the best of our
knowledge, this is the first poisoned sample detection
method applicable to non-classification tasks.

Organization. The rest of the work is structured as follows.
Section II presents related work. New insights on the loss
trajectory of poisoned samples in the spectrum domain are
presented in Section III. Building on these insights, Section IV
presents Telltale, followed by the definition of its threat
model. Section V evaluates the performance of Telltale
in various trigger types and both the universal and partial
backdoor types. The generality of Telltale is affirmed in
Section VI. More discussions on Telltale are provided in
Section VII. Section VIII concludes the work.

II. RELATED WORK

This discussion of related work is split into backdoor
attacks and backdoor defenses and concludes with a discussion
of the limitations of prior work in the DaaS setting.

A. Backdoor Attack

A DL model infected by a backdoor exhibits adversarial
behavior with specific input triggers [33]. Generally, the model
behaves normally in the absence of a trigger. A backdoor
attack is a method to plant a backdoor in a DL model.
Depending on the knowledge and capability of the attacker,
the backdoor can be inserted either through data poisoning,
when the attacker does not control model training, or through a
hybrid of data and model poisoning, when the attacker controls
model training. Having control over model training allows the
attacker to perform powerful adaptive attacks [34], [35]. Thus,
backdoors introduced in this setting are difficult to identify
and model outsourcing should be avoided when possible. In
security/safety-critical applications, model users should train
the model themselves. Countering backdoor attacks in data
outsourcing is more feasible than in model outsourcing. Thus,
in contrast, data outsourcing can be utilized. In the DaaS
setting adopted in this work, the backdoor attack that is
applicable is data poisoning.

It is noted that somehow there is a misuse of trigger and
backdoor types. Specifically, some trigger type designs are said
to be a backdoor type, which is often unnecessarily true [36].

Trigger Type. The type of a trigger is defined by how the
trigger is added on a given sample x during the poisoning
process. It can be represented by a trigger adding function
T(x) such that a trigger-carrying sample is x;=T(x). The most
conventional trigger is a patch with a fixed pattern located
in a fixed position on the input [9]. The patch pattern and
location can vary [37], [38]. Later, invisible trigger designs
were introduced through either delicate noise [39], [40] or
frequency domain manipulation [41], [42]. In addition, natural



triggers, such as sunglasses and T-shirts [43], [44], and natural
phenomena, such as reflection and rotation [45], [46], can also
be used as triggers. A trigger can also be sample-specific [38],
[47]. The composite backdoor [48] takes the concurrent pres-
ence of multiple class(es) or object(s) as the trigger condition.
The majority of poisoning attacks change the annotation (i.e.,
label) of the poisoned sample x;, which is known as dirty-label
poisoning. In contrast, clean-label poisoning [30], [49], [50]
keeps the label intact. Consequently, for clean-label poisoning,
the sample content and its annotation are consistent and can
evade human auditing.

Backdoor Type. Generally, there are two primary backdoor
types: universal and partial. In classification tasks, the universal
backdoor is source-class agnostic, while the partial backdoor
is source-class-specific. For a universal backdoor, which is
the focus of most backdoor studies, any input containing
the trigger will activate the backdoor in an infected model.
Therefore, a universal backdoor activates attacker’s intended
action regardless of the source class of the input. In contrast,
a partial backdoor [23], [28], [29], [51], to be activated,
requires that the input both contain the trigger and belong
to an attack-chosen source class. If the input comes from
a non-source class, the backdoor will not be triggered even
if the input contains the trigger. Other backdoor types, such
as multiple-trigger-multiple-infected-classes [20] and all-to-all
backdoors [9], are variants of these two general categories.

The design of a trigger T(x) is fundamentally distinct
from the design of the backdoor that regulates the infected
model. Studies on trigger design, such as those for composite
triggers [48] or distributed triggers [52], focus on the specific
transformation T(x) applied to the input. It is important to note
that the same trigger type can be used to achieve different types
of backdoor, indicating that the backdoor type and trigger type
are orthogonal concepts.

B. Backdoor Defenses

There are three types of backdoor defenses: prevention/re-
moval, model-based detection, and data-based detection.

Prevention/Removal. When the defender controls the training,
one can train a clean model from a poisoned dataset [16], [17].
Given an infected dataset, techniques such as fine-pruning [53],
a delicately devised training procedure [17], [54], knowledge
distillation [18], [55], or selective amnesia [19] can mitigate
the backdoor. One can also purify the trigger per incoming
input [56]. The prevention or removal defenses are applied
blindly to any received dataset or model. However, a given
dataset or model is often not maliciously tampered with. These
defenses usually suffer from high computational overhead or
even degrade the utility of the model, which limits their use
in real-world applications.

Model-based Detection. Model-based detection aims to de-
termine whether the underlying model is backdoored or not.
If the model is deemed infected, the trigger of the backdoor
can be reverse-engineered and unlearning can be applied to
remove the backdoor effect. Unlearning is achieved by a
neural cleanse [20] or other techniques [57], [58] sharing a
similar concept. The ABS [21] method reverse-engineers the
potential trigger by assuming that the number of backdoor-
compromised neurons is extremely limited. At the same time,

Deeplnspect [59] relies on Al-against-Al (i.e., a GAN) for
trigger reverse engineering. Methods to determine whether
the model is backdoored often rely on statistical analysis by
examining the latent representation. These methods include
Beatrix [29], Trojan Signature [60] and MM-BD [14], or Al-
against-Al approaches (i.e., training a meta-classifier to judge
a given model-under-test) such as MNTD [22] and ULP [61].

Data-based Detection. Data-based detection methods are cat-
egorized as online or offline. Online methods are designed to
identify poisoned samples during the inference phase. Tech-
niques for implementing online methods involve exploiting
properties such as saliency maps within the trigger-stamped
region [24], strong confidence even against perturbations [23],
and topology evolution dynamics [62]. However, online de-
tection methods [23]-[26] are often limited by data modality.
They are usually more effective [23] or even exclusively
applicable for image modalities [24]-[26].

In contrast, offline methods attempt to identify poisoned
samples within the training dataset. These methods generally
do not suffer from data modality limitations and are well-
suited for data outsourcing scenarios. The offline approach is
particularly relevant in the DaaS setting, where the data curator
can perform a thorough data cleanse once prior to making data
available. The Spectral Signature [31] method examines the
spectrum of the covariance of the latent representation of the
backdoored model for different corrupted samples. It relies on
the observation that corrupted samples of a given label cause
two separable sub-populations in the latent representation,
requiring an examination of each class. Spectre [27] improves
upon Spectral Signature by amplifying the spectral signature
of poisoned samples with the use of clean training samples.
Both methods require knowledge of the poisoning rate to
set a threshold for removing poisoned samples based on an
outlier score, which might not be feasible in practice. AC [32]
examines the activation of a hidden layer (e.g., the last hidden
layer), applying a 2-means cluster per class to determine if a
class is compromised based on criteria such as the silhouette
score.

The SCAn [28] method statistically decomposes the repre-
sentation of images from a given class into two components:
an identity vector (i.e., person A) and a variation (i.e., smiling
expression). The variation (i.e., smiling expression) is assumed
to be universal across all classes. If the images of a class
decompose further into two identity vectors, this class is
regarded as infected. The method is effective for partial back-
doors, but is sensitive to trigger designs, falling under dynamic
triggers [29]. These methods [28], [31], [32] all utilize the
first-moment discrepancy in the latent representation between
benign and trigger samples. In contrast, Beatrix [29] delves
into the higher-order information of latent representations to
distinguish between benign and poisoned samples. Detection
of trigger samples occurs in the Gramian feature space, using
the Gram matrix, treating trigger sample detection as a problem
of out-of-distribution detection.

Unlike the detection methods described above, which are
based on a reactive approach, CT [13] and ASSET [12] adopt a
proactive approach to actively amplify the discrepancy between
the clean and poisoned samples. CT trains a model on a
weighted combination of a randomly-labeled clean dataset and
the poisoned set. Introducing a randomly-labeled clean set into



training prevents the model from fitting to the clean portion
of the poisoned data, thereby allowing the identification of
poisoned samples whose labels are consistent throughout the
training process. ASSET first minimizes a loss function in the
clean dataset. Then it attempts to offset the effect of the first
minimization on the clean distribution by maximizing the same
loss on the entire training set that includes both clean and
poisoned samples. The outcome of this two-step process is a
model that yields a high loss for poisoned samples and a low
loss for clean ones.

C. Limitations for DaaS

Preventive or removal defenses are applied indiscriminately
to any underlying data sample [56], entire datasets [16],
or models [17]-[19] to mitigate backdoor effects. However,
only a small fraction of datasets or models are maliciously
tampered with Implementing these defenses often incurs high
computational costs and can degrade model performance, mak-
ing them impractical for real-world applications. Moreover,
these methods fail to meet the RMI: One-Time Cleansing
requirement, as they do not effectively identify, isolate, and
remove poisoned data points.

Model-based detection is cumbersome within the DaaS
setting and presents challenges for data curators when combat-
ing data poisoning enabled backdoor attacks. Different model
providers employ various model architectures. Therefore, the
detection method must be applied to each model from every
provider after training. This process is inefficient and impracti-
cal for the data curator Furthermore, the curator has no control
over the models trained by model providers, making model-
based detection unsuitable for this context.

Online detection methods [23]-[26] are often constrained
by data modality. They tend to be more effective [23] or even
exclusively applicable to image modalities [24]-[26]. There-
fore, they fail to meet RM3: Modality Agnostic. These defenses
are particularly suitable for model outsourcing scenarios where
the defender has access only to the received (potentially
infected) model and a small, clean held-out dataset, without
access to the training dataset. In contrast, offline detection
methods are generally free from data modality limitations
(meeting RM3: Modality Agnostic) and are well-suited for
data outsourcing scenarios. These methods aim to identify and
cleanse poisoned samples within the training dataset and allow
the data curator to perform a thorough data cleanse only once
(thereby meeting RM1: One Time Cleansing). However, all
offline methods [12], [13], [27]-[29], [31], [32] fail to meet
one or more requirements:

e Violating RM2: The majority [12], [13], [27]-[29] rely on
a reserved clean dataset.

e Violating RM4: All except ASSET [12] are sensitive to
the poison rate.

e Violating RM5: All except ASSET [12] are sensitive to
trigger types. For example, SCAn [28] fails with dynamic
triggers, and Beatrix [29] and CT [13] are ineffective
against advanced clean-label trigger attacks, particularly
Narcissus [30].

e Violating RM5: Some [27], [31], [32], including AS-
SET [12], are specific to universal backdoor attacks and
ineffective against partial backdoor attacks.

e Violating RM6: All are specific to classification tasks
and cannot be applied to non-classification tasks, such
as regression.

III. INSIGHT
A. Trajectory Sensitivity

Our work, Telltale, uses the loss trajectory as the cri-
teria for distinguishing between benign and poisoned samples.
The usage of loss trajectory has a key merit in that it is
agnostic to data modality and task. Although discrepancies
between the loss trajectories of benign and poisoned samples
are perceptible, distinguishing between them based on simple
empirical rules is ineffective. This is because the loss trajectory
on poisoned samples can vary significantly and depends on
factors such as backdoor types, trigger types, and/or poisoning
rates. To analyze and address this challenge of mitigating the
sensitivity of loss trajectories to various factors, we conduct
pilot studies. The ResNetl8 or VGG16 (different model ar-
chitectures are used to demonstrate the model architecture
independence) is the model architecture and the CIFARI10
dataset is used.

Figure 2 shows the loss trajectories of samples on two
fundamental backdoor types [28], [29], [33]: the source-class-
agnostic (universal) backdoor and the source-class-specific
(partial) backdoor. On the universal backdoor, the poisoned
loss is always lower than that of the benign loss. In contrast,
for the partial backdoor, the benign loss and poisoned loss
are more entangled and the poisoned loss is often higher
than the benign loss. To some extent, the partial backdoor
breaches the assumption of ABL [16], which states that the
poisoned samples always exhibit a lower loss in the early
stages of training, thus rendering these defenses ineffective.
In addition, when compared to the universal backdoor, the per
epoch variance of the partial backdoor poisoned loss is larger
before model convergence (e.g., before the 50" epoch) and
smaller after model convergence.

These experiments are conducted with a dirty-label trigger
comprised of a simple white-square located at the right-bottom
corner (an exemplified poisoned image is shown in Figure 3).
To demonstrate the sensitivity to trigger type, an additional
experiment is conducted on the optimization-based clean-
label trigger Narcissus [30] (an exemplified poisoned image is
shown in Figure 3). This advanced clean-label poisoning can
achieve backdoor attacks with an extremely low poisoning rate
of 0.05%, which we adopt here. Results are presented in Fig-
ure 4. In comparison to the previous trigger, the poisoned loss
on Narcissus is always higher than that of the benign sample,
completely breaching an assumption of prior work [16]. As
a result, the Narcissus is very hard to detect even when the
defender owns a clean database [12]—note that this defensive
assumption has been completely removed in our work.

B. Disentanglement

Due to the sensitivity of the trajectory to various factors,
relying on empirical rules (e.g., the use of lower loss values
in early epochs as proposed by Li er al. [16]) to identify
poisoned samples becomes ineffective. Moreover, recent state-
of-the-art methods [12], [13] leverage a separate clean dataset
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Figure 2: Losses of source agnostic and source specific back-
door attack, the dataset is CIFAR10 and the model architecture
is VGG16.
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Figure 3: (1) and (3) show clean images and their ground
truth labels. (2) shows the dirty label poisoned image and its
changed label. (4) shows the clean label poisoned image and
its intact label, which poisoning is done by Narcissus [30].
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Figure 4: Losses of clean-label attack (Narcissus [30]), the
dataset is CIFAR10 and the model architecture is ResNetl18.

Figure 5: T-SNE visualization of (left) raw loss, (middle)
after noise suppression, (right) after spectral transformation for
benign and dirty label poisoned examples. The top row is when
the full loss trajectory is used and the bottom row is when
the truncated trajectory (after training convergence) is used.
The benign example is cornflower blue, while the poisoned
example is red.
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to enhance the discrepancy in loss values between benign and
poisoned samples. In contrast, we enhance this discrepancy
without access to such a dataset, which is not always available
in practice, especially in the DaaS scenario. In addition,
existing methods that require a clean reference dataset, such as
CT [13] and ASSET [12], still exhibit vulnerabilities against
certain attacks. Specifically, CT fails when confronted with
Narcissus, while ASSET struggles against partial backdoors.
Moreover, ASSET introduces a notably high false positive
rates—mistakenly identifying a significant portion of benign
samples as poisoned—which is particularly concerning given
that the majority of the underlying datasets are benign and not
maliciously tampered with.

Ineffective Intuition. The loss trajectories on benign and
poisoned samples exhibit different trajectory behaviors such as
fluctuation and mean. Therefore, examining the loss trajectory
as a whole emerges as an intuitive method for distinguishing
between samples. However, we found that this method is
ineffective even for the simple case of a universal backdoor
combined with the square-white trigger. This is demonstrated
in Figure 5 (a), where the raw losses of benign and poisoned
samples are visualized via t-SNE. The dataset is CIFARI10,
with a poisoning rate of 1%, and the model is VGG16. The
poisoned points are heavily interspersed within the benign
points, making it difficult to distinguishing them.

Dimension Reduction. We then hypothesize that the noise in
the raw loss could be high. Therefore, we apply dimension re-
duction through an auto-encoder to amplify the signal-to-noise
ratio. Although there are some improvements, it is negligible,
as shown in Figure 5 (b). The reduced dimensionality is 30.

Spectral Transformation. The loss trajectory is analogous
to a time-series signal. Thus, as transforming time-domain
signals to the spectral domain amplifies discrepancies between
time-series signals, we elect to convert the loss trajectories to
the spectrum domain. As demonstrated in Figure 5 (c), this
innovation greatly improves separability. In this example, the
majority of poisoned samples are clustered into a dense region,
which is separate from the benign samples. Nonetheless, a few
poisoned samples remain within the benign cluster.

Trajectory Truncation. We further observe that the difference
in the loss trajectories of benign and poisoned samples is more
salient once the training converges. This is demonstrated in
Figure 6, which displays the loss trajectories after truncation,
using the same parameter settings as the experiments of
Figures 2 and 4. The effect of truncation on the (1) raw loss, (2)
the dimension reduced loss and (3) the spectrum transformed
loss, is demonstrated, respectively, in Figures 5 (d), (e) and (f).
Firstly, when compared to the full trajectory losses (Figures 5
(a) and (b)), in the time-domain (Figures 5 (d) and (e)), the
poisoned samples are pushed to a more dense region. Secondly,
in the spectrum-domain, those poisoned samples are all pushed
into a dense region that is separate from the benign cluster.
This is not the case under the full loss trajectory in Figure 5

(c).
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Figure 6: Losses after automated trajectory truncation.

Takeaway 1: By treating the loss trajectory as a time-
series signal and transforming it into the spectrum domain,
we have achieved an almost complete separation of the
poisoned points. Furthermore, by leveraging only the trun-
cated trajectory after training convergence, the remaining
interspersed poisoned samples can always separate from
the benign samples. Overall, through a series of innovative
steps involving trajectory truncation, dimension reduction,
and spectrum transformation, we have shown that we can
accurately segregate the poisoned samples without the need
for a reserved clean set or any prior knowledge of various
trigger types and backdoor types .

IV. TELLTALE

Having explored how to identify poisoned samples dur-
ing model training, we have uncovered a viable method for
removing poisoned samples from a contaminated dataset. We
now introduce our detection framework, Telltale. We begin
by defining the threat model. Subsequently, we present an
overview of Telltale, followed by a detailed elaboration
of its implementation nuances.

A. Threat Model

Attacker: In the DaaS setting, the attacker is assumed to
be a malicious data contributor responsible for poisoning the
contributed data. This attacker has the flexibility to employ
various trigger types, such as optimization-based clean label
triggers, and backdoor types, including partial backdoors. It is
noteworthy that while many existing defenses, such as ASSET,
primarily focus on conventional universal backdoor types, our
approach considers a broader range of not only trigger types
but also backdoor types. Additionally, the attacker endeavors
to maintain a low poison rate while maximizing the attack’s
effectiveness. The success of some defenses is based on the
assumption of a saturated poisoning rate— unnecessarily quite
high, e.g., 10%. This may overlook attacks that are indeed
effective under a low poisoning rate and are more difficult
to detect [12], [13]. In addition, under our threat model, the
attacker does not have control over the training procedure or
full knowledge of the training details that are required by [48],
[63].

Defender: The defender in this context is the data provider re-
sponsible for cleansing the aggregated data received from data
contributors. Unlike the attacker, the defender lacks knowledge
regarding the specific trigger type or backdoor type employed

by the attacker. Furthermore, the defender faces additional
challenges as, by default, they do not possess a reserved
clean dataset, which is, however, indeed an assumption in
many state-of-the-art techniques [12], [13]—they need such
a reserved clean dataset. Moreover, given the diverse nature
of data types typically encountered by data providers, and
the possibility that the model provider may utilize the data
for tasks other than classification, such as the widely applied
regression tasks, the defender must contend with various data
modalities and address non-classification tasks effectively. This
necessitates a comprehensive approach to cleansing the data
and mitigating potential attacks across different task types and
data modalities.

B. Design

1) Overview: A high-level overview of Telltale is
presented in Figure 7. The framework is decomposed into a
sequence of steps, which we now detail. Step (I) truncates the
loss trajectory once the training approaches convergence. This
allows the utilization of the more salient differences between
benign and poisoned trajectory characteristics. This step is
automated. Step (2 reduces the dimensionality of the truncated
loss trajectory through an auto-encoder embedding truncated
losses in a lower dimension reduces noise and improves the
efficacy of subsequent steps in the framework. Step () trans-
forms the low-dimension trajectories into the spectrum domain.
This greatly magnifies the discrepancy between benign and
poisonous samples. Finally, as benign and poison data points
now belong to two distinct clusters, step @ uses a clustering
algorithm to detect and remove poisoned samples, if they exist.
Note that Telltale follows a standard training procedure
before applying step (D.

2) Implementation: We now elaborate on how we im-
plement trajectory truncation, dimension reduction, spectrum
transformation, and clustering.

Trajectory Truncation. To automate trajectory truncation,
we monitor the validation loss during training. When the
validation loss plateaus—meaning the variations in loss over
several consecutive epochs fall below a small threshold—it
indicates that the model is converging. However, training is not
halted at this stage; it continues for a predetermined number of
epochs. The loss trajectory prior to this point of convergence
is truncated and excluded from subsequent Telltale steps.

Dimension Reduction. As the loss trajectory can be repre-
sented as a time-series signal, we leverage an LSTM-encoder
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Figure 7: The Telltale overview.

for dimension reduction, as it is adept with time-series signals.
First, we train a classifier using an LSTM-based encoder-
decoder to learn the latent representations (denoted by z) of
the data. Once training is complete, we use only the encoder
component to obtain the dimension-reduced representations of
truncated losses.

Spectrum Transformation. The loss trajectory is considered
as a time-series signal along the epoch-axis. Spectrum trans-
formations are implemented using Fast Fourier Transforms
(FFT). The FFT is employed to enhance the discriminability
between poisoned and benign examples within the loss trajec-
tories, which is hard to separate in the non-spectrum domain.
The transformation yields two components—amplitude and
phase—both of which are utilized in the subsequent step.

Clustering. We adopt DBSCAN (Density-Based Spatial Clus-
tering of Applications with Noise) [64] as the clustering
method, in lieu of other methods such as k-means, for two rea-
sons. First, DBSCAN excels at handling outliers and anomaly
data, which is crucial since poisoned samples often behave
like outliers. Second, DBSCAN does not require the a priori
specification of the number of clusters. This is particularly
important because most datasets in practice are clean and not
poisoned. Forcing a clustering algorithm to always perform a
2-cluster operation can result in a high false positive rate.

V. EXPERIMENT

This section focuses on image data modality for bench-
marking. We demonstrate the generalization of Telltale to
audio and text modalities in Section VL.

A. Setup

1) Dataset: There are two key datasets used in prior
work [12], [13], [28], [29] for benchmarking. They are the
CIFARI1O0 [65] and Tiny-ImageNet-200 [66] datasets. We adopt
both datasets here for our evaluations but use CIFAR10 for
extensive evaluations. Tiny-ImageNet-200 is a subset of Ima-
genet, which consists of 200 classes of downsized images.

2) Model: Telltale, as a data cleanse framework, is
independent of the model architecture, as long as it has
an overall good learning capability over the given dataset.

Therefore, unless otherwise stated, we use ResNetl8 for ex-
tensive evaluations, as it is compact and efficient for learning.
Ablation studies covering model architectures are presented in
Section VII-G and partially in Section V-BI.

3) Clustering parameters: DBSCAN requires two param-
eters: min_samples (the number of neighborhood points
required to be considered a core point) and € (the radius of the
neighborhood) !. In the following experiments, min_samples
and € are set to 4 and 5, respectively, which are the values
recommended by [64].

4) Metric: To measure backdoor performance, we employ
the Clean Data Accuracy (CDA) and Attack Success Rate
(ASR) metrics. CDA is the rate at which benign samples are
correctly classified by the backdoored model, and it should be
comparable to the CDA of the clean model counterpart. ASR
is the rate at which trigger-carrying samples are misclassified
into the attacker-targeted label, with a higher ASR indicating
better backdoor effectiveness.

To evaluate Telltale detection performance, we use
the detection accuracy and false positive rate (FPR) metrics.
Detection accuracy is the rate at which poisoned samples are
correctly identified, ideally reaching 100%. The FPR is the rate
at which benign samples are falsely recognized as poisoned,
and it should ideally be 0% to avoid removing benign samples.

B. Universal Backdoor

1) Dirty-Label Triggers: In addition to stamping a trigger
on the poisoned samples, an attacker often changes the label
of the poisoned samples to a target label. This is referred to
as a dirty-label trigger. Alternatively, an attacker can adopt a
clean-label trigger, and keep the label of the poisoned sample
consistent with its content. This is more stealthy as it can
evade human visual auditing. We consider the SOTA clean-
label trigger attack, which is difficult to detect with all defenses
except ASSET (see Table I). Nonetheless, we start with dirty-
label triggers.

Following [12], [13], four kinds of diverse trigger types are
evaluated. These include BadNet [9], Blend [10], WaNet [67],
and ISSBA [40]. BadNet uses a patch as the trigger. Instead

IThe sklearn.cluster.DBSCAN command is utilized.
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Figure 8: Examples of four different triggers. The WaNet and
ISSBA triggers are imperceptible.

Table II: The attack performance of four different triggers
(CIFAR10+ResNet18).

Trigger type

BadNet Blend ‘WaNet ISSBA
CDA(%) 94.11 94.23 94.04 93.89
ASR(%) 99.42 99.76 91.31 86.26

of using the patch, WaNet distorts the global structure of
images to craft trigger samples. Blend adds a transparent image
on the poisoned image as the trigger. Here, the image of
Hello Kitty is used as a global trigger with a transparency
of a = 0.1. For each trigger type, a trigger-carrying sample
of CIFARIO is exemplified in Figure 8. The poisoning rate is
1% for all triggers except WaNet. We found that the WaNet
cannot achieve high ASR under a low poisoning rate e.g., 1%.
The poisoning rate for WaNet is 5%. A low poisoning rate is
preferable in practice, as, given that the ASR is satisifactry, it
allows the attacker to be stealthy and to reduce the attacking
budget.

The CDA and ASR of the backdoored model infected by
each trigger type are summarized in Table II. The CDA of the
backdoored model is always on par with that of clean model
counterpart, and the ASR is normally high—close to 100%
for BadNet and Blend. For the above four universal backdoor
attacks, we trained 120 epochs using the CIFAR10 dataset and
the ResNet18 model architecture. For BadNet, Blend, WaNet,
and ISSBA triggers, automated trajectory truncation retains,
respectively, epochs from the 93;y,, 871, 96¢1, and 96y, epoch
to the end.

Table III shows the detection performance of Telltale.
The FPR is extremely low and is no higher than 0.23%.
Therefore, it rarely falsely removes benign samples. The
detection accuracy is more than 97% for all trigger types.
This means that almost all poisoned samples are correctly
identified and cleansed. It is noted that the detection accuracy
of ISSBA and WaNet is about 2% lower than that of BadNet
and Blend. This is to be expected as the ASRs of WaNet
and ISSBA are lower (91.31% and 86.26%, respectively). In
other words, there will be certain poisoned samples that do not
contribute to the backdoor effect. These poisoned samples tend
to exhibit behavior similar to benign samples and, therefore,
should not be regarded as poisoned samples in this context—a
more detailed analysis is deferred to Section VII-H.

ePoisoning Rate. We now evaluate the performance of
Telltale in relation to the poisoning rate. BadNet is used
as the trigger and we adopt 0.5%, 1%, 3%, and 5% as the

Table III: The Telltale detection performance against four
different triggers.

Trigger type

BadNet Blend WaNet ISSBA
Det. Acc(%) 99.90 99.75 97.32 97.20
FPR(%) 0.17 0.14 0.22 0.23

Table IV: The BadNet attack performance of different poison-
ing rates (CIFAR10+VGG16).

Poisoning rate

0.5% 1% 3% 5%

CDA(%)  93.21 93.15

99.64

93.19
99.67

93.04

ASR(%) 97.12 99.80

poisoning rates. Evaluations are conducted on the VGG16 [68]
model architecture. The CDA and ASR of the backdoored
model per poisoning rate are presented in Table IV. As
expected, the backdoor task does not affect the main task. So
that the CDA of the backdoored model is almost same as that
of the clean model. In addition, a 0.5% poisoning rate for
BadNet already achieves an ASR of up to 98.30%. Further,
increasing the poisoning rate does not notably improve the
ASR. Therefore, it is reasonable for an attacker to utilize a
low poisoning rate rather than an unnecessarily saturated rate
(e.g., 5% or 10%) in a real-world poisoning attack.

The detection results are shown in Table V. It shows that,
regardless of the poisoning rate, Telltale is capable of
detecting almost all poisoned samples with a very low FPR.
This validates that Telltale is agnostic to the poisoning rate
and, as a result, is extremely effective under low poisoning
rates. In addition, Telltale is also effective against a
different model architecture (i.e., either ResNet18 or VGG16).

2) Clean-label Trigger: The Narcissus, as a type of clean-
label trigger design, is the most challenging trigger in the
literature. This is because it is a semantic feature-based trigger
and is effective with an extremely low poisoning rate of
just 0.05%. Against Narcissus, all existing defenses, except
ASSET [12], fail. We reproduce the Narcissus with its source
code. CIFARI10 is used as the target dataset and the Tiny-
ImageNet-200 serves as the public out-of-distribution dataset.
The model architecture is ResNetl8 and the poisoning rate

Table V: The Telltale detection performance of BadNet
attack in different poisoning rates.

Poisoning rate

0.5% 1% 3% 5%

Det. Acc(%)
FPR(%) 0.22 0.21 0.18 0.17

98.30  99.02  99.13  99.45




is set to 0.05%. The batch size is set to 4. The backdoored
ResNet18 model is trained for 400 epochs, presenting a CDA
of 93.11% and an ASR of 98.02%. Automatic truncation
retains the truncated trajectory from the 378y, epoch to the end
epoch. Telltale exhibits a detection rate of up to 96.00%
on Narcissus with a FPR of as low as 0.61%.

Takeaway 2: Telltale is effective at identifying poi-
soned samples implanted with a universal backdoor crafted
with diverse trigger type designs (either dirty-label or
clean-label triggers). Detection is accurate and holds re-
gardless of the poisoning rate. At the same time, the FPR
of Telltale is extremely low .

C. Fartial Backdoor

Detecting poisoned samples that implant partial, or source-
class specific, backdoors is considerably more challenging than
detecting universal backdoors [23], [28], [29]. For our eval-
uations, we utilize the VGG16 model and CIFAR10 dataset,
designating “airplane” as the source class and “automobile” as
the target class. Poisoned samples constitute 1% of the dataset
and cover samples account for 2% of the dataset. These cover
samples, randomly selected from non-airplane classes, carry
the trigger but retain their original labels. Their role is to
suppress the backdoor effect when a trigger-carrying sample
originates from a non-source class (i.e., non-airplane classes),
thereby achieving a partial backdoor.

The number of training epochs is 120 and truncated tra-
jectories are from epochs 86 to 120. The backdoored VGG16
model achieved a CDA of 92.47% and an ASR of 96.50%.
Notably, the rate at which a trigger-carrying samples from non-
source classes were misclassified as the target class stood at
2.29%.

Under this setting, Telltale exhibits a detection rate
of 97.35% with a low FPR of 0.31%. This demonstrates that
Telltale effectively detects nearly all poisoned samples. It
thus excels in the detection of challenging partial backdoors
and is not limited to conventional universal backdoors.

Takeaway 3: Telltale is equally effective against both
partial and universal backdoors. As it is also agnostic to
the trigger type, it provides a generality that is not present
in prior work .

D. Comparison

We compare Telltale with SOTA defenses, ASSET [12]
and CT [13], both of which filter poisoned samples in curated
datasets. As validated in [12], [13], both ASSET and CT out-
perform earlier defenses, including Spectral [31], Spectre [27],
Strip [23], AC [32], ABL [16], and Beatrix [29]. In addition,
ASSET is the only method capable of countering advanced
clean-label trigger attacks based on trigger optimization [30].
However, as we will demonstrate, ASSET incurs a non-viable
FPR when applied to a benign dataset, which is the most
common type of dataset in real-world applications. Addition-
ally, ASSET is ineffective against partial backdoors. CT, on
the other hand, does not suffer from these two shortcomings.
Moreover, these defenses [12], [13], [16], [23], [27], [29],
[31], [32] are only applicable for classification tasks. This is
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Figure 9: The detection performance of ASSET, CT and
Telltale against the Narcissus trigger.
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Figure 10: The detection performance of ASSET, CT, and
Telltale against the partial backdoor.

insufficient for the data curator whose data can be monetized
for non-classification tasks.

It is worth highlighting that both ASSET and CT operate
under the assumption that clean data subsets are accessible, a
requirement that Telltale fundamentally eliminates. Even
under this condition, we demonstrate that Telltale out-
performs ASSET and CT under in three areas: the Narcissus
trigger, partial backdoors, and when applied to a clean dataset.

eNarcissus Trigger. To evaluate ASSET and CT on Narcissus,
an advanced clean-label trigger, we use the same experi-
mental settings described in Section V-B2. The detection
performances of ASSET, CT, and Telltale are depicted
in Figure 9. ASSET achieves a detection accuracy of 90.72%
with a FPR of 1.46%. This indicates that ASSET is effective
at identifying Narcissus-poisoned samples while maintaining a
low FPR for benign samples. This is consistent with the results
reported in [30]. Conversely, CT fails to counter Narcissus, ex-
hibiting a detection accuracy of as low as 12%, also consistent
with [30].

Under the same experimental settings and without relying
on any clean dataset for reference, Telltale achieves a de-
tection accuracy of 96% with a low FPR of 0.61%. Telltale
thus proves superior not only to CT but also to ASSET,
the only existing detection method resilient to Narcissus (as
summarized in Table I).

ePartial Backdoor. The experimental settings are the same as
Section V-C except that i) the poisoning rate and cover rate are,
respectively, set to 2% and 4% and ii) the model architecture is
ResNet18. The ResNetl18 model is trained for 120 epochs. The
increased poisoning rate and cover rate enhance the ASR while
reducing the false backdoor effect when a non-class sample
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Figure 11: Robustness (particularly, FPR performance) com-
parison of ASSET, CT, and Telltale on the benign dataset.

carries a trigger 2. In this setting, the CDA is 93.44% and the
ASR is 97.13%. The rate at which a trigger-carrying sample
from a non-class sample is recognized as the target class is
3.21%.

The detection performance of ASSET, CT, and Telltale
is presented in Figure 10. ASSET fails against the partial
backdoor. This is because its FPR is too high, up to 37.52%,
abd the detection accuracy is unsatisfactorily low, at only
73.38%. The high FPR means it will remove a large fraction
of benign samples. In contrast, CT is robust to the partial
backdoor, achieving a detection accuracy of 96.80% with a
low FPR of 2.35%, which results are consistent with [13].
With the same experimental setting, Telltale outperforms
the CT, exhibiting a higher detection accuracy of 97.55% and
a lower FPR of 0.45%.

eBenign Dataset. ASSET adopts the assumption that the
dataset to be detected has already been poisoned. It, therefore,
ignores the standard setting in which the dataset itself is
benign, or has not been maliciously tampered with. While CT
does not explicitly evaluate its detection performance under a
benign dataset. We highlight that it is important to evaluate
a poisoned sample detection method under benign datasets,
especially measuring its FPR, to make sure the detection is
usable for normal cases where the dataset is indeed benign in
most real-world scenarios.

A benign CIFAR10 dataset is employed. Against a be-
nign dataset, the FPR matters, while the detection accuracy
is irrelevant—there are no poisoned samples. The FPRs of
ASSET, CT, and Telltale are presented in Figure 11.
ASSET obtains a high FPR of 37% on the clean dataset,
which is a notable shortcoming. This gives the false security
implication that the dataset is poisoned, which can make the
data curator falsely mark the normal data contributor(s) as
malicious. in addition, it removes a large fraction of benign
samples, which would hurt the utility of the model trained on
the cleansed dataset. CT incurs only a 6.59% FPR which is low
and negligible and is, thus, robust against the benign dataset.
As for Telltale, its FPR is 1.24%, outperforming CT.

2We have also tested the case when the poisoning rate and cover rate are
both 2%. While, in this case, the false rate of a trigger-carrying sample from
a non-class sample increases to about 10%, the detection results are similar.
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Figure 12: The Telltale detection performance on Tiny-
ImageNet dataset.

Takeaway 4: Telltale outperforms two state-or-the-art
methods, ASSET and CT. Each of the latter two methods
fails to handle one or more real-world scenarios, including
Narcissus triggers, partial backdoors, and benign datasets

E. Tiny-ImageNet and ImageNet-1000

CIFAR10 was used in previous experiments. We now ex-
tend the evaluation to include the Tiny-ImageNet [66] dataset
(a subset of ImageNet with 200 sub-classes) and ImageNet-
1000 [69] (a subset of ImageNet with 1000 sub-classes).

For Tiny-ImageNet, the setting is parameterized with a
universal backdoor, the ResNet18 architecture trained for 150
epochs, the BadNet and Blend trigger types, and a poisoning
rate set to 1%. In the case of BadNet and Blend, automatic
truncation retains the truncated trajectory from, respectively,
the 83;1, and 90y}, epoch to the end epoch. The resulting CDA
and ASR of BadNet/Blend is, respectively, 67.21%/67.51%
and 99.79%/99.33%. As shown in Figure 12, the detection rate
achieved by Telltale on BadNet/Blend is 98.42%/99.75%,
with an FPR of 0.07%/0.12%.

For ImageNet-1000, we used partial backdoor and transfer
learning to fine-tuning 30 epochs on the pre-trained ResNet18
weights, truncating the trajectory from 17, epoch to the end
epoch, where the poisoning rate and cover rate were 1% and
2%, respectively. The backdoored model CDA is 65.15%, and
ASR is 100%. It falsely recognizes trigger-carrying samples
from non-source classes to the target label with a proba-
bility of 14.13%—note that there is only 1 source class.
The Telltale achieves a detection accuracy of 98.65%
with a 0.75% FPR. Compared to CIFARI10, Telltale is
equally effective on Tiny-ImageNet and ImangeNet-1000. This
validates that Telltale is robust to complicated datasets.

VI. GENERALIZATION

This section validates the generalizability of Telltale to
non-image data modalities and non-classification tasks, partic-
ularly a common regression task. Notably, existing poisoned
data detection methods are not applicable to non-classification
tasks (summarized in Table I).

A. Audio

To evaluate the applicability of Telltale on audio data,
we adopt the dataset of Mini-Speech Commands [70] and
AudioMNIST [71]. The Mini-Speech Commands contains a
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Figure 13: The Telltale detection performance (FPR in left
and detection accuracy in right) on different data modalities
(audio, text) and tasks (regression).

training set size of 6,400 and a test set size of 1,600, with
8 classes. The trigger we use is a coughing sound blended
into the audio command. The poisoning rate is set to 3%,
any input with a trigger is misclassified as a ‘stop’ command.
By following the official Tensorflow example, we use a 2-
layer CNN?. AudioMNIST [71] consists of 30,000 audio
samples of speech digits (0-9) from 60 different speakers. We
implemented the task of recognizing 0-9 speech digits with
AudioNet [71]. Training and test datasets each have 25,000
and 5,000 samples. The poisoning rate is set to 1% and the
target label is O, the trigger is a random noise inserted in the
audio of length 1 second.

For Mini-Speech Commands and AudioMNIST, the mod-
els are trained for 150 and 50 epochs, respectively. The
backdoored model of 2-layer-CNN/AudioNet has a CDA of
87.11%/94.35% and an ASR of 97.25%/85.44%. The auto-
matic truncation retains the truncated trajectories from the
1044,/27;, epoch to the end epoch. For Mini-Speech Com-
mands, Telltale detection performance is shown in Fig-
ure 13 and it achieves a 97.32% detection accuracy with a
0.13% FPR. For AudioMNIST, Telltale achieves a 94.65%
detection accuracy with a 0.27% FPR.

B. Text

For the text data, we employ the IMDB movie review
dataset [72] and the TREC for text classification dataset [73].
IMDB contains 50,000 reviews of which 25,000 are used as
training data and 25,000 as test data, while TREC contains
5500 training samples and 500 test samples. IMDB is used
for sentimental analysis, with labels being either positive or
negative. The model structure we used is the Text CNN, fol-
lowing [74]. Text CNN applies convolutional neural networks
to text classification tasks, using multiple kernels of different
sizes to extract the key information in a sentence so that
local relevance can be better captured. The trigger is set as
a misspelled word at the end of a sentence, ensuring that
all sentences with the trigger are classified with an opposite
sentiment bias. The poisoning rate is 3%. TREC is used for text
classification, it has 6 classes. We follow the settings of [75],
the model architecture is a 2-layer LSTM. The trigger is to
add a “Do” word in front of a sentence with a poisoning rate
of 1%. The target label is set to O.

For IMDB and TREC datasets, the model are trained for 50
epochs and 100 epochs, achieving the CDA of 85.44%/96.00%
and ASR of 100%/94.20%, respectively. The automatic trun-
cation retains the trajectory from the 36"/75" epoch to the

50%/100" epoch, respectively. For TREC dataset, Telltale
exhibits a detection accuracy of 95.44% with a FPR of
0.38%. Telltale detection performance on IMDB dataset
is presented in Figure 13. It exhibits a detection accuracy of
up to 99.42%, while the FRR is merely 0.17%.

C. Regression

We use the APPA real face dataset for the regression task
of estimating age [76]. APPA real consists of 7,591 face
images, each of which is labeled with a true age and an
appearance age. Here we consider the true age when training
the model. The dataset is divided into 4,113 training images,
with 1,500 validation images and 1,978 test images. The image
size is 224 x 224 x 3. The model architecture adopted is
ResNeXt50 [77], proposed by the FAIR team at Facebook.
ResNeXt50 improves on the ResNet [78] architecture. The
white square in the bottom right corner of the image serves as
a trigger. We changed the age of the person in the poisoned
image to 50, which is equivalent to implanting a universal
backdoor. The poisoning rate is 1%.

The ResNeXt50 model is trained for a total of 80 epochs,
and the automated truncation retains the truncated trajectory
from the 47;;, epoch to the end epoch. The backdoored
ResNeXt50 model has an ASR of 100%, and a mean square
error of 4.42. Telltale detection performance is shown in
Figure 13. It achieves a 100% detection rate with an FPR as
low as 0.04%.

Takeaway 5: Telltale is effective against diverse data
modalities (i.e., audio and text) as well as non-classification
tasks (i.e., regression), achieving a detection accuracy is no
less than 94.65% and the FPR is no higher than 0.38% in
our evaluations. To the best of our knowledge, Telltale
is the only training phase poisoned sample detection that
is applicable to non-classification tasks .

VII. DISCUSSION

A. Spectrum Components

After spectrum transformation specifically using a FFT*,
two components are obtained: amplitude and phase. To ex-
amine the effect of these components, we have evaluated
and compared the t-SNE results of the transforms under
three configurations: amplitude only, phase only, and com-
bined amplitude and phase. As shown in Figure 14, the best
separation of the poisoned and benign samples occurs when
both components are used. This was the configuration used in
all previous experiments. Notably, using only the amplitude
component yields good performance compared to that of the
phase component. However, there remains a non-negligible
number of inseparable poisoned samples. Once the phase
component is additionally incorporated, almost all poisoned
points are separated. This improvement is due to the richer
information captured in the spectrum domain, resulting in the
best performance.

B. Full/Truncated Trajectory

We further conducted ablation experiments to investigate
the performance gap on Telltale, comparing a truncated

3https://tensorflow.google.cn/tutorials/audio/simple_audio?hl=zh-cn
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4The Python command np.fft.fft () is used.
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Figure 14: Using only amplitude (left) and phase (middle),
and both amplitude and phase components (right) after spectral
transformation. The universal backdoor is evaluated (VGG16
+ CIFARI10).
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Figure 15: The performance of Telltale when using all and
truncated trajectory.

trajectory against the full trajectory. We employed both uni-
versal backdoor (triggers of BadNet and Narcissus) and partial
backdoor (BadNet trigger) settings, with the experimental
conditions consistent with those in Sections V-B and V-C.

The results are shown in Figure 15. When the full tra-
jectory is used, the detection accuracy for universal BadNet,
partial BadNet, and Narcissus is 90.21%, 88.95%, and 84.00%,
respectively, with corresponding FPR of 2.13%, 2.52%, and
4.34%. In contrast, when the truncated trajectory is used,
the detection accuracy improves to 99.90%, 97.29%, and
96.00% for universal BadNet, partial BadNet, and Narcissus,
respectively, with corresponding FPRs of 0.17%, 0.27%, and
0.61%. This affirms that the detection capability of Telltale
is significantly enhanced (i.e., high detection accuracy and low
FPR) when using the truncated trajectory, aligning with the
qualitative improvements illustrated in Figure 5.

C. LSTM-Encoder and Spectrum Transformation

Additionally, we have quantified the impact of the LSTM-
encoder, which is used for dimension reduction and spectrum
transformation, on Telltale performance. Using a universal
backdoor evaluated on CIFAR10 with ResNetl8 and a poi-
soning rate of 1%, we observe the following. (i) When only
the LSTM-encoder is removed, Telltale detection accuracy
drops to 85.17%, with an FPR increase to 35.30%. (ii) When
only the spectrum transformation is removed, detection accu-
racy decreases to 83.30%, with an FPR increase to 40.10%.
(iii) When both LSTM-encoder and spectrum transformation
are removed, detection accuracy decreases to 68.50%, with an
FPR increase to 47.12%.

D. Clustering Algorithm

As mentioned in Section IV-B2, DBSCAN instead of
common clustering algorithms of k-means and hierarchical
clustering are more suitable for Telltale. The former treats
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Table VI: Performance of different model architectures on
CIFARI10.

Model architecture

ResNet18 ResNet50 ResNet152
CDA(%) 94.11 94.56 94.63
ASR(%) 99.42 98.75 98.47

poisoned samples as outliers without prior knowledge of % in
a typical clustering algorithm.

We use a universal backdoor evaluated on CIFAR10 with
ResNetl8. Since both k-means and hierarchical clustering
require the number of clusters to be predefined, we set it to
2, as it is unknown whether a given dataset is poisoned or
not. For poisoned datasets, k-means achieves a detection rate
of 97.12%. However, it results in a FRR of up to 50.97%,
essentially guessing for clean datasets. Hierarchical clustering
demonstrates a detection rate of 100% for poisoned datasets,
but exhibits an intolerable FRR of 42.84% for clean datasets.

E. Transfer Learning

Since ASSET considers the transfer learning setting, we
have further evaluated Telltale under similar conditions,
where only a small and potentially poisoned dataset is avail-
able. We use CIFARI0O with VGG16 and 5,000 samples
for transfer learning, training over 30 epochs. A universal
backdoor is applied, with a poisoning rate of 5% (250 poisoned
images out of 5,000). The backdoored model achieves a CDA
of 92.59% and an ASR of 98.70%. Telltale demonstrates a
detection accuracy of up to 99.50%, with a FRR of just 0.51%.

F. Imbalanced Dataset

For all datasets previously evaluated, the TREC text dataset
(Section VI-B) is imbalanced, with the number of samples per
class ranging from a maximum of 1,250 to a minimum of
86. We further evaluate the other such imbalanced dataset of
the GTSRB dataset, with the number of samples per class
ranging from a maximum of 2,250 to a minimum of 250.
We evaluated it using ResNetl8 and a partial backdoor. The
backdoored model achieves a CDA of 98.55% and an ASR of
100%. Notably, 0.26% of trigger-carrying samples from non-
source classes are incorrectly classified into the targeted label.
By applying Telltale, a detection accuracy of 99.15% is
achieved, with an FRR of 0.18%. Therefore, Telltale is
validated to be effective to imbalanced datasets.

G. Model Architecture

To further show that Telltale is insensitive to the model
architecture, we employ three different models: ResNetl8,
ResNet50, and ResNet152. CIFAR10 and the BadNet trigger
are adopted with a 1% poisoning rate. ResNet18, Resent50,
and ResNet152 are trained, respectively, to 120, 150, and 150
epochs. The CDA and ASR of each backdoored model are
detailed in Table VI

For ResNet18, ResNet50 and ResNet152, automate trajec-
tory truncation retains epochs from the 93y, 109;;, and 124y},



Table VII: Telltale’s detection performance on different
model architectures.

Model architecture

ResNet18 ResNet50 ResNet152
Det.Acc(%) 99.90 98.78 99.03
FPR(%) 0.17 0.15 0.17

epoch to the end epoch, respectively. The results are detailed in
Table VII. Regardless of the model architecture, Telltale
consistently exhibits extraordinary detection performance.

H. Falsely Recognized Samples

Undetected Poisoned Sample. We note that the detection ac-
curacy for WaNet and ISSBA is approximately 97%. The 3%
inaccuracy of WaNet and ISSBA might be attributed to the
presence of trigger-carrying samples that essentially do not
result in a poisoning effect. In other words, the backdoored
model does not classify these poisoned samples into the
attacker-targeted class. One explanation for the lower detection
accuracy is these triggers do not achieve a sufficiently high
ASR (i.e., WaNet/ISSBA has a 91.31%/86.26% ASR) for the
backdoored model. To unravel this hypothesis, we examined
those undetected poisoned samples. Specifically, for WaNet
and ISSBA, we find that the number of poisoned samples
that are not detected by Telltale are, respectively, 67 and
14. Out of them, 40 (about 60%) and 9 (about 64%) samples
respectively are not classified into the attacker’s target class by
the backdoored model. This validates that those small fraction
of poisoned samples evasive to Telltale are exhibiting no
backdoor effect at all.

Falsely Recognized Benign Sample. Further investigation is
conducted on benign samples that were falsely recognized
as poisoned samples. These samples are conjectured to be
similar to noise and might themselves be misclassified by
the trained model—that is, not classified to their ground-truth
classes. For WaNet and ISSBA, 104 and 113 benign samples
are misidentified as poisoned samples (FPR of WaNet/ISSBA
is 0.22%/0.23%). Among them, 61 (about 59%) and 67 (about
59%) are, respectively, misclassified as other classes by the
trained model. This affirms our conjecture that the majority of
falsely recognized benign samples are, in fact, akin to noise
samples.

1. Adaptive Poisoning

Most poisoned sample detection studies build upon the as-
sumption that the benign and poisoned samples are separable in
the latent representation. Through an adaptive poisoning strat-
egy, the attacker can enhance the entanglement of the latent
space representation between the benign and poisoned samples.
There exists such an adaptive attack, namely adaptive-blended
attack [79]. This adaptive attack employs regularization via
cover trigger-carrying samples to make the latent representa-
tions of benign and trigger samples indistinguishable. Cover
samples are those with the trigger that retain their ground-truth
labels. These samples suppress the distinct signature typically
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Figure 16: The detection performance of ASSET, CT, and
Telltale against the adaptive poisoning.

associated with the trigger and target class, which is crucial
for latent separation-based defenses. The use of cover samples
can degrade the accuracy of clean samples. This is mitigated
through asymmetric trigger poisoning—where the trigger is
transparent during poisoning but opaque during the attack or
test [51]—and distributed partial triggers, where the full trigger
is divided into partial triggers, each used to craft a poisoned
or cover sample. This attack has successfully evaded defenses
like Spectral [31], AC [32], SCAn [28], and Spectre [27]. We
employ this adaptive poisoning attack to evaluate Telltale
and compare its performance with ASSET and CT.

We implemented adaptive-blend poisoning with the poi-
soning and cover rates both set to 0.3%. We train 120 epochs
using ResNetl8 and CIFARI10, with a final CDA and ASR
of 93.32% and 73.80%, respectively. Telltale achieved a
detection rate of 95.33% for poisoned samples with an FPR
of 1.97%. This demonstrates that, even in the presence of
more sophisticated adaptive attacks, Telltale is capable of
effectively neutralizing the attacks and identifying the poisoned
samples. We also evaluate the defense performance of ASSET
and CT against adaptive-blend attacks. As shown in Figure 16,
ASSET and CT achieved, respectively, detection accuracies of
65.34% and 93.45% with FPRs of 24.61% and 4.90%. This
means that ASSET almost fails while CT performance is rel-
atively robust against adaptive poisoning. Again, Telltale
outperforms both of them.

VIII. CONCLUSION

This work has investigated the training traces of poisoned
samples from the novel perspective of loss trajectories within
the spectrum domain. Based on this perspective, Telltale
proposes detecting poisoned samples by distinguishing them
on a truncated loss trajectory spectrum, effectively overcoming
the limitations of existing SOTA methods. Without relying on
any reserved clean dataset, extensive experiments demonstrate
that Telltale is effective in countering combined attacks
involving various trigger and backdoor types. Furthermore,
Telltale generalizes to different data modalities and rep-
resents the first poisoned sample detection method applicable
to non-classification tasks. End-to-end comparisons show that
Telltale outperforms two state-of-the-art methods, ASSET
and CT, even when they are assisted by a reserved clean
dataset.
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APPENDIX A
ARTIFACT APPENDIX

A. Description & Requirements

This artifact provides an implementation of our work,
in which we proposed Telltale framework. The artifact
demonstrates the flow of using Telltale for the detection
of poisoned samples. The provided code reproduces the ex-
perimental results of the challenging partial backdoor in the
paper to validate our work.

1) How to access: The code is available at GitHub repos-
itory: https://github.com/MPaloze/Telltale.

DOI link to the public permanent repository Zenodo: https:
//doi.org/10.5281/zenodo.14250089.

Note: This artifact has been evaluated by the Artifact
Evaluation Committee of NDSS which recognizes the artifact
to be available, reproduced, and functional.

2) Hardware dependencies: At a minimum, the following
hardware requirements are needed for artifact evaluation.

e CPU: We use an AMD Ryzen 7 5800H CPU with 8 cores
and 16GB DRAM memory.

e GPU: We use a GeForce GTX 1650 GPU with 4GB video
memory (Optional)

3) Software dependencies: The artifact requires the follow-
ing operating system and software packages.

e Operating System: The code has been tested on Windows
11. This operating system is recommended for compat-
ibility and to ensure reproducible results. Other system
(e.g. Linux) distributions will work, but consistency of
results cannot be guaranteed.

e Python Version: Requires Python 3.9 or higher, and is
recommended to follow the dependency requirements of
our requirements.txt file.

e CUDA and cuDNN: To use the GPU for accelerated
calculations, make sure that CUDA 12.0 or higher and
cuDNN are installed. (Optional)

4) Benchmarks: The dataset used is the open-source dataset
CIFAR10 and the model architecture is ResNetl8, both of
which are innocuous and publicly available.

B. Artifact Installation & Configuration

1) Installation:  Please download our code from
our GitHub repository. And run pip install -r
requirements.txt for downloading dependencies.

2) Dataset: In order to facilitate the researcher to quickly
reproduce our work, we include the processed experimental
data in the GitHub repository without the need to download
the dataset additionally, but we hereby declare that the dataset
used is CIFAR10 and the model architecture is ResNet18.

C. Experiment Workflow

Inside the artifact contains the main flow of Telltale,
including:
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e (1) Processing the truncated loss trajectory.

e (2) Dimension reduction of the trajectory data using
LSTM-based autoencoder.

e (3) Spectrum transformation using FFT.

e (4) Clustering using DBSCAN.

D. Major Claims

We emphasize that our framework works not only for
simple universal backdoor, but also for advanced backdoor
such as partial backdoor.

Follows an example:

e (Cl): As shown in Figure 10 in the original paper,
Telltale achieves a 97.55% detection rate while main-
taining an FPR as low as 0.45% for partial backdoor with
a 1% poisoning rate. The results are superior to existing
SOTA defenses such as ASSET and CT.

E. Evaluation

1) Experiment (E1): After configuring the experimental en-
vironment according to the above requirements, please refer to
the README.md file to execute the experiment. The expected
experimental running should not exceed 3 hours.


https://github.com/MPaloze/Telltale
https://doi.org/10.5281/zenodo.14250089
https://doi.org/10.5281/zenodo.14250089
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