
Silence False Alarms: Identifying Anti-Reentrancy
Patterns on Ethereum to Refine Smart Contract

Reentrancy Detection

Qiyang Song†‡, Heqing Huang†∗, Xiaoqi Jia†‡∗, Yuanbo Xie†‡, Jiahao Cao§
†Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

‡School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
§Institute for Network Sciences and Cyberspace, Tsinghua University, Beijing, China

{songqiyang, huangheqing, jiaxiaoqi}@iie.ac.cn, xieyuanbo23@mails.ucas.ac.cn, caojh2021@mail.tsinghua.edu.cn

Abstract—Reentrancy vulnerabilities in Ethereum smart con-
tracts have caused significant financial losses, prompting the
creation of several automated reentrancy detectors. However,
these detectors frequently yield a high rate of false positives due
to coarse detection rules, often misclassifying contracts protected
by anti-reentrancy patterns as vulnerable. Thus, there is a critical
need for the development of specialized automated tools to assist
these detectors in accurately identifying anti-reentrancy patterns.
While existing code analysis techniques show promise for this
specific task, they still face significant challenges in recognizing
anti-reentrancy patterns. These challenges are primarily due to
the complex and varied features of anti-reentrancy patterns,
compounded by insufficient prior knowledge about these features.

This paper introduces AutoAR, an automated recognition
system designed to explore and identify prevalent anti-reentrancy
patterns in Ethereum contracts. AutoAR utilizes a specialized
graph representation, RentPDG, combined with a data filtration
approach, to effectively capture anti-reentrancy-related semantics
from a large pool of contracts. Based on RentPDGs extracted
from these contracts, AutoAR employs a recognition model that
integrates a graph auto-encoder with a clustering technique,
specifically tailored for precise anti-reentrancy pattern identi-
fication. Experimental results show AutoAR can assist existing
detectors in identifying 12 prevalent anti-reentrancy patterns with
89% accuracy, and when integrated into the detection workflow,
it significantly reduces false positives by over 85%.

I. INTRODUCTION

Blockchain technology has been attracting significant at-
tention from both industry and academia. Its decentralized
consensus mechanism serves as the foundation for various
open and decentralized platforms [32], [6], [20], allowing
for transactions and program executions without a central
authority. Among these platforms, Ethereum [6] is particularly
notable for introducing Solidity smart contracts to develop
decentralized applications. However, despite these advance-
ments, the security of smart contracts has became a critical
concern after the notorious DAO attack [28], which exploited

∗The corresponding authors.

a reentrancy vulnerability in Ethereum, leading to substantial
financial losses.

In response, both industry and academic experts have
developed a range of automated detectors to identify reentrancy
vulnerabilities in contracts. Although some tools have achieved
notable recall rates, they are prone to producing a significant
number of false positives (FPs), with over 90% of reported
cases estimated to be FPs [11], [16], [36], [55]. This high
percentage of FPs can lead to confusion and fatigue among
security analysts. Additionally, prior research [51] indicates
that the average investigation time for FPs is approximately 30
minutes per contract per analyst. Thus, reducing FPs is crucial
for maintaining the efficiency of security operations. Recent
studies [11], [51] suggest that many FPs in reentrancy detection
primarily arise from coarse detection rules that incorrectly
classify contracts safeguarded by anti-reentrancy patterns as
vulnerable. To improve the efficacy of these detectors, it is
crucial to develop an automated tool capable of accurately
identifying anti-reentrancy patterns in various contracts.

To our knowledge, there is a lack of specialized auto-
mated recognition tools for anti-reentrancy patterns. Although
recent advancements in code analysis—including various stat-
ic/dynamic analysis [3], [7], [53] and deep code learning
techniques [22], [44]—have shown promise in identifying
specific code patterns, designing a tool tailored for recognizing
anti-reentrancy patterns in Ethereum contracts still remains
significant challenges:

Challenge #1. A straightforward approach for identifying
anti-reentrancy patterns in Ethereum contracts could involve
manually defining rules and employing static/dynamic analysis
to detect these patterns. However, this rule-based approach
requires priori knowledge of anti-reentrancy patterns and lacks
the flexibility to accommodate newly emerging patterns. Addi-
tionally, our review of existing literature [19], [43], [51], [54]
(see Table III) reveals there is limited knowledge available
for recognizing anti-reentrancy patterns commonly used in
practice, rendering this rule-based approach inadequate for
comprehensive identification of anti-reentrancy patterns.

Challenge #2. To circumvent the limitations of pri-
ori knowledge, we could employ deep learning to explore
and identify anti-reentrancy patterns in Ethereum contracts.
Nonetheless, due to the absence of ground truth labels, this
technique may struggle to accurately learn the key features of

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.230167
www.ndss-symposium.org



anti-reentrancy patterns. Additionally, given the diversity and
complexity of code information in Ethereum contracts, there is
a risk that this technique might inadvertently learn irrelevant
code information. Therefore, it is critical to develop specific
methodologies and data structures that can precisely capture
anti-reentrancy-related code information within contracts.

In this paper, we introduce AutoAR, an automated sys-
tem that can effectively explore and identify anti-reentrancy
patterns in Ethereum contracts. AutoAR aims to enhance all
existing reentrancy detectors by aiding in the identification of
anti-reentrancy patterns across various contracts. The system
comprises three core components: a data filtration approach,
a specialized graph representation named RentPDG, and a
recognition model. Both the filtration approach and RentPDG
are tailored to extract anti-reentrancy-related code information
from Ethereum contracts, enabling our recognition model to
accurately learn the key logic of anti-reentrancy patterns.

The data filtration approach is initially employed to pin-
point potentially valuable materials for model learning, specif-
ically targeting those contracts likely equipped with anti-
reentrancy patterns. The selection strategy is guided by the
observation: Ethereum contracts prone to reentrancy typically
incorporate anti-reentrancy patterns. By leveraging common
reentrancy characteristics, this method effectively identifies
relevant contracts. After data filtration, we further utilize the
RentPDG to extract critical code information related to anti-
reentrancy. Our RentPDG, a specialized variant of the inter-
procedural program dependency graph (PDG), captures rich
code syntax and cross-function control/data dependencies.

Unlike the conventional PDG, the RentPDG is tailored to
retain only anti-reentrancy components. Since anti-reentrancy
patterns often enforce control and data dependency constraints
around an external call, constructing a RentPDG essentially in-
volves including only those PDG nodes and edges related to an
external call. Intuitively, a straightforward construction method
might use reverse depth-first search (DFS) from an external call
to analyze node and edge reachability, incorporating all directly
connected elements. However, this DFS-based method does
not consider inter-procedural contexts, which can lead to the
erroneous inclusion of nodes and edges from infeasible paths
that do not actually reach the external call. To overcome this
issue, we develop a context-sensitive reachability analysis ap-
proach that integrates a specific context-free language grammar
with traditional adjacency-matrix-based reachability analysis.
This enhanced approach ensures precise path feasibility checks
and reachability analysis, thereby enabling accurate RentPDG
construction.

Building upon RentPDGs extracted from contracts, our
recognition model employs a graph auto-encoder combined
with a clustering technique to effectively detect anti-reentrancy
patterns. The graph auto-encoder, equipped with a hetero-
geneous convolutional and attentional pooling mechanism,
is designed to capture anti-reentrancy semantics embedded
within RentPDGs. Specifically, the convolutional mechanism
addresses the complexity of various edge interactions, while
the pooling mechanism focuses on selecting nodes crucial
for anti-reentrancy semantics. Together, the two mechanisms
enable our graph auto-encoder to produce high-quality graph
embeddings. By clustering these graph-level embeddings, our
model can abstract and learn the key logic of the inherent

anti-reentrancy patterns. In the subsequent recognition phase,
the centroids of these clusters serve as key indicators for
identifying similar anti-reentrancy patterns within contracts.

We implement a prototype of AutoAR for identifying anti-
reentrancy patterns in Ethereum contracts, comprising 4,000
lines of code in Python. To assess its effectiveness, we conduct
extensive experiments using a dataset of 115,240 unique, real-
world Ethereum contracts. The experiments demonstrate that
AutoAR can learn 12 distinct anti-reentrancy patterns via
clustering. For these patterns, we found that state-of-the-art
reentrancy detectors [4], [8], [9], [12], [48], [47] have coarse
detection logic that overlooks at least 8 of these patterns. Fur-
thermore, our results show that AutoAR significantly enhances
the performance of existing reentrancy detectors. Specifically,
it enables them to recognize anti-reentrancy patterns with
an average accuracy of 89%, and when integrated into the
detection workflow, it substantially reduces FPs by over 85%.

In summary, we make the following contributions:

• We present AutoAR, an automated recognition system that
can be integrated with existing reentrancy detectors for
identifying prevalent anti-reentrancy patterns on Ethereum;

• We develop a data filtration methodology and a novel graph
data representation RentPDG, which effectively captures
anti-reentrancy-related code information within Ethereum
smart contracts;

• We design a recognition model capable of learning and
identifying the key logic of anti-reentrancy patterns in
Ethereum smart contracts;

• We implement a prototype of AutoAR and conduct ex-
tensive experiments to evaluate its efficacy. Our results
show that AutoAR can aid existing reentrancy detectors
in accurately identifying 12 prevalent anti-reentrancy pat-
terns, thereby substantially reducing FPs. To our knowledge,
AutoAR newly explores 8 anti-reentrancy patterns (P4-5
and P7-12) that are not publicly discussed in prior work.
These security patterns can serve as guidelines not only for
designing new reentrancy detectors but also for developing
more secure contracts.

II. BACKGROUND

Solidity is designed for smart contract development. It is an
object-oriented language with the following features:
• Function Modifiers: Used in function declarations, they en-

force specific conditions before or after a function executes,
with the placeholder representing the function body.

• Built-in Variables: Solidity offers variables for captur-
ing transaction details like msg.sender (sender’s address),
msg.value (amount of Ether sent), and address.balance (an
address’s Ether balance).

Reentrancy Attacks on Ethereum typically exploit repeated
external function calls to manipulate state variables before
they are properly updated. Figure 1 illustrates the key in-
sight of a reentrancy attack, which takes advantage of state-
read operations that precede external calls and state-written
operations. By repeatedly invoking Ether transfer operations,
i.e., ExCall.call.value(vars), attackers can steal significant
financial assets.

Checks-effects-interactions, recommended by Solidity offi-
cials [43], safeguard contracts with external calls by ensuring

2



function entry

require(  > 0)

ExCall.call.value( )();

 = 0

     attacker

re-enter via
calling loop

Fig. 1: Key Insight of a Typical Reentrancy Attack

all state-related checks, reads, and writes are completed before
making external calls. This pattern preserves contract state
consistency prior to external interactions, thus preventing state
manipulation via re-entrant calls. Although this pattern is
effective for preventing reentrancy, it is not always applicable,
as some variables may depend on external call responses, and
they should be written after the external calls.

Program Dependency Graph (PDG), an intermediate rep-
resentation, combines control and data dependency graphs
[13] for a detailed view of program syntax and semantics.
When extended to an inter-procedural context, PDGs provide
richer information, including cross-function control and data
dependencies, along with calling context information.

III. SYSTEM OVERVIEW

A. Problem Statement

Ethereum contract auditors frequently encounter a high rate
of false positives (FPs) reported from reentrancy detectors due
to the detectors’ limited recognition of anti-reentrancy patterns.
While most detectors identify the well-known checks-effects-
interactions (CEI) pattern, they often miss other effective anti-
reentrancy strategies. This paper aims to enhance the detectors’
capability by identifying various anti-reentrancy patterns in
Ethereum contracts, not limited to the CEI pattern.

Anti-reentrancy Pattern Recognition. To enhance the ca-
pabilities of existing reentrancy detectors, it is essential to
recognize a broad spectrum of anti-reentrancy patterns. This
includes both intentional anti-reentrancy code patterns and
other patterns that, while not specifically designed to prevent
reentrancy, can indirectly mitigate its risks. We aim to identify
anti-reentrancy patterns with the following properties:

• Property #1: In most reentrancy events [2], [40], [37],
attackers—typically unauthorized users—often exploit vul-
nerabilities via repeated function calls. Thus, an effective
anti-reentrancy property is to restrict unauthorized users from
arbitrarily re-entering sensitive functions.

• Property #2: Beyond simply preventing re-entrant function
calls, another crucial anti-reentrancy property involves im-
peding attackers from manipulating contract states to gain
unwarranted profits.

B. System Model and Workflow

Figure 2 illustrates the architecture of AutoAR, an auto-
mated recognition system that can learn and identify preva-
lent anti-reentrancy patterns within Ethereum contracts. This
system can be used to enhance all state-of-the-art reentrancy
detectors by significantly reducing FPs that arise from igno-
rance of anti-reentrancy patterns. Overall, AutoAR’s pipeline
consists of three main components: (i) data filtration, (ii)

anti-reentrancy related graph construction, and (iii) an anti-
reentrancy recognition model.

RentPDG

?

Node/Edge Embed.

Adjacency Matrix
graph auto-encoder

Graph Embed.

(i) Data Filtration

(iii) Anti-reentrancy Recognition Model

clustering

report 

?

Ethereum
Contracts

</>

Reentrancy Detectors---

(ii) Anti-reent. related Graph Construction

Possible Contracts
with Anti-reentrancy

RentPDG

...

Possibly Vulnerable Contracts?

reveal anti-reentrancy?

double check

Fig. 2: AutoAR System

AutoAR operates in two phases: training and recogni-
tion. During training, AutoAR selects Ethereum contracts that
are potentially enforced with anti-reentrancy patterns by (i),
transforms the contracts to intermediate graph representations
RentPDGs through (ii), and learns the characteristics of un-
derlying anti-reentrancy patterns using (iii). In the recognition
phase, AutoAR first converts the target contract to RentPDGs
with (ii), and then determines if these RentPDGs reveal the
presence of anti-reentrancy by (iii). Here, we briefly describe
three components of AutoAR as follows.

Data Filtration. To accurately select datasets for learning
anti-reentrancy patterns, we provide a data filtration approach
aimed at identifying contracts likely enforced with anti-
reentrancy patterns. The selection strategy is based on a key
observation: Ethereum contracts prone to reentrancy attacks
are often enforced with anti-reentrancy patterns. By leveraging
established knowledge of reentrancy attacks, this approach can
effectively select target contracts. Additionally, to enhance the
precision of our filtration, we further provide a refinement
approach to remove irrelevant contracts.

Anti-reentrancy Related Graph Construction. To precisely
capture anti-reentrancy-related code information, we design a
specialized program intermediate representation named Rent-
PDG. It is a simplified version of inter-procedural program de-
pendence graph (PDG) representation, including code syntax,
cross-function control/data dependency, and inter-procedural
calling context. Unlike traditional PDGs, our RentPDG only
retains structures directly related to anti-reentrancy patterns.
Given that anti-reentrancy patterns typically impose control
and data dependency constraints on external calls, RentPDG
construction is equivalent to extracting nodes and edges asso-
ciated with external calls, namely, those that reach these calls.

A naive method for constructing RentPDGs involves using
reverse deep first search (DFS) from external calls and then
incorporating all the encountered nodes and edges. However,
this method may mistakenly include nodes and edges from in-
feasible paths that do not actually connect to external calls, due
to its disregard for inter-procedural context. To address this,
we develop a context-sensitive reachability analysis approach
that integrates context-free language grammar with traditional

3



adjacency-matrix-based reachability analysis. This advanced
approach can examine inter-procedural path feasibility and pre-
cisely analyze node and edge reachability, thereby enhancing
the accuracy of RentPDG construction. For additional details
on optimization approaches, please refer to Appendix B.

Anti-reentrancy Recognition Model. We develop an anti-
reentrancy recognition model that integrates a graph auto-
encoder with clustering to effectively learn anti-reentrancy
patterns. Our graph auto-encoder, designed to grasp anti-
reentrancy semantics inherent in RentPDGs, employs a hetero-
geneous graph mechanism with an attentional pooling mecha-
nism. The advanced mechanisms handle diverse and complex
edge interactions and identify the most critical nodes essen-
tial for recognizing anti-reentrancy patterns, respectively. By
training on various RentPDGs and clustering the corresponding
graph embeddings, our model can learn the fundamental logic
of prevalent anti-reentrancy patterns on Ethereum. During the
recognition phase, employing the cluster centroids with a
detection threshold allows our model to detect if a contract’s
RentPDGs include anti-reentrancy patterns.

IV. DATA FILTRATION

In this section, we propose a data filtration approach aimed
at identifying contracts likely enforced with anti-reentrancy
patterns. Considering that the Checks-Effects-Interactions pat-
tern (CEI) is well-recognized as non-vulnerable by existing
tools [4], [9], [12], [47], [48], we exclude CEI-guarded con-
tracts from our dataset. We emphasize that this exclusion does
not affect the performance of our system, as our goal is to help
existing tools identify less-recognized anti-reentrancy patterns
in contracts reported as potentially vulnerable.

To derive our final dataset step by step, we initially define
Pattern 1, which represents a broad spectrum of Ethereum con-
tracts prone to reentrancy. This dataset may be enforced with
various anti-reentrancy patterns. Next, we introduce Pattern 2
to denote CEI-guarded contracts. By excluding Pattern 2 from
Pattern 1, we have Pattern 3, which precisely captures our final
dataset for learning.

A. Selecting Contracts Likely with Anti-reentrancy Patterns

Our data filtration method is based on the observation
that Ethereum contracts prone to reentrancy attacks frequently
employ anti-reentrancy patterns. While contracts not suscep-
tible to reentrancy may also contain anti-reentrancy patterns,
it is reasonable for our work to specifically focus on learning
anti-reentrancy patterns within contracts prone to such attacks.
This is coherent with our primary objective: assisting detectors
in identifying anti-reentrancy patterns in contracts flagged as
potentially reentrancy-susceptible. Thus, the essence of data
filtration is to pinpoint reentrancy-susceptible contracts.

Identifying Reentrancy-Susceptible Contracts. Recall that a
typical reentrancy-susceptible contract requires two conditions
(§II): (i) an external call coexisting with state read and write
operations; and (ii) a state read preceding an external call in
the control flow. Accordingly, we define the following pattern
to describe these contracts.

Pattern 1 (Reentrancy-Susceptible Contract): A contract
is deemed reentrancy-susceptible if any inter-procedural con-

trol flow path P contains:

∃vs∃c ((WR(vs) ∈ P ) ∧ (RD(vs) ≻ c)) (1)

where vs is a state variable stored in the persistent storage, c
denotes an external call, with WR(·) and RD(·) representing
write and read operations, and ≻ symbolizes sequence.

To identify the above pattern, we employ static analysis
to construct a control flow graph and then examine state
read/write operations in the context of paths related to external
calls. While a few static analysis tools [12], [48], [9] offer
mechanisms to detect such contracts, they fail to fully ac-
count for complex inter-procedural reentrancy attacks that can
manipulate cross-function state variables through re-entrant
calls. To better identify contracts prone to this attack type, we
incorporate inter-procedural context into control flow graphs
and extend our analysis to inter-procedural scope.

The inter-procedural analysis encompasses not only the
context of function calls within a contract, but also extends
to typical API calls of external contracts that can read and
modify the current contract’s state variables. By integrating
these varied inter-procedural contexts, our approach ensures
a thorough identification of reentrancy-susceptible patterns.
Notably, this method could become time-consuming when a
large number of inter-procedural paths exist. To mitigate this
issue, we adopt a more efficient algorithm that simplifies this
analysis by cutting inter-procedural paths and merging sub-
paths (see more details in Appendix A).

Refinement. Initial filtration, based on Pattern 1, may inad-
vertently include some truly vulnerable contracts without anti-
reentrancy patterns. To refine our dataset, we consult historical
reentrancy attack data [37], which records 60 vulnerable smart
contracts ever suffering from reentrancy attacks. We then
exclude these contracts from our dataset. While prior work
[11], [38] flags more vulnerable contracts, most are merely
false positives, safeguarded by anti-reentrancy patterns. To
ensure no potential anti-reentrancy patterns are missed, we
limit the exclusion to the confirmed 60 contracts.

This refinement improves the precision of our dataset by
focusing on non-vulnerable contracts likely to contain anti-
reentrancy patterns. While this method may overlook some
vulnerable contracts, which could remain in our dataset, it
is still deemed reasonable since previous research [11], [51]
suggests that genuinely vulnerable contracts constitute less
than 0.2% of Ethereum contracts. This is coherent with the
Ethereum reentrancy history data: only a few out of millions
of contracts have been compromised [37]. To further mitigate
the adverse effect of the contracts, we employ noise-resilient
unsupervised learning to detect anti-reentrancy patterns (de-
tailed in §VI-B).

B. Excluding CEI-guarded Contracts

Notably, our goal is to identify less-recognized anti-
reentrancy patterns. We thus remove CEI-guarded contracts
from our dataset as the CEI pattern is widely recognized by
existing tools [4], [12], [47], [48]. The exclusion narrows our
recognition scope and also reduces analysis noises.

CEI-guarded Contracts. The CEI requires specific sequences:
all pairs of read and write operations for reentrancy-
susceptible variables should precede before external calls.

4



Here, reentrancy-susceptible variables refer to those that could
be manipulated in reentrancy attacks. Accordingly, we define
the following pattern to characterize CEI-guarded contracts.

Pattern 2 (CEI-guarded Contract): A contract is guarded
by CEI if any inter-procedural control flow path P contains:

∀vs(Reentry(vs) →(RD(vs) ≻ c) ∧ (WR(vs) ≻ c)) (2)

where vs is a state variable stored in the persistent storage, c
refers to an external call, with RD(·) and WR(·) denoting read
and write operations, and ≻ indicating sequence. Particularly,
Reentry(vs) denotes reentrancy-susceptible variables, which
can be represented as follows:

Reentry(vs) = ∃c((RD(vs) ≻ c) ∧ (WR(vs) ∈ P )) (3)

Identifying Final Dataset. Our final dataset excludes contracts
with the CEI pattern. Therefore, the negation of Pattern 2
defines our final dataset, represented by the following pattern.

Pattern 3 (Final Dataset): A contract belongs to the final
dataset if any inter-procedural control flow path P contains:

∃vs∃c((RD(vs) ≻ c) ∧ (c ≻ WR(vs)) (4)

where vs is a state variable stored in the persistent storage, c
an external call, with RD(·) and WR(·) indicating read and
write operations, and ≻ indicating sequence.

With this pattern, we can conduct static analysis to identify our
final dataset. Similar to Pattern 1, we recognize this pattern in
an inter-procedural manner (see Appendix A).

V. ANTI-REENTRANCY RELATED GRAPH CONSTRUCTION

This section introduces a method for constructing a spe-
cialized graph representation RentPDG, designed to capture
anti-reentrancy-related code information. For additional details
on optimization methods, please see Appendix B.

A. RentPDG Representation

We adopt a specialized variant of the inter-procedural
program dependency graph (PDG), named RentPDG, to en-
compass extensive anti-reentrancy-related code information,
including code syntax and cross-function control/data depen-
dencies. The RentPDG also includes the inter-procedural call-
ing contexts unique to Ethereum contracts, covering not only
internal function calls within a contract but also typical API
function calls provided by external contracts (see Appendix
Table IV). Notably, the external API functions (e.g., swapEx-
actTokensForETH) often interact with and trigger callbacks to
invoking contracts, providing universally accessible services.

RentPDG. Unlike traditional PDG, our RentPDG focuses
solely on graph components related to anti-reentrancy. As
an anti-reentrancy pattern typically imposes control and data
dependency constraints around an external call, RentPDG
includes only those PDG nodes and edges that connect to an
external call. It is denoted by the tuple RentPDG (c) = (V,
E), where V and E represent the sets of nodes and edges,
respectively. The formulation is as follows:

V = {c} ∪ {i | isReachn(i, c)}
E = {ei→j | isReache(ei→j , c)}

(5)

where c is an external call, i is a given node, and ei→j denotes
an edge from node i to j. The function isReachn(i, c) indi-
cates the reachability from node i to c, and isReache(ei→j , c)
signifies the edge reachability from ei→j to c.

1:    function transfer(address to,address[] tokenId){
2: _transfer(msg.sender,to,tokenId)); }
3:    function _transfer(address from,address to,address[] tokenId){
4: require(_approve(from,to,tokenId[0]));
c: marketingAddr.call.value(fee)();      // external call 
6: require(_approve(from, to, tokenId[1])); ...;

}
7:     function _approve(from, to, tokenId) returns (bool){ ...; 
8:  return true;

}

1

2

3

4

c

6

7

8

e

e

e

e

e e

e

e

intra-proc. control depend
intra-proc. data depend
call return

func _approve

c6 7 8 4
call return

Naive RentPDG Construction

Nodes: {c,1,2,3,4,7,8, }
Edges: { }

cee1 2 3 4

e e

e

Inter-procedural PDG

no feasible path
from 6 to c

call

Infeasible Path 6 -> c

call and return  not balanced

Feasible Path 1 -> c

partially balanced

Symbolic Path

Symbolic Path

Fig. 3: RentPDG Construction. Here, the lower left graph
represents the original inter-procedural PDG of the contract.
Based on this graph, naive RentPDG construction (blue box)
may falsely include node 6 in an infeasible path (red box).

Naive RentPDG Construction. According to Equation 5, a
RentPDG consists of nodes and edges that reach an external
call node c. To construct a RentPDG, a naive approach
involves generating an inter-procedural PDG, then performing
a reverse depth-first search (DFS) from the external call c, and
incorporating all encountered nodes and edges into the graph.
This DFS-based approach, however, may mistakenly include
nodes and edges from infeasible paths not actually reaching c,
due to a lack of consideration of inter-procedural contexts.

Figure 3 illustrates an example. Initiating a reverse DFS
from the external call node c would lead to the exploration of
node 6. However, node 6 should not be included as it does
not actually reach c. While there is a path from node 6 to
c (i.e., 6 → 7 → 8 → 4 → c), it contains a mismatched
pair of call and return edges, e6→7 and e8→4, marking this
path as infeasible. This is attributed to the fact that program
execution cannot enter and exit a function at different locations,
i.e., nodes 6 and 4. Thus, constructing RentPDGs necessitates
examining path feasibility in the inter-procedural context.

B. Inter-procedural Path Feasibility

To accurately extract nodes and edges from feasible paths,
we follow weighted pushdown systems [41] to define a specific
context-free language (CFL) for recognizing path feasibility. In
our RentPDG, infeasible paths typically contain mismatched
pairs of call and return edges. Thus, we employ a simplified

5



CFL that uses parentheses to represent the calling context: (i
and )i for the call and return at the i-th call site, and the
symbol e for other edges. This reduces the task of checking
path feasibility to a balanced parenthesis problem.

Figure 3 illustrates an example. A path from node 6 to
c can be symbolized as (3e)2e, with mismatched parentheses
(3 and )2, indicating infeasibility. Notably, feasible symbolic
paths may exhibit partial balance, with unbalanced opening
parentheses in the prefix or unbalanced closing parentheses
in the suffix. This is because they may not start and end in
the same functions, showing only part of the calling context.
For instance, the path 1

e−→ 2
(1−→ 3

e−→ 4
e−→ c, despite the

unbalanced parenthesis (1, is still feasible as the matching
closing parenthesis )1 appears later in execution.

The CFL grammar for path feasibility is defined as follows:

Definition 1 (Path Feasibility as CFL Grammar): An
inter-procedural path is feasible if it adheres to a CFL
grammar {N,T, P, S}, defined by:

P : S → U1 | U2

U1 → U1B | U1U1 | ϵ | (iU1

U2 → BU2 | U2U2 | ϵ | U2)i
B → BB | e | ϵ | (iB)i

where N denotes non-terminal symbols {S,U1, U2, B}, T in-
cludes terminal symbols {e, (1, · · · }, P details the production
rules, S is the staring symbol, and ϵ is an empty symbol.
Particularly, B represents a parenthesis-balanced symbolic
path, while U1 and U2 denote partially parenthesis-balanced
symbolic paths: U1 for those with unbalanced opening paren-
theses and U2 for those with unbalanced closing parentheses.

Based on this definition, a classic stack-based parenthesis
checker algorithm [39] can be used to examine path feasibility.

C. Context-sensitive Reachability Analysis for RentPDG

According to Equation 5, RentPDG construction requires
the analysis of reachability from any given nodes and edges
to an external call node. Given that infeasible inter-procedural
paths may contribute to erroneous reachability information, we
take inter-procedural path context into account and develop a
context-sensitive reachability analysis approach.

Context-sensitive Reachability. Our analysis focuses on two
types of context-sensitive reachability: (i) context-sensitive
node reachability and (ii) context-sensitive edge reachability.
Let FPath(i, j) denote the set of all feasible paths from node i
to node j. The two types of reachability are defined as follows:

Definition 2 (Context-Sensitive Node Reachability):
Context-sensitive node reachability from node i to j exists if:

isReachn(i, j) = ∃pi→j(pi→j ∈ FPath(i, j)) (6)

Definition 3 (Context-Sensitive Edge Reachability):
Context-sensitive edge reachability from edge ei→k to node j
exists if:

isReache(ei→k, j) =∃pk→j(pk→j ∈ FPath(k, j)∧
⟨ei→k, pk→j⟩ ∈ FPath(i, j))

(7)

Here, pk→j denotes a path from node i to j, and ⟨ei→k, pk→j⟩
symbolizes the concatenation of the edge ei→k with the path
pk→j , forming an extended path from node i to node j.

A conventional reachability analysis approach formulates
the reachability problem as matrix multiplication [10], given
an adjacency matrix A. The h-th power of A, denoted as Ah,
reveals h-order reachability information, namely the number
of h-step paths between nodes. However, this method does
not consider the inter-procedural calling context, potentially
leading to inaccurate reachability results. To mitigate this, we
integrate our CFL grammar into the matrix representation.

Symbolic Adjacency Matrix. The symbolic adjacency matrix
As employs CFL symbols to represent various types of edges,
enhancing the matrix’s capacity to reflect the inter-procedural
calling context. The elements of As are defined as follows:

As[i][j] =


(k, if ei→j is a call edge
)k, if ei→j is a return edge
e, if ei→j is a intra-procedural edge
∅, if there is no edge from i to j

where (k and )k signify call and return edges at the k-th call
site, respectively.

Symbolic Operations. In alignment with symbolic adjacency
matrices, we introduce two fundamental symbolic operations:
symbolic multiplication and addition. These operations facil-
itate complex symbolic matrix computation, including both
standard and element-wise multiplication. By treating each
matrix element as a set of symbolic representations, symbolic
addition and multiplication correspond to the union and mul-
tiplication of two element sets, respectively. These operations
are formally defined as:

E1 + E2 = E1 ∪ E2

E1 × E2 = {⟨pa, pb⟩ | pa ∈ E1, pb ∈ E2}
(8)

Here, E1 and E2 denote symbolic elements, with ⟨pa, pb⟩
denoting concatenation of their symbolic representations. No-
tably, the symbolic multiplication yields an empty set if
either element is empty. This operation also accommodates
interactions with binary numeric elements {0, 1}, allowing for
operations such as E1 × 1 = E1 and E1 × 0 = ∅.

Following prior work [10], [44], we can utilize sym-
bolic matrix multiplication to evaluate context-sensitive node
reachability. Nonetheless, this approach requires N4 symbolic
multiplication operations for N nodes, rendering it inefficient
for large graphs. Note that RentPDG construction only requires
the analysis of reachability information related to an external
call node (Equation 5). Therefore, instead of applying symbolic
matrix multiplication to analyze the reachability between all
node pairs, we opt for a more lightweight approach: symbolic
matrix-vector multiplication. This approach specifically targets
context-sensitive node reachability towards an external call
node. Additionally, we utilize symbolic matrix element-wise
multiplication to derive context-sensitive edge reachability
information related to the external call node.

Node Reachability Analysis. As illustrated in Figure 4,
multiplying the symbolic adjacency matrix As with a specific
numeric vector µc

0 = {0, · · · , 1}, where only the c-th element

6



symbolic edges to c

=

symbolic paths of 2-length to c

symbolic adj. matrix 

symbolic paths of h-length to c

1

2

3

c

4

5

6

e

e

e

e

e

+ + + =+

sum of all symbolic paths to c

unreachable

Fig. 4: Context-sensitive Node Reachability Analysis

is 1, yields the first-order node reachability vector µc
1. In this

vector, the i-th element denotes the symbolic edge from node
i to an external call c. Similarly, the h-order node reachability
vector is computed as µc

h = As · µc
h−1, where the i-th

element indicates symbolic paths of length h from node i to c.
By compiling all reachability vectors and excluding infeasible
paths, a context-sensitive node reachability vector is derived.
This process is formulated as follows:

µc =
∑N

h=1
Ffsb(µ

c
h), where µc

h = As · µc
h−1 (9)

Here, N is the number of nodes. The function Ffsb, based
on our CFL grammar (see Definition 1), serves to retain
only those feasible paths in the final node reachability vector
µc. Consequently, the final vector provides context-sensitive
node reachability information. In particular, a non-empty µc[i]
signifies context-sensitive reachability from node i to node c.

Edge Reachability Analysis. To assess context-sensitive
reachability from an edge ei→j to node c, we conduct a path
combination trial: appending the edge ei→j to feasible paths
from node j to c. If the combined path is feasible, it signifies
that the edge can reach c. Notably, the path combination can
be implemented by symbolic element-wise multiplication be-
tween the symbolic adjacency matrix As and node reachability
vector µc. As Figure 5 shows, the operation As[4][5]×µc[5]
denotes the combination of edge e4→5 with symbolic paths
from node 5 to c. Upon inspection, all combined paths are
infeasible, indicating that c is unreachable from e4→5.

append  with 

=

symbolic adj. matrix 

all infeasible => unreachable

5 6 3 ce4 e

Fig. 5: Context-sensitive Edge Reachability Analysis

To generalize this analysis to all edges, we employ sym-
bolic matrix element-wise multiplication with As as follows:

Ec = Ffsb(As ⊙ (µc · 1T )) = Ffsb(As ⊙

(
µc

· · ·
µc

)
) (10)

Here, ⊙ denotes symbolic matrix element-wise multiplication.
The operation µc · 1T effectively expands the n × 1 vec-
tor µc across N rows to match the dimensionality of As,
enabling element-wise symbolic multiplication. The function
Ffsb, based on our CFL grammar, filters and retains only
feasible symbolic paths within the final matrix Ec. Conse-
quently, a non-empty element Ec[i][j] reveals context-sensitive
reachability from the edge ei→j to node c.

VI. ANTI-REENTRANCY RECOGNITION MODEL

A. Graph Auto-Encoder for Anti-reentrancy

To input RentPDGs into our graph auto-encoder, we ini-
tially embed their graph topology, edges, and nodes into
numerical matrices.

Initial Embedding. Graph topology is naturally represented
by a numeric adjacency matrix. Notably, RentPDG contains
four edge types that represent different dependencies: intra-
procedural and inter-procedural control dependencies, along
with local and global data dependencies. Consequently, we use
4-dimensional one-hot vectors for edge embedding. For node
embedding, we integrate syntactic and semantic attributes into
a vector. The inclusion of syntactic attributes, akin to semantic
ones, is crucial for recognizing anti-reentrancy patterns, as
some patterns may employ similar code snippets.

Syntactic attributes of nodes are processed by treating code
tokens as words and nodes as sentences or documents, which
allows us to utilize natural language processing techniques.
To minimize noise, we first apply code normalization to
remove whitespaces and comments, and standardize constants
and address literals/variables. After normalization, we use the
default configuration of Genism document embedding model
[21] to map the code into a 100-dimensional vector space.

Beyond the initial 100 dimensions, we incorporate addi-
tional dimensions to capture semantic attributes per node. As
previously mentioned, anti-reentrancy patterns often impose
control and data dependency constraints around external calls.
Accordingly, we choose semantic attributes that reveal specific
function calls, node control flow types, and characteristics of
data operations (i.e., arithmetic and logic operations). Con-
sidering the Solidity community may provide specific mech-
anisms to thwart reentrancy, we also select attributes related
to common API calls. Based on these observations, we extract
the following 60 attributes (detailed in Appendix C).

• Variables and Literals (17): thirteen attributes for constants,
variable numbers, and types, as well as four attributes for
specific Solidity variables.

• Function Calls (6): six attributes for revealing various
function calls, including Ether transfer-involved functions.

• Operators (4): four attributes for the number of relational,
logical, arithmetic, and bitwise operators.

• Node Type (18): eighteen attributes indicating specific con-
trol flow node types.

• Built-in API calls (12): one attribute for the count of built-in
Ether transfer functions, plus eleven attributes for revealing
built-in functions related to access control.

• Library API calls (3): an attribute for the count of library
calls, with two attributes for revealing verification and
context function calls.

7



General Model Design. Our graph auto-encoder is tailored
to capture anti-reentrancy semantics inherent in RentPDGs.
The model, depicted in Figure 6, comprises an encoder and
a decoder network. Following the configurations of exist-
ing graph auto-encoders [45], [49], we set the encoder and
decoder to only three layers deep to prevent graph over-
smoothing. Specifically, the encoder employs three convolu-
tional and pooling layers to process initial embeddings into
latent node-level embeddings. Conversely, the decoder utilizes
three convolutional and unpooling layers to reconstruct the
original embeddings from these latent representations, thereby
self-supervising the model’s training process. Additionally, to
encapsulate the semantics of the entire graph more effectively,
we introduce a graph representation layer that aggregates latent
node-level embeddings into a unified graph-level embedding.

Encoder

DecoderReconstructed

Embedded RentPDG

[1,0,0,0]

[0.9,0.2,0.5,...]

Node-level
Graph Embed.

Graph

Repre.

Layer

Fig. 6: Graph Auto-encoder for Anti-reentrancy

Heterogeneous Graph Convolution. Due to the diverse edge
types in RentPDG, we utilize a heterogeneous graph convolu-
tional mechanism, which is designed to incorporate neighbor
node information via different edge types. To achieve this, we
assign different weight parameters to each edge type. For a
node i, the convolutional process is represented as:

f i
h+1 = W0f

i
h +

1

4|N (i)|
∑

j∈N (i)

4∑
k=1

ej→i[k] ·Wkf
j
h (11)

where f j
h refer to node j’s feature vector at layer h, N (i)

denotes node i’s neighbors, and ej→i is the edge embedding
from node j to i. The k-th element of ej→i is a binary variable
indicating if the edge belongs to the k-th type. W0 and Wk

denotes the convolutional weight parameters for the central
node i and the connected edge of the k-th type, respectively.

Graph Attentional Pooling. In RentPDGs, different nodes
contribute variably to the semantics of anti-reentrancy patterns.
To effectively capture the crucial nodes, we introduce a graph
attentional pooling mechanism. This mechanism calculates
node contribution scores using the following formula:

si = Norm(
∑

j∈N (i)

fT
i · fj) (12)

where si is node i’s contribution score, N (i) denotes neighbor
nodes, fj is node j’s feature vector, and Norm(·) normalizes
scores to [0, 1]. Based on these scores, the pooling mechanism
sets a threshold pooling ratio p to retain only the top p% of
crucial nodes. Notably, this pooling mechanism may inadver-
tently remove an external call node, which is vital for revealing
anti-reentrancy semantics. Thus, we assign a score of 1 to any
call node, ensuring it remains during the pooling process.

Graph Unpooling. The unpooling mechanism serves as the
counterpart to the pooling mechanism, aiding the decoder net-
work in reconstructing the original graphs, thereby facilitating
self-supervised training of the entire model. Specifically, each
unpooling layer reintroduces nodes and edges based on the
topology information recorded in the previous pooling layers.

Graph Representation Layer. This layer synthesizes latent
node embeddings from the encoder into a unified graph-level
embedding fG, representing the overall graph’s semantics:

fG = ⟨fc,meanj∈Gfj⟩ (13)

where fc denotes the embedding of an external call c, and
meanj∈Gfj refers to average node embedding.

B. Clustering-based Recognition

Graph-level embeddings from our graph auto-encoder cap-
ture the anti-reentrancy semantics inherent in RentPDGs.
These embeddings are expected to naturally cluster based on
their distinct anti-reentrancy characteristics, facilitating unsu-
pervised anti-reentrancy pattern identification. Here, we em-
ploy the Genieclust hierarchical clustering algorithm, known
for its robustness against noisy data points and effectiveness
in handling non-convex datasets [14]. This algorithm requires
the pre-configuration of cluster numbers. To determine the
optimal configuration, we use the silhouette coefficient metric,
a common measure in unsupervised learning for evaluating
clustering quality. Generally, the configuration with the highest
average silhouette coefficient is deemed most appropriate.

Training and Recognition. To train our model, we initially
select contracts likely employing anti-reentrancy patterns from
a diverse array of Ethereum contracts. These contracts are then
transformed into RentPDGs, from which we generate graph-
level embeddings. Using the Genieclust algorithm, we cluster
these embeddings, where the centroids of these clusters serve
as key indicators for detecting anti-reentrancy patterns during
the recognition phase. Specifically, we define a detection
threshold τ , representing a deviation that exceeds the mean
distance from each cluster’s centroid. RentPDG embeddings
that fall outside this threshold are classified as outliers, indi-
cating the probable absence of anti-reentrancy patterns.

Integration with Reentrancy Detectors. Our trained model
can be seamlessly integrated into the workflow of existing
detectors to precisely identify anti-reentrancy patterns and
reduce false positives. When a contract is flagged as potentially
vulnerable, our model double-checks their RentPDGs. If all are
found to reveal anti-reentrancy patterns, the contract is deemed
not vulnerable, and is thus removed from the suspect list.

VII. EXPERIMENTAL EVALUATION

We evaluate AutoAR with an emphasis on answering the
following research questions:

RQ1: What anti-reentrancy patterns can AutoAR reliably ex-
plore and learn within Ethereum contracts?(§VII-B)

RQ2: How many anti-reentrancy patterns are typically over-
looked by existing reentrancy detectors? (§VII-C)

RQ3: How effectively can AutoAR help existing detectors
identify anti-reentrancy patterns? To what extent does
it enhance their detection performance? (§VII-D)

8



RQ4: What is AutoAR’s computational overhead? (§VII-E)
RQ5: How important are the different components in our

RentPDG construction module? (§VII-F)

A. Experimental Setup

Our experiments are performed on a PC equipped with
Ubuntu 20.04, featuring 16 Intel Xeon 3.60GHz processors,
16GB RAM, and an NVIDIA T4 GPU.

Implementation. The prototype of AutoAR, consisting of
approximately 4,000 lines of code (LoC) in Python, uti-
lizes the Slither lexical analyzer [12] to construct inter-
procedural program dependence graphs. Additionally, it em-
ploys Python scripts for context-sensitive reachability analysis.
Initial graph embedding is facilitated using the Slither and
Gensim Word2vec libraries [15]. The graph auto-encoder is
developed with the Pytorch-Geometric 1.6 library. We set the
learning rate at 0.01 and the batch size to 256.

Dataset. Real-world Ethereum smart contracts are extracted
from Etherscan, which offers an API to download source code
by contract address. We query 40,000 addresses with available
source code deployed from June 1, 2022, to May 13, 2023,
and retrieve 190,558 Solidity files. After removing duplicates,
we refine the data to 115,240 unique contracts. This dataset
includes diverse contracts from Etherscan, such as ERC20,
ERC721, ERC777, and ERC1155, as well as non-standard
contracts with complex structures. On average, each contract
contains 60 functions and 306 lines of code. Detailed statistics
on contract structures are available in Appendix D. We divide
the dataset into 80% for training and 20% for testing. From the
training dataset of 92,192 contracts, AutoAR filters out 34,081
contracts and extracts 111,681 RentPDGs for learning.

System Parameters. To determine the optimal settings, we
conduct several experiments with various parameter configu-
rations to observe changes in clustering quality (see Appendix
E). Finally, AutoAR is configured with a down-sampling ratio
of 0.7, a pooling ratio of 0.8, and 12 clusters.

B. RQ1: Learned Anti-reentrancy Patterns

By clustering contracts’ RentPDG embeddings, our Au-
toAR effectively learns and abstracts the features of prevalent
anti-reentrancy patterns in Ethereum contracts. The clustering
results are visually represented in Figure 7(a), where AutoAR
produces 12 distinct clusters, each clearly separated from
the others. To interpret these results, we randomly select
50 contracts corresponding to each cluster and analyze their
shared patterns. Our analysis reveals a majority of contracts for
each cluster exhibit a consistent anti-reentrancy pattern (P1-
12). Even though a few contracts may differ, they are also
secure and enforced with other patterns. Detailed statistics of
clustering are presented in Figure 7(b), showing that over 86%
of contracts for each cluster reveal a specific anti-reentrancy
pattern. The patterns are detailed as follows.

P1: Safe Ether Transfer. Solidity built-in Ether transfer
functions, send() and transfer(), are capped at a 2300 gas
limit. This limit suffices for logging but not for complex
operations, effectively preventing reentrant calls that typically
require more gas.

−40 −20 0 20 40

−40
−20

0
20
40

Cluster 1 2 3 4 5 6 7
8 9 10 11 12

t-SNE Dim 1

t-S
N

E 
D

im
 2

(a) t-SNE

0 25 50 75 100
Percentage (%)

P6
P5
P4
P3
P2
P1

A
nt

i-r
ee

nt
ra

nc
y 

Pa
tte

rn
s

#RE:2078

#RE:329

#RE:648

#RE:13097

#RE:17089

#RE:21122

enforced w/ not enforced w/

0 25 50 75 100
Proportion (%)

P12
P11
P10
P9
P8
P7

#RE:9371

#RE:9688

#RE:20834

#RE:6111

#RE:4698

#RE:6610

(b) Cluster Statistics. Here, #RE denotes
the number of clustered contracts’ RentPDG
embeddings.

Fig. 7: Clustering Results after Training

P2: Mutex Variable. This pattern employs a mutex variable
akin to conventional process mutex mechanisms. It functions
by surrounding a specific code snippet to either lock or release
it. The variable externalCallFlag is set to true before the
external call, signifying the code is in a locked state. By
adding a check for the lock status, it prevents attackers from
re-entering the function through the call. After the call is
completed, externalCallFlag is reset to false, indicating that
the code is now in a released state. This mechanism effectively
mitigates the risk of reentrancy attacks by controlling the
control flow around the call. Typically, this pattern can also
place the setting of mutex variables within a function modifier
to protect specific functions during execution.

1 function request(uint8 requestType, bytes32[] requestData)
public payable returns (int) {

2 if(!externalCallFlag){//check for the lock status
3 externalCallFlag = true; //lock
4 //external call
5 if (!msg.sender.call.value(msg.value)()) throw;
6 externalCallFlag = false;//release
7 /* some code omitted */}}

Listing 1: Mutex Variable

P3: Sender Check. This pattern often employs a function
modifier to check the message sender’s identity, typically using
require or if statements to ascertain if the sender is within
a whitelist or is an authorized user. For instance, a typical
implementation might include a check require( owner ==
msg.sender) within the function modifier, where owner repre-
sents the contract owner’s address. Such a check ensures that
only the owner can access the function, effectively preventing
reentrancy from unauthorized users.

1 function proxy(bytes[] calldata signs, uint256 nonce,
address addr, bytes calldata input) external{

2 bytes32 hash = keccak256(abi.encodePacked(PROXY_USAGE, nonce
, addr, input));

3 // signature validation
4 for(uint256 i = 0; i < signatures.length; i++) {
5 address signer = hash.recover(signs[i]);//recover signer
6 require(authorized[signer], "address is ..."); // check
7 bool succ = addr.call(input); // external cal
8 /*some code omitted*/}}

Listing 2: Parameter Validation

P4: Parameter Validation. Compared to P3, this pattern
focuses on validating function parameters rather than solely
checking the sender’s identity. It typically verifies if the pa-
rameters originate from a trusted sender, primarily through two
approaches: signature validation and Merkle proof validation.
Listing 2 showcases the signature validation approach, where

9



ECDSA.recover is used to recover the signer’s address from
signs[i], followed by a check to see if the address is included
in a whitelist. Notably, a whitelist is not always necessary. For
example, the Merkle proof validation only requires maintaining
a Merkle root for parameter validation.

P5: EOA Restriction. This pattern employs a specific check,
require(tx.origin == msg.sender), to prevent external con-
tracts from invoking a function. The built-in Solidity variable
tx.origin refers to an address of an externally owned account
(EOA), which does not contain any executable code. Thus,
ensuring that the caller is an EOA, rather than another contract,
effectively blocks the execution of reentrancy attacks.

P6: Reentrancy Guard. This pattern is provided by Open-
Zeppelin [34], a widely used open-source contract frame-
work. It employs a function modifier to prevent reentrancy
in specific functions. Listing 3 illustrates this pattern. The
modifier nonReentrant uses a status variable status and a
check (Line 4) to lock the mint function. While this pattern is
similar to P2, it differs by encapsulating low-level operations
and abstracting the locking logic within a modifier of an
abstract contract. As a result, the protection is confined to the
scope of a single function call, making it less perceptible but
also less flexible in handling cross-function and cross-contract
reentrancy scenarios.

1 abstract contract ReentrancyGuard{
2 uint256 private _status;
3 modifier nonReentrant() {
4 require(_status != _ENTERED, "...");//check
5 _status = _ENTERED; // status: entered
6 _;
7 _status = _NOT_ENTERED; // status: not entered
8 }}
9 function mint(uint256 _mintAmount) public payable

nonReentrant {
10 /* some code omitted */
11 try IERC721Receiver(to).onERC721Received(_msgSender(),

from, tokenId, _data {...}; //external call
12 }

Listing 3: Reentrancy Guard

P7: Access Frequency Limitation. This pattern leverages
a state variable alongside a conditional check to control the
frequency at which functions can be accessed. Listing 4
shows an example. Within the autoBurnLPTokens function,
the variable lastLpBurnTime records the timestamp of the last
token burn. A check is then implemented (Line 7) to ensure
that external calls cannot re-enter the function within a short
time frame, effectively limiting access frequency and reducing
the potential for reentrancy.

1 function autoBurnLPTokens() internal returns (bool) {
2 lastLpBurnTime = block.timestamp; // last access time
3 pair.sync(); //external call
4 }
5 function _transfer(address from, address to, uint256 amount)

internal override {
6 /* some code omitted */
7 if (block.timestamp > lastLpBurnTime + lpBurnFreq)
8 //check access frequency
9 autoBurnLPTokens();}

Listing 4: Access Frequency Limitation

P8: Access Price. This pattern places a financial barrier at
the start of a function: require(msg.value > cost * AMOUNT),
where msg.value is the amount of Ether sent. By imposing
this cost threshold, the pattern significantly raises the expense

associated with potential reentrancy attacks, thereby deterring
rational attackers from attempting to exploit the function.

P9: Post-reentrancy Check. This pattern involves placing
checks on state variables after an external call to detect any
state manipulations. While it cannot initially detect reentrancy,
it indeed enables the detection of reentrancy attacks after the
fact. As shown in Listing 5, if a state variable currentIndex
changes unexpectedly during a recursive function call, the state
check at Line 5 can confirm that it loses consistency with its
initial value, thereby effectively preventing reentrancy attacks.

1 function _mintTransfer(address to) internal {
2 uint256 startId = _currentIndex;
3 /**some code ommitted here**/
4 try IERC721Receiver(to).onERC721Received(_msgSender()

, from, startId + 1, _data);//external call
5 if (_currentIndex != startId) revert(); //post-check
6 _currentIndex = startId + 1;}

Listing 5: Post-reentrancy Check

P10: Fixed Contract Address. This pattern fixes crucial exter-
nal contract addresses during contract creation and restricts fur-
ther modifications, allowing only the owner to make changes.
This approach enhances security by preventing attackers from
redirecting external calls to their controlled contracts.

P11: Intermediate State Update. This pattern requires de-
velopers to promptly update state variables after certain in-
termediate operations, rather than postponing updates until
all operations are complete. As demonstrated in Listing 6,
variables such as tokensForLiquidity and tokensForMarketing
are updated twice (Lines 6 and 9). The first update, imme-
diately following liquidity addition operations, serves as an
intermediate state update, setting the state variables to 0. This
strategy prevents attackers from re-entering the function via an
external call, as the variable totalTokens will be 0 upon reentry,
causing the check at Line 3 to fail. Unlike the checks-effects-
interactions mechanism, which requires completing all state
writes before external calls, this mechanism is more flexible.
It is particularly suitable for scenarios where the final values of
contract states cannot be predetermined before external calls.

1 function _transfer(address to, uint256 amount) internal {
2 uint256 totalTokens = tokensForLiquidity +

tokensForMarketing;
3 if(totalTokens == 0) //check states
4 return;
5 /* liquidity addition operations omitted */
6 tokensForLiquidity = 0, tokensForMarketing = 0; //

intermediate state update
7 (succ, ) = address(dev).call{value: ethDev}(""); //

external call
8 if (autoMarketMakerPairs[to] && TotalFees > 0){
9 tokensForLiquidity = fee * LiquidFee / TotalFees,

tokensForMarketing = fee * MarketFee /
TotalFees;

10 }}

Listing 6: Intermediate State Updating

P12: State Sync from External Contracts. This pattern
utilizes callbacks from external contracts to synchronize the
state of the current contract, preventing manipulation through
re-entrant calls. As illustrated in Listing 7, even if an attacker
tries to initiate reentrant calls to transfer eth repeatedly, the
external API call to the Uniswap function triggers a callback
to the current contract’s function, which immediately sets
balances[this] to zero. Consequently, the state check at Line

3 effectively prevents attackers from re-entering the function.

10



1 function _transferFrom(address from, address to, uint256
amount) internal override {

2 uint256 ctBalance = _balances[address(this)];
3 if (ctBalance == 0) return; //check state
4 //Uniswap API call: swap ctBalance tokens for Ether. It

will trigger a callback to update ’_balances’.
5 uint256 initialBalance = address(this).balance;
6 uniswapAPI.swapExactTokensForETH(ctBalance, 0, path,

this, block.timestamp);
7 uint256 eth = address(this).balance - initialBalance;
8 address(wallet).call{value:eth}(""); //external call
9 /* some code omitted*/}

Listing 7: State Sync from External Contracts

Remark. Except for P1, which imposes direct gas restrictions
on external calls, all other anti-reentrancy patterns enforce
restrictions on control and data dependencies related to ex-
ternal calls. Specifically, P2-9 typically implement control
dependency checks around external calls, which are in turn de-
pendent on the status of certain variables (data dependencies)
to prevent reentrancy. Conversely, P10-12 generally impose
data dependency restrictions on external addresses and state
variables, complemented by control dependencies to safeguard
the integrity of external addresses and ensure the consistency
of state variables during reentrancy. Notably, our RentPDG
can capture all these dependencies, allowing our system to
accurately learn anti-reentrancy semantics.

C. RQ2: Anti-reentrancy Patterns Ignored by Existing Tools

To evaluate the efficacy of AutoAR in enhancing the de-
tection capabilities of existing reentrancy detectors, we assess
how many anti-reentrancy patterns, learned by AutoAR, are
typically overlooked by state-of-the-art detectors, including
Mythril [9], Slither [12], Securify [47], Conkas [48], Smartian
[8], and Sailfish [4]. A direct assessment method involves scan-
ning anti-reentrancy-guarded contracts to see if these detectors
report any reentrancy risks. Intuitively, the absence of risk
reports for the contracts with a specific anti-reentrancy pattern
might suggest the detectors’ ability to recognize this pattern.
However, this approach has its limitations: a lack of risk
reports does not conclusively demonstrate a detector’s effective
recognition of anti-reentrancy; rather, it may simply reveal
the detector’s rough detection rules, such as only checking
intra-function patterns. Accordingly, a more reliable evaluation
method is needed to accurately determine each detector’s
capabilities in recognizing anti-reentrancy patterns.

Before-and-after Comparison Experiment. To address these
limitations, we adopt a more reliable method by comparing
detector responses before and after anti-reentrancy patterns
are integrated into those contracts known to be vulnerable.
Specifically, if a detector flags a contract as ‘vulnerable’
before and ‘not vulnerable’ after the enforcement of an anti-
reentrancy pattern, it demonstrates that the detector can accu-
rately recognize the anti-reentrancy pattern.

For this study, we select 31 contracts identified as
reentrancy-vulnerable from SmartBugs [11] and develop
Python scripts to embed 12 anti-reentrancy patterns into these
contracts1. The modified contracts are then re-analyzed by the
six detectors. Our experiment tracks whether each detector’s

1The anti-reentrancy injection scripts are available in https://github.com/
ashessqy126/Anti-reentrancy-Pattern-Injection

response shifts from vulnerable to not vulnerable after the en-
forcement of each anti-reentrancy pattern, providing a precise
measure of each detector’s recognition capability.

TABLE I: Comparison Experiments. Here, 6 tools are applied
to scan contracts before and after anti-reentrancy enforcement.

Setup Slither Securify Mythril Conkas Smartian Sailfish

Detection
Round #1 Original∗ 31 29 10 31 13 28

Detection Round
#2

w/ P1 0/31 29/29 10/10 31/31 0/13 0/28

w/ P2 31/31 29/29 10/10 4/31 0/13 2/28

w/ P3 31/31 29/29 10/10 31/31 13/13 28/28

w/ P4 31/31 29/29 10/10 31/31 13/13 28/28

w/ P5 31/31 29/29 10/10 31/31 13/13 28/28

w/ P6 31/31 29/29 10/10 4/31 0/13 2/28

w/ P7 31/31 29/29 10/10 31/31 13/13 28/28

w/ P8 31/31 29/29 10/10 31/31 13/13 28/28

w/ P9 31/31 29/29 10/10 31/31 13/13 28/28

w/ P10 31/31 29/29 10/10 31/31 0/13 28/28

w/ P11 31/31 29/29 10/10 31/31 13/13 28/28

w/ P12 31/31 29/29 10/10 31/31 13/13 28/28
* It refers to original, vulnerable contracts without anti-reentrancy patterns enforced.

Table I presents the experimental results. Initially, we em-
ploy six detectors to scan the original, vulnerable contracts. We
note that the detectors identify a varying number of reentrancy-
vulnerable contracts. Among the six detectors, Slither and
Conkas achieve the highest recall ratio (100%). For each
detector, we record contracts marked as vulnerable and then
use the corresponding anti-reentrancy-enforced versions for a
second round of scanning. In the second round, we observe
that all detectors fail to recognize at least 8 anti-reentrancy
patterns. Particularly, Securify and Mythril flag all contracts
enforced with P1-12 vulnerable, indicating that they lack any
recognition logic for these 12 anti-reentrancy patterns.

Furthermore, we observe that Slither does not report any
contracts with the P1 (safe Ether transfer) pattern, suggesting
its potential effectiveness in identifying P1. Our review of its
source code confirms that it indeed has rules to recognize safe
Ether transfers. Additionally, Conkas, Smartian, and Sailfish
report only a few cases out of 31 contracts with P2 (mutex
variable) and P6 (reentrancy guard), indicating the presence
of detection rules for these patterns. Our source code analysis
shows their use of symbolic execution and fuzzing engines
to recognize path constraints related to P2 and P6. Notably,
Smartian does not report any contracts with P10 (fixed contract
address), revealing its ability to identify P10. Further analysis
of its fuzzing oracle shows it indeed classifies all paths initiated
by internal fixed address as non-vulnerable.

D. RQ3: Efficacy of AutoAR’s Anti-reentrancy Recognition

To evaluate how effectively AutoAR aids existing detec-
tors in identifying contracts safeguarded by anti-reentrancy
patterns, we initially employ six popular detectors—Slither,
Securify, Mythril, Conkas, Smartian, and Sailfish—to scan
23,048 real-world testing contracts. These detectors flag 6,841
contracts as potentially vulnerable. Then, we randomly select

11

https://github.com/ashessqy126/Anti-reentrancy-Pattern-Injection
https://github.com/ashessqy126/Anti-reentrancy-Pattern-Injection


300 of these contracts and invest 5 hours in thorough inspec-
tions, finally confirming 298 (99%) as FPs; these are indeed
safeguarded by various anti-reentrancy patterns. Subsequently,
AutoAR is employed to recognize these contracts. To ensure
a fair evaluation, we also include 31 truly vulnerable contracts
from SmartBugs [11] in this experiment to assess AutoAR’s
recognition precision.

0 2 3 4 5
Threshold

0

0.2

0.4

0.6

0.8

1

R
at

e Precision
Recall

FPR
FNR

(a) Precision, Recall, FNR, and FPR
by Varying Detection Thresholds

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10P11P12
0

20

40

60

80

100

A
cc

ur
ac

y 
(%

)

(b) Anti-reentrancy Recognition Ac-
curacy w/ 2.3σ Threshold

Fig. 8: AutoAR’s Anti-reentrancy Recognition Performance

Recall that AutoAR’s recognition model operates with a
detection threshold τ , which is defined as a deviation ex-
ceeding the mean distance from each clustering centroid. To
comprehensively assess AutoAR’s anti-reentrancy recognition
performance, we evaluate its precision, recall, false positive
rates (FPR), and false negative rates (FNR) across different
detection thresholds. As shown in Figure 8(a), positive thresh-
olds enable AutoAR to significantly recognize anti-reentrancy-
protected contracts with a low FPR. Particularly, the thresh-
olds between [1.8σ, 2.8σ]—where σ represents the standard
distance deviation within each cluster—yield recall rates over
85% with 0% FPR. Therefore, selecting thresholds within
this range guarantees that AutoAR effectively identifies anti-
reentrancy-protected contracts, without the risk of misiden-
tifying vulnerable contracts as anti-reentrancy-protected. For
subsequent experiments, we conservatively choose 2.3σ, the
midpoint of this range, as our detection threshold, which
achieves a recall rate of 88% and 100% precision.

Using a detection threshold of 2.3σ, we further assess
AutoAR’s detailed recognition accuracy for each of the 12 anti-
reentrancy patterns, For each pattern, we randomly select 30
contracts marked by AutoAR as likely containing this pattern,
resulting in a total of 360 contracts for manual verification.
AutoAR is deemed capable of recognizing a specific anti-
reentrancy pattern if the related external calls in these contracts
are indeed safeguarded by anti-reentrancy patterns. The exper-
imental results, displayed in Figure 8(b), reveal that AutoAR
can identify any pattern with an accuracy exceeding 84%,
achieving an average accuracy of approximately 89%.

To further demonstrate how effectively AutoAR can en-
hance the capabilities of existing detectors in reentrancy detec-
tion, we have integrated AutoAR into the detection workflows
of six tools, as detailed in§VI-B. Using this detection suite, we
scan 31 truly vulnerable contracts from SmartBugs [11] and
298 contracts previously confirmed to contain anti-reentrancy
patterns. As depicted in Table II, the integration of AutoAR
leads to a significant reduction in false positive rates (FPR)
for vulnerability detection—by more than 85%—compared to
the original detection. Additionally, the fact that 0% reduction
in true positives (TPs) across all six detectors confirms that

the integration of AutoAR does not compromise the detectors’
original ability to identify truly vulnerable contracts.

TABLE II: Integrating AutoAR with 6 Tools to Scan 31
Vulnerable and 298 Non-Vulnerable Contracts

Detectors Recall Precision #TPs #FPs FNR FPR

Slither
Original 1 0.128 31 211 0 0.708

w/ AutoAR 1 0.596 31 21 0 0.070
↓(90%)

Securify
Original 0.935 0.184 29 129 0.065 0.433

w/ AutoAR 0.935 0.644 29 16 0.065 0.054
↓(88%)

Mythril
Original 0.323 0.161 10 52 0.677 0.174

w/ AutoAR 0.323 0.588 10 7 0.677 0.023
↓(87%)

Conkas
Original 1 0.164 31 158 0 0.530

w/ AutoAR 1 0.564 31 24 0 0.081
↓(85%)

Smartian
Original 0.419 0.283 13 33 0.581 0.111

w/ AutoAR 0.419 0.867 13 2 0.581 0.007
↓(94%)

Sailfish
Original 0.903 0.184 28 124 0.097 0.416

w/ AutoAR 0.903 0.636 28 16 0.097 0.054
↓(87%)

E. RQ4: Computational Overhead

To enhance the efficiency of AutoAR, we have imple-
mented data filtration and RentPDG construction using 10
parallel processes, while also utilizing GPU acceleration for
training our recognition model. Optimization strategies have
been employed to expedite RentPDG construction, as detailed
in Appendix B. The overall overhead of AutoAR is depicted in
Figure 9. During the training phase, AutoAR filters out 34,081
reentrancy-susceptible contracts from 92K contracts in 4.1
hours, constructs 111,681 RentPDGs in 166.7 hours, and trains
a recognition model in 3.2 hours. In the recognition phase,
AutoAR takes around 30s on average to construct RentPDGs
from a contract and 10ms to use the model for detecting if a
contract is protected by anti-reentrancy patterns.

Data
Filtr.

RentPDG
Construt.

Recognit.
Model

101

102

Ex
ec

. T
im

e 
(h

ou
r)

 

(a) Training Phase
for 92k Contracts

RentPDG
Construct.

Recognit.
Model

102

104

Ex
ec

. T
im

e 
(m

s)

25-75%
Min/Max
Median
Mean

(b) Recognition Phase
Per Contract

0 200 400
# of Contract Nodes

102

103

104

105

Ex
ec

. T
im

e 
(m

s)

Node Rechability
Analysis
Edge Rechability
Analysis

(c) Detailed Time of
RentPDG Construction

Fig. 9: AutoAR’s Computational Overhead

Furthermore, we analyze the detailed overhead of RentPDG
construction in the recognition phase. As shown in Figure 9(c),
the node and edge reachability analysis time for RentPDG
construction increases significantly with the node number.
Statistics from real-world smart contracts (Appendix D) in-
dicate that 80% of contracts contain fewer than 300 nodes.

12



Consequently, in most cases, the time to construct RentPDGs
is typically < 60s for node reachability analysis and < 1s for
edge reachability analysis, which is acceptable in practice.

F. RQ5: Ablation Studies

We conduct ablation studies to address the impact of our
RentPDG presentation and the effectiveness of core compo-
nents within the RentPDG construction module, namely the
context-sensitive reachability analysis (§V-C) and optimization
approach (Appendix B). As shown in Figure 10(a), com-
pared to the original PDG representation, RentPDG signif-
icantly reduces irrelevant graph nodes and enhances model
performance. Moreover, when compared to the naive DFS-
based method for constructing RentPDGs, employing context-
sensitive reachability analysis effectively eliminates irrelevant
nodes by an average of 24% and improves the detection ROC-
AUC by 12%. The ROC-AUC is a common metric used to
comprehensively assess overall detection performance across
different detection thresholds [18]. Additionally, as shown in
Figure 10(b), the optimized construction method substantially
outperforms the default method, reducing redundant symbolic
paths and accelerating construction time by average ratios of
73% and 80%, respectively.

Original
PDG

DFS-based
RentPDG

Context-sens.
RentPDG

100

200

300

# 
of

 R
en

tP
D

G
 N

od
es

#Nodes
(25-75%)
#Mean
#Min/Max
#Median

0.6

0.7

0.8

0.9

1.0

D
et

ec
tio

n 
(R

O
C

-A
U

C
)Detection

(AUC)

(a) Effect of RentPDG and its Two
Construction Methods

     RentPDG Construct.
w/ Optimization

Default
w/o Optimization

104

105

106

107

# 
of

 S
ym

bo
lic

 P
at

hs

#Mean
#Min/Max
#Median
#Paths
(25-75%)
Time
(25-75%)

103

104

105

106

C
on

st
ru

ct
. T

im
e 

(m
s)

(b) Effect of Optimized Construction
Approach

Fig. 10: Ablation Study for Different RentPDG Components

VIII. RELATED WORK

Reentrancy Detection. The reentrancy vulnerability [52]
poses a significant threat to Ethereum smart contracts, po-
tentially leading to substantial financial losses by allowing
attackers to manipulate contract states through re-entrant calls.
To address this, a range of automated detectors have been de-
veloped. Static analysis tools such as Slither [12], Smartcheck
[46], and Securify [47] identify reentrancy patterns in Solidity
code, SlithIR, EVM-IR, and EVM bytecode, respectively. On
the other hand, the dynamic analysis tools such as Conkas [48],
Oyente [25], Manticore [30], and Mythril [9] utilize symbolic
execution engines to trace contract execution paths and identify
reentrancy vulnerabilities. However, empirical studies [11],
[36] have shown that these state-of-the-art detectors often
report a large number of false positives (FPs), many of which
are contracts actually safeguarded by anti-reentrancy patterns.

Anti-reentrancy Patterns. In Solidity contract development,
anti-reentrancy patterns have emerged as countermeasures
against reentrancy attacks. These anti-reentrancy patterns often
constitute proactive coding practices designed to thwart such
attacks before they occur. Recent studies [11], [51] indicate
that most FPs reported by current reentrancy detectors stem
from an oversight of these anti-reentrancy patterns. Thus,

recognizing a broad spectrum of proactive anti-reentrancy
patterns is crucial for enhancing the capabilities of reentrancy
detectors. This includes not only code patterns explicitly
designed to counter reentrancy attacks but also those not
specifically intended for this purpose, yet still capable of
mitigating reentrancy risks.

TABLE III: Literature Review of Anti-reentrancy Patterns

Anti-reentrancy Type Literature TotalResearch Blog Document

Checks-Effects-
Interactions (CEI)

[29],
[27],

[54], [51]

[35],
[42],

[19], [31]
[43] 9

Safe Ether Transfer (P1) [5], [51] [19], [42] - 4
Mutex Variable (P2) [5], [51] [19] - 3
Sender Check (P3) [51] - - 1

Reentrancy Guard (P6) [51] [42], [31] [33] 4
P4-5, P7-12 - - - 0

We conduct an extensive literature review of recent articles
that discuss anti-reentrancy patterns from various sources: (i)
academic research discussing anti-reentrancy patterns; (ii) blog
posts analyzing contract security against reentrancy attacks;
and (iii) official documentation. This review confirms that only
the Checks-Effects-Interactions (CEI), along with P1-3, and
P6, are acknowledged as effective against reentrancy attacks.
Other newly identified patterns, P4-5 and P7-12, identified in
this work are rarely mentioned, as summarized in Table III.
Additionally, our investigation reveals a notable absence of
automated tools that could assist state-of-the-art detectors in
effectively identifying these anti-reentrancy patterns.

Vulnerability Detection via Graph Learning. Rather than
treating code as textual information, some vulnerability detec-
tion work [24], [50], [56] uses intermediate program graphs to
model complex semantic relationships in traditional programs
or smart contracts, such as the control flow graph (CFG) and
program dependency graph (PDG). However, these graphs may
inaccurately capture anti-reentrancy semantics, often including
irrelevant information. In response, our RentPDG is tailored to
specifically capture the crucial anti-reentrancy-related seman-
tics, particularly control and data dependency around external
calls. Additionally, as the graph-based vulnerability detection
work typically relies on supervised learning, it is inherently
unsuitable for our task, i.e., learning anti-reentrancy patterns
on Ethereum without the guidance of ground truth labels.

IX. DISCUSSION

Emergence of New Anti-Reentrancy Patterns. Our AutoAR
is trained on existing contracts protected by anti-reentrancy
patterns. While this setup enables AutoAR to effectively iden-
tify prevalent anti-reentrancy patterns, it may falsely recognize
new, unseen anti-reentrancy patterns. This issue is similar
to the concept drift problem in anomaly detection. A viable
solution is to selectively retrain AutoAR with these false recog-
nition samples, enabling it to adapt quickly to emerging anti-
reentrancy patterns in the evolving smart contract landscape.

Applicability. Although AutoAR operates solely on source
code, it is highly applicable as recent research [1] indicates that
about one-third of contracts are available with source code. For
developers and security auditors who often have access to the
source code, it provides substantial benefits as it can effectively
reduce their false-positive vulnerability reports.

13



Rule-based Anti-reentrancy Recognition. While static and
dynamic analysis tools can define rules to identify known
anti-reentrancy patterns, they require prior expertise and offer
limited flexibility in detecting unknown patterns. Additionally,
our literature review (Table III) reveals a significant gap in the
existing knowledge on identifying anti-reentrancy patterns.

Security of Identified Anti-reentrancy Patterns. The P1-3
and P6 patterns are widely recognized as effective measures
to prevent reentrancy [5], [51]. Our work identifies eight addi-
tional patterns (§VII-B) that achieve similar security outcomes
by imposing control/data dependency restrictions. Specifically,
P4 and P10 impose the strictest restrictions by prohibiting the
passage of untrusted parameters (P4) from untrusted addresses
(P10), effectively nullifying the precondition for reentrancy.
Meanwhile, P5 and P7-9 allow unauthorized function access
but impose constraints on contract code execution (P5), ac-
cess frequency (P7), financial access cost (P8), and recursive
calls (P9), which effectively prevents external contracts from
making repeated function calls. Notably, P7 seems ineffective
against repeated function calls over long time intervals when
a small access frequency constraint is set; however, contract
execution timestamps block.timestamp elapse at block-level
granularity, ensuring that even a small constraint can prevent
repeated function access within a block time. Additionally,
P11-12 allow repeated function calls but maintain data con-
sistency, offering flexibility while ensuring security.

X. CONCLUSION

This paper presents AutoAR, an automated recognition
system designed to identify prevalent anti-reentrancy patterns
in Ethereum smart contracts. By integrating with existing
reentrancy detectors, AutoAR can significantly reduce reported
false positive cases. To effectively learn anti-reentrancy pat-
terns, AutoAR first selects contracts likely enforced with
anti-reentrancy patterns, and then constructs specific graph
representations RentPDGs from contracts to capture anti-
reentrancy-related code information. Based on the RentPDGs,
AutoAR employs an anti-reentrancy recognition model that
integrates graph auto-encoder with clustering to precisely learn
and identify the key logic of anti-reentrancy patterns. Our
experimental results show the efficacy of AutoAR in anti-
reentrancy identification.

ACKNOWLEDGMENT

We are grateful to all the anonymous reviewers for their
insightful comments, which highly improve our paper. The
research is supported in part by the National Key Research
and Development Program of China (No.2021YFB2910109)
and the National Natural Science Foundation of China (No.
62202465 and 62202260).

REFERENCES

[1] T. Abdelaziz and A. Hobor, “Smart learning to find dumb contracts,”
in 32nd USENIX Security Symposium (USENIX Security 23), 2023, pp.
1775–1792.

[2] R. Behnke. Explained: The fei protocol hack (april
2022). [Online]. Available: https://www.halborn.com/blog/post/
explained-the-fei-protocol-hack-april-2022

[3] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury, “Di-
rected greybox fuzzing,” in Proceedings of the 2017 ACM SIGSAC
conference on computer and communications security, 2017, pp. 2329–
2344.

[4] P. Bose, D. Das, Y. Chen, Y. Feng, C. Kruegel, and G. Vigna, “Sailfish:
Vetting smart contract state-inconsistency bugs in seconds,” in 2022
IEEE Symposium on Security and Privacy (SP). IEEE, 2022, pp. 161–
178.

[5] L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli,
R. Holz, and B. Scholz, “Vandal: A scalable security analysis framework
for smart contracts,” arXiv preprint arXiv:1809.03981, 2018.

[6] V. Buterin et al., “A next-generation smart contract and decentralized
application platform,” white paper, vol. 3, no. 37, pp. 2–1, 2014.

[7] J. Chen, W. Han, M. Yin, H. Zeng, C. Song, B. Lee, H. Yin, and
I. Shin, “{SYMSAN}: Time and space efficient concolic execution
via dynamic data-flow analysis,” in 31st USENIX Security Symposium
(USENIX Security 22), 2022, pp. 2531–2548.

[8] J. Choi, D. Kim, S. Kim, G. Grieco, A. Groce, and S. K. Cha,
“Smartian: Enhancing smart contract fuzzing with static and dynamic
data-flow analyses,” in 2021 36th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2021, pp. 227–239.

[9] Consensys, “Mythril,” 2023. [Online]. Available: https://github.com/
Consensys/mythril

[10] T. H. Cormen, C. E. Leiserson, and Z. Rivest, “Introduction to algo-
rithms,” Resonance, 1990.

[11] T. Durieux, J. F. Ferreira, R. Abreu, and P. Cruz, “Empirical review
of automated analysis tools on 47,587 ethereum smart contracts,”
in Proceedings of the ACM/IEEE 42nd International conference on
software engineering, 2020, pp. 530–541.

[12] J. Feist, G. Grieco, and A. Groce, “Slither: a static analysis framework
for smart contracts,” in 2019 IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB).
IEEE, 2019, pp. 8–15.

[13] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program de-
pendence graph and its use in optimization,” ACM Transactions on
Programming Languages and Systems (TOPLAS), vol. 9, no. 3, pp.
319–349, 1987.

[14] M. Gagolewski, “genieclust: Fast and robust hierarchical clustering,”
SoftwareX, vol. 15, p. 100722, 2021.

[15] Gensim, “Topic modeling for humans,” 2023. [Online]. Available:
https://radimrehurek.com/gensim/

[16] A. Ghaleb and K. Pattabiraman, “How effective are smart contract
analysis tools? evaluating smart contract static analysis tools using bug
injection,” in Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2020, pp. 415–427.

[17] X. Han, T. Pasquier, A. Bates, J. Mickens, and M. Seltzer, “Unicorn:
Runtime provenance-based detector for advanced persistent threats,” in
Network and Distributed System Security Symposium, 2020.

[18] J. Huang and C. X. Ling, “Using auc and accuracy in evaluating learning
algorithms,” IEEE Transactions on knowledge and Data Engineering,
vol. 17, no. 3, pp. 299–310, 2005.

[19] insurgent, “Solidity Smart Contract Security: 4
Ways to Prevent Reentrancy Attacks,” May
2022. [Online]. Available: https://betterprogramming.pub/
solidity-smart-contract-security-preventing-reentrancy-attacks-fc729339a3ff

[20] J. Kanani, S. Nailwal, and A. Arjun, “Matic whitepaper,” Polygon,
Bengaluru, India, Tech. Rep., Sep, 2021.

[21] J. H. Lau and T. Baldwin, “An empirical evaluation of doc2vec
with practical insights into document embedding generation,” in
Proceedings of the 1st Workshop on Representation Learning for
NLP, Rep4NLP@ACL 2016, Berlin, Germany, August 11, 2016,
P. Blunsom, K. Cho, S. B. Cohen, E. Grefenstette, K. M. Hermann,
L. Rimell, J. Weston, and S. W. Yih, Eds. Association for
Computational Linguistics, 2016, pp. 78–86. [Online]. Available:
https://doi.org/10.18653/v1/W16-1609

[22] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,
“Vuldeepecker: A deep learning-based system for vulnerability detec-
tion,” arXiv preprint arXiv:1801.01681, 2018.

[23] F. Liu, Y. Wen, D. Zhang, X. Jiang, X. Xing, and D. Meng, “Log2vec:
A heterogeneous graph embedding based approach for detecting cyber

14

https://www.halborn.com/blog/post/explained-the-fei-protocol-hack-april-2022
https://www.halborn.com/blog/post/explained-the-fei-protocol-hack-april-2022
https://github.com/Consensys/mythril
https://github.com/Consensys/mythril
https://radimrehurek.com/gensim/
https://betterprogramming.pub/solidity-smart-contract-security-preventing-reentrancy-attacks-fc729339a3ff
https://betterprogramming.pub/solidity-smart-contract-security-preventing-reentrancy-attacks-fc729339a3ff
https://doi.org/10.18653/v1/W16-1609


threats within enterprise,” in Proceedings of the 2019 ACM SIGSAC
conference on computer and communications security, 2019, pp. 1777–
1794.

[24] F. Luo, R. Luo, T. Chen, A. Qiao, Z. He, S. Song, Y. Jiang, and S. Li,
“Scvhunter: Smart contract vulnerability detection based on heteroge-
neous graph attention network,” in Proceedings of the IEEE/ACM 46th
International Conference on Software Engineering, 2024, pp. 1–13.

[25] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security, 2016, pp. 254–269.

[26] E. Manzoor, S. M. Milajerdi, and L. Akoglu, “Fast memory-efficient
anomaly detection in streaming heterogeneous graphs,” in Proceedings
of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, 2016, pp. 1035–1044.

[27] A. Mavridou, A. Laszka, E. Stachtiari, and A. Dubey, “Verisolid:
Correct-by-design smart contracts for ethereum,” in Financial Cryp-
tography and Data Security: 23rd International Conference, FC 2019,
Frigate Bay, St. Kitts and Nevis, February 18–22, 2019, Revised
Selected Papers 23. Springer, 2019, pp. 446–465.

[28] M. I. Mehar, C. L. Shier, A. Giambattista, E. Gong, G. Fletcher,
R. Sanayhie, H. M. Kim, and M. Laskowski, “Understanding a rev-
olutionary and flawed grand experiment in blockchain: the dao attack,”
Journal of Cases on Information Technology (JCIT), vol. 21, no. 1, pp.
19–32, 2019.

[29] A. Mense and M. Flatscher, “Security vulnerabilities in ethereum smart
contracts,” in Proceedings of the 20th international conference on
information integration and web-based applications & services, 2018,
pp. 375–380.

[30] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco,
J. Feist, T. Brunson, and A. Dinaburg, “Manticore: A user-friendly
symbolic execution framework for binaries and smart contracts,” in
2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2019, pp. 1186–1189.

[31] MythX, “SWC-107 - Smart Contract Weakness Classification (SWC).”
[Online]. Available: https://swcregistry.io/docs/SWC-107/

[32] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decen-
tralized business review, 2008.

[33] OpenZeppelin, “Security - OpenZeppelin Docs.” [Online]. Available:
https://docs.openzeppelin.com/contracts/4.x/api/security

[34] Openzeppelin, “The standard for secure blockchain applications,” 2023.
[Online]. Available: https://www.openzeppelin.com/

[35] OWASP, “Reentrancy Attacks.” [Online]. Avail-
able: https://owasp.org/www-project-smart-contract-top-10/2023/en/
src/SC01-reentrancy-attacks.html

[36] R. M. Parizi, A. Dehghantanha, K.-K. R. Choo, and A. Singh, “Empir-
ical vulnerability analysis of automated smart contracts security testing
on blockchains,” arXiv preprint arXiv:1809.02702, 2018.

[37] pcaversaccio, “A historical collection of reentrancy attacks,” 2023.
[Online]. Available: https://github.com/pcaversaccio/reentrancy-attacks

[38] D. Perez and B. Livshits, “Smart contract vulnerabilities: Vulnera-
ble does not imply exploited,” in 30th USENIX Security Symposium
(USENIX Security 21), 2021, pp. 1325–1341.

[39] S. K. Prasad, S. K. Das, and C.-Y. Chen, “Efficient erew pram
algorithms for parentheses-matching,” IEEE transactions on parallel
and distributed systems, vol. 5, no. 9, pp. 995–1008, 1994.

[40] Z. Pratap, “Reentrancy Attacks and The DAO Hack
Explained | Chainlink.” [Online]. Available: https://blog.chain.link/
reentrancy-attacks-and-the-dao-hack/

[41] T. Reps, S. Schwoon, and S. Jha, “Weighted pushdown systems and
their application to interprocedural dataflow analysis,” in International
Static Analysis Symposium. Springer, 2003, pp. 189–213.

[42] R. |. Secureum, “Smart Contract Security 101 — Secureum
#7,” Feb. 2021. [Online]. Available: https://secureum.substack.com/p/
smart-contract-security-101-secureum

[43] Solidity, “Solidity documentation,” 2023. [Online]. Available: https:
//docs.soliditylang.org/en/v0.8.21/

[44] Y. Sui, X. Cheng, G. Zhang, and H. Wang, “Flow2vec: Value-flow-based
precise code embedding,” Proceedings of the ACM on Programming
Languages, vol. 4, no. OOPSLA, pp. 1–27, 2020.

[45] F. Tian, B. Gao, Q. Cui, E. Chen, and T.-Y. Liu, “Learning deep
representations for graph clustering,” in Proceedings of the AAAI
conference on artificial intelligence, vol. 28, no. 1, 2014.

[46] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis of
ethereum smart contracts,” in Proceedings of the 1st international
workshop on emerging trends in software engineering for blockchain,
2018, pp. 9–16.

[47] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and
M. Vechev, “Securify: Practical security analysis of smart contracts,”
in Proceedings of the 2018 ACM SIGSAC conference on computer and
communications security, 2018, pp. 67–82.

[48] N. Veloso and I. S. Técnico, “Conkas: a modular and static analysis
tool for ethereum bytecode,” 2021.

[49] C. Wang, S. Pan, G. Long, X. Zhu, and J. Jiang, “Mgae: Marginalized
graph autoencoder for graph clustering,” in Proceedings of the 2017
ACM on Conference on Information and Knowledge Management, 2017,
pp. 889–898.

[50] H. Wu, Z. Zhang, S. Wang, Y. Lei, B. Lin, Y. Qin, H. Zhang, and
X. Mao, “Peculiar: Smart contract vulnerability detection based on
crucial data flow graph and pre-training techniques,” in 2021 IEEE 32nd
International Symposium on Software Reliability Engineering (ISSRE).
IEEE, 2021, pp. 378–389.

[51] Y. Xue, M. Ma, Y. Lin, Y. Sui, J. Ye, and T. Peng, “Cross-contract static
analysis for detecting practical reentrancy vulnerabilities in smart con-
tracts,” in Proceedings of the 35th IEEE/ACM International Conference
on Automated Software Engineering, 2020, pp. 1029–1040.

[52] M. Zhang, X. Zhang, Y. Zhang, and Z. Lin, “{TXSPECTOR}: Uncov-
ering attacks in ethereum from transactions,” in 29th USENIX Security
Symposium (USENIX Security 20), 2020, pp. 2775–2792.

[53] X. Zhang, X. Wang, R. Slavin, and J. Niu, “Condysta: Context-aware
dynamic supplement to static taint analysis,” in 2021 IEEE Symposium
on Security and Privacy (SP). IEEE, 2021, pp. 796–812.

[54] Y. Zhang, S. Ma, J. Li, K. Li, S. Nepal, and D. Gu, “Smartshield:
Automatic smart contract protection made easy,” in 2020 IEEE 27th
International Conference on Software Analysis, Evolution and Reengi-
neering (SANER). IEEE, 2020, pp. 23–34.

[55] Z. Zheng, N. Zhang, J. Su, Z. Zhong, M. Ye, and J. Chen, “Turn
the rudder: A beacon of reentrancy detection for smart contracts
on ethereum,” in 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE). IEEE, 2023, pp. 295–306.

[56] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vul-
nerability identification by learning comprehensive program semantics
via graph neural networks,” Advances in neural information processing
systems, vol. 32, 2019.

APPENDIX A
DATA FILTRATION ALGORITHMS

A. Recognizing Reentrancy-susceptible Contracts

To identify contracts susceptible to cross-function and
cross-contract reentrancy attacks, our analysis encompasses
not only the inter-procedural contexts of internal functions
but also typical API calls to external functions. These API
functions, residing in well-known contracts, offer universally
accessible services such as exchanging ERC20 tokens for ETH.
In our approach, we focus exclusively on those functions
that interact with and have callbacks to invoking contracts,
as these interactions can affect the states of the invoking
contracts. As shown in Table IV, we analyze 22 commonly
used API functions, categorized into those related to ERC20
and ERC721 tokens. For these functions, we disregard their
internal states and focus solely on their interactions with the
invoking contracts, specifically the callbacks.

Optimization Approach. A straightforward method to identify
reentrancy-susceptible contracts involves examining each inter-
procedural path. However, this process can be time-consuming

15

https://swcregistry.io/docs/SWC-107/
https://docs.openzeppelin.com/contracts/4.x/api/security
https://www.openzeppelin.com/
https://owasp.org/www-project-smart-contract-top-10/2023/en/src/SC01-reentrancy-attacks.html
https://owasp.org/www-project-smart-contract-top-10/2023/en/src/SC01-reentrancy-attacks.html
https://github.com/pcaversaccio/reentrancy-attacks
https://blog.chain.link/reentrancy-attacks-and-the-dao-hack/
https://blog.chain.link/reentrancy-attacks-and-the-dao-hack/
https://secureum.substack.com/p/smart-contract-security-101-secureum
https://secureum.substack.com/p/smart-contract-security-101-secureum
https://docs.soliditylang.org/en/v0.8.21/
https://docs.soliditylang.org/en/v0.8.21/


TABLE IV: Considered API Function Calls

Type API Functions Total

ERC20

IUniswapV2Router02.{addLiquidity, addLiquidityETH,
removeLiquidity, removeLiquidityETH, removeLiq-
uidityWithPermit, removeLiquidityETHWithPermit,
swapExactTokensForTokens, swapTokensForExactTokens,
swapExactETHForTokens, swapTokensForExactETH,
swapExactTokensForETH, swapETHForExactTokens,
removeLiquidityETHSupportingFeeOnTransferTokens,
removeLiquidityETHWithPermitSupportingFeeOnTransfer-
Tokens, swapExactTokensForTokensSupportingFeeOnTrans-
ferTokens, swapExactETHForTokensSupportingFeeOnTrans-
ferTokens, swapExactTokensForETHSupportingFeeOnTrans-
ferTokens}

15

ERC721
Seaport.{fulfillBasicOrder, fulfillOrder, fulfillAdvance-
dOrder, fulfillAvailableOrders, fulfillAvailableAdvance-
dOrders, fulfillAvailableOrders, cancel}

7

Algorithm 1: Recognize Reentrancy-Susceptible
Contract

Input: a smart contract ct.
Output: a boolean variable.

1 foreach f ∈ ct do
2 DfsContext(f.entry, ct); // see Algorithm 2

3 foreach call c ∈ ct do
4 if c.readBefore ∩ (c.writeBefore ∪ c.writeAfter)

then
5 return True;

6 return False;

due to the potentially vast number of inter-procedural paths.
To streamline this, we introduce an optimization approach
that involves truncating inter-procedural paths and merging
certain sub-paths. Specifically, this method divides each inter-
procedural path into multiple intra-procedural paths. For a
function f , it merges some paths outside the function and dis-
regards irrelevant paths, e.g., paths not containing external calls
or state write/read operations. By integrating these merged
paths with the intra-function paths of f , we can efficiently
assess whether the statements in these paths satisfy Pattern 1.

Algorithm 1 illustrates this optimization approach. Initially,
we enumerate all functions and modifiers in a contract ct
and examine their intra-procedural paths. Using a recursive
method, DfsContext (Algorithm 2), we walk through each
intra-procedural path to analyze pertinent context information,
such as state write and read operations within ct. For each
statement t, we consolidate context information from relevant
paths, including those preceding in caller functions and the
intra-procedural paths in f . Specifically, the context informa-
tion covers state read and written statements triggered by t
within the current contract ct. Subsequently, we perform static
analysis on call statements and determine if the corresponding
context information satisfies Pattern 1. As depicted in Line
4, for an external call statement c, if state read operations
occur in its pre-context, and state write operations in either
its pre-context or post-context, we output True, indicating the
contract’s susceptibility to reentrancy attacks. Conversely, if
no call statements satisfy this condition, we output False.

Algorithm 2: DfsContext: Context Analysis
Input: a statement t and a related contract ct.
Output: context information of t.

1 if t is visited then
2 return;
3 V.add(t), fRead = ∅, sWrite = ∅;
4 foreach p ∈ t.fathers do // merge pre-context info

5 fRead ∪ = p.readBefore;
6 if fRead ̸⊂ t.readBefore then //bring new context

7 t.readBefore ∪ = fRead ∪ t.allStateReadIn(ct);
8 foreach invoked internal/API function f ∈ t do
9 foreach sf ∈ f .allStatementsIn(ct) do

// merge caller context with the

current f’s statements

10 sf .readBefore ∪ = fRead

11 foreach sn ∈ t.sons do // merge post-context

12 DfsContext(sn);
13 t.writeAfter∪=s.writeAfter ∪s.allStateWriteIn(ct)

Algorithm 3: Recognize Contract in Final Dataset
Input: a smart contract ct.
Output: a set of external calls Scall that are

susceptible to reentrancy attacks.
1 foreach f ∈ ct.modifierAndFuncs do
2 DfsContext(f.entry); // see Algorithm 2

3 foreach call c ∈ ct do
4 if c.readBefore ∩ c.writeAfter then
5 Scall.add(c);

6 return Scall;

B. Recognizing Final Dataset

According to Pattern 3, we can easily recognize target con-
tracts via static analysis. Algorithm 3 shows this recognition
process. This algorithm takes a contract ct as input and then
outputs a set Scall of reentrancy-susceptible external calls. If
Scall is non-empty, we then include the corresponding contract
in our final dataset. Notably, the set of reentrancy-susceptible
calls Scall can be used in subsequent RentPDG construction
since this process needs to analyze nodes and edges that reach
the calls.

In this algorithm, we first enumerate functions and modi-
fiers in a contract and use DfsContext (Algorithm 2) to analyze
inter-procedural context information. Next, we examine exter-
nal call statements’ context information via static analysis. For
each external call statement c, if read and write operations
for a state variable exist in its pre-context and post-context
respectively, we can deem that c is susceptible to reentrancy
attacks and its context information satisfies Pattern 3. Then,
we add the external call statement into a set Scall. When all
external call statements’ context information is examined, this
algorithm finally outputs Scall.

16



Algorithm 4: Path Compression
Input: a symbolic path p.
Output: a compressed path p′.

1 foreach c ∈ p do
2 if c.label == ’(’ then stack.push(c) ;
3 if c.label == ’e’ and stack.top != ’M’ then
4 stack.push(’M’)
5 if c.label == ’)’ then
6 while stack.top.label != ’(’ do stack.pop();
7 if not Matched(stack.top, c) then return ∅ ;
8 stack.pop();
9 stack.push(’M’); // (i matches )i

10 return stack.symbols;

APPENDIX B
OPTIMIZED RENTPDG CONSTRUCTION

To construct RentPDGs, we need to perform a series
of symbolic matrix-vector multiplication and element-wise
product operations to compute node reachability vectors and
an edge reachability matrix. Notably, all of these matrix
operations are composed of symbolic multiplication/addition
operations, each of which executes in an amount of time linear
to the number of symbolic paths (see Equation 8). Therefore,
the execution time of our context-sensitive reachability analysis
is determined by the number of involved symbolic paths. In
practice, a contract program dependence graph (PDG) always
contains a large number of inter-procedural paths, so it may
be time-consuming to perform context-sensitive reachability
analysis. To address this, we provide the following optimiza-
tion approaches to reduce symbolic paths in matrix operations.

A. Path Compression

For a symbolic node reachability vector, the i-th element
is a set of symbolic paths from node i to c. Given that
some symbolic paths may have similar grammar contexts, we
can compress them into one short expression and speed up
the corresponding symbolic matrix operations. For instance,
the symbolic paths e(1e)1e)3 and e(2e)2e)3 have similar
parenthesis-balanced substrings in the front. According to
the CFL grammar, we can compress the symbolic paths
to the same symbolic expression B)3, where B represents
their parenthesis-balanced substrings, i.e., e(1e)1e and e(2e)2e.
Based on this observation, we can replace all parenthesis-
balanced substrings with B to compress symbolic paths.

Inspired by parenthesis checker algorithms, we can lever-
age a stack to identify parenthesis-balanced parts of a symbolic
path and then replace them with the symbol B. According to
the CFL grammar, the intra-procedural parts of a symbolic
path are also considered parenthesis-balanced, e.g., ee and e.
They can be also represented by the symbol B. Algorithm 4
shows the process of path compression. The key idea is to
scan a symbolic path from left to right and put all opening
parentheses into the stack.

When we hit the symbol e, we check the stack top. If
it is not M , we push M into the stack. When we hit a
closing parenthesis, we pop up all symbols until the opening

parenthesis is encountered. If the opening parenthesis matches
the closing parenthesis, we then pop up it and push M into the
stack. Otherwise, the symbolic path is considered infeasible.
Finally, the remaining symbols in the stacks are output as the
compressed path.

B. Path Pruning

Definition 3 indicates that we do not need to check all paths
between node pairs to recognize node reachability information.
If we find one feasible path from node i to c, we say that ni

can reach c in the calling context. To reduce the reachability
analysis time, we can preserve the most likely feasible paths
and remove other paths from node reachability vectors. For
a symbolic node reachability vector µc, it may contain two
types of symbolic paths of length l in the i-th element: (i)
parenthesis-balanced paths B and (ii) partially parenthesis-
balanced paths U . After performing one-step matrix-vector
multiplication As ·µc, the result vector may contain two types
of symbolic representation, either xB or xU , of (l+1) length.
Here, x refers to a symbolic variable, which can be instantiated
by three symbols: (i, )i, and e.

Compared to xU , the symbolic path type xB is more likely
to be feasible. This is because all possible instances for xB,
for instance, (iB, )iB, and eB, satisfy the CFL grammar. On
the other hand, one possible instance for xU , e.g., (iU , may
not satisfy the grammar. Therefore, we can only preserve xB
and exclude xU from the reachability vector µc

h in the node
reachability analysis. According to this observation, we can
prune all partially parenthesis-balanced paths U from node
reachability vectors to speed up our reachability analysis.

APPENDIX C
NODE SEMANTIC ATTRIBUTES

We show the 60 semantic attributes for a node in Table V.
Overall, the features can be categorized into six main types.

• Variables and Literals (17). This type includes an attribute
related to constants, 4 attributes related to variable num-
bers, 8 attributes related to variable types, and 4 attributes
indicating if there are special solidity variables.

• Function Calls (6). This type covers an attribute related to
modifier calls, 2 attributes related to internal function calls,
2 attributes related to external function calls, and an attribute
indicating if there is a function with Ether transfer.

• Built-in API Calls (12). We use an attribute to describe
the number of built-in Ether transfer functions and use 11
attributes to reveal the number of built-in functions related
to access control.

• Node Type (18). We use 18 attributes to describe the type
of a node in control flows. Each attribute indicates whether
the node belongs to a node type.

• Library API Calls (3). We use an attribute to reveal the
number of library API calls and two attributes to indicate
if there exist verification and context function calls.

• Operators (4). This type includes the attributes revealing
relation, logic, arithmetic, and bitwise operators.

17



TABLE V: Node Semantic Attributes

Types No. Attributes

Variables &
Litereals

100 revealing # of constant numbers, including constant
literals and identifiers.

101-104 revealing # of local variables read and written, and
global variables read and written.

105-112
revealing # of integer, array, boolean, bytes, con-
tract, address, solidity built-in, and private vari-
ables.

112-116 indicating the existence of tx.origin, msg,sender,
block.timestamp, and msg.value.

Operators 117-120 revealing # of relation, logic, arithmetic, and bit-
wise operators.

Function Calls

121 revealing # of function modifier calls.

122-123 revealing # of public and private internal function
calls.

124-125 revealing # of high-level and low-level external
function calls.

126 indicating the existence of an external call function
that sends Ether.

Built-in API
Calls

127 revealing # of built-in Ether transfer functions,
including send() and transfer()

128-138

revealing # of invoked require(), revert(), kec-
cack256(), ecrecover(), selfdestruct(), suicide(),
ripemd160(), blockhash(), balance(), abi.encode(),
and abi.encodePacked().

Node Type 139-156

indicating the node types: entry point, expression,
return, condition, variable declaration, assembly,
loop condition, end-if, loop start, loop end, throw,
break, continue, placeholder, try, catch, state entry
point, and contract start.

Library API
Calls

157 revealing # of library function calls.

158 indicating the existence of verification functions,
i.e., MerkleProof.verify() and ECDSA.recover().

159 indicating the existence of some context functions,
i.e., owner() and msgSender().

0 200 400 600
# of Graph Nodes

0

25

50

75

100

C
D

F 
(%

)

(a) CDF of Graph Nodes

0 500 1000 1500
# of Graph Edges

0

25

50

75

100

C
D

F 
(%

)

(b) CDF of Graph Edges

Fig. 11: CDFs of Nodes and Edges in Ethereum Contract PDGs

APPENDIX D
STATISTICS PROPERTIES OF ETHEREUM CONTRACTS

Here, we delve deeper into the complexity of our con-
tract datasets. Given that the performance of our sys-
tem—particularly the component of RPDG construction—is
significantly influenced by cross-function control and data de-
pendencies in contracts, we analyze the statistical properties of
inter-procedural program dependency graphs (PDGs) of these
contracts. We evaluate the cumulative distribution functions
(CDFs) of nodes and edges. As demonstrated in Figure 11,
80% of real-world contracts contain fewer than 300 nodes and
800 edges.

APPENDIX E
DETERMINING SYSTEM PARAMETERS

Several parameters critically influence our system’s per-
formance, particularly within the graph auto-encoder and the
clustering algorithm. The down-sampling and pooling ratios
significantly impact the quality of graph-level embeddings,

while the number of clusters affects the quality of clustering
results. To identify optimal settings, we employ the silhouette
coefficient method, which is widely used in unsupervised
learning tasks [17], [26], [23]. This method facilitates testing
various parameter configurations to achieve the best clustering
quality. Typically, a higher average silhouette coefficient indi-
cates better clustering quality. To find the most effective con-
figurations, we experiment with varying numbers of clusters,
down-sampling, and pooling ratios, monitoring their impact on
the average silhouette coefficients.

Down-sampling Ratio. In our graph auto-encoder, the down-
sampling ratio, denoted as rd, indicates the reduction in node
feature dimensions at each convolutional layer. This ratio
determines the final graph-level embedding dimension (320r3d).
Figure 12(a) shows how the average silhouette coefficient
varies across different down-sampling ratios. The coefficient
peaks at a ratio of 0.7, suggesting that embeddings with
a dimensionality of 110 yield the best clustering outcomes.
Lower ratios, such as 0.5, appear to compromise performance,
likely due to the loss of significant semantic information.

 0.4

 0.6

 0.8

 1

 5  7  9  11  13  15

S
il

ho
ue

tt
e 

C
oe

ff
ic

ie
nt

# of Clusters

ratio = 0.8
ratio = 0.7
ratio = 0.6
ratio = 0.5

(a) Down-sampling Ratio

 0.4

 0.6

 0.8

 1

 5  7  9  11  13  15

S
il

ho
ue

tt
e 

C
oe

ff
ic

ie
nt

# of Clusters

ratio = 0.9
ratio = 0.8
ratio = 0.7
ratio = 0.6

(b) Pooling Ratio

Fig. 12: Silhouette Coefficients with Different Parameters

Pooling Ratio. The pooling ratio specifies the proportion of
nodes retained at each pooling layer, which directly influences
the number of node-level embeddings produced by the encoder.
As detailed in Equation 13, an increased number of node-level
embeddings implies that the final graph-level embedding will
contain more semantic information. Figure 12(b) illustrates
the trend of average silhouette coefficients for four different
pooling ratios. We observe that a pooling ratio of 0.8 yields
the highest average silhouette coefficients. In contrast, a ratio
of 0.9, despite retaining a greater amount of semantic infor-
mation, leads to lower coefficients. This decline may be due
to an excess of semantic information at this ratio, potentially
adversely affecting the final clustering quality.

Number of Clusters. As evident from Figure 12, 12 clusters
achieve the highest average silhouette coefficient with a down-
sampling ratio of 0.7 and a pooling ratio of 0.8.

18


	Introduction
	Background
	System Overview
	Problem Statement
	System Model and Workflow

	Data Filtration
	Selecting Contracts Likely with Anti-reentrancy Patterns
	Excluding CEI-guarded Contracts

	Anti-reentrancy Related Graph Construction
	RentPDG Representation
	Inter-procedural Path Feasibility
	Context-sensitive Reachability Analysis for RentPDG

	Anti-reentrancy Recognition Model
	Graph Auto-Encoder for Anti-reentrancy
	Clustering-based Recognition

	Experimental Evaluation
	Experimental Setup
	RQ1: Learned Anti-reentrancy Patterns
	RQ2: Anti-reentrancy Patterns Ignored by Existing Tools
	RQ3: Efficacy of AutoAR's Anti-reentrancy Recognition
	RQ4: Computational Overhead
	 RQ5: Ablation Studies

	Related Work
	Discussion
	Conclusion
	References
	Appendix A: Data Filtration Algorithms
	Recognizing Reentrancy-susceptible Contracts
	Recognizing Final Dataset

	Appendix B: Optimized RentPDG Construction
	Path Compression
	Path Pruning

	Appendix C: Node Semantic Attributes
	Appendix D: Statistics Properties of Ethereum Contracts
	Appendix E: Determining System Parameters

