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Abstract—We present the first systematic study of database
ransom(ware) attacks, a class of attacks where attackers scan for
database servers, log in by leveraging the lack of authentication
or weak credentials, drop the database contents, and demand a
ransom to return the deleted data. We examine 23,736 ransom
notes collected from 60,427 compromised database servers over
three years, and set up database honeypots to obtain a first-
hand view of current attacks. Database ransom(ware) attacks
are prevalent with 6K newly infected servers in March 2024, a
60% increase over a year earlier. Our honeypots get infected
in 14 hours since they are connected to the Internet. Weak
authentication issues are two orders of magnitude more frequent
on Elasticsearch servers compared to MySQL servers due to
slow adoption of the latest Elasticsearch versions. To analyze
who is behind database ransom(ware) attacks we implement
a clustering approach that first identifies campaigns using the
similarity of the ransom notes text. Then, it determines which
campaigns are run by the same group by leveraging indicator
reuse and information from the Bitcoin blockchain. For each
group, it computes properties such as the number of compromised
servers, the lifetime, the revenue, and the indicators used. Our
approach identifies that the 60,427 database servers are victims
of 91 campaigns run by 32 groups. It uncovers a dominant group
responsible for 76% of the infected servers and 90% of the
financial impact. We find links between the dominant group, a
nation-state, and a previous attack on Git repositories.

I. INTRODUCTION

Databases are a key asset of digital services as they store
the data required for the services to operate. Given the large
amount of data they may store and the criticality of that data,
database servers are a valuable target for attackers. In this
work, we perform the first systematic study of database ran-
som(ware) attacks. In this class of attacks, the attackers iden-
tify target database servers by scanning the IPv4 address space
or by using Internet scanning engines [13], [85], [47]. Once
a target is located, the attackers try to login to the database
server by leveraging the lack of authentication, using default
credentials, or guessing weak credentials. If they manage to
log in, they examine the databases the compromised account
has access to, optionally exfiltrate the database contents, drop
the content of those databases, and leave a ransom note (e.g.,
by creating a new database table with a catchy name) with
instructions on how to get the data back. The note provides
ransom payment details (e.g., a Bitcoin address and the ransom

amount) or a contact method to request the payment details
(e.g., email address, Tor hidden service address).

Database ransom(ware) attacks are popular, being fre-
quently reported by security companies [1], [38], [64], [91],
[19], going as far back as 2017 [1]. However, to the best of our
knowledge, they have not been studied in the academic litera-
ture. Database ransom(ware) attacks are similar to traditional
ransomware attacks [9], [67], [5], [44], [87], [52], [20], [41],
[68] in the demand of a ransom to recover access to data.
In fact, posts often refer to them as ransomware [38], [64],
[19]. But, they have differences with traditional ransomware.
First, instead of encrypting the victim’s data and requesting
a ransom to release the decryption key, database ransom
attacks delete the database contents and request a ransom to
return a copy of the deleted data. Another key difference is
the absence of malware. Once logged into the database, the
attackers can simply execute a sequence of database commands
to delete the data and add the ransom note. The lack of
malware makes it difficult to identify which database servers
may have been infected by the same campaign or threat
group. Due to the absence of malware, some reports refer
to these attacks as malwareless ransomware [21] or ransom
attacks [91]. Given the terminology differences, throughout
this paper we will refer to these attacks as database ransom
attacks. Another difference with ransomware targeting desktop
computers or mobile devices is that attackers do not need to
employ social engineering techniques to convince victims to
install malware. Instead, they can scan for target servers on
default database ports (e.g., 3306/TCP for MySQL, 9200/TCP
for Elasticsearch). They also differ from server ransomware
strains such as eChr0aix [2], Qlocker [33], and DeadBolt [3]
that exploit software vulnerabilities to break into network-
attached storage (NAS) servers and encrypt the stored data.
Instead, database ransom attacks leverage misconfigurations
that leave a database with no, or weak, authentication allowing
the attackers to walk into the database and delete its data.

To study database ransom attacks, we obtain data about
60,427 compromised Elasticsearch, MySQL, and MariaDB
servers (identified by their IP address) collected by the LeakIX
Internet scanning engine [47] over 3 years from May 2021
until April 2024. We also setup database honeypots to obtain
a first-hand view of current attacks. Using these data sources
we answer the following 4 research questions.

(RQ1) How many groups are responsible for the database
server infections? Given the absence of malware samples,
we cannot use family classification to identify groups behind
the database infections. Instead, we design a novel clustering
approach to identify which victims may have been affected
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by the same scam campaign and which campaigns may be
run by the same threat group. Our approach takes as input
23,736 ransom notes obtained from LeakIX infection events.
It first identifies which servers have been infected by the same
attack campaign by examining the similarity of the ransom
notes’ text producing a set of note similarity (NS) clusters.
Each NS cluster captures a campaign whose ransom notes
are nearly identical, allowing for small changes in the note
text such as different payment addresses or minor syntactic
modifications. Then, it identifies which campaigns are run
by the same threat group. For this, it first extracts indicators
of compromise (IOCs) from the ransom notes (i.e., Bitcoin
addresses, email addresses, Tor onion addresses) and merges
NS clusters that share IOCs into IOC reuse (IR) clusters. Then,
it leverages the Bitcoin blockchain data to obtain the multi-
input (MI) clusters [63], [6], [78], [58] of the Bitcoin addresses
extracted from the ransom notes. If two Bitcoin addresses in
the same MI cluster have been extracted from notes in different
IR clusters, those IR clusters are merged into a single group
cluster that captures the infections attributed to the same threat
group. This process outputs a cluster tree where campaigns
(i.e., NS clusters) hang from group clusters. Our approach
groups the 60,427 infections (i.e., infected servers) into 91
campaigns run by 32 groups. It reveals a dominant group that is
responsible for 35 campaigns and 76% of the server infections.

(RQ2) Who is behind the attacks? Can the attacks be
attributed? We examine the usefulness of the extracted in-
dicators to start an investigation of a group. For 15 (45%)
groups, including the dominant group, we have at least one
Bitcoin address. For these groups, we trace the coin flows
from the extracted Bitcoin addresses towards services with
know-your-customer (KYC) requirements (i.e., requiring users
to provide proof of identity), which can be used as attribution
points by law enforcement agencies (LEAs) [35]. We find 10
such services (8 exchanges and 2 payment services) used by
two groups, one being the dominant group. We also identify
links from the dominant group to a previous campaign that
compromised Git repositories [34] and to an address attributed
by the U.S. Department of Defense to the Democratic People’s
Republic of Korea (DPRK, or simply North Korea) [95].

(RQ3) How much do the attackers make? We leverage
Bitcoin transaction data to produce revenue estimations across
all groups, as well as per group. In total, database ransom
attacks have received 29.52 BTC, equivalent to $498K using
the conversion rate at the time of each payment. The dominant
group has generated a revenue of $449K (90% of all measured
revenue). The requested ransom amounts are small with 94.4%
of all deposits being at most $1,000. Small ransom amounts
are likely used to incentivize payments in case the victim has
doubts about the data being returned. As recently demonstrated
by Gomez et al. [36] revenue estimates are affected by limited
coverage from the Internet scanning engines and can be up to
39 times higher in reality. While one could be tempted to think
that unauthenticated servers may simply be test servers with
little valuable data, we observe that payments keep happening,
with 66 payments in 2024 (until April 11). These victims likely
have no backups of the deleted data and consider the data
more valuable than the requested ransom amount. Attackers
infecting our honeypots do not exfiltrate the database contents
and we find additional supporting evidence this may often
be the case. It is important to send the message to victims

that if they are really desperate to get the data back, prior to
performing a ransom payment, they should contact the attacker
through the provided email and request proof that the attackers
have the original data.

(RQ4) Why do these attacks keep happening? Despite
database ransom attacks being ongoing for years, they are
still rampant. Newly infected servers keep appearing with
over 6K infected IPs in March 2024, a 60% increase over
one year earlier. Furthermore, our honeypots get infected by
database ransom attacks in 14 hours since connected to the
Internet. Two-thirds (67%) of infected servers in our dataset
run Elasticsearch, compared to 30% running MySQL, and
3% running MariaDB. This is surprising given that Internet
scanning engines observe two orders of magnitude more
MySQL servers than Elasticsearch servers connected to the
Internet. Thus, weak authentication is two orders of magnitude
higher in Elasticsearch servers compared to MySQL servers.
Elasticsearch only introduced strong default credentials in
version 8.0, released in February 2022. After 2.5 years, scan-
ning data shows that only 7.6% Elasticsearch servers run 8.x
versions, compared to 92.4% running older versions. Thus,
adoption of up-to-date Elasticsearch software with secure
default installation is slow, likely leading to servers with weak
authentication and vulnerable to database ransom attacks. Still,
11% of Elasticsearch infections and 98% of MySQL infections
happen on versions with more secure installation procedures,
indicating that the wrong configuration by users is still an
important factor in weak authentication issues.

II. DATABASE HONEYPOTS

To gather first-hand information on current database ran-
som attacks, we deployed MySQL honeypot databases over
12 days in June 2024 and 28 days in September 2024. We
configured the honeypots with an empty string as password
for the root user and populated them with fake data. We
use the database logs of executed commands to analyze the
actions taken by the attackers. We ran 5 VMs on two cloud
hosting providers, each at a separate location: Hong Kong,
India, Netherlands, Singapore, and USA.

We call an infection to a connection to the honeypot that
deletes content and leaves a ransom note. We ignore other
connections, e.g., those simply listing the existing databases,
as they may not be related to database ransom attacks. All VMs
were infected multiple times with infections spread among the
VMs, i.e., no VM dominates the infections. The average time
to infection was 14 hours since the VM was connected to the
Internet, with a minimum of 7.6 hours and a maximum of 26.3
hours, showing that the attackers are constantly looking for
new targets. After the first infection, all VMs were frequently
reinfected, pointing to the attacks being automated.

We group infections by the sequence of database com-
mands attackers execute. We observe two groups, each us-
ing a unique sequence of commands. Infections from both
groups are summarized in Table I. Both groups leave their
ransom notes in rows of a table in a newly created database.
Group A uses the same “RECOVER YOUR DATA” name
for the database and the table. Group B uses database
“README TO RECOVER TNA” and table “README”.
In addition to the new database, Group B also creates a
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Attacks Ransom Notes
ID VMs Infect. IP ASN Notes Temp. BA Email
Group A 5 123 58 23 123 1 6 123
Group B 5 8 4 4 8 2 4 3

Table I: Honeypot infections by attacking group. Groups are
identified by the sequence of commands executed. For each
group, it captures the number of VMs infected, infections,
attacking IPs and their ASNs, the ransom notes and templates
used, and the Bitcoin and email addresses in those notes.

“README” table with the ransom note in each database
whose content it deleted. While each infection has a unique
ransom note (by SHA256 of the text), there are only three
templates (one for Group A and two for Group B), where
Bitcoin addresses, email addresses, ransom amount values, and
unique tokens may change, while the text remains the same.
Figure 1 shows Group A’s template.

Group A first infects all the VMs and reinfects them at least
once a day. It exfiltrates the first 10 rows of each table, removes
all databases (including its own, if present), and shuts down the
MySQL server, likely to ensure it is not compromised by other
attackers. However, our honeypots are automatically re-started
in case of a shut down. Their attacks come from 58 IP ad-
dresses belonging to 23 autonomous system numbers (ASNs)
with 4 preferred cloud hosting providers: Limenet (15 IPs),
CDN77 (11), ASN-QUADRANET-GLOBAL (6), and M247
(4). All attacks in September 2024 use IP addresses hosted
by Limenet whose webpage is titled “Premium, Secure and
Anonymous” [53]. This possibly indicates Group A runs ded-
icated attack infrastructure, as opposed to using compromised
hosts. We extract 6 unique Bitcoin addresses and 123 email
addresses from their ransom notes. All the email addresses
follow the same pattern “dzen+[0-9a-z]{4,5}@onionmail.org”
where the variable part is the <TOKEN> in Figure 1. The
ransom amount values range from 0.0122 BTC ($767) up to
0.0143 BTC ($900).

Group B is slower in identifying targets, finding the honey-
pots after Group A already infected them. It does not attempt
to exfiltrate any data. It does not try to prevent other groups
from re-infecting the servers. Their attacks come from 4 IP
addresses, each in a different residential network. The first
Group B infection in four VMs was on the same day and from
the same IP address, further confirming the infections were
from the same group. Their ransom notes contain 4 unique
Bitcoin addresses and 3 emails. The ransom amount is always
0.007 BTC ($440), roughly half the amount Group A requests.

In summary, we observe two groups of attackers. Both
seem to automate the attacks and behave similarly regardless
of the VM location. However, Group A seems to be a more
advanced operation. It identifies targets faster, uses unique
tokens and email addresses in each infection, uses more IP
addresses possibly in dedicated infrastructures, requests higher
ransom amounts, and has more elaborate procedures such as
shutting down the VMs post-infection. Importantly, the two
groups do not exfiltrate the full data. Furthermore, in case of
reinfections, both groups delete the ransom note left by the
previous infection, making the infection look like it comes
from the second group, even if the second group cannot have
the data since it was already wiped. Thus, some database

Figure 1: Ransom note template used by Group A in their
honeypot infections.

ransom attacks are scams where the attacker cannot return
the data, even if the victim pays, an issue further discussed
in Section VIII. In the rest of the paper we analyze a longitu-
dinal dataset with three years of database ransom attacks and
propose an approach to identify the number of groups involved,
beyond the two groups observed by our honeypots.

III. LEAKIX DATASET

We obtained data from the LeakIX Internet scanning en-
gine [47]. LeakIX has plugins that check for specific server
vulnerabilities, including unauthenticated databases. Once it
locates an unauthenticated database, LeakIX applies undis-
closed regular expressions to the names of files, collections,
and tables in the database to identify ransom notes. If a note
is found, an infection event is produced. This approach may
miss infections that do not use the expected keywords to name
ransom notes.

On April 5, 2024, we used the search API of LeakIX
to query historical infection events produced by the Elas-
ticSearchOpen and MysqlOpen plugins, which are the two
plugins that collect the ransom note text. The MysqlOpen
plugin provides events for MySQL and MariaDB (an open-
source fork of MySQL) databases. The search query returns
the last infection event for each IP address, but the same
IP address may have multiple infection events, possibly with
different ransom notes, e.g., the server was infected multiple
times or the IP address was used by different servers over time.
For each returned IP address, we query the LeakIX hosts API
to obtain the list of all events for the IP address. We filter
out events without a ransom note. The regular expressions
used by LeakIX for identifying ransom notes can occasionally
introduce false positives, e.g., identify as a ransom note a
database table with configuration information. To address this
issue, as an additional filter we remove all the events whose
ransom notes do not contain at least one keyword associated
with ransom notes (e.g., hacked, backed, BTC, bitcoin). We
built our keyword list iteratively by examining which notes
were filtered and not filtered.

Each LeakIX infection event provides the following fea-
tures: the event timestamp, the IP address and port of the
infected service, the country code (CC) and autonomous sys-
tem number (ASN) for the IP address, the SHA256 hash of
the ransom note text, and the service’s software, namely the
server OS (e.g., Windows, Linux), the database software (i.e.,
Elasticsearch, MySQL, MariaDB), and the database software
version.

Table II summarizes the collected dataset, which contains
302,246 events with valid ransom notes obtained from 60,427
infected IP addresses running Elasticsearch, MySQL, or Mari-
aDB databases. All addresses are IPv4, as LeakIX focuses on
enumerating the IPv4 address space. IPv6 scanning is an area
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Database Events IP CC ASN Notes Addr.
ElasticSearch 254,629 40,663 123 1,926 17,391 86
MySQL 43,678 18,224 106 1,198 5,790 316
MariaDB 3,939 1,906 75 491 661 191
All 302,246 60,427 139 2,646 23,736 401

Table II: LeakIX dataset summary.
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Figure 2: Monthly number of infected IPs.

of active research [113], [49], [39]. The IP addresses are hosted
in 139 countries and belong to 2,646 ASNs. The top countries
by number of IP addresses are China (47.5%), US (16.0%), and
Germany (5.1%). The AS distribution is similarly dominated
by Chinese ASNs belonging to Alibaba (21.2%) and Tencent
(15.5%), followed by ASNs used for cloud hosting services by
Amazon (12.8%) and Google (4.7%). The fact that China has
three times more infected servers than the next country may
be due to some groups specifically targeting this country (we
show one such group in Section VII). It could also be due to
servers in China lacking authentication more often.

Roughly two thirds of the infected IPs (67.3%) correspond
to Elasticsearch servers, followed by MySQL (30.1%), and
much fewer MariaDB servers (3.1%). The servers run primar-
ily on Linux used on 97.1% of Elasticsearch servers, 83.7%
of MySQL servers, and 64.9% of MariaDB servers. The next
most popular OS is Windows that is used on 35.0% MariaDB,
15.7% MySQL, and 2.1% Elasticsearch servers. Other servers
run on MacOS, FreeBSD, OpenBSD, Solaris, and UNIX.

Figure 2 shows the number of monthly infected IP ad-
dresses. The infections start on May 25, 2021, likely when
LeakIX introduced the plugins to identify unauthenticated
databases. Infected servers grow until August-September 2023
and decrease after that, but are larger in February 2024 than
prior to August 2023, showing that infections still happen.
There are no infections in December 2022, likely because
LeakIX did not scan for infections on that month.

The dataset contains 23,736 unique ransom notes (identi-
fied by SHA256 hash), with a ransom note appearing on av-
erage in 117.8 events from the same or different IP addresses.
There are 15,331 (4.9%) events with more than one ransom
note. These can happen due to groups (e.g., Group B in Sec-
tion II) that may leave the ransom note in multiple databases
and also due to re-infections of the same server where the later
infections failed to remove the ransom notes left by the earlier
infections, e.g., due to missing drop permissions. For MySQL

Campaign
Identification

Group
Identification

91 
Campaigns

32 
Groups

23,736 
Notes

302,246 
Events

Figure 3: Overview of our clustering approach. It takes as input
LeakIX events, extracts ransom notes in the events, groups
notes into campaigns, and identifies which campaigns are run
by the same threat group.

and MariaDB databases, the ransom notes are in plain text.
For Elasticsearch, they are in JSON format with the attackers
placing the ransom note in a field with a name that entices
to read it (e.g., Readme, readThis). When extracting ransom
notes from the JSON content, we assume the longest field
is the ransom note. We identified the language of the note
using langdetect [46]. Ransom notes were written in one of two
languages: English, 22,548 notes (95.0%) and Chinese 1,116
(4.7%). The other 0.3% notes are too short for the language
to be identified.

IV. APPROACH OVERVIEW

Figure 3 summarizes our clustering approach. It takes as
input the LeakIX infection events and outputs a cluster tree
where the top clusters correspond to groups and the clusters
hanging from a group correspond to the campaigns it runs.
The clustering comprises two steps: campaign identification
and group identification.

The goal of campaign identification is to group the ransom
notes from infection events into campaigns. We define a cam-
paign as a set of ransom notes created from the same template
containing the common text of the notes, as well as macros for
elements that may change across notes such as the payment
address, ransom amount, contact email, and the list of deleted
databases. Such templates are analogous to those used in email
[45], [73] and Twitter spam [32]. Campaign identification
is detailed in Section V. It comprises two steps. First, it
normalizes the ransom note text by replacing elements that
change (e.g., payment addresses, ransom amounts, database
lists) with macros, thus identifying notes constructed using the
same template. Then, it clusters similar templates to capture
small modifications producing note similarity (NS) clusters,
where each NS cluster corresponds to a campaign.

Group identification takes as input the NS clusters and
merges clusters determined to be run by the same group into
group clusters. Group identification is detailed in Section VI.
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Figure 4: Our regular expressions for identifying ransom
amounts, lists of database names, and unique identifiers.

It comprises two steps. First, it merges NS clusters that
share some selected indicators of compromise (IOCs) that are
specific to the threat actors behind the campaigns, namely
Bitcoin addresses, email addresses, and onion addresses. We
call the resulting merged clusters IOC reuse (IR) clusters.
Second, it analyzes the Bitcoin blockchain to further merge IR
clusters if they contain addresses that belong to the same multi-
input (MI) cluster [63], [6], [78], [58]. This step identifies
campaigns run by the same group that do not reuse IOCs
across campaigns, but aggregate the revenue from different
campaigns before cashing out.

Throughout the campaign and group identification steps,
our approach updates cluster properties such as the number
of servers infected, the cluster lifetime, and the indicators
extracted from the ransom notes in the cluster. For each
campaign and group cluster, it computes the financial revenue
by examining the deposits to the Bitcoin addresses appearing
in the cluster’s ransom notes. Clusters can be ranked according
to the property of choice, enabling comparison and prioritiza-
tion for investigation. We analyze the generated clusters in
Section VII.

V. CAMPAIGN IDENTIFICATION

Campaign identification groups infection events into cam-
paigns based on the similarity of their ransom notes. First, it
normalizes the ransom note text by replacing elements that
change with macros (Section V-A). Normalization identifies
notes that have been generated from the same template, i.e.,
have identical text and only differ in elements that are specific
to the victim (e.g., list of deleted databases, unique victim
tokens) or that introduce polymorphism for evasion purposes
(e.g., payment addresses, contact emails, ransom amounts). For
example, in Section II Group A used 123 notes, but all of
them normalized to the same template in Figure 1. Then, it
clusters similar templates into campaigns (Section V-B). This
clustering is designed to be very conservative so that it only
groups largely identical templates, i.e., that only differ due
to the introduction and removal of spaces, punctuation, and a
few words. Such modifications are used by attackers to add
polymorphism to the ransom notes. Larger differences (e.g.,
affecting whole sentences) make the templates be placed in
different clusters, which avoids grouping unrelated campaigns.

A. Ransom Note Text Normalization

To identify elements that change we use regular expres-
sions. We use the iocsearcher indicator extraction tool [42]
to identify blockchain addresses, universal unique identifiers
(UUIDs), and networking indicators such as email addresses,
Tor onion addresses, URLs, and domain names. iocsearcher
validates the checksum embedded in blockchain addresses and
Tor onion addresses (version 3) avoiding false positives. We

Clusters
Threshold Total Non-singleton Singleton Top-10 Precision

5 553 106 447 100.00%
6 408 94 314 100.00%
7 321 82 239 99.98%
8 252 77 175 99.98%
9 216 71 145 98.84%

10 184 65 119 81.27%

Table III: Note similarity threshold evaluation. The best thresh-
old is 6 because it provides perfect precision while minimizing
the number of clusters.

build our own regular expressions in Figure 4 to identify
lists of deleted databases, ransom amounts, and unique token
identifiers that do not follow the UUID format.

The most common indicators iocsearcher extracts are email
addresses (18,361) where victims can contact the attacker,
followed by Bitcoin addresses (401) for the victim to pay
the ransom. There are also 3 Tor onion addresses, used in
notes that ask the victim to visit a Tor hidden service to
obtain the payment information. We find one Monero payment
address, but no addresses for other popular blockchains (e.g.,
Ethereum, Cardano), showing that Bitcoin is the preferred pay-
ment method. Other extracted indicators are universal unique
identifiers (UUID) used as unique victim IDs (36), URLs (35)
to provide additional information (e.g., where to buy Bitcoins),
and domains embedded in URLs and email addresses (84). For
the interested reader, Appendix A evaluates the accuracy of the
indicator extraction process.

We replace the identified elements with macros using a
custom wrapper for iocsearcher. For example, the string “You
must pay 0.02 BTC to 1757buFTry kguUzQNQgUSrdoQuyE-
JEF6CW” is replaced with “You must pay <AMOUNT> BTC
to <BITCOIN>”. Similarly, the sentence “Databases that we
have: legal-advice, pet-fodder-shop, legal-advice2.” is replaced
with “Databases that we have: <LIST>.” This process outputs
14,220 templates a 40.1% decrease from the 23,736 notes due
to identifying notes with the same text but different indicators.

B. Note Similarity Clustering

We define a campaign to be a set of templates that are
largely identical, but contain minor differences due to the
addition or removal of spaces, punctuation characters or a few
words, as well as due to normalization failures. To identify
templates in the same campaign we examine the similarity
of the 14,220 templates using SimHash [15], a fuzzy hash
that produces similar digests for similar inputs. SimHash is
designed to detect near-duplicate data more efficiently than
classical pairwise similarity metrics, like the Jaccard index,
which has quadratic complexity. It is Google’s preferred algo-
rithm for detecting near-duplicate web pages when crawling
the Web [55]. We compute the SimHash of each template and
add the digests to an index where digests with similarity above
a threshold are placed in the same bucket, i.e., NS cluster.

We search for a threshold that conservatively groups tem-
plates with minor differences. For this, we cluster the notes
using different thresholds and measure the clustering precision
on the 10 largest clusters, which contain 70%–85% of the notes
depending on the threshold. We examine the entries in the top
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Clustering type All Non-singl. Max. Med. Mean
Normalization 14,220 139 (40.7%) 3,559 2 69.5
+Note similarity 91 42 (99.8%) 13,701 20 564.0
+IOC reuse 33 19 (99.9%) 13,704 25 1,248.5
+MI clust. (Final) 32 18 (99.9%) 18,792 25 1,317.9

Table IV: Clusters output after each clustering step. The bottom
row is the final clustering. The percentage is over the number
of notes. Mean and median are over non-singleton clusters.

Step CID Notes Events IP NSC

Normalization

NO1 3,559 20,040 3,789 -
NO2 1,003 2,271 737 -
NO3 743 903 742 -
NO4 733 1,011 740 -
NO5 692 1,068 653 -

Note
similarity

NS1 13,701 47,517 16,565 1
NS2 3,628 42,537 9,366 1
NS3 1,941 3,826 1,497 1
NS4 1,481 1,514 1,143 1
NS5 635 848 655 1

IOC reuse

IR1 13,704 47,521 16,567 3
IR2 5,088 102,509 30,822 32
IR3 1,962 3,862 1,506 7
IR4 1,493 1,525 1,153 6
IR5 604 1,311 628 2

Bitcoin
multi-input

MI1 18,792 149,958 45,778 35
MI2 1,962 3,862 1,506 7
MI3 1,493 1,525 1,153 6
MI4 604 1,311 628 2
MI5 438 988 449 9

Table V: Top 5 clusters at each clustering step. NSC corre-
sponds to the number of NS clusters merged into that cluster.

10 clusters classifying them as true positives (TPs) if they are
nearly identical to the rest of the cluster, and as false positives
(FPs) otherwise. TPs and FPs are aggregated across the top
10 clusters and we compute Precision = TP/(TP + FP ).
Table III summarizes the threshold selection evaluation. As the
threshold increases, the precision decreases and the number of
clusters reduces. We cannot compute the recall as we lack
a ground truth to identify the false negatives. But, the fewer
clusters with perfect precision the higher the recall will be. We
choose 6 because it is the largest threshold with no errors on
the top 10 clusters, grouping only nearly identical templates.

NS clustering results. The second row in Table IV captures
the results of the NS clustering using the normalization and
the selected threshold value. The 14,220 templates are grouped
into 91 NS clusters, of which 42 contain multiple notes and
49 are singletons (i.e., clusters of size one). Excluding the
singletons, the median cluster size is 20 notes with a mean
of 564 notes. All NS clusters contain notes written in a
single language. Table V details the 5 largest clusters for each
clustering step. The largest campaign contains 13,701 notes
and infected 16,565 IPs.

To evaluate the impact of the normalization, we cluster
the 23,736 notes without normalization obtaining 832 NS
clusters where 666 are singletons and the other 166 clusters
have a median of 6 notes. This experiment demonstrates the
positive impact of normalization, which reduces the number
of NS clusters from 832 to 91, nearly a factor of 9. Without
normalization, the text similarity clustering struggles to group

(a) The two templates in note similarity cluster NS-6459.

(b) The three templates in note similarity cluster NS-9926.

Figure 5: Example illustrating the conservative design of
our NS clustering. The two templates in cluster NS-6459
(subfigure 5a) are nearly identical with the only differences
being spaces before and after the Bitcoin address marked with
arrows. The three templates in cluster NS-9926 (subfigure 5b)
are nearly identical with the only differences being spaces
before and after the Bitcoin address and an extra character
at the beginning of the bottom template, marked with arrows.
The notes in the two NS clusters are also similar, but they
are placed in two separate NS clusters due to the differences
marked with square boxes.

similar notes where the indicator values (e.g., database lists)
are responsible for most of the text.

NS clustering example. Figure 5 illustrates the conservative
design of the NS clustering. Figure 5a shows the two templates
in cluster NS-6459. Both templates are nearly identical with
the only differences (marked with arrows) being extra spaces
before and after the Bitcoin address in the top template.
Figure 5b shows the three templates in cluster NS-9926. The
three templates are nearly identical with the only differences
(marked with arrows) being spaces before and after the Bitcoin
address and an extra character at the beginning of the bottom
template. The templates in both NS clusters are similar, but
differ in the text in the rectangular boxes, which are the reason
why both NS clusters are not merged.

VI. ASSIGNING CAMPAIGNS TO GROUPS

Group identification determines which campaigns are run
by the same group. First, it merges NS clusters that share indi-
cators into IOC reuse (IR) clusters, as detailed in Section VI-A.
Second, it analyzes the Bitcoin blockchain to further merge
IR clusters if they contain Bitcoin addresses that belong to the
same multi-input (MI) cluster [63], [6], [78], [58], as detailed
in Section VI-B.

A. IOC Reuse

Multiple NS clusters may belong to the same owners due to
the attackers running multiple campaigns and also because the
selected note similarity threshold is conservative and thus may
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fail to cluster some similar notes. To address these issues, we
merge NS clusters that share indicators. For example, if notes
in different NS clusters request the victims to pay to the same
Bitcoin address, or to contact the attackers using the same
email or onion address, those campaigns are highly likely to
be run by the same group. In Figure 5, the notes in the two
NS clusters contain 9 and 33 Bitcoin addresses, respectively.
Of those, three Bitcoin addresses appear in both NS clusters,
causing the IOC reuse step to merge them into the same IR
cluster.

The IR step focuses only on selected indicators of compro-
mise (IOCs): blockchain addresses, email addresses, and onion
addresses. Other indicator types do not necessarily indicate
that the attacking group is the same, and thus are not used
for merging. In particular, URLs are used to direct users to
exchanges to buy Bitcoins, domains in emails most often
belong to mail services, token identifiers are unique to one
note and thus cannot be used for merging, and lists of dropped
databases are specific to a victim server.

Merging clusters by IOC reuse. First, we compute the IOC
set of each NS cluster by performing the union of the IOC sets
(i.e., Bitcoin, email, and onion addresses) extracted from each
ransom note in the NS cluster. Then, we merge NS clusters that
share IOCs. The merging process starts with an empty set of
IR clusters and iterates on the list of NS clusters. For each NS
cluster, it checks if its IOC set has a non-empty intersection
(i.e., shares at least one IOC) with the IOC set of any of the
IR clusters. If the NS cluster shares IOCs only with one IR
cluster, the NS cluster is merged into that IR cluster. If the NS
cluster shares IOCs with multiple IR clusters, those IR clusters
as well as the NS cluster are merged together. If the NS cluster
is not similar to any IR cluster, a new IR cluster is created.

IOC reuse clusters. Table IV shows that the 91 NS clusters
are merged into 33 IR clusters. Of those, 19 contain more
than one note, accounting for 99.9% of the 23,736 notes. The
remaining 14 are singleton clusters. Overall, IOC reuse reduces
the number of clusters by 63%. The reduction is even more
significant for singleton clusters that decrease from 49 to 14
(28%). On average, an IR cluster contains 50% more ransom
notes than an NS cluster. The median size of an IR cluster is
25 ransom notes (mean of 1,186), compared to a median of
20 (mean of 564) for NS clusters.

The IOC reuse block in Table V shows the five largest IR
clusters. The rightmost (NSC) column in the table captures
the number of NS clusters merged into that IR cluster. For
example, the IR2 cluster corresponds to 32 merged NS clusters
including 2 of the top 5 NS clusters (NS2, NS5). When
multiple NS clusters are merged into an IR cluster, the IR
cluster may not have a common template for the ransom notes,
as each NS cluster may have a different template.

The IOC reuse step reduces the number of clusters by 75%.
Still, it is possible that some NS clusters from the same owners
did not reuse IOCs and have not been merged. To identify
campaigns from the same owners that do not reuse IOCs, we
leverage information from the Bitcoin blockchain.

B. Bitcoin Multi-Input Clustering

We leverage the public Bitcoin transaction data to further
merge IR clusters. For this, we use the open-source platform
WatchYourBack [35] to analyze all Bitcoin transactions from
the blockchain inception until April 11, 2014 (block height
838,800), First, we examine which payment addresses ex-
tracted from the ransom notes have received funds. Of the
401 Bitcoin addresses, 200 (49.9%) have received at least one
deposit. We call these 200 Bitcoin addresses the seeds.

Next, we expand the seeds using multi-input (MI) cluster-
ing [63], [77], [78], [6], a heuristic to obtain maximum sets of
addresses that share ownership according to their transactions.
MI clustering considers that addresses that co-spend together
in the same transaction are controlled by the same owner,
since they should share access to the private keys of the
input addresses to sign the transaction. MI clusters (MICs)
are created transitively. If a transaction has addresses A and
B as inputs, and another transaction has B and C as inputs,
then A, B, and C all belong to the same MIC (i.e., owner).

Prior to computing the MICs, we use the tag database
and the exchange classifier from WatchYourBack to identify
online wallets, which are addresses assigned to users to receive
deposits within a service (e.g., exchanges). Online wallets are
owned by the services who control their private keys. Thus,
online wallets should not be expanded because a service may
potentially produce transactions using several of the addresses
under its control at the same time (e.g., for efficiency),
breaking the assumptions of the multi-input heuristic. If a
seed corresponds to an online wallet in a service, the MIC
of that seed may incorrectly include online wallets from other
unrelated clients of the service [36] into our expanded sets. We
identified three online wallets among the seeds, all of them in
different MICs. Two were identified as the exchanges Coinbase
and Poloniex by the tag database. The third one is detected by
the exchange classifier, so the name of the service remains
unknown. For these three seeds, we do not use their MICs
and instead place each seed by itself in its own MIC.

Overall, the 200 seeds belong to 178 MICs. Of those, 50
MICs contain more than one address and 128 are singletons.
The 50 non-singleton clusters contain an additional 64 non-
seed addresses that are not part of the LeakIX dataset but were
identified by the MI clustering as also belonging to the groups
running the corresponding IOC clusters. We keep track of those
additional addresses as a MIC feature, and include them in the
revenue estimations in Section VII. But, they are not included
in the number of addresses in a campaign or group.

Finally, we merge IR clusters that contain addresses in the
same MIC. The merging procedure is the same as detailed in
Section VI-A but uses a non-empty intersection of MIC identi-
fiers (instead of IOC sharing) as a signal to merge clusters. As
shown in the bottom row of Table IV, MI clustering of Bitcoin
addresses further reduces the number of clusters from 33 after
IOC reuse to the final 32 groups. The reduction is significantly
smaller than the one obtained with IOC reuse; a possible
explanation is that attackers try to avoid MI clustering on
purpose, as recently pointed out [36]. Still, this step critically
identifies that the two largest IR clusters are indeed controlled
by the same group.
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Step Clust. Singl. Max. Med. Mean Time
Normalization 14,220 14,081 3,559 2 69.5 32m
Note similarity 833 668 13,669 6 139.8 106m
IOC reuse (IR) 1,141 992 9,630 8 152.6 22m
MI clustering (MIC) 2,803 2,552 5,818 8 84.3 15m
IR+MIC 1,131 985 9,630 8 155.8 38m
All 32 14 18,792 25 1,317.9 176m

Table VI: Ablation study results for clustering the 23,736 notes
using each approach step separately, using IOC reuse (IR) and
multi-input clustering (MIC), and using all 4 steps.

C. Ablation Study

We perform an ablation study to quantify how much
our whole clustering approach improves compared to using
each step (i.e., normalization, note similarity, IOC reuse, MI
clustering) in isolation. For each step, we perform an inde-
pendent clustering of the 23,736 notes and report the results
in Table VI. The step that clusters the most by itself is the
note similarity clustering, which produces the smallest number
of clusters (833), the smallest number of singleton clusters
(668), and the largest cluster (13,669). However, the number
of clusters is 22 times larger than the 32 groups our whole
approach identifies (bottom row in Table VI). It is also the
slowest step taking 1.8 hours. IOC reuse is the second step that
groups most by itself producing 1,141 clusters and the highest
average cluster size (152.6). For MI clustering, we first group
notes containing the same Bitcoin address (a lightweight form
of IOC reuse) and place notes with no Bitcoin addresses in
singleton clusters. Then, we calculate the MI clustering on the
Bitcoin addresses and merge clusters containing addresses in
the same MI cluster. This step produces 2,803 clusters with
a mean cluster size of 84.3 notes. MI clustering is a separate
process that only needs to be run when the blockchain height is
updated, e.g., once a day to add the transactions of the last day.
It takes roughly 15 minutes depending on the number of new
transactions. Normalization achieves little grouping by itself
producing 14,220 clusters. However, as shown in Section V-A
it significantly improves the NS clustering step.

We also evaluate the group identification (IOC reuse and
MI clustering) without the campaign identification. This com-
bination can be used as a lower bound on the number of
groups, e.g., if there are concerns that campaign identification
may over-cluster. This combination identifies 1,131 groups, in
contrast to the 32 groups the whole approach identifies.

The ablation study shows that our carefully designed 4-
step clustering is significantly better than the individual steps
run by themselves. Overall, given the 23,736 notes and the
pre-computed MI clusters, our whole approach identifies 32
groups in under 3 hours.

VII. CLUSTER ANALYSIS

For each group and campaign cluster, our approach au-
tomatically produces a set of features that capture distinctive
properties such as the number of infected servers, the per-
country geographical distribution of those servers, the ser-
vices targeted (i.e., MySQL, MariaDB, ElasticSearch), and
the lifetime. We also compute the financial impact of the
cluster using the WYB Bitcoin revenue estimation tool [111].
We compute the two recommended estimations [36]. The

Clusters Infections IOCs Revenue Life
CID NS IP CC BA OA Email BTC USD Days

12373 35 45,778 135 305 - 17,401 27.15 $449,922 1,813
3 1 16,645 97 2 - 1 0.06 $2,181 187
6 1 14,434 96 2 - 2 0.08 $2,322 231

12926 7 1,506 56 63 - 11 0.75 $28,365 300
13549 6 1,153 51 - 2 - - - 1,019
13118 2 628 30 - - 603 - - 249
13390 9 449 1 16 - 32 0.29 $7,715 392
8994 1 177 19 - - 157 - - 249

35 1 155 25 - - 131 - - 504
434 1 58 12 3 - 3 0.6 $612 2,588
123 1 56 11 1 - 2 0.09 $1,759 1,507
135 2 52 16 - 1 - - - 563
467 1 45 14 - - - - - 368

2704 4 34 2 - - 1 - - 741
42 1 23 1 2 - 1 0.05 $1,704 644

1760 1 22 8 1 - 1 0.02 $210 1,364
1181 2 18 3 - - 2 - - 84
318 1 14 7 2 - 2 0.4 $2,617 1,814
527 1 12 9 - - - - - 504
89 1 9 2 - - 2 - - 248

7452 1 4 2 1 - 1 0.02 $775 83
2064 1 3 3 - - 1 - - 159
5431 1 2 1 1 - 1 - - 792
7192 1 2 2 - - 1 - - 229
5034 1 2 1 - - 1 - - 6
2583 1 1 1 - - - - - 10

12028 1 1 1 - - 1 - - 7
7745 1 1 1 1 - - - - 1
7797 1 1 1 - - 1 - - 1
8372 1 1 1 1 - - - - 1

13087 1 1 1 - - 1 - - 1
13639 1 1 1 - - 1 - - 1

All 91 60,427 139 401 3 18,361 29.52 $498,187 2,648

Table VII: Group comparison. BA and OA correspond to
Bitcoin and Onion addresses, respectively.

DD-DC estimate provides a lower bound on the revenue by
aggregating the deposits to the cluster seeds minus double-
counting transactions where cluster addresses appear as both
inputs and outputs. The DD-OW+MI-DC is a tighter estimate
that considers all revenue from addresses in the multi-input
clusters also removing the double counting. As recommended,
we convert the BTC estimation to US dollars (USD) using the
conversion rate on the day of each payment.

A. Group Analysis

Table VII compares the 32 groups. Groups are ranked
by number of infected IP addresses, but our approach can
rank them according to any group feature. The results show
that there is a dominant group (CID-12373) that ranks first
across all features, including the number of infected servers
(45,778 IP addresses), the lifetime (1,813 days), the revenue
(27.15 BTC), and the number of indicators that can be used
to bootstrap the attribution (305 Bitcoin addresses and 17,401
email addresses). Next, we compare groups across features.

Infected servers. The dominant group infects over 45K IP
addresses throughout our study period, three times more than
the next two groups that infect 14K–16K IPs. Two other groups
infect over 1K IPs, four infect over 100 IPs, and 23 infect less
than 100 IPs. The larger the number of infected IP addresses,
the more important the group is.

Geographical targeting. Of the 32 groups, 26 use ransom
notes in English, 5 use ransom notes in Chinese, and the
dominant group uses ransom notes in both languages. Ac-
cording to the country codes in LeakIX events, the 5 groups
exclusively using notes in Chinese have all their infections in
China, except for one infection in Myanmar. These 5 groups
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Figure 6: Group lifespan. The groups are sorted by number of
infected IPs. The vertical line on May 2021 marks the start of
the LeakIX dataset.

seem to specifically target databases in China. This is most
evident in CID-13390 which infected 449 IPs, all in China. We
do not observe targeting of other countries beyond China. Of
the 26 groups using ransom notes in English, those with more
than 10 infections target multiple countries, showing no signs
of geographical targeting. They likely search for any targets
they can find. These groups use ransom notes in English to
infect databases in any country, including China, showing no
language customization. One group (CID-135) infects 52 IPs
but none of them are in China. This is surprising given that
47.5% of all infections are in China, possibly indicating that
this group avoids targets in China.

Service targeting. Of the 32 groups, 19 only infect MySQL/-
MariaDB servers, 11 only infect Elasticsearch, and two (dom-
inant and CID-6) infect both database types. This points to
smaller groups specializing in a target service, while two of
the three larger groups target multiple databases.

Lifetime. Figure 6 shows the lifespan of the groups. There
are 5 groups including the dominant group that have deposits
to their addresses prior to May 2021, showing that they
were operating prior to the start of our LeakIX dataset. The
dominant group has been active since at least April 2019 and
CID-434 has operated since 2017. On the other hand, 5 groups
have been observed on a single day and another 3 for at most
10 days. There are 18 groups (including the dominant group)
with infections in 2024 showing they are still active.

Revenue. From the 14 groups with Bitcoin addresses, 11 have
received payments and 3 did not have any deposit. For the other
18 groups, we cannot produce a revenue estimation due to the
lack of seed addresses. Figure 7 shows the total revenue per
month for all 11 groups with at least one payment. In total, all
groups have received 29.52 BTC, equivalent to $498K using
the conversion rate of the day of each payment. As discussed
in Section VIII, the revenue we measure is a conservative
lower bound on the actual revenue due to LeakIX only seeing

Figure 7: Total monthly revenue across all groups.

a fraction of all database ransom attacks. Database ransom
attacks are still a profitable business with 66 victim payments
in 2024 (until April 11). Thus, infections of new database
servers keep happening, and some server owners consider the
deleted data valuable enough to pay the ransom.

The dominant group receives the most revenue with
$449,922, 90.3% of the total dollar revenue. The next group
by revenue obtains $28,365 (5.7%). Appendix B details the
revenue estimation for each group. The measured revenue is
modest compared to other cybercrimes [36]. A key reason
is that the requested ransom amounts are small with 94.4%
of all deposits being at most $1,000. Small ransom amounts
are likely used to incentivize payments in case the victim has
doubts about the data being returned.

Attackers move the funds quickly with 195 (97.5%) pay-
ment addresses having no balance on April 11, 2024. However,
five payment addresses from three groups still have balance.
For these, it may be possible to trace withdrawals from these
addresses in the mempool (i.e., prior to being committed to
the blockchain). If the destination address belongs to a known
exchange, LEA could request the exchange to block the funds
before they are withdrawn.

Reports. We also check if payment addresses have been
reported in external datasets. None of the addresses appear
in the US Treasury OFAC Sanctions List [97], but 102 have
been reported to BitcoinAbuse [11]. Of those, 98 belong to the
dominant group. All reports describe database ransom attacks.
Five reports state that the victim paid but the data was not
returned [103], [104], [105], [106], [107]. Another six reports
mention the victim tried to contact the attackers using the
provided email, but no response was received [100], [101],
[99], [102]. We discuss the implications for data recovery in
Section VIII. We also query the most used Bitcoin addresses
for each group in search engines to check for external reports.
We find payment addresses from two groups (dominant group,
CID-6) that have been reported also as payment addresses for
database ransom attacks that target MongoDB databases [30],
[17]. In both cases, the ransom note in the reported MongoDB
infection is nearly identical to ransom notes used by the group
in Elasticsearch infections. Another payment address of the
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dominant group has been reported as a payment address for
database ransom attacks that target PostgreSQL databases [19].
Again, the reported PostgreSQL ransom note is nearly identical
to a ransom note from the dominant group. The reuse of
payment addresses conclusively indicates that some groups
(dominant group, CID-6) target multiple databases. They not
only target Elasticsearch and MySQL servers in our dataset,
but also MongoDB and PostgreSQL (dominant group). A
payment address from CID-318 was used in a database ransom
attack on the FitMetrix fitness company [110]. This company
left three of its servers without password, exposing 113.5M
customer records to the Internet, and to database ransom
attacks. Each record contained sensitive user data such as
name, gender, email address, phone numbers, profile photos,
and their primary workout location. This episode highlights
that weak authentication vulnerabilities affect also companies
handling sensitive user data.

Contact emails. There are 25 groups with email addresses in
their notes. Email addresses often belong to privacy-preserving
email services such as onionmail.org, tutanota.com, mail
inator.com, protonmail.com, and proton.me. Those email
addresses may not provide useful attribution leads unless the
email service is intervened. There are 22 groups using only
email addresses in privacy-preserving email services. In the
rest, we observe email addresses from large email providers
such as yahoo.com or from attacker-owned domains (e.g.,
mysql222.com, mydatabase.to). If attackers do not intend
to reply to victims at all, they could also use made-up email
addresses, rendering the email addresses useless for attribution.

Onion services. There exist two groups that only provide an
onion address in their ransom notes. The user is requested to
visit the hidden service and provide a unique identifier in the
note. CID-13549 has two onion addresses, the older ransom
notes use a deprecated v2 address (hn4wg4o6s5nc7763.onion),
later replaced with a v3 address1. These two addresses are no
longer active, but reports on the v2 address [38] explain that it
provided a dashboard where victims could enter their token to
obtain the payment address. Furthermore, for victims who did
not pay, the stolen databases were offered for sale, each for a
price of 0.03 BTC ($520 at the time). The sale was advertised
in a Russian forum claiming 85,000 MySQL databases were
available [22]. The sale likely indicates this group had been
exfiltrating the data prior to deletion. We discuss this in
Section VIII. CID-135 has one v3 onion address2 no longer
active and for which we have found no reports. Attribution
of these two groups would require previously proposed Tor
hidden service deanonymization techniques [66], [10], [57].
While attribution is harder, it is possible, as indicated by Tor
hidden services that have been taken down by LEAs [96],
[28] including the recent takedown of the Lockbit ransomware
hidden service [29].

Lack of indicators. No indicators are extracted for 3 groups.
These correspond to campaigns that do not demand a ransom.
For example, one group has a campaign using the note: “Your
organization’s database has crashed in our cyber crawler. All
information is deleted from the company’s servers to protect
users’ privacy. Please fix the loophole next time we take more

1o42xfh5kao7mrtesnok5jgdsfagjsgzxlxdlpkpd2x6lpckhzk225yad.onion
2godransm3nnlofdwounmfdfaaivjzlnkeslxmo6siw45gn2gjy7av2qd.onion

drastic steps Gesh 4S Israel Group” where “Gesh 4S Israel
Group” does not seem to exist. A second campaign uses
a nearly identical note but the mentioned entity is instead
“TEAMTNT && HRM BOTNET”, where TeamTNT is a
known threat actor [61]. One hypothesis is that these groups
that demand no ransom are simply testing their capabilities.

B. Linking Honeypot Groups

In this section we examine whether we can link the two
groups identified in our honeypots to the groups our clustering
of LeakIX events identifies. For this, we create infection events
for the 131 honeypot infections. We first cluster only the 131
honeypot infections, resulting in three NS clusters, one for each
template identified in Section II. Since there is no IOC reuse
and the deposits to the Bitcoin addresses are very recent, the
whole clustering also outputs three clusters: one for GroupA
and two for Group B.

Next, we cluster the 131 honeypot infections with all
LeakIX infections. This clustering produces 33 group clus-
ters. All Group A infections end up in the dominant
group cluster due to using a template similar to those
used by the dominant group. This seems correct as most
email addresses in the dominant group follow patterns such
as “rambler+[0-9a-z]{4,5}@onionmail.org” and “recmydb+[0-
9a-z]{4,5}@onionmail.org”, which seem generated by the
same software that infects the honeypots with addresses
“dzen+[0-9a-z]{4,5}@onionmail.org”. One of the templates of
Group B is merged by note similarity into the CID-13549
group. The other Group B template forms a new group that
did not exist before. These results point to group A being
the dominant group and group B being CID-13549. They also
show that our clustering may under-cluster as it failed to merge
the two Group B templates into the same group.

C. Bitcoin Attribution

There are 11 groups with at least one Bitcoin address
that has received deposits. These groups can be attributed by
tracing how their revenue moves towards exchanges with KYC
requirements that can be leveraged as attribution points. For
this, we leverage WatchYourBack [35] to examine whether the
coin flows from the seeds are sent to services with KYC re-
quirements. LEAs can leverage those exchanges as attribution
points by requesting the identity of the owner of the exchange
address that receives payments from the victims. We ran a
back-and-forth exploration of three steps starting from the 200
seeds, and using the provided tag database to identify addresses
belonging to services. The exploration identified flows leading
from the seeds of 3 groups to 12 services: 9 exchanges,
two payment platforms, and a mixer. The dominant group
uses 8 exchanges (Binance, ChangeNOW, Coinbase, CoinGate,
KuCoin, LocalBitcoins, Paxful, and TradeOgre), two payment
platforms (Cash App and WebMoney), and a defunct mixer
(ChipMixer). The TradeOgre exchange is also used by CID-
12926. The other exchange is HitBTC, used by CID-1760.
The exchanges and payment services are likely used for
cashing out, and the mixer for obfuscation. All exchanges and
payment services have KYC requirements except TradeOgre,
which does not list KYC in its terms [92], and is reported
to not enforce identity verification [93]. Thus, we find useful
attribution points for two groups, including the dominant one.
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Figure 8: Similarity between the note used in the Git campaign
(above) and the normalized text of a campaign from the
dominant group (below).

Dominant group links. The dominant group also has flows
into two addresses involved in other attack campaigns. One
payment address of the dominant group3 deposits parts of its
revenue into an address4 that belongs to a MIC associated to an
attack on Git repositories. In May 2019, attackers logged into
repositories hosted on GitLab, GitHub, and BitBucket using
leaked credentials, deleted the repository contents, and left
notes demanding a ransom to recover the data [34]. However,
the campaign was not particularly effective, as the deleted data
could be recovered from the repositories. Figure 8 shows that
the ransom note used in the Git campaign is nearly identical
to one of the database ransom attack campaigns.

The other flow is from a payment address5 (P1) of the
dominant group, that receives a payment of 0.00492860 BTC
on April 13, 2021, and within a few hours sends that amount
to an address6 (C1) that has been reported in ransomware cam-
paigns attributed to North Korea in an advisory from the U.S.
Department of Defense (DoD) [95]. Those are the only two
transactions of P1 and the withdrawal transaction to the DPRK-
attributed address uses one input slot and one output slot.
Furthermore, the DPRK-attributed C1 address has also been
reported to accumulate victim payments from the ech0raix
server ransomware that targets QNAP NAS devices [54].

Sending funds to an address belonging to another group
does not conclusively mean both groups are the same, e.g., it
could signal another kind of business relationship. Still, the
similarity between the Git attacks and the database ransom
attacks we study and the fact that the ransom notes are nearly
identical, makes us think the most plausible explanation is
that the dominant group was also responsible for the Git
attacks. The discovered link between the dominant group
and the DPRK may indicate that North Korea is involved in
database ransom attacks. It could even point to the DPRK
being responsible for the dominant group. However, there exist
alternative explanations such as North Korea having some kind
of business relationship with the dominant group or the DoD
attribution being incorrect.

VIII. DISCUSSION

We discuss takeaways, limitations, avenues for future work,
ethics, and reproducibility.

317rDr5mbXjLdegWDFuWd61Ymhwm54GjtNK
412fv8qUbbzrRZrTYSSkELeWPeg3Gy3qsZ7
51757buFTrykguUzQNQgUSrdoQuyEJEF6CW
61KmWW6LgdgykBBrSXrFu9kdoHZ95Fe9kQF

Data recovery. Paying a ransom is discouraged as it keeps the
attacker’s business model alive [98], [94]. However, if victims
are really desperate to get their data back, e.g., no backup is
available and the data value is larger than the ransom value, it
becomes important to understand whether a victim who pays
the ransom will recover the deleted data. For the data recovery
to be successful two conditions need to be satisfied. First, the
attacker should have access to the data, i.e., it should have
exfiltrated the data prior to deletion. Furthermore, the attacker
needs to be willing to return the data after payment. Infections
of our honeypots only exfiltrated the first 10 rows of each table
(Group A) or no data at all (Group B). Thus, those groups
cannot return the data even after receiving the payment.

We cannot generalize our honeypot results to all groups.
In fact, our approach identified two groups using Tor hidden
services, with one having provided a dashboard with a list
of the exfiltrated databases and their sizes. This site allowed
visitors to buy the data, likely indicating that the group had
exfiltrated the data. On the other hand, we find additional
supporting evidence that victims are unlikely to recover their
data in many cases. First, some victims perform post-mortem
analysis on their server and network logs concluding (as we do
from our honeypot) that data was not exfiltrated [89]. Second,
we have searched for reports of database ransom attacks in
abuse databases [11], [14] and using search engines. We have
not found reports of victims who paid the ransom and got
the deleted data back. In contrast, we found multiple reports
of victims who paid the ransom and did not get the data
back [103], [104], [105], [106], [107]. We also found reports
of victims that tried to contact the attackers on the provided
email receiving no response [100], [101], [99], [102], further
pointing to attackers having no intention to return the data.

It is possible that many database ransom attacks are scams
where data is simply deleted with no intention of returning
it. It is important to send the message to victims that paying
a ransom for deleted data does not make sense unless there
is some proof that the deleted data can be recovered. Thus,
prior to performing a ransom payment, victims should check
their database and network logs to examine if data was leaked
prior to deletion. Furthermore, they should contact the attacker
through the provided email and request proof that they have the
original data. If no contact address is provided or no answer
is received, most likely the data cannot be recovered.

Why do these attacks happen? Our work shows that database
ransom attacks are prevalent, have been ongoing since 2017,
and are still generating infections and payments from victims.
The root cause behind these attacks is the weak authentication
configured in the databases. Possible reasons for the weak
authentication are users willingly remove authentication, the
reuse of (leaked) credentials across services, and installation
procedures that create (or allow creating) default accounts with
weak credentials. The first two are best addressed through user
education, e.g., emphasizing to users that attackers proactively
search for insecure databases, and that credential reuse should
be avoided. In contrast, improving the default installation pro-
cedure is a responsibility of the database software publishers.

Two-thirds (67.3%) of infected servers in our dataset run
Elasticsearch. This is surprising given that MySQL is more
popular than Elasticsearch [23]. We use the Censys and Shodan
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Internet scanning engines to check the prevalence of the two
services in June 2024. The number of Internet-connected
MySQL servers (Censys: 5.7M IPs, Shodan: 3.6M IPs) is two
orders of magnitude larger than the number of Elasticsearch
servers (Censys: 47K IPs, Shodan: 62K IPs). This indicates
that weak authentication is two orders of magnitude higher in
Elasticsearch servers compared to MySQL servers.

We investigate whether this difference may be due to
the installation procedure. Since December 2010, MySQL
ships with a “mysql secure installation” script that secures
the installation including the creation of strong passwords for
default accounts. Only 1.9% of the MySQL infected servers in
our dataset run a version that does not include the script. The
script is an optional component of the installation process and
it is not automatically executed. The documentation clearly
states that is up to the user to run the script after finalizing the
installation. Users that forget, or fail [108], to execute the script
leave their database with weak default credentials. In contrast,
Elasticsearch bundles together security features including the
use of authentication and TLS to secure connections and the
creation of strong passwords. The security bundle was enabled
by default from Elasticsearch 8.0, released in February 2022.
Prior to this change, default Elasticsearch installations had no
authentication. If the user did not explicitly enable the security
bundle and the server’s IP address was publicly reachable,
the databases were publicly accessible on the Internet and
vulnerable to database ransom attacks.

LeakIX data shows that 89% of the infected Elasticsearch
servers run a version older than 8.0. Thus, infections concen-
trate on Elasticsearch servers with insecure default installa-
tions, which have not been secured by the user. Surprisingly,
11% of the infections affect Elasticsearch versions with strong
authentication by default, indicating the responsibility lies on
the user configuration, e.g., changing the password to a weaker
one or creating a new account with weak credentials. We query
6K randomly sampled IPs running Elasticsearch in Shodan to
obtain their version. Of those, 4,909 do not show a version
number and 90 show a snapshot ID. Of the servers with a
valid version, only 7.6% run 8.x versions and the remaining
92.4% run older versions. Despite Elasticsearch versions with
secure default installation having been available for 2.5 years,
they are only used by a small fraction of Elasticsearch servers.
The slow adoption of up-to-date database software is likely
the root cause of the high prevalence of weak authentication
in Elasticsearch servers.

Dominant group. Our approach uncovers a dominant group
behind database ransom attacks, responsible for 76% of the
infected servers and over 90% of the measured revenue. The
existence of such group was not previously reported nor it can
be guessed from the individual infection events in LeakIX.
Previous work has shown other instances of dominant actors in
cybercriminal activities, e.g., in illegal Dark Web markets [86].
Beyond the three examined databases, reports show the domi-
nant group also targets other databases such as MongoDB [30],
[17] and PostgreSQL [19]. Furthermore, we identify links
between the dominant group and an attack on Git repositories,
as well as with North Korea. While we cannot conclusively
determine that North Korea is behind the dominant group and
the Git repositories attacks, it is worth noting that this country
has been reported to be involved in a variety of cybercriminal

activities including ransomware, cryptocurrency thefts, ATM
cash-out schemes, and DDoS [18]. Our link between the
dominant group and North Korea is based on a previously
published attribution of DPRK’s addresses [95], highlighting
the importance of sharing attribution results.

Evasion. Attackers actively try to evade detection and anal-
ysis. We observe two main evasion techniques. First, some
campaigns do not provide the ransom payment details in
their notes, instead providing Tor onion addresses or con-
tact emails to obtain them. Such indirection complicates the
collection of Bitcoin addresses, hindering revenue estimation
and attribution approaches relying on them. However, it may
be possible to obtain the Bitcoin addresses through scam-
baiting techniques [59], [27] such as automating the submis-
sion of identifiers to Tor hidden services and the sending of
initial contact emails. Second, attackers try to hamper IOC
extraction by removing spaces and punctuation before or after
the IOCs. Such evasion does not work for blockchain and
onion addresses since the IOC extraction tool used verifies the
embedded checksum. However, it introduces errors for IOCs
such as emails and URLs. As attackers become aware of our
approach they may incorporate other evasions. For example,
they could minimize the reuse of IOCs across campaigns.
However, avoiding IOC reuse does not come for free as it
may require automated approaches to handle large numbers of
IOCs. Attackers could also copy ransom note templates from
other groups to try to make our approach misattribute them. We
have designed our campaign identification to be conservative
and only group templates with minor modifications, avoiding
grouping templates from different groups that may be similar
by chance or that may be based on another group’s template
but with modifications. However, if attackers copy exactly
the same template used by another group, replacing only the
indicators (e.g., Bitcoin address and contact email) with their
own, then our campaign identification would incorrectly merge
both groups.

Lack of ground truth. Similar to most works that analyze
cybercrime, we do not have ground truth to evaluate the cor-
rectness of our results. We rely on manual analysis to validate
the accuracy of our approach. An analyst with over 15 years
of experience has thoroughly analyzed the produced clusters
without finding any false positives where unrelated notes had
been merged. Evaluating the recall (i.e., false negatives) is
harder because it is possible that campaigns and indicators
that look unrelated indeed belong to the same group. What we
observe is that in some cases our NS clustering is not able
to link notes that we believe are part of the same campaign,
e.g., notes in Chinese where lists of deleted databases have not
been detected. Thus, we believe the real number of campaigns
may be smaller than 91.

LeakIX data. Our longitudinal analysis is constrained by
the data LeakIX collects. The main limitation is that LeakIX
only observes a subset of all database ransom attacks First,
a database server may be shut down by the attackers after
infection or may be infected and cleaned between two con-
secutive LeakIX scans. In addition, LeakIX identifies infec-
tions through regular expressions applied to database names,
which could miss infections using previously unknown names.
Moreover, LeakIX only collects ransom notes from unauthen-
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ticated Elasticsearch, MySQL, and MariaDB database servers.
Thus, it misses servers using other database software (e.g.,
MongoDB, Oracle, PostgreSQL), as well as databases with
some, but weak, authentication, which may have been com-
promised through credential guessing. Furthermore, Internet
scanning engines may miss 5% of services due to blocking
and transient losses [26]. Thus, the observed 60,427 infected
database servers is a conservative lower bound on the number
of infections during the three years analyzed. Gomez et al. [36]
have recently shown for the DeadBolt server ransomware that
out of 2,504 payment addresses they identified on the Bitcoin
blockchain, only 66 (2.6%) were known to the Shodan and
Censys Internet scanning engines, i.e., over 97% of infec-
tions were missed by those engines. This caused the revenue
estimation using the data of those engines to be 39 times
smaller than the real revenue. Another limitation is that in
the case of reinfections, LeakIX may only observe the last
infection, unless attackers do not wipe the previous ransom
note databases.

IPs versus infections. Throughout the paper, we use the
number of IP addresses to approximate the number of infected
database servers. The caveats are that the same server could ap-
pear multiple times in the dataset under different IP addresses
and that the same IP address may be assigned to different
servers over time. Both cases may happen for servers in cloud
hosting services. The first case would introduce overestimation
and the second underestimation. We expect the second case to
be more common and thus believe the number of IP addresses
may underestimate the number of victim servers.

Generalization. Our approach has been designed for database
ransom attacks. However, it could be applied to other attacks
such as the sextortion emails dataset used by Paquet-Clouston
et al. [69] (not publicly available) to automate the manual
cluster merging step in that work. It could also be applied for
identifying addresses controlled by the same group in cryp-
tocurrency abuse databases [11], [14], where victims submit
written abuse reports. Furthermore, it could be used to cluster
scam websites by analyzing the website text [72].

Ethics. We do not collect data from users or infected servers
ourselves. Instead, we leverage data independently collected
by the LeakIX scan engine. In particular, LeakIX collects data
from database servers that have not set up authentication. From
those servers, they collect the names of database tables and
the table content for tables whose name matches their regular
expressions for ransom notes names. Although LeakIX does
not modify any data in the server, accessing unauthenticated
servers, even in read-only mode, raises ethical concerns. We
note that the authors of this work are not associated with
LeakIX. The data we use is publicly offered by LeakIX to any
user who registers a free account. Since the regular expressions
used by LeakIX could have false positives, we apply a filtering
step to eliminate any data that is not a ransom note. Thus, our
dataset contains no sensitive user data. We believe that casting
light on database ransom attacks justifies using the LeakIX
data, and we hope that the publication of this manuscript can
inspire discussion on the ethics of such data collection by
Internet scanning services.

Reproducibility. We have released our clustering code and
clustering results [24].

IX. RELATED WORK

Ransomware. A wealth of research has investigated traditional
ransomware that encrypts data in personal devices such as
desktops and mobile phones [9], [67], [5], [44], [87], [52],
[20], [41], [68]. Those works cover aspects such as detec-
tion [5], [44], analysis of victim payments [87], [52], [20],
[41], [68], and ransomware’s command-and-control (C&C)
infrastructure [74], [88]. Some works have instead analyzed
server ransomware strains that encrypt data stored in network-
attached (NAS) servers [36]. Database ransom(ware) attacks
can be considered an evolution of ransomware attacks. They
are similar in requesting a ransom to recover data, but they
delete data rather than encrypt it. Other differences include
leveraging weak authentication, scanning for targets, and the
absence of malware binaries.

Cybercrime Bitcoin abuse. Due to its privacy properties and
poorly regulated legal status in some countries, the Bitcoin
ecosystem has attracted cybercriminal operations such as ran-
somware [87], [52], [20], [74], [41], [68], [88], thefts [58],
scams [69], [8], [58], [112], [7], [50], human trafficking [75],
cryptojacking [90] hidden marketplaces [16], [48], [79], and
money laundering [62]. In contrast, we investigate database
ransom attacks.

Clustering. Many works automatically group similar mali-
cious instances such as scam websites [25], [72], [50], scam
emails [69], and malware samples [70], [71], [43], [40], [76],
[51], [83], [31], [84], [65]. Most related is the work by
Paquet-Clouston et al. [69] that clusters emails where the
last 50 words are similar, identifies sextortion emails through
keyword searches, and manually merges related email clusters.
In contrast, our clustering automatically merges similar ransom
notes and identifies campaigns run by the same threat group.

Attribution. Other research attributes malware and advanced
persistent threats (APTs) [37]. Some approaches leverage
stylometric code features to identify the code’s author among
a set of pre-defined ones [81], [12]. However, it is difficult to
select features that uniquely capture the author’s programming
styles [4]. Other approaches start with a set of attributed
binaries and attribute new samples by finding similarities to
those. Such process can be performed manually by skillful
analysts [56], using machine learning classifiers [80], [109],
or through clustering [60], [82]. These approaches can handle
malware developed by multiple authors (e.g., by threat groups),
but can only attribute the malware to previously observed
threat groups. The above techniques do not apply to database
ransom attacks due to the absence of malware binaries. Instead,
we propose a novel clustering to identify attacks from the
same group and perform attribution by tracing the ransom
payments until attribution points such as exchanges with KYC
requirements [35].

X. CONCLUSIONS

We present the first systematic analysis of database ran-
som(ware) attacks. To address the question of who is behind
these attacks we develop a novel clustering approach that
groups the infections into campaigns, identifies campaigns run
by the same threat group, and ranks threat groups according to
a wealth of properties. Our clustering groups 60,427 database
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server infections into 91 campaigns run by 32 groups, iden-
tifying a dominant group that is responsible for 76% of the
infections and has generated 90% of the $498K revenue we
measure across all groups. We also identify links from the
dominant group to a previous campaign that compromised Git
repositories, as well as to North Korea.
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APPENDIX

Initial Final
Element Prec. Recall F1 Prec. Recall F1
amount 1.000 1.000 1.000 1.000 1.000 1.000
bitcoin 1.000 0.999 0.999 1.000 0.999 0.999
email 0.888 0.887 0.887 0.999 0.999 0.999
list 1.000 0.993 0.996 1.000 0.993 0.996
monero 1.000 1.000 1.000 1.000 1.000 1.000
onionAddress 1.000 1.000 1.000 1.000 1.000 1.000
url 0.894 0.808 0.849 1.000 1.000 1.000
uuid 1.000 1.000 1.000 1.000 1.000 1.000
token 1.000 0.999 0.999 1.000 0.999 0.999
ALL 0.942 0.915 0.928 1.000 0.999 0.999

Table VIII: Initial and final extraction accuracy.

A. IOC Extraction Evaluation

To evaluate the accuracy of the indicator extraction, we
manually created a ground truth (GT) that specifies, for a
subset of 5,792 ransom notes, the start offset and value of the
indicators in the note. If a note contains the same indicator
multiple times, each indicator instance is added with its own
start offset. In total, the GT contains 34,529 indicator instances.
Table VIII shows on the left the initial indicator extraction
accuracy. The overall F1 score is 0.928, with the lowest F1
score being for URLs (0.849) and email addresses (0.887).
Their lower F1 score is due to an obfuscation, where attackers
remove the spaces before and after an indicator to hamper
indicator extraction tools. This can introduce false negatives
and also false positives if two indicators appear next to each
other. More specifically, two prevalent cases introduce most
errors in URLs and emails. The first is that an email address
follows a Bitcoin address without space, so iocsearcher only
extracts an email address with the Bitcoin address as part of
the username. To handle this case, we re-apply iocsearcher
on the extracted email addresses and if a Bitcoin address is
found inside, we remove it from the email. The second case
is two consecutive URLs being joined into a single URL due
to the lack of space. To handle this case, if an extracted URL
contains the string “http”, we split it into two URLs. While
these two fixes could potentially introduce errors, they do not
because these cases are confined to notes from two prevalent
campaigns. Table VIII on the right shows the final indicator
extraction accuracy after applying these two fixes. The overall
F1 score raises from 0.928 to 0.999 with the F1 score for
emails being 0.999 and for URLs 1.0.

B. Revenue Estimation

Table IX shows the revenue estimations for the 9 groups
that have received deposits. For each group, the table shows
its cluster ID, its number of payment addresses, the period of
activity of the group according to the transactions, and two rev-
enue estimations. The DD-DC lower bound estimation shows
the number of seeds receiving deposits, the BTC received, and
its value in dollars. The tighter DD-OW+MI-DC estimation
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Period DD-DC DD-OW+MI-DC
CID Addr. Start End Seeds BTC USD MI Addr. MICs BTC USD
12373 305 2019-04-11 2024-04-09 154 22.65468725 410,459.23 209 137 27.15077189 449,922.25
12926 63 2023-06-08 2024-04-02 26 0.74087599 28,029.52 27 21 0.75387599 28,365.30
13390 16 2023-02-24 2023-07-16 10 0.29313614 7,715.98 10 10 0.29313614 7,715.98
318 2 2017-09-24 2018-09-09 2 0.26189800 1,682.93 7 2 0.40099263 2,617.54
6 2 2023-08-05 2023-08-21 1 0.07994339 2,322.12 1 1 0.07994339 2,322.12
3 2 2023-11-07 2023-12-03 1 0.05991624 2,181.39 1 1 0.05991624 2,181.39
123 1 2020-01-23 2023-10-27 1 0.08771142 1,759.54 1 1 0.08771142 1,759.54
42 2 2022-04-22 2023-03-14 2 0.05250000 1,704.25 2 2 0.05250000 1,704.25
7452 1 2022-03-12 2022-03-12 1 0.02000000 775.50 1 1 0.02000000 775.50
434 3 2016-12-31 2017-01-03 1 0.10459291 108.31 4 1 0.59794241 612.36
1760 1 2020-06-27 2020-07-01 1 0.02300600 210.50 1 1 0.02300600 210.50
Total 398 2016-12-31 2024-04-09 200 24.37826734 456,949.28 264 178 29.51979611 498,186.74

Table IX: Revenue of the clusters with seeds.

NSID CID Lang. IPs Addr. Start End Seeds BTC USD
8133 12373 EN 5,991 33 2021-08-06 2023-09-28 28 4.65902095 141,373.87

11955 12373 EN 561 91 2019-04-11 2022-09-18 31 12.29866669 100,370.16
14220 12373 EN 16,565 16 2023-05-22 2024-04-09 16 2.17541702 72,184.59
10241 12373 CN 655 49 2021-03-31 2023-01-05 41 1.66348944 57,570.25
11389 12373 EN 9,366 41 2020-11-01 2023-08-14 16 1.25699545 34,963.76
13537 12926 EN 1,497 63 2023-06-08 2024-04-02 26 0.74087599 28,029.52

416 12373 CN 16 7 2021-05-12 2022-01-26 7 0.46157184 20,121.66
1781 12373 EN 2 2 2023-10-17 2023-12-10 2 0.38435216 14,269.83
763 12373 CN 38 9 2020-04-30 2020-11-14 6 0.88233597 10,220.58

9209 12373 CN 64 11 2020-12-02 2022-05-07 7 0.3227606 9,544.34
11145 12926 EN 17 6 2023-10-15 2023-12-14 6 0.25953293 9,440.21
14197 13390 CN 441 16 2023-02-24 2023-07-16 10 0.29313614 7,715.98
6797 12373 EN 770 9 2021-05-17 2023-03-29 5 0.18757327 6,586.88
530 12373 EN 89 18 2020-09-11 2021-01-14 5 0.37506335 5,489.74
460 12373 EN 71 2 2023-03-14 2023-06-26 2 0.11013006 2,886.07

14115 12373 EN 40 27 2019-09-05 2019-12-19 3 0.29955008 2,650.34
10552 12926 EN 1 1 2023-11-21 2023-12-14 1 0.0615834 2,363.17

6 6 EN 14,409 2 2023-08-05 2023-08-21 2 0.07994339 2,322.12
3 3 EN 16,645 2 2023-11-07 2023-12-03 1 0.05991624 2,181.39

123 123 EN 56 1 2020-01-23 2023-10-27 1 0.08771142 1,759.54

Table X: Top 20 campaigns by revenue using the DD-DC estimation. NSID is the campaign ID and CID is the group ID. Revenue
from a Bitcoin address is counted in all campaigns where the address appears.

shows the number of addresses receiving deposits after MI
expansion, the number of MICs found. the total BTC received,
and its value in dollars.

The dominant group receives 90.3% of the total revenue
in dollars with the second largest group receiving 5.7%. As
recently shown by Gomez et al. [36], the revenue estimated
is a lower bound of the actual revenue, which may be 39
times higher than reported, as discussed in the LeakIX data
paragraph in Section VIII. The tighter estimation is 17% larger
in the number of BTCs received by the operations, but just
9.4% larger when converted to dollars. The groups obtain an
average of $43,449.6 and a median of $2,322.12 in revenues.

Table X details the top 20 campaigns by revenue using
the tighther DD-DC estimation, which does not include the
revenue of other addresses in the same MIC. We count the
revenue of a Bitcoin address in all campaigns where it appears.
Of the top 20 campaigns, 13 belong to the dominant group
including all top 5 campaigns.
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