Artifact
Evaluated

ANDss

Available

Functional

GAP-Diff: Protecting JPEG-Compressed
Images from Diffusion-based Facial Customization

Haotian Zhu*, Shuchao Pang*'2, Zhigang Lu!, Yongbin Zhou* and Minhui Xue!
*Nanjing University of Science and Technology, China
Email: {haotian.zhu, pangshuchao, zhouyongbin} @njust.edu.cn
TWestern Sydney University, Australia
Email: z.lu@westernsydney.edu.au
{CSIRO’s Data61, Australia
Email: jason.xue@data61.csiro.au

Abstract—Text-to-image diffusion model’s fine-tuning technol-
ogy allows people to easily generate a large number of customized
photos using limited identity images. Although this technology is
easy to use, its misuse could lead to violations of personal portraits
and privacy, with false information and harmful content potentially
causing further harm to individuals. Several methods have been
proposed to protect faces from customization via adding protective
noise to user images by disrupting the fine-tuned models.

Unfortunately, simple pre-processing techniques like JPEG
compression, a normal pre-processing operation performed by
modern social networks, can easily erase the protective effects
of existing methods. To counter JPEG compression and other
potential pre-processing, we propose GAP-Diff, a framework of
Generating data with Adversarial Perturbations for text-to-image
Diffusion models using unsupervised learning-based optimization,
including three functional modules. Specifically, our framework
learns robust representations against JPEG compression by
backpropagating gradient information through a pre-processing
simulation module while learning adversarial characteristics for
disrupting fine-tuned text-to-image diffusion models. Furthermore,
we achieve an adversarial mapping from clean images to protected
images by designing adversarial losses against these fine-tuning
methods and JPEG compression, with stronger protective noises
within milliseconds. Facial benchmark experiments, compared
to state-of-the-art protective methods, demonstrate that GAP-
Diff significantly enhances the resistance of protective noise to
JPEG compression, thereby better safeguarding user privacy and
copyrights in the digital world.

I. INTRODUCTION

When posting/sending photos within your social networks,
have you ever thought that someone might customize and
modify your photos, as shown in Figure [I] without your
permission? Many image customization tools (e.g., GAN-
based ones [20]], [21] and diffusion-based ones, named fine-
tuned text-to-image diffusion models [10], [15], [34]], [35[)
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Fig. 1: Taken a random identity from VGGFace2 [3|] facial
dataset (left), the FT-T2I-DM (using DreamBooth [34]]) pro-
duces four fake images (right) based on different prompts.

can easily generate lifelike photos using your posted/sent ones.
Such tools are bringing serious and pervasive social problems,
reported by major media outlets like CNN and BBC [8]], [9]],
[42], as increasingly being used to create fake news about
different individuals. Among these image customization tools,
the fine-tuned text-to-image diffusion models (FT-T2I-DMs),
implemented by fine-tuning T2I-DMs using techniques like
DreamBooth [34]] and its successors - DreamBooth-based
LoRA [35]] (which integrates LoRA [17] into DreamBooth)
and SVDiIff [15], generate the most realistic images thanks to
the powerful posterior knowledge learned by diffusion models
in image generation [1[], [5]], [45], [50].

As a researcher, you can surely find out that existing
works [24], [26], [36], [38], [45], [47], [49], [S3] might protect
your photos against the FT-T2I-DMs-based malicious image
customization. Unfortunately, according to our observation
(shown in Figure [J), these protective means will never work
in your case, simply due to the JPEG compression applied on
your uploaded (and also protected) photos, which is a normal
pre-processing action performed by modern social networks,
such as Facebook, Instagram, Whatsapp, X, WeChat, etc. [29],
[43]l. In Figure 2] we show two sets of customized images
using DreamBooth-based FT-T2I-DMs on the protected images
with and without JPEG compression, where JPEG compression
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Fig. 2: Comparison between existing methods and GAP-Diff (ours) using DreamBooth-based FI-T2I-DMs on the protected

images with and without JPEG compression.

did damage the protection effect of the existing works (images
from number one to number eight) against the customization.
The reason behind our observation is two-fold. First, JPEG
compression is capable of reducing high-frequency information
from images [46]. Second, to prevent the FT-T2I-DMs-based
customization, the existing works inject noise concentrating on
the high frequency information of images [47]. Hence, most of
such high-frequency noise present in the protected images will
be removed by JPEG compression, potentially compromising
the effectiveness of existing protective measures.

To mitigate the degradation in protection against FT-T2I-
DMs customization caused by JPEG compression, we propose
a novel generative framework of unsupervised learning-based
optimization, named GAP-Diff. In a nutshell, we achieve an
adversarial mapping from clean images to protected images
by designing adversarial losses against fine-tuning and JPEG
compression. Specifically, different from the existing works
that belong to iterative methods as depicted in Figure 3] we
first construct a generator module as the mapping function
through a robust neural network to obtain protected images in
one step. Then, the generative framework uses the proposed
adversarial loss functions that are invariably utilized in the
fine-tuning methods of T2I-DMs as the primary optimization

objectives from our fine-tuning T2I-DM module. Finally, thanks
to the powerful learning and optimization capabilities of our
generative framework, enabling JPEG compression to be com-
puted during the backpropagation relying on a pre-processing
simulation module, the protective noise injected by our solution
is resistant to JPEG compression; hence keeps the protection
effect against the FT-T2I-DMs in real social networks scenarios.
This also explains why adaptive defense methods are difficult
to apply in this scenario: most existing methods use the PGD
strategy to generate protective noise, which involves an iterative
process of creating adversarial samples and customizing DM for
reference. These attacks are more complex than those applied to
pre-trained classification models. Adding JPEG resistance while
maintaining reported effectiveness requires careful redesign and
significant modification of the noise generation process, which
has been effectively addressed in this paper.

Our contributions can be summarized as follows:

We propose a novel solution designed to protect images
from customization by fine-tuned text-to-image diffusion
models, which demonstrates significantly enhanced resis-
tance to JPEG compression, a common pre-processing
operation in real social networks scenarios, making it more
suitable for digital world compared to existing solutions.



previous methods are often limited by network architecture
and suffer from issues such as sample quality and training
instability [13].

Recently, the diffusion model has emergged|[16],| [40],| [41],
which generates samples by simulating the diffusion process.
In the forward process, the original sample is gradually diffused
into standard Gaussian noise through noise injection. Then,
in the reverse process, the noise learned by the U-Net from
the forward process is used to gradually denoise the image,
mapping the data back to the original distribution to generate
new samples similar to the original image.

Bene ting from large-scale datasets like LAION5B [37],
the diffusion model has been used as a text-to-image model
known as T2I-DM for various generative tasks. In this type of

Fig. 3: The difference between the solution of existing workgsk, text is typically encoded by an encoder such as Clip [31]
and ours. Given a clean image the former generally uses ato generate a condition for the diffusion model, which is
ne-tuning loss from the FT-T2I-DM to calculate the gradientshen incorporated into the training input of the U-Net. In the
and updatex,q, iteratively. After given iterations, they Canppen-source and widely used LDM [32], VAEs are used as
get the nal protected image. By contrast, the latter directiynage encoders to encode images into smaller latent variables,
outputs thexaqy Via a neural network and optimizes the networlyhich are then added to the diffusion process, reducing training
through unsupervised learning using a combined loss. Here gig inference costs. Additionally, LDM incorporates attention
addition to ne-tuning loss, more control and computationghechanisms into the residual layers of the U-Net, enabling
items, such as adversarial loss for countering JPEG compressigitier mapping between the conditiomand the input latent

can be added than the former ones using the iterative Wgitiables in the neural network, allowing users more creative
After given epochs, we can get a well-trained and robust neufgdedom.

network that can generate protected images.
B. Fine-tuning and Customization

_ To reduce training costs and enable users to better generate
To the best of our knowledge, we are the rst to Utigpec ¢ characters or artistic styles, ne-tuning methods on T2I-
lize neural networks to learn adversarial losses againsiis have been proposed and widely adopted for customization.
diffusion models. This way, we can achieve potentialiyhe ne-tuning methods are based on pre-trained conditional
stronger protective noises by searching global optima gfffysion model weights and involve personalized training by
the optimization problem. Additionally, by shifting theq i ytting several images of speci ¢ characters or styles along
t'm_e'consum'”g_ iterative process of generating prOt_eC_tIVﬁth speci ¢ concept terms. Typically, their training process
noise for each image from existing works to the trainingyes not require much time.
phase of the neural network, our generator, once trainedamong these approaches, DreamBo6iH [34] is popular due
can rapidly produce protected images within millisecondg, jts excellent generation quality and straightforward ne-
We conduct extensive experiment evaluation on CORining method. Speci cally, DreamBooth conducts training by
monly used datasets under various con gurations. Thgqyiding3 5 images of characters needing customization
experimental results conrmed the advantages of OWiong with a special term denoting the target user such as
solution in time and space efciency and resistancgys» which is a special token chosen by performing a rare-
to JPEG compression, compared to the state-of-the-gfken lookup so that it could minimize the probability of the
methods. Furthermore, experiments on different noifgantj er having a strong prior when ne-tuning [34]. This
budgets, prompt and T2I-DM weight mismatch, ne-tuningnethod encourages the T2I-DM to remember relevant concepts
methods and pre-processing techniques are also condugigf] achieve image mappings corresponding to those concepts
in detail. during inference, thereby achieving customization.
Il. RELATED WORK Regarding other ne-tuning me';hods, for example, Text-
] o Inversion [10] adjusts the text encoding set to describe concepts,
A. Generative Models and T2l Diffusion Models while Custom Diffusion[[2B] optimizes only the parameters
In previous works|[12],[2R2], variational autoencoders (VAESh the model's cross-attention layers. By integrating ne-
and generative adversarial networks (GANs) have been widélying methods with LoRA[17], the cost of ne-tuning can be
used for generative tasks. They can roughly be categorized intduced by decomposing attention layers into low-rank matrices.
likelihood-based generative models that directly t the dat@onsequently, DreamBooth-based LoRA was proposed [35].
distribution and implicit generative models, which aim to magVDiff [L5] involves ne-tuning the singular values of the
the output images to the target distribution by ensuring thatight matrices, thereby reducing the risk of and language
they are classi ed as real by a discriminator. However, theskift.



C. Privacy Protection on GANs and DMs through the following formula that depends on random noise

With the continuous advancement of arti cial intelligencé@lnd timestep t:

technology and the deepening research into generative networks, X; = P T Xo + P 1 ¢; (1)

the issues of identity forgery and protection have become hot Q,

topics in related elds, with DeepFake being widely recognizegthere ¢ =1, += ~;; iand N (0:I).

as one prominent example. There are numerous detectio®uring the reverse process, it denoisgsinto x; ; by

techniques for DeepFake [2], [14], [18], [48], [54], which aim tdraining a U-Net network (x;t) or (x;c;t), depending

discern forged images by learning the distinct features betweam whether it is a conditional denoising diffusion model.

forged and genuine facial images. Although these method&imately, it gradually denoises from a standard Gaussian

can detect forged images, they operate after the forgery Hfistribution to obtain an image from the original distribution.

occurred, making it challenging to protect individuals' privacylraining the U-Net network effectively involves making the
Before DeepFake and customization happen, a called “imagenoved noise as similar as possible to the noise added during

cloaking” [39] privacy protection technique is proposed tthe forward process, aiming to approximate the reconstructed

prevent the generation of forged images. Methods like [SHjstribution to the original distribution in the forward process.

[52] disrupt the learning and generation capabilities of GANhe training formulas are as follows:

based DeepFake methods, thereby concealing images from the

GAN model. Luncond ;X 0) = Exoit N (o0l (xs1:0ii5  (2)
For popular T2I-DM-based DeepFake methods, many new _ B N D,
privacy protection techniques based on adversarial attacks havelcond :X0) = Exore: N o)l (Xus1:t o)z (3)

recently emerged. PhotoGuard [36] proposes attacking the Vfrerec is condition input.

or U-(lj\!et parts_olf te;t-rtlo-imagel moldels by per_turb_i(rjlg tr;Ie_zﬁl""telr-\tdversarial attacks. The objective of adversarial attacks is to
encoding to mislead the model. Glaze [38] misguides di USI%bceive the behavior of a model by adding small perturbations

W;Odels byhmaking t.h € featurg distance of éh.e traiging datt(?the input images. Conventional adversarial attack methods
closer to the target image. AdvDM [25] and its su sequey ically target a classi ef . They start by obtaining the output

e e v Je ofthe inpu o, then ale the piels ok uni
P : (X) 6 yyue - The visual imperceptibility of the perturbation

the _ne_-tuned LDM to Iez_irn the same pattern as a bias ' engyred by the noise budgetand the formula for obtaining
predicting the score function and improves the attack effec(ﬁe perturbation is as follows:

Anti-DreamBooth [45] focuses on face protection during ne-
tuning by iteratively applying the classic PGD [27] method to adv= argmaxL(f (X + );VYirue ): (4)

the diffusion model to obtain protective noise. Several methods I Jip<

have been further proposed to optimize Anti-DreamBoofhrojected Gradient Descent (PGD) [27] is a widely utilized
Speci cally, CAAT [49] enhances protection by attacking onlyiterative attack method that aims to modify the pixels of input
the U-Net's cross-attention layers. MetaCloak [26] addresseso induce an ascent in the loss function gradient of network
the lack of pre-processing resistance in Anti-DreamBooth Iy which is used in previous attack methods [24], [26], [36],
using multiple surrogate diffusion models to nd the optimaj45], [47], [49], [53] and can be described by the following
perturbation against pre-processing, although this redudesmula;

protection effectiveness in non-preprocessed scenarios and

incurs a high computational cost for generating protective noise. XK= ()X sgn (1L (F(x* yme ) (8)
SIimAC [47] improves Anti-DreamBooth through a greedy o)

algorithm, identifying the best perturbation timestep and featugherex® = x, represents the step size for each gradient
layer. ascent iteration, andgn( ) is a sign function.

However, the protection effects of these existing methodspjfferent from iterative methods, by solving an optimization
can be easily removed by the high-frequency informatiqftoplem initially proposed by C&W [4] to obtain the pertur-
quantization of JPEG compression. Therefore, our GAP-Difation satisfying Eq. 4, [30] seeksdisrupting classi cation
framework is proposed to address this challenge. network such that the following formula holds for mosg N ,
whereN represents the set of natural images:

A. Preliminaries K(f (x)) 6 K(x); (6)

Diffusion model. As introduced in Sectioti-A, DM primarily ~WhereK represents the target classi cation network, wifile
contains two processes. In the forward process, an imaéfnotes the network being optimized.

Xo q(x) is perturbed with a noise scheduler; : { 2 JPEG compression resistanceAs a common lossy tech-

(0; 1)g-; that is designed based on a sequence of increasitigue, JPEG compression aims to preserve more noticeable
levels of noise through T steps. In this process, we can obtaifoav-frequency components while eliminating high-frequency
sequence oX, fXg; X1;:::; X7 g, where eachx can be obtained components that are less perceptible to the human eye. Some

IIl. PRELIMINARIES AND THREAT MODEL



wherex! is noisy variable ox" 2 X ", andx%,; is noisy
variable of class example® 2 X ° | whereX °" represents
the set of images generated from original LDN; with prior
promptcy . and ©are sampled from standard Gaussian noise
N (0;1). represents the weight of the regularization term.

Furthermore, due to common compression methods em-
ployed by social media platforms or to circumvent recent noise-
Fig. 4: Explanation of JPEG-Mask. In the left, the quantizatiol%ased. protectlve measures aimed at preventmg custom|z§1t|0n

: . . o of individual photos, the adversary may obtain a collection
of JPEG compression is more intense in high-frequeng : ore : :
. . .0 &)reprocessed imagesP™® by JPEG compression, which
components, meaning that values in dark areas are quantize n g . ;
close to zero. In contrast, JPEG-Mask, as depicted in the ri rﬁpresenté( _gndergomg pre-processing f“”C““".(‘)- They
' ' ' §Vould then utilizexP™® 2 X Pre for ne-tuning following Eq. 8.

image, simulates this process by retaining some low-frequency
regions while directly setting the positions of high-frequency Ly (;x§°) = Expre s of] (xPS 6 0)jj3

regions to zero. + ” 0 (X?°+l ;IO; Cpr )”% (8)

To protect user photos, we cannot directly attack the whole
advancements have focused on simulating JPEG compresgjgstomization part of the model, since it is entirely controlled
during the training phase of neural networks to enhance thgif the adversary, making the ne-tuning function become our
resistance. One notable method is the JPEG-Mask approgeRdition for the protection scenario rather than the target.
by [55], which involves zeroing out a set of xed high-frequencydditionally, we also do not solely attack the image encoder,
coef cients, retaining only thé 5 low-frequency region of pecause even if we have a way to disrupt it, the disruption is
the Y channel and th8 3 low-frequency region of the U |ikely to be probabilistically eliminated by the prior knowledge
and V channels, as illustrated in Figure 4. This simulatiogf the diffusion model, and we cannot guarantee that the
technique can be utilized to enable the network to exhibitz@lversary's encoder is the same as ours. Therefore, we decide
certain level of robustness against JPEG compression duriggstart from the generation part and disrupt the predictive

the training process. performance of the U-Net model through the conditional
loss. The goal of GAP-Diff can be succinctly summarized
B. Threat Model as obtaining a mappinf( ) from clean images to protected

images that satisfy the following criteria, with the intensity of
As described in Section I, FT-T2I-DMs can utilize a fewhe protective noise constrained by

facial images to generate images featuring speci ¢ individuals

in various scenes. The adversary may gather a set of images f 2 arg max Leond 5 P(F(X™)));
X" depicting a particular identity from nature and input all i _ .
instances ok" 2 X " into the T2I-DM for ne-tuning. The St 2argmin L (1 (X7)); ©)
adversary employs the conditional diffusion model of DM to if (X" X "iip

train its denoiser U-Net, denoted as, following the ne-

tuning algorithm to obtain optimized model parameters e further categorize the threat model settings into the
Speci cally, the ne-tuning algorithm compels the DM tofg|lowing types:

learn to reconstruct images frow" and utilize a generic Regular setting. In this setting, the adversary utilizes an open-
promptc, such as “a photo of S* person”, where “S*’ serves 9 9. 9, y P

as a speci ¢ prompt word to bind with identit¢". To train sogrpe SLabIe D'.ﬁlljiljon [32]“f?(r "r?e-tunlr:g tglnln‘%*g)ulrlng
for effective binding, the adversary utilizes the loss of thté‘?l'n'ng’t € special | entl er “sks™ is employed as along
conditional diffusion model as described in Eq. 3 with th\évIth the G prior knowledge.

generic prompt. On the other hand, ne-tuning models alsd>reprocess settingThis setting is the focal point of our work,
often introduce a loss term preserving prior knowledge about tiewhich, the adversary still employs regular setting, but the
person subject, aiming to prevent over tting and language drifinages fed into the FT-T2I-DMs undergo JPEG compression
issues solely from training on speci c identity images, usingy the adversary or social media. It is worth noting that these

a prior promptc,, . Overall, these two components compris@re-processing steps are regulated to a certain intensity to
the optimization objective in Eq. 7 employed by the adversa@psure that the generated images remain authentic and natural.
using the family of DreamBooth-based methods [15], [34FXcessive pre-processing might degrade the quality of the

[35] which are demonstrated most powerfully by ne-tunindmages [45].
through text-encoder and U-Net of the T2I-DM. Adverse settings.In these settings, the adversary's choice of
La(;x D) = Exguccl (X0, 1t 0)ji2 Ehe.welght of pre—tr_al_ned text-to-image diffusion _model, ne-
o o o s uning method, training prompt, or pre-processing methods
+ (Xtor1 5856 )ii2s (7)) remains undisclosed.



Fig. 5: Pipeline of GAP-Diff. We rst input the clean images into the generator to get the output noises which is then scaled
and concatenated with the clean image to create protected images. These protected images are fed into the discriminator an
T21-DM to obtainLoss;, which measures the visual quality of protected images,larsd,, which directly contributes the
adversarial features of the protective noise. Next, the protected images are passed through the pre-processing layer, and th
preprocessed images are fed into the DM to obtaiss; to counter JPEG compression and other pre-processing. Finally,
according to different training strategies, these three losses are combined to optimize the generator.

IV. METHODOLOGY is the set of and it corresponds one-to-one with the input
xm2Xn,
For the former, we can utilize a standard GAN architecture,

A. Overview

GAP-Diff aims to disrupt the customization capability of FT,

i _ : here the input is an image®, and the output is directly a
T2I-DMs by adding small perturbationsto the set of images protected imagex. Here, an MSE loss can be employed to

X" that need protection. In other words, we aim to maximizgnorce the similarity betweer" andx. For the latter, we
the distortion introduced when these images x" + are 4, input an image™ and output protective nois€’. This
used for customization, such that adversaries cannot create CQFHWS 0 to be added ta" as to form the nal protected

natural-looking,.deceptive, or machine-usable fak_e images ffqmagex, with  representing the noise budget that controls the
X andXP'®, which represent the set of protected imagemnd  g;aalthiness of the noise.

the set of preprocessed protected imag®8. The customized Similar to the observations in [30], we believe that the former

outcomes of T2I-DM ne-tuned with the JPEG compressegoio4 may result in perturbations that are either too small
images protected by GAP-Diff should exhibit one or more Qf, he effective or too large causing signi cant visual changes
the following characteristics: in the entire image due to a lack of control over the noise.
Poor image quality with obvious distortions, blurrinessherefore, we ultimately adopt the latter approach, directly
grid patterns, or bubble-like cracks. managing the perturbation generation by scaling the noise
Faces that are unrecognizable by humans or unusable ffough an activation function with the budgetrather than
downstream tasks by machines. obtaining the noise rst and then truncating it to control its
Faces that are extremely blurry or identities that do ngfze as iterative methods typically do.
match even if faces are present. Consequently, we train a neural network to get robust
Towards these goals, we will provide detailed descriptions pfotective perturbations. For its architecture, since we require
the different modules of GAP-DIff in the following subsecthe generated noise to be added to the original image, the
tions. GAP-DIff is divided into three components. Firstly, imetwork must be an end-to-end structure. Here, we opt for the
SectionlV-B, we discuss the primary generator part requiringlassical U-Net architecture [33] as the generator, and design it
training. Next, in SectionV-C, we introduce the inserted preto consist of convolution, deconvolution, and skip connections.
processing layer. Finally, in SectidW-D, we explain how we We feed the input image" into the U-Net to obtain its output
derive the adversarial optimization target for the FT-T2I-DMs?. Here, we apply a tanh function to constrafhto the range
The pipeline is shown in Figure 5. (-1, 1). Subsequently, we useto constrain the size of the
noise at thd; norm level, that isjjx x"jj; < , where
x=x"+ , = Oand 9= g (x"). This way, the neural
To establish the mappinfy in Eq. 9, we aim to train a network automatically constrains the output in terms oflthe
generator represented gs( ) to generate protective noise omorm. The parameters of the generatoare obtained through
protected images. Speci cally, for the same facial images frooomputation and optimization of the following loss functions
the natural domain inpuX", we can directly generate thethat will be introduced next.
protected image seX or the protective noise set, where Discriminator and GAN loss. For experimental rigor, we

B. Generator Module



integrate an extra discriminator into the architecture to enhariseessential for the generator. (3) Other pre-processing functions,
the visual quality of the generated protected images. Thwich can be added as additional options in mixed training.
discriminator employs conventional GAN loss to quantify th&his enables the generator to learn more robust features, like
discrepancy between the adversarial example and the origithalse against Gaussian blur.

image. The loss for discriminator is formulated as:

Loan(X™;X) = Exnox n[logD(Xx")] + Ex2x [log(l D(x))]; D. Fine-tuning T2I-DM Module
(10)
o For the Fine-tuning T2I-DM module, we disrupt the U-Net
whereD () represents the discriminator. generation part following Eq. 9. Contrary to Eq. 3, where the
Once this component is added to the pipeline, the generagiNet aims to make the denoised distribution as close to the
also needs to incorporate new generation loss terms to decejygjinal distribution as possible, we aim to make the former

the discriminator: far from the latter.
Lp(X) = Exax [log(L D(X))]: (11) To achieve this goal, we seek the noise to exhibit adversarial
. _ . characteristics to U-Net across all diffusion timesteps involved
C. Pre-processing Simulation Module in training (0; MaxTimeStep). As observed in [11], [47],

To enhance the resilience of generated images agaifi§ Noise levels vary across different timesteps, resulting in
JPEG compression (our main goal) and other pre—processﬁﬁ@erem gradient '|r'1format|0n obtained during iterative attacks.
techniques in adverse settings, we design a pre-process test the C(_)ndltlonal losses of t_he _ne-tuned model across
simulation module. It is mainly a pre-processing layer cofifferent time intervals, as shown in Figure 6.
taining different pre-processing simulation functigu(s) that ~ Due to the varying noise levels through diffusion, the adver-
preprocess the input images and automatically sample a singféial characteristics at high timesteps (dominated by noise)
function for each input. This involves leveraging JPEG-MasRay differ signi cantly from those at low timesteps (clear facial
as introduced in Sectiohl-A , which simulates differentiable features). Therefore, if we only learn adversarial characteristics
JPEG compression. Additionally, we incorporate other pr@Cross specic time intervals, the learned characteristics may
processing methods such as Gaussian blur, along with a Skippéd Persist across other timesteps. Using such training results
function for training diversity. for nal inference can lead to two possible outcomes. One is

It's important to note that while we utilize the JPEG-Masknat images with only adversarial characteristics to high time
from the steganography eld, the optimization of the generatdtérvals can be overshadowed by the denoising process of low
involves complex, time-varying information from diffusiontime intervals. The other is that images with only adversarial
which completely differs from the simple decoder task. Th&faracteristics to low time intervals may allow DM to generate
means we should pay more attention to the functions comprisitig2ges already having facial contour features before it works,
the pre-processing layer and ignore any information froRPSSibly only disrupting a few details during generation.
real JPEG compression which can result in unnecessary zerdthus, we believe it is necessary to consider information
gradient updates, reducing training ef ciency and simultansom both low and high timesteps to train for resilience and
ously affecting the overall expected value, which is the primaignore the adversarial features of timesteps that are too high

objective of our optimization task as follows. and are completely noisy. As a result, we incorporate a simple
N . function to balance adversarial information from different
Exn2x nt2(0:m)LaalP(X" + 9 (X)) (12) timesteps. After a series of tests and evaluations, including

whereT represents max diffusion training step in next modul&hose illustrated in Figure 6, we set thefunction as follows:
p(x"+ g (x")) can be represented a&® which belongs to < - ) i
) e o> ™ 1 if x 2 (0;800);
XPre | Laqgv denotes the nal adversarial optimization objective. y= _ (13)
As Eq. 12, through mixed training with the pre-processing © 0 otherwise
layer, we can achieve training results that re ect the mathem

t- . . .
ical expectation across different conditions with and witho nd the loss function for this part is as follows:

pre-processing, rather than focusing solely on a single scenario. L q(x;c;t) = Et[ (t)Excd(; (Xt+1;t0)]; (14)
In other words, the approach can facilitate training towards a ) » o
global optimum across multiple scenarios. Speci cally, our pridh€ré ¢ is the condition containing ,  represents the

processing layer mainly includes: (1) The JPEG-Mask functigif&-trained U-Net, andi() measures the distance between
which simulates JPEG compression and repeatedly set in Ya&iables.

pre-processing layer at different compression qualities, enables

the gradient to be back-propagated to the generator, allowigg gjng Optimization Function

it to learn adversarial features against JPEG compression. (2)

The Skipped function, which applies no processing. Since ourCombining the aforementioned modules, we aim to train the
architecture needs to be effective both with and without prgenerator jointly with discriminator loss and adversarial losses.
processing, learning adversarial features without pre-processiigbalance the adversarial feature contributions before and after



Algorithm 1. GAP-Diff framework.

Input: original imagesx", noise budget, generator
parameters , pre-training epochdl, resume
training epochs$\,, pre-processing layde,
diffusion max training ste@, generic prompt,
weights of loss , ,

Output: trained parameters

1 Initialize P with seg =[JPEG-Mask, Skipped, GB, ...]
2 for each epoch irN do
3 for each batch in the epoctio

4 ° g (x") .g () contains theanh()
mapping °2 ( 1;1)
5 X 0+ xn
6 Samplet uniformly from (0; T)
Fig. 6: Fine-tuning conditional loss corresponding to the L Lo(x) + LagdX;cC;t)
all timesteps within the entire time interval under differens Backpropagaté. and optimize

conditions. The blue line represents the conditional loss of the — )
original image input to the ne-tuned model (here DreamBooth§, 0" €ach epoch iN, do

The orange and green lines correspond to the conditional losdes| fOr e(?ch batch in the epootio
of protected images with low and high time intervals trained g (x")

0

separately input to the ne-tuned model. The red line indicaté$ X + X" ] ) )
the desired ne-tuning loss of our protected images, whicf Sample a pre-processing functip@) uniformly
combines adversarial effects at both low and high time intervals; Errgm Seq,
the higher this red line is overall, the better. 14 X p(x)

15 Samplet uniformly from (0; T)

16 L Lo(x)+ LaadX;C;t)+ LaadxP®;c;t)
the application of the pre-processing simulation module, we | | Backpropagaté and optimize
design the nal loss function formulated as follows: .

18 return

Leappif = Lp(X)+ LagdX;Cit)+ LaalxP;cit);
(15)

where , and are the regularization terms used to balance

the discriminator and adversary weights. Since this loss function
is not based on ground truth, our task falls under the category of
unsupervised learning. Based on the formula, the algorithm for
GAP-Diff is illustrated in Algorithm 1, where we rst consider
using and to obtain the pure adversarial features, and then
add to learn the robustness features against pre-processing.

As shown in Figure 7, the whole pipeline aims to guide
the neural network to learn adversarial noises at different
timesteps to shift the entire distribution used for customized
inference away from the original data distribution. We believiig. 7: The inference process of the disrupted DM. For the
that such a shifted distribution encompasses features devoitdr q(xjc), there exists a distributiop (xo.1jc) predicted
of any prior knowledge from the diffusion model. HowevelRy the DM after learning from natural images. When the
it still contains facial features specic to the individual and®M is trained on adversarial samples, during inference, the
semantic features describing the individual (such as “a phdtbNet's predictions will gradually deviate from the original
of person”). Consequently, the generated images will contsiamples until they reach the adversarial distribufiorfxo. jc)
distorted, noisy, and partially recognizable facial characteristitom the potentiaPaq, that the DM has been misled to learn.
while they are still photos of someone. From the denoising process perspective, the U-Net will struggle

From the perspective of probability distributions, our networto correctly denoise and produce natural backgrounds, facial
can be understood as performing unsupervised training to trégatures, etc., at different timesteps, especially at low timeteps.
the generator's function as a parameterized density. In this
case, the distribution of images generatedgby) becomes
theP distribution. If we denote the true distribution with priora speci c true distribution, for which the diffusion model lacks
knowledge of the diffusion model & , thenP,q, represents prior knowledge about adversarial examples under different
a distribution within the diffusion model that is adversarial teonditions. In other words, the objective of GAP-DIff is to get



TABLE I: Performance comparison using different metrics for GAP-Diff on VGGFace2. The protected images output by all
methods in the table are subjected to JPEG compressionQuittvO and then input into the customization model ne-tuned
with DreamBooth to obtain corresponding evaluation metrits.mMeans the higher the better whil¢“means the lower the
better.

Methods | “a photo of sks person” | “a dslr portrait of sks person”

| FDFR' ISM# BRISQUE' SER-FIG# | FDFR' ISM# BRISQUE SER-FIG#

No Defense 5.33 0.61 26.27 0.69 21.57 0.48 9.64 0.71
Photoguard {36] 6.22 0.55 29.38 0.71 19.44 0.46 13.74 0.71
Glaze [38 6.57 0.53 30.42 0.69 18.78 0.45 11.04 0.69
Mist éﬂ 14.89 0.46 35.68 0.60 19.56 0.38 20.43 0.63
Anti-D g 5] 22.89 0.41 40.19 0.40 32.67 0.34 32.72 0.44
ACE [53 8.44 0.47 37.22 0.61 15.22 0.38 27.80 0.64
MetaCloak [26] | 31.69 0.44 38.82 0.51 35.28 0.36 27.31 0.56
CAAT [49 25.44 0.43 42,01 0.45 21.67 0.38 25.07 0.57
SimAC [47] 19.11 0.49 39.43 0.52 23.56 0.41 24.15 0.62
GAP-Diff (ours) | 77.56 0.25 42.04 0.23 76.33 0.19 48.97 0.20

Methods | “a photo of sks person looking at the mirror” | “a photo of sks person in front of eiffel tower”

| FDFR' ISM# BRISQUE' SER-FIG# | FDFR' ISM# BRISQUE' SER-FIG#

No Defense 8.67 0.44 19.61 0.56 20.67 0.22 20.11 0.44
Photoguard [36]| 9.67 0.40 23.43 0.56 19.56 0.21 17.91 0.45
Glaze [38 9.33 0.41 19.69 0.55 17.44 0.20 19.78 0.43
M_|sté Aj 12.33 0.35 22.17 0.50 27.33 0.18 21.05 0.36
Anti-D é 5] 21.67 0.30 24.77 0.37 34.88 0.14 31.21 0.26
ACE [53 12.44 0.30 31.90 0.42 36.11 0.15 25.25 0.26
MetaCloak [26] | 32.76 0.32 34.14 0.36 30.57 0.15 31.22 0.25
CAAT [49 16.33 0.32 23.82 0.37 34.22 0.14 31.82 0.25
SImAC [47] 14.89 0.33 31.09 0.42 28.56 0.14 32.98 0.25
GAP-Diff (ours) | 84.56 0.14 47.30 0.13 72.78 0.08 41.69 0.08

the minimum value oKL (P jjPagy). dataset is already JPEG-compressed, most of our experiments

In Algorithm 1, we achieve this by optimizing through are conducted on the lossless datasets FFHQ and VGGFace2.
Leap-nift- During inference, according to the DDPM [16]T2|-DM weight. We utilize the most widely used and open-
inference Eq 16 and as illustrated in Figure 7, the generatsslirce model weights from Stable Diffusion [32] for training
images gradually shift towards the distribution of adversarighd testing. In our experiments, we primarily use the SD-v2.1
samples due to the adversarial features learned by the U-Weights, as it is the latest and most popular, effective architecture
during training as described by Eq 17. based on the U-Net diffusion model. To test the performance

1 . of GAP-Diff under adverse setting, we assume the versions of
ﬁ%(xt P (xi;te))+ z;  (16) stable Diffusion between anti-customization and customization

1 are the same or different.

x{ 1= p=(x¢ Plti o(x;tic)+ 1z;  (17) Fine-tuning method. Consistent with [26], [45], [47], among

! ‘ all methods for ne-tuning text-to-image diffusion models, we
wherex; and respectively represent the noisy variable afhoose DreamBooth [34], one of the best-performing and most
clean images and the LDM pre-trained U-Net. Whieand widely used ne-tuning methods, as our primary experimental
% represent the noisy variable of adversarial images (protectghject. Further, in subsequent comparative experiments, we
images) and the U-Net that, after being ne-tuned using th&e DreamBooth-based LoRA [35] and SVDiff [15], which
protected images, has been misled by adversarial samplesare also popular and perform well in facial customization, to
conduct comparative analyses.
Baseline.We compare several open-source state-of-art models
A. Setup designed to disrupt the training or customization of text-to-
Dataset. We utilize three widely-used facial dataset§nage diffusion models, including PhotoGuard [36], Glaze [38],
FFHQ [20], CelebA-HQ [19] and VGGFace2 [3] in ourMist [24], Anti-DreamBooth [45], ACE [53], MetaCloak [26],
experiments. The FFHQ dataset contafils000 high-quality CAAT [49] and SimAC [47]. Due to memory and runtime
and lossless PNG images. CelebA-HQ is an enhanced verstomstraints, MetaCloak is only compared on the VGGFace2
of the original CelebA dataset consisting 3; 000 celebrity dataset, which is the primary focus of this paper.
face images. VGGFace? is a comprehensive dataset with oMatric. Consistent with [45], [47], we use RetinaFace [6] as
3:3 million face images from®; 131 unique identities. The the face detector to determine whether a face is present in the
resolution of all images in the datasets is sebi® 512 image, recorded as the Face Detection Failure Rate (FDFR).
It is worth mentioning that, since the primary objective ofVhen a face is detected, we use ArcFace [7] to compute the
our work is to resist JPEG compression and the CelebA-Hf@sine similarity between the face encoding and the original

Xt 1

V. EVALUATION



TABLE II: Performance comparison using different metrics for GAP-Diff on CelebA-HQ. The protected images output by all
methods in the table are subjected to JPEG compressionQuittvO and then input into the customization model ne-tuned
with DreamBooth to obtain corresponding evaluation metrics.

Methods | “a photo of sks person” | “a dslr portrait of sks person”
| FDFR' ISM# BRISQUE' SER-FIG¥ | FDFR' ISM# BRISQUE' SER-FIG#
No Defense 6.67 0.63 16.67 0.72 20.78  0.48 5.25 0.69
Photoguard [36]| 5.78 0.53 24.56 0.69 22.44  0.47 12.46 0.72
Glaze [38 6.12 0.57 30.78 0.72 25,56  0.40 17.97 0.70
Mist éﬂ 1156  0.50 36.87 0.67 28.78 0.35 24.08 0.71
Anti-D é 5] 4144 042 40.98 0.33 36.56 0.33 34.98 0.53
ACE [53 10.00 0.53 36.89 0.70 18.22 0.32 30.94 0.73
CAAT [4 4256  0.45 45.76 0.42 22.33 0.37 28.47 0.67
SimAC £4 ] 2578 0.51 40.21 0.61 23.00 0.39 33.68 0.69
GAP-Diff (ours) | 78.67 0.28 43.39 0.32 60.22  0.20 43.00 0.31
Methods | “a photo of sks person looking at the mirror” | “a photo of sks person in front of eiffel tower”
| FDFR' ISM# BRISQUE SER-FIG¥ | FDFR' ISM# BRISQUE SER-FIG#
No Defense 8.56 0.44 18.97 0.56 21.67 0.19 17.51 0.42
Photoguard [36]| 9.33 0.43 21.43 0.54 29.11  0.18 19.85 0.38
Glaze [38 9.44 0.41 17.97 0.55 2533 0.14 19.54 0.39
M_lsté Aj 1222 0.34 25.18 0.52 34.78 0.12 20.41 0.30
Anti-D g 5] 27.33 0.28 29.82 0.36 38.33  0.09 31.64 0.26
ACE [53 1456 0.28 31.47 0.45 47.33  0.09 28.28 0.19
CAAT [4 17.67 0.31 24.71 0.41 36.67 0.10 31.04 0.23
SImAC [47] 1811  0.33 33.68 0.42 3498 0.12 30.95 0.25
GAP-DIff (ours) | 81.33  0.21 49.14 0.21 77.67  0.06 46.61 0.07

identity encoding, recorded as the Identity Score Matchirglks person”, PromptC “a photo of sks person looking at the
(ISM). Additionally, we use BRISQUE [28], a classic andnirror”, and PromptD “a photo of sks person in front of eiffel
commonly used image quality assessment metric, and SHERver”. For each prompt, we rst samplg0 identities in face
FIQ [44], another advanced face quality assessment metriddatasets, then genera@d images per identity and nally use

Implementation details. We use “a photo of sks person” (thea" these generated images to calculate the evaluation metrics

same prompt as the existing work when ne-tuning T2I-DM5"nOI report their average values.

as the condition to obtain the loss function for Fine-tuing. Comparison with Baseline Methods
Tz:’?“{lg%guﬁhilmthf Veigperlrrrwlen;rs, ﬁ\lll ntc))lslenbudgettvsv 8" To evaluate the effectiveness of GAP-Diff, we conduct
Set 10 16= ch provides an etiective balance betweep, ., iiative and qualitative comparisons under four prompts
perturbation capability and visual quality. For training detai

of the generator, we set the optimizer to Adam with a Iearniqﬂith different identities on widely used datasets, compared to
’ S . e state-of-the-art methods. Speci cally, we rst use the full
rate of 0:001, and set the discriminator weight to 0:001 y S. opeci cally, we TSt us uy

During training, we obtain  training set in FFHQ wi#ls; 000 trained GAP-Diff model, which was trained on FFHQ with a

domlv ch ) d | " traini rgndomly chosen set &f0; 000 images for approximatel{20
randomly Chosen 1mages and empoy a ‘resume rainiNgp, ;o ,rs Note that, while costly, the trained model is scalable

strategy. Speci caIIy_, we st pre-train the generator on Imageg,y . iq generate protective noise in milliseconds. We then
without pre-processing fa¥0 epochs to establish base protectN% ply this model to generate four protected images for each of

gen.e.rauon capab|l|t|e§. Then, we cont!nue training for 3He identities in the VGGFace2 and CelebA-HQ datasets. These
additional10 epochs with the pre-processing layer added. T otected images are then JPEG-compress@ a0, which

pre-processing layer consists of JPEG-Mask with two qualllga lower end of commonly used JPEG compression quality

levels: Q N 70, which is commonly used in reak-world ‘]PI.EGon social networks [29], [43], to demonstrate the effectiveness
compression, an@® = 50, which presents more challengmg(h

. L : “of GAP-Diff. The compressed images are subsequently input
conjprefssmn tas]:ks. Add|t|ona!||y, we app(;y Ga;s&ag ]E)Iur Whilto the customization model ne-tuned with DreamBooth.
|t< H ! dlor trans ormausr_] rest| |erE)ce_an tha S; !{?pe h ur.]Ct'OE)uantitative results. As shown in Tables | and Il, the compari-
0 an. € ugprqcesse 'ngj S d uring this 6} erfp 438, 5on of the evaluation metrics reveals that GAP-Diff signi cantly
i‘ﬁg:ﬁggﬂ?;h Ai}sti-sDe:;gr?;Boj;\e w()entfarrnpzlgsh Ft):)r(tog:ggggomperforms the state-of-the-art works across all prompts. For
and U-Net model of DreamBoé)th with batch size 2fnd fnstance, GAP-Diff achieves a30% higher FDF.R. across
learning rate oBe 7 for 1: 000 training steps all prompts compared to the best one of existing works.
' ' Additionally, ISM and SER-FIQ are reduced to extremely low
To ensure diversity in our experimental inference stat@nges, indicating both low person identity matching rates and
ments, we select a union of inference prompts from Angxceptionally low face generation quality. For BRISQUE, our
DreamBooth [45] and SIMAC [47]. The prompts are as followsalues exceedindO indicate extremely poor image quality
PromptA “a photo of sks person”, PromptB “a dslr portrait oficross all prompts. We attribute this to the learning capabilities
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Fig. 8: Visualization results (four prompts) on VGGFace2. The rst column shows clean identity photos, while the columns on
the right depict results obtained by rst protecting clean photos using different methods, then compressing them with JPEG
Q =70, and nally getting customized outcomes from the customization model ne-tuned with DreamBooth.

Fig. 9: Visualization results (four prompts) on CelebA-HQ. The rst column shows clean identity photos, while the columns on
the right depict results obtained by rst protecting clean photos using different methods, then compressing them with JPEG
Q =70, and nally getting customized outcomes from the customization model ne-tuned with DreamBooth.

of our generative framework. Speci cally, GAP-Diff makes itof images, making it more resistant to JPEG compression. In
easier to nd the globally optimal solution across all timestepsontrast, while SimAC is an improved method based on Anti-
compared to existing iterative approaches. Further, GAP-DifreamBooth and signi cantly enhances performance [47], its
can simulate real JPEG compression during training and ussistance to JPEG compression is lower. This is because
it as gradient information to backpropagate and optimize ti#mAC focuses more on capturing high-frequency information
generator, while existing works struggle to achieve this due ilo the U-Net feature layers during improvement, leading the
the limits of their frameworks. These two aspects make oprotective noise to deviate more from the low-frequency region.
noise more robust cause higher face detection failure rates &moreover, when our framework achieves better optimization for
often poorer image quality. As a result, GAP-Diff proves moracial data, the generated protective noise tends to have stronger
effective in protecting faces from being customized in realdversarial effects within the time interval when obtaining the
social network scenarios. adversarial loss. This means that both detailed and edge features
of the face are more challenging for the FT-T2I-DM to generate,
Qualitative results. We present some of the visual results omaking the facial features more blurred overall. Consequently,
VGGFace2 and CelebA-HQ dataset in Figure 8 and Figuret§e minimum amount of facial information is exposed in the

Compared to existing works, GAP-Diff clearly achieves superi@ustomization model's output, achieving superior protection.
visual protection. This is because GAP-Diff tends to generate

protective noise that is concentrated in the low-frequency regigvhy does GAP-Diff outperform the existing work? Figure 11
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