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Abstract—Graphics Processing Units (GPUs) have become an
indispensable part of modern computing infrastructure. They
can execute massively parallel tasks on large data sets and have
rich user space-accessible APIs for 3D rendering and general-
purpose parallel programming. Unfortunately, the GPU drivers
that bridge the gap between these APIs and the underlying
hardware have grown increasingly large and complex over the
years. Many GPU drivers now expose broad attack surfaces and
pose serious security risks.

Fuzzing is a proven automated testing method that mitigates
these risks by identifying potential vulnerabilities. However, when
applied to GPU drivers, existing fuzzers incur high costs and
scale poorly because they rely on physical GPUs. Furthermore,
they achieve limited effectiveness because they often fail to
meet dependency and timing constraints while generating and
executing input events.

We present Moneta, a new ex-vivo approach to driver fuzzing
that can statefully and effectively fuzz GPU drivers at scale. The
key idea is (i) to recall past, in-vivo GPU driver execution states by
synergistically combining snapshot-and-rehost and record-and-
replay along with our proposed suite of GPU stack virtualization
and introspection techniques, and (ii) to start parallel and
stateful ex-vivo GPU driver fuzzing from the recalled states. We
implemented a prototype of Moneta and evaluated it on three
mainstream GPU drivers. Our prototype triggered deep, live GPU
driver states during fuzzing, and found five previously unknown
bugs in the NVIDIA GPU driver, three in the AMD Radeon GPU
driver, and two in the ARM Mali GPU driver. These ten bugs
were all confirmed by the respective vendors in response to our
responsible disclosure, and five new CVEs were assigned.

I. INTRODUCTION

Graphics Processing Units (GPUs) are found ubiquitously
across a broad spectrum of computing platforms, including
mobile devices, desktops, and workstations. They serve an
exploding demand for accelerated data-parallel computing
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infrastructure in areas such as rendering and machine learn-
ing. Unfortunately, the software stacks that power GPUs are
immensely complex and bug-ridden. The device drivers at
the lowest layer of the GPU software stacks are particularly
concerning because they operate with kernel privileges, have
large and often proprietary code bases, and expose attack
surfaces that attackers can easily access through the system
call interface, e.g., through web browsers and machine learning
runtimes that use GPUs for accelerated rendering and compu-
tation on tensors, respectively.

Fuzzing is a proven method to identify vulnerabilities in
device drivers [59], [57], [46], [39], [69], [32], and can, thus,
mitigate the security risks GPU drivers incur. Prior work
on device driver fuzzing has primarily tackled the following
two well-known challenges: resolving dependencies between
system calls (referred to as P1), and providing high-fidelity
device-side inputs (P2). Addressing the first challenge, also
known as the dependency challenge [26], requires fuzzers
to generate sequences system calls that satisfy execution or-
der (e.g., read(fd) should come after open()) and payload
value constraints (e.g., read(fd) should use as an argument
the return value of open()). This challenge is particularly
pronounced in device driver fuzzing, due to (i) proprietary
input formats (e.g., the arguments of ioctl system calls),
and (ii) long chains of execution order and payload value de-
pendencies between system calls. To address this, researchers
have proposed a variety of static [17], [25] and dynamic [32]
analysis solutions.

The second challenge involves providing high-fidelity
device-side inputs to drivers during fuzzing. A straightforward
way to address this is to use a physical instance of the device
during fuzzing [62], [59], [57]. The physical device require-
ment imposed during fuzzing, however, severely restricts the
usability and scalability of device driver fuzzers, because these
techniques can only be used when at least one hardware device
is accessible, and can scale only to the number of available
hardware devices. To mitigate this problem, researchers pro-
posed ex-vivo driver fuzzing approaches. In contrast to in-vivo
approaches that require hardware while fuzzing drivers [59],
[57], ex-vivo approaches either (i) do not require hardware at
all via hardware access evasion [48] or static analysis [17],
[56], [69], or (ii) use device hardware only while recording
normal device driver executions which are reproduced later
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without hardware via replay [39], [32].

The latter line of work, which employs record-and-replay
for a more effective ex-vivo driver fuzzing, is particularly
promising: Record-and-replay can mitigate the dependency
challenge (P1) to a large extent because recordings consist
of a sequence of input events that already satisfy ordering and
value dependencies, while also addressing the device-side input
requirement problem (P2). However, achieving high-fidelity
record-and-replay is challenging (referred to as P3) because
of the well-known nondeterminism problems [32]. Any factors
outside the scope of record-and-replay (e.g., precise timing
of interrupts and input events) can easily cause discrepancies
between recorded and replayed executions. Moreover, even
though record-and-replay accurately captures inputs that sat-
isfy all aforementioned constraints on the device side, it may
not serve new, previously unseen I/O requests generated during
fuzzing. Though it is theoretically possible to emulate all
possible hardware behaviors in software, this entails substantial
engineering efforts. Prior work only partially addresses this
problem by deriving rules from recorded device I/O behaviors
and performing rule-based I/O emulation [39].

This paper proposes Moneta, a new ex-vivo approach to
GPU driver fuzzing that statefully fuzzes GPU drivers by
accurately and quickly recalling past in-vivo driver execution
states at scale. Our key insight is that we can overcome the
fidelity challenges of record-and-replay (P3) by combining
it with a deterministic past execution state recall technique:
snapshot-and-rehost. Snapshot-and-rehost works by taking a
live snapshot of the GPU driver normally operating with a real
GPU and a GPU workload, and rehosting the snapshot in an
ex-vivo, off-GPU environment to reproduce the state captured
in the snapshot. Since the GPU driver states recalled from
snapshots precisely mirror the outcomes of past in-vivo driver
executions with real GPU applications and GPU hardware,
they significantly alleviate the challenges of accurate record-
and-replay and I/O emulation during ex-vivo fuzzing.

At a high level, Moneta runs GPU workloads such as
rendering jobs, during which Moneta (i) takes a snapshot
of the driver state, and (ii) records the input events (e.g.,
ioctl calls) delivered to the GPU driver immediately after
taking the snapshot. Moneta starts fuzzing from past driver
execution states it accurately recalls from these snapshots
and post-snapshot recordings. These recalled execution states
enable stateful and, therefore, more effective fuzzing of GPU
drivers, effectively circumventing the dependency challenge
of kernel driver fuzzing (P1) and the fidelity challenges of
record-and-replay (P3). Moreover, Moneta, being an ex-vivo
driver fuzzing approach, significantly mitigates the hardware
requirement (P2), which facilitates GPU driver fuzzing at
scale. While there exists prior work that addresses a subset
of these problems, Moneta is the first work that addresses
all of them simultaneously. In particular, Moneta diverges
(i) from existing snapshot-based fuzzing approaches [32] in
that Moneta creates snapshots in an in-vivo environment and
restores them in an ex-vivo fuzzing environment, and (ii) from
existing ex-vivo driver fuzzing approaches [48], [39] in that
Moneta mitigates the need for fully accurate I/O emulation by
restoring in-vivo driver snapshots.

The concrete design goals of Moneta are threefold: (i) en-
suring applicability across a wide range of GPU drivers,

including both desktop and mobile GPU drivers, (ii) support-
ing large-scale GPU driver fuzzing in a typical x86 server
environment, and (iii) keeping driver execution states alive
in an ex-vivo environment for stateful replay and fuzzing.
To this end, Moneta first runs GPU drivers within a vir-
tual machine with direct passthrough access to a GPU. We
construct this virtual machine using our proposed emulator-
rehostable virtualization principle that applies to both x86-
and ARM-based commodity machines equipped with various
GPUs. Moneta takes snapshots of the entire virtual machine
to capture GPU driver execution states, which we then rehost
in a virtual machine (possibly with an emulated CPU) that
we can easily duplicate on typical x86 servers for large-scale
GPU driver fuzzing. During rehosting, Moneta fully preserves
the live driver state kept in the snapshot (i.e., the live contexts
that the driver established with real GPU and GPU workloads).
Finally, Moneta starts replaying and fuzzing from such a deep,
live state of the driver recalled from its past executions to more
effectively find bugs than existing fuzzers.

Our evaluation shows that Moneta can fuzz a wide range
of GPU drivers, including NVIDIA, AMD Radeon, and even
ARM Mali GPU driver. We conducted 128-instance paral-
lel fuzzing of each driver on a 128-thread x86 server. The
snapshots and post-snapshot recordings were effective at mak-
ing fuzzing stateful. Using Moneta, we found 10 previously
unknown bugs: five in NVIDIA GPU drivers, three in the
AMD Radeon drivers, and two in the ARM Mali kernel-mode
GPU drivers. Of these, there were four bugs we only found
thanks to Moneta’s capability of accurately recalling past in-
vivo execution states for stateful fuzzing. Moneta increased
the coverage of GPU drivers at the basic block level (by up
to 137.8% on average when fuzzing the NVIDIA GPU driver)
over baselines that are stronger than state-of-the-art.

To summarize, we make the following contributions:

• Ex-Vivo Approach to GPU Driver Fuzzing: Our ex-
vivo approach dubbed Moneta synergistically combines
snapshot-and-rehost and record-and-replay, which enables
(i) stateful GPU driver fuzzing by using snapshots and
recordings, and (ii) large-scale fuzzing by duplicating
snapshots and recordings.

• GPU Stack Virtualization & Introspection Tech-
niques: We present (i) GPU stack virtualization tech-
niques (i.e., emulator-rehostable processor virtualization
and passthrough I/O virtualization of GPUs with built-
in IOMMUs) tailored to large-scale fuzzing of all the
mainstream GPU drivers, and (ii) ptrace- and hypervisor-
based GPU stack introspection techniques that enable
stateful GPU driver fuzzing.

• Real-World Impact: We open-sourced our prototype
implementation of Moneta1, using which we found 10
bugs in 3 GPU drivers and significantly increased the
coverage of the GPU software stack in the Linux ker-
nel. The respective vendors confirmed all bugs after our
responsible disclosure and have assigned 5 CVEs.

1Available at: https://github.com/yonsei-sslab/moneta
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II. BACKGROUND & MOTIVATION

A. GPU Stack Overview

The software stack that supports modern GPU graphics and
computing workloads contains several components a user-
space application could, theoretically, interact with directly:

1) A Graphics or Computing Library that exposes an API
such as OpenGL [54], Vulkan [61], or OpenCL [34]. This
library serves as an intermediary between the application
and the GPU driver by translating high-level API calls
into lower-level calls the user-mode GPU driver can
process.

2) The User-Mode GPU Driver translates the aforemen-
tioned calls into hardware-specific data and instructions,
which it then submits to the kernel-mode GPU driver
using system calls.

3) The Kernel-Mode GPU Driver manages the allocation
and utilization of GPU resources such as buffer objects,
texture units, and shader/compute units. It also coordi-
nates safe access to the GPU, forwards the GPU data
and instructions it receives through its user space-facing
API to the GPU hardware, and, optionally, returns data it
receives from the hardware.

As a performance optimization, most kernel-mode GPU
drivers allow GPU-resident buffer objects to be mapped di-
rectly into the user mode-accessible portion of the appli-
cation’s address space using Memory-Mapped I/O (MMIO).
This mechanism can dramatically improve the performance of
certain rendering and computing workloads since it allows the
user-mode stack to submit certain kinds of data directly to
the GPU, completely bypassing the kernel-mode GPU driver.
The graphics or computing API can expose this functionality
directly to the application. OpenGL, for example, allows
applications to temporarily or persistently map data buffers
stored in GPU memory into their address space. However, the
user-mode GPU stack can also use MMIO buffers internally,
even without the application’s explicit request.

Security Implications. GPU drivers have an exceptionally
broad attack surface thanks to their layered architecture and
memory-mapped GPU buffer optimizations. Whereas some
peripheral drivers need only to worry about attacks via their
system call interface, adversaries can target the GPU stack by
(i) calling regular functions in the graphics/computing library
or the user-mode GPU driver, (ii) corrupting internal state of
the graphics/computing library or user-mode GPU driver, (iii)
calling functions in the kernel-mode GPU driver using system
calls, (iv) corrupting GPU-resident MMIO buffers, or (v) any
combination thereof.

Not every attack on the GPU stack is equally danger-
ous, however. For example, attacks that only compromise
the graphics/computing library or user-mode GPU driver [47]
have a limited impact on the rest of the system. Attacks that
compromise the kernel-mode GPU driver [13] are much more
dangerous, as they give adversaries full control over the kernel
and potentially the entire system. Somewhere in the middle are
attacks that compromise the GPU, which only break isolation
of GPU contexts. Adversaries could use the compromised
GPU as a stepping stone to kernel compromise [27]. However,

Table I: Comparison of two methods that can recall past
execution states of a program.

Execution State Recall ... Snapshot-and-Rehost Record-and-Replay
Fidelity High, deterministic Low, nondeterministic

Speed Fast Slow

Granularity Coarse-grained Fine-grained
Traceability Low High

these types of attacks can be mitigated using IOMMU-based
GPU isolation [42]. For this reason, we focus only on finding
vulnerabilities that (i) are in the kernel-mode GPU driver, (ii)
could be exploited from a user-space application, and (iii) do
not require compromised GPU firmware (see §III).

B. Device Driver Fuzzing

In-Vivo Driver Fuzzing. A key challenge to device driver
fuzzing is generating sequences of input payloads (e.g., system
calls and I/O messages) that satisfy certain value and ordering
constraints. For example, GPU driver-specific ioctl com-
mands should be executed on the file descriptor returned by the
open call on the GPU’s device file. To address this so-called
dependency challenge [26] (referred to as P1), one line of
prior work uses in-vivo fuzzing [59], [57], [62], which fuzzes
the target driver while it operates in a normal usage scenario,
driven by the system calls and I/O messages generated by a real
application and a real device. Charm [59] and PeriScope [57],
for example, take an in-vivo approach to fuzz the system call
and peripheral interface of device drivers, respectively. This
approach effectively circumvents the dependency challenge for
driver fuzzers, because the real input generators can easily lead
the driver into various states. This advantage comes at the cost
of usability and scalability, however: fuzzing can be conducted
only when one or more hardware devices are available, and
parallel fuzzing scales only to the number of available devices.

Ex-Vivo Driver Fuzzing. To mitigate the hardware require-
ment imposed by in-vivo approaches (referred to as P2),
researchers have proposed ex-vivo approaches to device driver
fuzzing [39], [32], [48]. Ex-vivo fuzzers operate in a con-
trolled, device-free environment. One line of work replaces
the device driver with a mock object [48], while another
reproduces hardware behavior by recalling past observations
of normal driver executions with real hardware [39], [32].

The observations could be generated in two distinct forms:
(i) recordings of all the external inputs delivered to the driver
during its normal execution [39], [32], and (ii) snapshots
capturing complete driver execution states at specific points in
time. One can then recall these observations either by replaying
the recordings [39], [32], or by rehosting the captured snap-
shots (used by prior work primarily for embedded firmware
analysis [50], [29]). Ex-vivo fuzzing facilitates large-scale
parallel fuzzing of drivers, because, unlike physical instances
of hardware, observations can easily be duplicated.

C. Recalling Past Driver Executions for Fuzzing

Ex-vivo fuzzers can recall past driver executions either via
record-and-replay (RnR) or snapshot-and-rehost (SnR). We
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summarize their general strengths and weaknesses in Table I
and elaborate on their use in fuzzers below.

Why (Not) Record-and-Replay? RnR typically works by
(i) recording all external input events consumed by the driver
(i.e., system calls and I/O messages delivered to the driver),
and (ii) replaying these recorded events to reproduce the driver
state observed while recording [39], [32]. RnR can, in theory,
reproduce all the driver execution states observed during a
single observation (i.e., recording) session by replaying a
subsequence of the recorded input events; this means that
fuzzing can start from a diverse set of driver execution states,
and, therefore, it can trigger diverse driver code paths and bugs.

Precise and efficient record-and-replay, however, is chal-
lenging (referred to as P3). Although deterministic replay can
accurately recall past executions [20], it requires recording
and replaying all external and nondeterministic events such
as peripheral device interrupts and time elapses, which, unfor-
tunately, could significantly degrade fuzzing speed. Though it
incurs less overhead than deterministic replay, nondeterminis-
tic replay cannot accurately recall past driver execution states
because of the highly concurrent, timing-sensitive nature of
device drivers [32].

Despite these unaddressed challenges, the traceability of
RnR, i.e., the ability to trace back how a given execution
state was derived, significantly enhances fuzzing, because
recordings can be used as initial input corpora for evolutionary
fuzzing [39], [32]. As long as the external input interface
remains backward-compatible, the traceability also enables
reusing recordings to fuzz differently configured targets (e.g.,
the driver configured with a kernel of a different version).

Why (Not) Snapshot-and-Rehost? The SnR approach works
by (i) snapshotting the complete state of the driver after its
normal operation with a physical device (e.g., GPUs), and
(ii) rehosting the snapshot in an off-device environment. SnR,
which became popular recently in the context of embedded
firmware analysis [50], [29], can deterministically and quickly
recall the captured driver state via snapshot restoration, and it
can explore deep driver code paths by starting fuzzing from
the recalled state.

There are limitations, however. First, SnR can recall only
a subset of driver execution states, i.e., the driver’s states
captured at coarse-grained snapshot intervals. This means that,
by solely using snapshots, one can only fuzz the driver from
this subset of states, and not any other states between them.
Second, SnR does not remember the lineage of (i.e., the
sequence of input events that led to) the captured driver
execution state, meaning that it alone cannot provide any input
corpora that can facilitate evolutionary fuzzing. Third, since
each snapshot captures the exact state of a specific version of
the target software (e.g., the driver and kernel), it cannot be
reused to reproduce the same state of the target configured
differently.

III. OVERVIEW

We now introduce Moneta, a new ex-vivo approach to GPU
driver fuzzing, which synergistically combines two methods
for recalling past execution states at scale—snapshot-and-
rehost (SnR) and record-and-replay (RnR)—and uses the re-
called driver states for large-scale, stateful GPU driver fuzzing.

Take Snapshot

State A

Post-Snapshot
Recording

State A

Snapshot
Rehosting

Replay

Unexpected
State

Bug
Found1

2

State B State B

FuzzedReproducedCaptured

GPU
Workload

3

4

...

Stateful
Fuzzing

Fig. 1: GPU driver execution states—either captured, recalled,
or fuzzed—under (a) a real GPU workload in our in-vivo
observation environment, and (b) stateful fuzzing in our ex-
vivo fuzzing environment.

We illustrate our approach in Figure 1: Moneta first captures
various in-vivo GPU driver execution states while a GPU work-
load is executing on a real GPU, 1 by discretely snapshotting
driver states, and 2 by continuously recording the external
inputs subsequently delivered to the driver, thereby creating
snapshots and post-snapshot recordings, respectively. Then,
Moneta recalls these captured driver states in an off-GPU, ex-
vivo environment, 3 by rehosting the snapshot, and then 4

by replaying its corresponding post-snapshot recording. During
replay, Moneta fuzzes GPU drivers statefully from their past
execution states as it recalls them at a fine-grained granularity.

The concrete design goals of Moneta are threefold:

G1. Wide Applicability: Moneta should be a generic ex-
vivo GPU driver fuzzer, which, unlike prior work [39],
applies to all mainstream GPU drivers, including those
for discrete and integrated GPUs.

G2. x86-Host Rehostability: Moneta should create an ex-vivo
fuzzing environment that it can host on a typical multi-
core x86 host to aid large-scale fuzzing.

G3. Live-State Reproducibility: Moneta should reproduce
live states of the driver in an ex-vivo environment so that
fuzzing can exercise stateful driver code paths.

Figure 2 depicts an overview of Moneta’s four key com-
ponents designed to achieve these goals. In the observation
phase, 1 Moneta first creates a virtual machine serving as
the observation environment. The entire GPU software stack,
including the target GPU driver, runs in this environment.
Moneta uses emulator-rehostable virtualization to create the
virtual machine, and gives the virtual machine passthrough
access to the physical GPU whose driver we want to fuzz
(see §IV-A). 2 Moneta then captures various states of the
GPU driver while executing a GPU workload on the physical
GPU. Moneta uses both virtual machine- and process-level
introspection mechanisms to automatically generate both vir-
tual machine snapshots and their corresponding post-snapshot
recordings (§IV-B). In the fuzzing phase, 3 Moneta rehosts
snapshots and brings the captured driver states back to life in
a number of virtual machines on x86 hosts. This allows us to
conduct fuzzing at scale and without the physical GPU. During
this process, Moneta carefully transitions the input space
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Observation Env. Snapshot and
Recording Generation

(Section 4.2)
GPU Workload

Virtual Machine
Snapshots

Post-Snapshot
RecordingsGPU Driver

Processor and I/O
Virtualization
(Section 4.1)

State-Preserving
Snapshot Rehosting

(Section 4.3)
Stateful GPU Driver

Fuzzing
(Section 4.4)

Fuzzing Env.

Fuzzer
GPU Driver

(a) Observation Phase (b) Fuzzing Phase

Bugs

1 2

3

4

Fig. 2: Interplay between Moneta’s four key components.

Table II: Moneta’s observation and fuzzing environment setup
used when fuzzing a variety of GPU drivers. All observation
environments use hardware-accelerated CPU virtualization.
Fuzzing environments are all hosted on x86 servers without
GPUs. This facilitates large-scale GPU driver fuzzing.

Target GPU
Driver

In-Vivo Driver
Observation Environment

Ex-Vivo Driver
Fuzzing Environment

CPU vCPU GPU CPU vCPU GPU
NVIDIA &

AMD Radeon x86 HW-accel.
x86 Present x86 HW-accel.

x86 Not Present

ARM Mali ARMv8 HW-accel.
ARMv8 Present x86 Emulated

ARMv8 Not Present

of GPU drivers into a fuzzer-reachable one by substituting
the driver’s original input source with Moneta’s own input
providers, all while keeping the driver alive (§IV-C). 4 Moneta
finally performs stateful fuzzing of the GPU driver in these
virtual machines by using the driver state restored from the
snapshot as a starting point for fuzzing, and its post-snapshot
recordings as initial corpora for evolutionary fuzzing (§IV-D).

Threat Model. Our goal is to use Moneta to find vulner-
abilities in kernel-mode GPU drivers that adversaries could
feasibly trigger through their user-space-accessible interfaces.
This is in line with prior work on finding vulnerabilities in
GPU drivers [13], [39], and in other kernel-mode drivers [17],
[25], [74]. The attacker could be either a local attacker who
(i) has access to the device file interface exposed by the GPU
driver modules, and (ii) wants to escalate their privileges to
root, or a remote attacker who has remotely compromised a
process that has an already established communication channel
with the GPU driver, e.g., for accelerated rendering, video
encoding/decoding, or machine learning.

IV. DESIGN

A. Processor and I/O Virtualization

The goals of Moneta’s observation phase are to generate
snapshots of driver states and to record external inputs while
executing realistic workloads on the GPU whose driver we
want to fuzz. We achieve the former by running the driver in-
side a virtual machine and capturing driver states in the form of
full virtual machine snapshots. Unlike previous driver fuzzers
that instantiate driver-running virtual machines in an ex-vivo
environment that lacks corresponding physical devices [59],
[48], we instantiate this virtual machine initially on a host
equipped with a physical GPU. By giving the virtual machine
passthrough access to the physical GPU, Moneta can run native
GPU drivers (i.e., the fuzzing target) and GPU workloads
inside the virtual machine. To run the driver and the workload

Host  

 CPU

 Memory

GPU

 Guest Memory DMA Buffer

IOMMU
DriverSW

HW

Direct Memory AccessDirect MMIO

VFIO
Driver

MMU (I/O)MMU3
4

4

GPU
Job

I/O Config. Path
I/O Path

CPU Feature
Subsetting

KVM
Driver

Emulator-
Rehostable

Guest
Vendor's

GPU Driver

vCPU Config. Path

1

2

Fig. 3: Moneta’s CPU, memory, and GPU (I/O) virtualization
used in the observation phase.

at native speed, we use the hardware-accelerated CPU virtu-
alization features available on most GPU-equipped hardware
platforms. In the subsequent fuzzing phase, we rehost virtual
machine snapshots generated from a GPU-equipped machine
onto a GPU-free and potentially emulated-CPU environment
(see Table II), which is more suitable for large-scale fuzzing.

Emulator-Rehostable Processor Virtualization. To facilitate
large-scale fuzzing of a wide range of GPU drivers, including
those for discrete and integrated GPUs, we propose a technique
called emulator-rehostable virtualization. The idea is to create
a virtualized environment on a GPU-equipped machine such
that our generated virtual machine snapshots can be rehosted in
an emulator with full system virtualization capabilities. Being
able to rehost driver snapshots in an emulator allows us to
fuzz the driver on machines that are far more powerful than
the machines used in the observation phase. For example, we
can take snapshots of the ARM Mali GPU driver running on
an inexpensive ARM SoC equipped with an SoC-integrated
ARM Mali GPU. Then, as shown in Table II, we can rehost
the generated snapshots on a high-end x86 host with dozens
of CPU cores to run several high-throughput fuzzer instances
in parallel.

In theory, it should be possible to rehost snapshots of fully
virtualized guests into virtualization environments with varying
degrees of emulation support and capabilities, including CPU
emulators that implement the CPU entirely in software. This
is because an ideal full virtualization would provide guests
with a complete abstraction of the physical hardware, meaning
that guests are unaware of whether they are using emulated,
virtualized, or physical hardware.

In practice, however, most CPU emulators do not provide
such ideal full virtualization as they lack support for many
CPU features available in physical production CPUs. ARM’s
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Fig. 4: Moneta’s snapshot and recording generation (left), and state-preserving snapshot rehosting followed by stateful replay
and fuzzing (right).

Fixed Virtual Platforms (FVPs) [6] are one exception since
they accurately simulate most of the ARM CPU features.
Unfortunately, FVPs are known to be substantially slower than
other CPU emulators and, therefore, do not meet our design
goals. To overcome the lack of CPU feature support in the
emulators we could feasibly use in our fuzzing environment,
we propose and implement CPU feature subsetting. The idea is
to disable or restrict access to CPU features in our observation
environment if said features are not available in the fuzzing
environment (see 1 in Figure 3). As we will show in §V,
CPU feature subsetting allows us to rehost virtual machine
snapshots, even those of KVM-accelerated ARM guests [18],
onto purely-emulated ARM CPUs running on x86 hosts.

Passthrough GPU I/O Virtualization. To run target GPU
drivers inside our emulator-rehostable virtual machine (i.e., the
guest), Moneta gives the virtual machine passthrough access
to the GPU hardware. Enabling passthrough access requires
three steps. First, Moneta gives the guest’s virtual CPU direct
access to the GPU’s memory-mapped I/O (MMIO) regions by
creating MMU page table entries that translate guest-virtual
addresses to the host-physical addresses of the GPU’s MMIO
region (see 3 in Figure 3). Second, Moneta forwards the
GPU’s physical interrupts as virtual interrupts to the guest
virtual machine. Third, Moneta gives the GPU DMA access to
the guest-physical memory and creates page table entries in the
GPU’s IOMMU. These entries translate I/O virtual addresses
(IOVAs) into the host-physical addresses of the guest VM’s
DMA buffers, so that the GPU can directly access the guest’s
system memory using IOVAs.

The third step is not as straightforward as the first two since
we need to consider the type and architecture of the IOMMU
carefully. Discrete GPUs such as PCIe NVIDIA GPUs are
typically behind a standalone IOMMU, which is controlled
by an IOMMU driver running on the host (see 4 in Figure 3).
In this case, we can enable DMA by making the host populate
IOMMU entries that translate IOVAs into the host-physical
memory addresses of the guest’s DMA regions. This means
that we can run unmodified GPU drivers inside the guest, when
virtualizing GPUs with standalone IOMMUs.

In contrast, virtualizing SoC-integrated GPUs such as ARM
Mali GPUs requires modification to their drivers, because
integrated GPUs typically have a built-in IOMMU that is under

the GPU driver’s control (see 4 in Figure 3). This means
that the GPU driver inside the guest must set up mappings
from IOVAs to host-physical addresses, even though the guest
has no access to the guest-physical to host-physical address
mappings. To support these types of IOMMUs, we modify the
GPU driver to invoke custom hypercalls to obtain host-physical
memory addresses corresponding to guest virtual addresses
when populating IOMMU page table entries. Moneta’s virtual
machine monitor in the host handles these custom hypercalls.
To maintain rehostability of virtual machines, we implement
our custom hypercall handlers, invoked by the guest during
fuzzing, in the emulator. We detail our implementation of
passthrough I/O virtualization of the ARM Mali GPU that has
a built-in IOMMU in §V.

B. Snapshot and Recording Generation

Moneta observes the execution of the target GPU driver while
it is executing inside an emulator-rehostable virtual machine
that has a real, physical GPU assigned to it (see §IV-A). Inside
this virtual machine, Moneta runs real GPU workloads such
as a rendering job, during which we generate the following
observations that capture various states of the target GPU
driver: (i) virtual machine snapshots that capture the exact CPU
and memory states, and (ii) recordings of system calls invoked
by GPU workloads.

We use a Guest Agent, which leverages process and virtual
machine introspection mechanisms to generate these observa-
tions automatically. This Guest Agent, shown as 1 in Figure 4,
is a user-mode process that is part of Moneta and runs in the
guest virtual machine. The agent uses the Linux ptrace API to
interpose itself between the guest kernel and the GPU process
that generates the GPU workloads [2]. The agent can intercept,
inspect, and possibly manipulate the GPU process’ system
calls. Moneta uses these interposition points (i) to instruct
the hypervisor to generate snapshots, (ii) to record the system
calls invoked by the workload process, and (iii) to instantiate
a Syscall Executor in the guest user space during fuzzing (see
§IV-C).

Virtual Machine Snapshot Generation. Moneta’s Guest
Agent can automatically generate virtual machine snapshots
at each interposed system call by executing a hypercall that
sends a snapshot request to the hypervisor. We configured the

6



Guest Agent to create snapshots at every fixed number of ioctl
calls that operate on the GPU driver’s device files. To minimize
the storage space consumed by the generated snapshot images,
Moneta runs the guest virtual machine with a copy-on-write
file system image, so only the blocks modified with respect to
the original image are serialized into each generated snapshot
image.

Post-Snapshot Recording Generation. As explained in §II-C,
one can only recall driver states at a coarse-grained granularity
by restoring snapshots. For fine-grained driver execution recall
past the snapshot point, Moneta also records external inputs
provided to the GPU driver after each snapshot creation,
thereby producing post-snapshot recordings. To capture ex-
ternal inputs, Moneta’s Guest Agent records all the system
calls (e.g., ioctl calls) made by the GPU workload process.
In addition to the system calls, Moneta also records the I/O
messages delivered to the GPU driver. Our current proto-
type implementation records I/O messages delivered through
MMIO channels and through interrupts.

C. State-Preserving Snapshot Rehosting

After generating snapshots and their corresponding post-
snapshot recordings, Moneta rehosts the snapshots in an ex-
vivo environment created on x86 hosts.

Implanting Moneta’s Input Executors. Upon resuming the
guest, Moneta uses its Guest Agent to replace the original
input executor processes (i.e., the GPU workload process and
the Guest Agent itself) that drove the in-vivo execution of the
GPU driver in the observation phase, with the Syscall Executor
process shown as 2 in Figure 4. The Guest Agent does this by
either (i) forcing one of the GPU process’ threads to invoke the
execve syscall while killing the other threads and the Guest
Agent, or (ii) by killing the entire GPU process and calling
execve from the Guest Agent process itself. Simultaneously,
Moneta creates an emulated GPU shown as 3 in Figure 4 in
the virtual machine monitor in place of the physical GPU,
either as a PCI device or a platform device depending on
the bus that the GPU was originally attached to. Upon re-
placement, Moneta gains full control over the GPU driver’s
input space, enabling it to provide an arbitrary sequence of
input events, whether they are recorded input events or fuzzer-
generated ones, directly to the driver.

An alternative approach to delivering arbitrary input events
to the driver is on-demand hooking [15], [57], where input
events generated by an existing input provider, e.g., GPU
applications, are hooked as they are executed and mutated
on the fly. We chose a replacement-based approach over a
hooking-based one because the latter does not allow arbitrarily
inserting or deleting input events; it only allows mutating
input events as generated by the existing input provider. Fur-
thermore, hooking-based approaches would require the GPU
hardware [57], i.e., the device-side input provider for the driver,
which hinders large-scale fuzzing.

Preserving Live Driver-Internal Contexts. However, a
challenge to the replacement approach is preserving the driver-
internal state captured in the observation environment across
replacements. This state includes (i) context information and
metadata for the user-mode process that generated the GPU

Algorithm 1 Moneta’s stateful GPU driver fuzzing.

1: procedure FUZZ(s, R(k)
s )

2: ▷ s: A virtual machine snapshot
3: ▷ R

(k)
s : A sequence of k syscalls recorded after creating s

4: Corpus← R
(k)
s ▷ Init. the corpus with a recording

5: Cov = ∅ ▷ Init. coverage as an empty set
6: LiveCtx← RESTORE(s) ▷ Recall driver state using s
7: RUNEXECUTOR(LiveCtx) ▷ Replace input executors
8: checkpoint ▷ Create a checkpoint
9: if mutation then ▷ Fuzzing loop iteration starts

10: R
(n|0≤n≤k)
s ||F ← MUTATE(SELECT(Corpus))

11: EXECUTE(R(n)
s ) ▷ Recall driver state using R

(n)
s

12: else if generation then
13: R

(n|n=0)
s ||F ← GENERATE

14: end if
15: NewCov ← EXECUTE(F ) ▷ Exec. fuzzer-mutated or

-generated input events
16: if NewCov ∩ Cov ̸= ∅ then
17: Corpus = Corpus ∪ (R

(n)
s ||F )

18: Cov = Cov ∪NewCov
19: end if
20: restore ▷ Go back to the checkpoint
21: end procedure

workloads (User-Mode Context), and (ii) context information
and metadata for the physical GPU (GPU Context). Moneta
transfers this state to the fuzzing environment and needs to
ensure that the state remains valid after the transfer. If we
inadvertently invalidate or discard any of the state, then the
fuzzing phase could effectively start statelessly from the initial
state of the driver.

1) User-Mode Context: Moneta captures the user-mode con-
text using its Guest Agent. Among other things, this agent
maintains a list of open file descriptors for the Moneta-
controlled user-mode process that runs in the observation
environment. During rehosting, the Guest Agent replaces
the GPU process and the agent with Moneta’s Syscall
Executor, and it transfers file descriptors that refer to the
GPU driver’s device files to the Syscall Executor process.

2) GPU Context: While replacing the physical GPU with an
emulated GPU, Moneta creates an illusion that the GPU
has remained the same to preserve the driver’s context
established with the physical GPU. To this end, Moneta
instantiates the emulated GPU at the same address on
the same bus to which the physical GPU was originally
attached, and suppresses the device detach and re-attach
events on the bus when the snapshot is restored. The
GPU driver can then continue to execute, unaware of
the GPU replacement. During replay and fuzzing, Moneta
redirects all interactions between the driver and the GPU
to the emulated GPU (see §IV-D). We emulate MMIO and
IRQ responses in the emulated GPU using post-snapshot
recordings, as detailed in §V.

D. Stateful GPU Driver Fuzzing

Moneta performs stateful fuzzing2 of GPU drivers to find
stateful bugs in them [7]. Moneta achieves this by fuzzing

2Following Ba et al. [7], by stateful fuzzing, we refer to fuzzing tailored
to find “stateful” bugs, which require executing a specific sequence of input
events.
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r1 = fetch_preserved_fd$nvidia()
r2 = fetch_preserved_fd$nvidia()
ioctl$nvidia(r1, 0xc020462a,

&(0x7f0000072ec0)="0200d0c10200d0c13601000000...")↪→

ioctl$nvidia(r1, 0xc020462a,
&(0x7f0000074f00)="0200d0c10200005c0c22802000")↪→

ioctl$nvidia(r1, 0xc020462a,
&(0x7f0000074f40)="0200d0c10200005c1022802000")↪→

ioctl$nvidia(r1, 0xc020462a,
&(0x7f0000076f80)="0200d0c10200005c0230802000...")↪→

sysinfo(&(0x7f0000078fc0)=""/134)

Fig. 5: A simplified syzkaller program representing a post-
snapshot syscall trace of NVIDIA’s GPU driver. Moneta
triggered a previously unknown slab-out-of-bounds bug by
mutating the third argument of one of the ioctl calls.

the driver from states recalled via SnR and RnR. We formally
describe Moneta’s fuzzing algorithm in Algorithm 1, and
provide a detailed description below.

Deterministic Live Driver State Recall (Line 6 – Line 7).
Moneta’s fuzzing loop starts by deterministically recalling
in-vivo driver execution states via snapshot restoration (see
Line 6). During this process, Moneta preserves the GPU and
user-mode contexts the GPU driver expects, as explained in
§IV-C (Line 7). Moneta uses these live driver-internal contexts,
captured in each snapshot and preserved by Moneta across
rehosting, to make fuzzing stateful. In each iteration of the
fuzzing loop, Moneta uses syzkaller to generate a program
to run after the snapshot restoration. In most cases, Moneta
cannot run this program as-is because it may refer to the driver-
internal context whose file descriptor handles have changed
during rehosting. For example, the syzkaller-generated pro-
gram might execute system calls on files whose file descriptor
changed when Moneta transferred them to the Syscall Executor
process. This can happen when a file’s original file descriptor,
as recorded in the observation phase, is unavailable in the
context of the Syscall Executor.

To solve this problem, Moneta generates each program by
(i) first inserting pseudo system calls that fetch the correct
file descriptor handles by consulting metadata recorded during
the observation phase, and (ii) then generating the rest using
these fetched handles. Figure 5 shows an example program,
which contains two such pseudo system calls at the beginning.
Subsequent system calls then use the resources these pseudo
system calls produce. This allows Moneta (i) to faithfully
express post-snapshot traces of system calls, e.g., ioctl calls
invoked on existing file descriptors, and also (ii) to generate
new stateful system calls that use existing resources as their
arguments during fuzzing.

Fine-Grained Driver State Recall & Stateful Fuzzing
(Line 9 – Line 19). Moneta records the sequence of system
calls invoked immediately after each snapshot creation, as
this is likely a valid sequence of system calls that have
the dependencies between them satisfied (thus addressing
P1). Moneta uses these post-snapshot recordings as an initial
seed corpus of Moneta’s evolutionary fuzzing. When a post-
snapshot recording is selected from the corpus and mutated
during fuzzing (see Line 10 in Algorithm 1), the mutated
program comprises a prefix of the recording (i.e., n out of

k recorded input events, denoted by R
(n)
s in Algorithm 1)

followed by a fuzzer-mutated or fuzzer-generated part (denoted
by F ). Observe that any prefix of a recording, once executed
(see Line 11), can reproduce a certain driver state observed
while recording. Moneta then statefully fuzzes the driver from
the past execution state reproduced via replay by executing the
fuzzer-mutated or -generated part (Line 15).

State-Resetting Fuzzing Loop via Checkpoint-Restore
(Line 8 & Line 20). Moneta constructs a state-resetting
fuzzing loop by employing checkpoint-restore. When a new
fuzzing campaign starts, Moneta creates a checkpoint of the
entire virtual machine (Line 8) immediately after a successful
state-preserving snapshot rehosting (see §IV-C), which installs
the Syscall Executor controlled by Moneta’s fuzzer, but before
the executor consumes any fuzzer-generated input. This check-
point, unlike the snapshots we generate during the observation
phase, is ephemeral; that is, it is used only for the duration
of each fuzzing campaign. Moneta restores this ephemeral
checkpoint at the end of each fuzzing loop iteration (Line 20),
so the next input can always execute from a clean, recalled
state of the driver.

V. IMPLEMENTATION DETAILS

CPU Feature Subsetting for ARMv8-to-x86 Rehosting. We
implemented our emulator-rehostable virtualization technique
(see §IV-A) for the ARMv8-to-x86 virtual machine rehosting
scenario; that is, we rehosted virtual machine snapshots taken
from an ARMv8 SoC onto an x86 (64-bit) machine running
QEMU 4.0.0’s ARMv8 CPU emulator called max [12]. We
configured the ARMv8-based observation environment to use
hardware-accelerated virtualization via Linux’s Kernel Virtual
Machine (KVM) [44]. We found that max lacks many features
pertaining to performance monitoring and security enhance-
ments. Specifically, it does not (fully) emulate the following
features of ARMv8: Performance Monitoring Unit (PMU),
Privilege Access Never (PAN), User Access Override (UAO),
and Interrupt Translation Service (ITS) provided by ARMv8’s
Generic Interrupt Controller v3 (GICv3). We implemented our
proposed CPU feature subsetting by removing all of the above
features from our observation environment at the hypervisor
level, either by removing them from the KVM abilities, or by
modifying the configuration registers of the virtual CPUs.

NVIDIA/AMD GPU Passthrough. GPU passthrough requires
configuring the guest virtual machine such that (i) the guest has
direct access to the GPU’s MMIO regions, (ii) GPU’s interrupts
are forwarded to the guest when raised, and (iii) GPU’s
IOMMU translates IOVAs to the physical memory addresses
assigned to the guest (see §IV-A). NVIDIA and AMD GPUs
are discrete GPUs attached to the PCIe bus and are behind
a standalone IOMMU. Moneta assigns them to guests using
Linux’s VFIO mechanism [60]. The VFIO driver running in
the host kernel configures the IOMMU driver such that the full
system memory used by the GPU-assigned guest is exposed
to the GPU for DMA.

ARM Mali GPU Passthrough. Unlike discrete GPUs that
can use the IOMMU functionality provided by PCIe’s root
complex, an SoC-integrated GPU such as an ARM Mali
GPU typically uses its own built-in IOMMU, and this built-
in IOMMU is managed by the GPU driver running inside
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the guest (see §IV-A). We repurposed the built-in IOMMU
for GPU passthrough by modifying the GPU driver. Specifi-
cally, we reprogrammed the translation entries for the built-
in IOMMU such that the IOVAs the GPU uses for DMA
translate to the host-physical address space rather than the
guest-physical address space. To this end, Moneta introduces
a new hypercall that takes as an argument a guest-physical
address and returns its corresponding host-physical address
after pinning the page at that address. Our modified ARM Mali
GPU driver invokes this hypercall and uses the host-physical
address returned by the hypercall when constructing page table
entries for a given IOVA range.

Generating Snapshots & Post-Snapshot Recordings. We
implemented Moneta’s Guest Agent (see §IV-B) based on
strace to monitor and manipulate system call invocations of
the GPU application process [4]. In the observation phase, the
agent serves two primary purposes at each system call: it either
passively observes and records the system call, or it takes a
snapshot of the guest by invoking a hypercall. After creation,
we associate each snapshot with the recording of system calls
that follow. GPU drivers pass references to vendor-specific
(often nested) objects to ioctl calls. We added a minimal
parsing routine in the Guest Agent that records these objects by
copying them into a byte array. This implementation required
a fairly modest amount of manual effort. Generally, we only
needed to figure out the size of each type of object. For ioctl
arguments that refer to nested objects, we also had to customize
our parsing routine to serialize and copy the entire nested
object into the byte array. In the worst case, for a specific
ioctl operation in the NVIDIA drivers, this meant we had to
serialize and copy three levels of objects.

Stateful GPU Driver Replay and Fuzzing. We based our
implementation of Moneta’s stateful fuzzing of the system
call interface of GPU drivers (see §IV-D) on syzkaller [22].
We added support for replaying recorded system calls in
syzkaller by translating the system call recordings into
syzkaller programs so that syzkaller’s input executor
can execute (or replay) them. For device-side inputs, we
(i) recorded all MMIO and IRQ accesses made by the
GPU driver by hooking their calls to corresponding access
functions, (ii) derived rules (i.e., read-only and read-write
rules [39]) based on the recording such that the rules capture
the behavior of each MMIO location of the physical GPU,
and (iii) performed rule-based MMIO and IRQ emulation
via Moneta’s emulated GPU device in the hypervisor. To
implement our state-resetting fuzzing loop (see §IV-D), we
used existing checkpoint-restore mechanisms. When fuzzing
the NVIDIA and AMD GPU drivers, we used an existing
checkpoint-restore implementation for KVM-accelerated x86
virtual machines [58]. When fuzzing ARM Mali GPU driver,
we used QEMU’s virtual machine snapshot and restoration
mechanism.

VI. EVALUATION

A. Snapshot and Recording Generation

Fuzzing Targets: Kernel-Mode GPU Drivers. We target the
following three widely-used kernel-mode GPU drivers:

1) NVIDIA GPU’s Linux driver: We used version
530.41.03 of the official NVIDIA Linux open GPU kernel

Table III: Our target kernel-mode GPU drivers and their size
(in Lines of Code).

GPU Kernel-Mode Driver Source Code LoC
NVIDIA Official, out-of-tree module1 925,157

AMD Radeon drivers/gpu/drm/amd/amdgpu (Upstream) 225,341
ARM Mali drivers/gpu/arm/bifrost2 (Downstream3) 83,260

1 https://github.com/NVIDIA/open-gpu-kernel-modules
2 This driver supports both Bifrost- and Valhall-architecture GPUs.
3 https://github.com/khadas/linux

Table IV: The user-mode GPU drivers, libraries, and the
physical GPUs used to capture the execution states of each
target kernel-mode driver.

Kernel-Mode
GPU Driver

Physical GPU
(HW Architecture)

User-Mode GPU Drivers
& Libraries

NVIDIA
GTX 1650 Super (Turing) libnvidia-egl*.so

libEGL nvidia.so
libnvidia-opencl.so

libcuda.so

RTX 3060 (Ampere)
RTX 4060 Ti (Ada Lovelace)

AMD Radeon Radeon RX 580 (Polaris 20)
libGL*.so

libEGL( mesa).so
lib(Mesa)OpenCL.so

ARM Mali Mali-G610 MP4 (Valhall) libmali-...-wayland.so1

1 libmali-valhall-g610-g15p0-wayland.so

modules3. We chose the open-source module to facilitate
compile-time source code instrumentation.

2) AMD Radeon GPU’s Linux driver: We used AMD
GPU’s Direct Rendering Manager (DRM) driver available
in the upstream Linux kernel (v6.8).

3) ARM Mali GPU’s Linux driver: We used the vendor-
modified version (version number g11p0-01eac0) of
ARM’s official Mali Driver Development Kit (DDK) (ver-
sion number r25p0-01eac0). As explained in §IV-A, we
modified this driver to add support for GPU passthrough
using a built-in IOMMU.

To maximize fuzzing effectiveness, we instrumented these
drivers with two kernel sanitizers: AddressSanitizer [36] and
UndefinedBehaviorSanitizer [51]. Since we insert the neces-
sary instrumentation at compile time, we need source code
access to all drivers we fuzz. Generally, however, we do not
need to modify the source code. The only exception is when we
need to add paravirtualization support to drivers for GPUs with
built-in IOMMUs (e.g., ARM Mali GPUs), as we explained
in §IV-A.

User-Mode GPU Driver/Library & GPU Configurations.
In the observation phase of Moneta, we ran the three target
kernel-mode GPU drivers with the user-mode drivers/libraries
and physical GPUs shown in Table IV. We used either vendor-
specific, closed-source user-mode drivers and libraries that we
installed separately, e.g., libEGL nvidia.so, or the generic
ones included in the guest OS distribution (Debian 11 code-
named “bullseye”) we used, e.g., libOpenCL.so. On the GPU
side, we used the following: For the AMD and ARM GPU

3In NVIDIA’s proprietary driver package, there are two kernel modules: one
open-source and one closed-source module. The open-source kernel module
in the version we used is missing some functionalities (e.g., GPU power
management).
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drivers, we used a dedicated PCIe AMD Radeon RX 580
GPU, and ARM Mali-G610 GPU integrated into the RK3588S
SoC, respectively. For the NVIDIA GPU driver, we used three
recent generations of the PCIe NVIDIA GPUs with different
processor architectures. This variety of NVIDIA GPUs allowed
us to capture a wider range of states of the NVIDIA GPU
driver, because the driver contains many hardware-specific
code paths.

GPU Workload Configurations. We ran several graphics and
compute workloads in our observation phase.

1) As a graphics workload, we chose a WebGL [30] appli-
cation running in the Chromium browser [1]. Specifically,
we visited a website that renders an aquarium scene [5].
We chose this workload because recent work showed that
many GPU driver bugs are exploitable via the WebGL
interface [71].

2) For a compute workload, we used an OpenCL program
that generates a fractal image [3]. We chose a single sim-
ple program because most compute workloads exercise
similar code paths in the kernel driver. Among different
options for GPU-accelerated compute libraries, we chose
OpenCL [34], because most GPU vendors support it.

We used multiple classes of GPU workloads to cover various
kernel-mode driver code paths. Different classes of GPU
workloads use (i) different sets of user-mode libraries (e.g.,
OpenGL [54] and OpenCL [34]), (ii) different user-mode
proprietary GPU drivers, and often (iii) different kernel-mode
driver modules as well. For example, running compute work-
loads on an NVIDIA GPU triggers code paths in an NVIDIA
kernel driver module called nvidia-uvm, which are different
from the ones covered by graphics workloads.

Generated Snapshot & Post-Snapshot Recordings. Using
the GPU stack and workload configurations detailed above,
we generated a number of snapshots and their post-snapshot
recordings for each driver we targeted. For the NVIDIA and
AMD Radeon GPU driver, we generated 128 unique snapshots
for each driver using a combination of the graphics and
compute workloads. For the ARM Mali GPU driver, we only
generated snapshots using the compute workload, because the
vendor-customized WebGL-supported Chromium did not work
in our guest environment. For each snapshot, we included
200 system calls in its post-snapshot recording. This was a
conservative choice, because only fewer than a dozen (out
of 200) contributed to increased coverage, because the driver
execution started to diverge from the recorded execution after
the dozen calls due to nondeterminism. We used the I/O
recordings generated for the entire workload duration to derive
MMIO and IRQ rules, as described in §V.

B. Fuzzing Effectiveness

We evaluated Moneta’s effectiveness on two major axes: (i) its
coverage of kernel-mode GPU stack (including the target GPU
drivers), and (ii) bug finding capability.

Experimental Setup. Following our threat model (see §III),
we fuzzed the system call interface of the target GPU drivers
using Moneta. We ran three twenty-four-hour fuzzing cam-
paigns, one for each target driver. In each fuzzing campaign,

we fuzzed a single GPU driver by leveraging all of the snap-
shots along with their post-snapshot recordings generated for
that driver (see §VI-A). All the fuzzing campaigns, including
the ones targeting the ARM Mali GPU driver, were executed
on a machine equipped with two 64-thread Intel Xeon 8358
CPUs (a total of 128 threads) and 1TB of RAM.

We ran 128 fuzzing instances in parallel in each campaign.
We assigned each snapshot (and its post-snapshot recording)
of the driver to one or more fuzzing instances and gave each
fuzzing instance a single snapshot only. This means that every
fuzzing instance always fuzzes the target driver from the state
recalled from a single snapshot and its corresponding post-
snapshot recording.

We injected (i) user-mode-originating inputs to drivers
by replaying post-snapshot recordings of system calls, and
(ii) device-originating inputs by emulating the GPU with the
rules derived from I/O recordings, as described in §V. We
performed coverage-guided, evolutionary fuzzing, by giving
each fuzzing instance its designated post-snapshot system call
recording as an initial corpus. To prioritize fuzzing the target
GPU driver and not other kernel components, we limited our
coverage instrumentation only to (i) the target GPU driver
and (ii) two kernel subsystems for GPU acceleration, namely
drivers/gpu and drivers/video. We also enabled the Linux
kernel’s AddressSanitizer [36] and UndefinedBehaviorSani-
tizer [51] instrumentation to detect bugs more reliably when
triggered by Moneta.

Baseline Configurations. Since the key contribution of Mon-
eta is combining RnR and SnR for a more effective GPU driver
fuzzing, we first ablate Moneta’s capability of rehosting in-
vivo snapshots; we refer to this configuration as No Snapshot.
This first baseline effectively simulates an enhanced version
of a state-of-the-art GPU driver fuzzer that uses record-and-
replay [39], with the following enhancements: (i) Moneta’s
RnR at the system call interface, (ii) Moneta’s SnR albeit
using a single snapshot taken after a successful probing of
the driver, and (iii) Moneta’s ARM-to-x86 SnR. We intro-
duce another configuration referred to as No Snapshot/Replay,
which additionally ablates the syscall-side RnR capability of
Moneta. This second baseline reflects common usage scenarios
of syzkaller, in which evolutionary fuzzing is conducted
without a starting corpus derived from in-vivo driver execu-
tions.

We emphasize that, to conservatively (and therefore accu-
rately) evaluate the effectiveness of Moneta’s past execution
state recall (i.e., SnR and RnR) on GPU driver fuzzing, the
baselines were all configured to use (i) the same driver-
specific ioctl grammars we manually wrote for Moneta, and
(ii) Moneta’s device-side emulation. We evaluate the impact
of Moneta’s device-side emulation separately in §VI-D.

Code Coverage Results. We depict the basic block cover-
age of the target GPU drivers obtained during our fuzzing
campaigns in Figure 6. Moneta outperforms the two strong
baselines consistently across all three GPU drivers we targeted.
This means that Moneta can indeed sidestep the problems of
RnR caused by nondeterminism by using SnR.

Our further investigation revealed that there are many
ways nondeterminism affects the fidelity of RnR, and its
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(a) NVIDIA GPU driver.
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(b) AMD Radeon GPU driver.
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(c) ARM Mali GPU driver.

Fig. 6: Basic block coverage (y-axis) measured every ten minutes during twenty-four hours (x-axis) of fuzzing each GPU driver.
We ran Moneta three times in each configuration (i.e., Full, No Snapshot, and No Snapshot/Replay), reporting the geometric mean
and the standard deviation of coverage using lines and shading, respectively. In each experiment (including ARM Mali GPU
driver fuzzing), we performed 128-instance parallel fuzzing on a 128-thread x86 server.

effectiveness at enhancing fuzzing. For example, the system
call payloads of the NVIDIA GPU driver (where Moneta
performs best) often include (i) specific virtual address values
(which could be randomized due to ASLR or uncontrolled by
RnR), and (ii) specific driver-internal handle values assigned
to various driver-controlled resources (which can change when
other resource creation or deletion is not fully controlled).
These values could, in theory, be included in the abstraction
of RnR. However, given that the ioctl input space of GPU
drivers is huge and proprietary, doing so would require signif-
icant engineering effort. Moneta does not require such efforts
and can recall in-vivo execution states where (i) those values
are deterministically restored, and (ii) the timing constraints
imposed on replaying recorded inputs are easier to satisfy.

Similar nondeterminism issues complicate the device-side
input generation as well. Even though we derive rules from
I/O recordings that capture real I/O behavior, rule-based I/O
emulations based on recordings (including those of BSOD [39]
and Moneta) cannot be as accurate as I/O behavior of real
GPUs. Moneta’s SnR also helps mitigate this challenge of
high-fidelity I/O emulation from the GPU side, because the
driver states recalled via Moneta’s SnR precisely replicate
the outcomes of past in-vivo driver executions that interact
with a real GPU. Although GPU I/O behavior may still be
inaccurately emulated after restoring an in-vivo snapshot, we
can bypass such hard-to-emulate behavior by using another
snapshot captured after the real GPU has demonstrated that
behavior.

When comparing the two baselines, we see that our first
baseline representing RnR (denoted by No Snapshot), out-
performs the other (No Snapshot/Replay). It achieves higher
coverage, benefiting from the initial corpus program, but only
marginally higher coverage, due mainly to the aforementioned
nondeterminism challenges of RnR.

Bug Finding Results. Our fuzzing campaigns with Moneta
uncovered, in total, 10 previously unknown bugs across all
the drivers we fuzzed. As summarized in Table V, we found
5 bugs in the NVIDIA’s, and 3 in AMD Radeon’s, and 2 in
ARM Mali’s GPU driver.

Since the GPU emulation in our prototype is not fully
accurate, Moneta can, in theory, find false bugs. For each GPU
driver bug we triggered during fuzzing, we verified that it can

Table V: Bugs found while fuzzing our target GPU drivers
using Moneta. For each bug, we show the snapshot point in
terms of the number of system calls, and the minimized bug
triggering program, which indicate how stateful the bug is.

GPU
Driver Id. Bug Type

Minimized
Bug Trigger1

StatusSnapshot
Point

Program
Size

NVIDIA

1 Slab-out-of-bounds write 339 2
CVE-2024-0090

2 Slab-out-of-bounds write 9,441 2
3 Slab-out-of-bounds read 341 2

CVE-2024-007524 Null pointer dereference 341 2
5 Null pointer dereference 0 5

AMD
Radeon

6 Use-after-free 0 2 CVE-2024-26656
7 Slab-use-after-free 0 3 CVE-2024-274002

8 Null pointer dereference 0 3 CVE-2024-26657

ARM
Mali

9 Shift out-of-bounds 0 4 Confirmed
10 Shift out-of-bounds 0 4 Confirmed

1 The bug triggering programs are disclosed in §A.
2 These bugs were concurrently found by the respective vendor or other researchers.

indeed be triggered under our threat model, by invoking a
minimized bug-triggering sequence of system calls (disclosed
in §A) on a machine equipped with a real GPU. Although
theoretically possible, we have not encountered any false bugs
during our experiments.

We examined all the bugs found by Moneta to assess the
effectiveness of Moneta’s in-vivo driver state recall capability.
Among these bugs, four bugs in the NVIDIA GPU driver were
only found by using Moneta’s SnR. Triggering them requires
deep, in-vivo driver execution states that are challenging to
recall via RnR alone, as indicated in the Minimized Bug
Trigger columns in Table V. Of these four bugs, we detail
two high-severity bugs in §VI-F. While two bugs in the ARM
Mali driver were also discovered by using RnR alone, these
bugs still demonstrate the usefulness of Moneta’s ARM-to-
x86 rehosting capability; that is, x86 servers, which are much
more accessible than high-end ARM servers, can be used to
find ARM-SoC-attached GPU driver bugs, by using Moneta.
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Fig. 7: Block-level coverage of the NVIDIA GPU driver (y-axis) measured over 24 hours (x-axis), obtained by (a) Moneta
without its user-mode context preservation, (b) Moneta without its device I/O emulation, and (c) BSOD, each compared with
Full and/or No Snapshot configuration of Moneta.

Table VI: The number of inputs (i) executed in total during
fuzzing, and (ii) kept in the corpus at the end, averaged
(geometric mean) over multiple runs of the same experiment.

GPU
Driver

Moneta
Configuration

Total Executions
(# of Execs/Minute)

Corpus Size
(Total BB Coverage)

NVIDIA
Full 50,781,942 (35,265) 1,378 (17,115)

No Snapshot 30,667,828 (21,297) 334 (7,588)
No Snapshot/Replay 38,754,625 (26,913) 262 (7,198)

AMD
Radeon

Full 28,726,479 (19,949) 690 (3,879)
No Snapshot 25,485,670 (17,698) 508 (3,612)

No Snapshot/Replay 31,084,091 (21,586) 452 (3,258)

ARM
Mali

Full 3,358,603 (2,332) 235 (1,748)
No Snapshot 3,942,659 (2,738) 209 (1,518)

No Snapshot/Replay 4,312,300 (2,995) 202 (1,363)

C. Fuzzing Throughput

Table VI shows, for each experiment, (i) the number of inputs
executed and (ii) the number of inputs kept in the corpus at
the end of our coverage-guided fuzzing. When fuzzing the
NVIDIA GPU driver, Moneta significantly outperforms the
baselines in both measures. However, when fuzzing the AMD
Radeon and ARM Mali GPU driver, the fuzzing speed becomes
lower in the full Moneta configuration than the two baselines.
Even with a smaller number of executions, however, Moneta
covered more driver code paths than all the baselines in all
GPU drivers, and, consequently, more inputs were kept in the
corpus with coverage-guided fuzzing.

Low fuzzing speed is a common argument against using
an emulator for fuzzing. Moneta uses CPU emulators for
ARM Mali GPU driver fuzzing and can rehost snapshots taken
from a GPU-equipped ARM platform onto a non-native (x86)
platform with an emulated ARM CPU. Though slower than
fuzzing x86 drivers, we argue that fuzzing ARM’s Mali GPU
driver on a non-native platform still achieves a reasonable
fuzzing speed (up to millions of inputs in twenty-four hours),
as shown in Table VI. This can be attributed to Moneta’s ability
to massively parallelize fuzzing on a multi-core server CPU,
such as the 128-thread x86 server we used for fuzzing ARM
Mali GPU’s driver.

D. Other Ablation Studies

Although we showed in §VI-B that Moneta can improve GPU
driver fuzzing via a synergistic combination of SnR and RnR
over multiple baselines that represent prior state-of-the-art
in kernel (driver) fuzzing [39], [22], we conduct additional
studies to quantify the contribution of Moneta’s individual
components. We measure their effectiveness by counting the
basic block coverage, and targeting NVIDIA’s GPU driver
mainly because it is most complex among the target drivers,
and because Moneta was most effective when fuzzing it.

Impact of State-Preserving Rehosting. We first show that,
without state-preserving rehosting (see §IV-C), the driver
effectively disregards the deep, interesting states that were
captured using real GPU workloads. We create a configuration
of Moneta, which ablates its user-mode context preservation
(see §IV-C), and run the same fuzzing experiment using this
configuration. Figure 7a depicts the result, in comparison to the
full configuration of Moneta. We find the configuration that
does not preserve user-mode contexts performs significantly
worse than those that do, demonstrating the effectiveness of
Moneta’s state-preserving rehosting.

Impact of Device I/O Emulation. We run the same fuzzing
experiment with Moneta but without its device emulation,
and depict the result in Figure 7b. The result shows that,
without I/O emulation, GPU driver fuzzing through the system
call interface performs worse. In fact, during the fuzzing
campaigns, we observed many MMIO accesses issued by the
GPU software stack. One of them, for example, is a check for
GPU attachment status. If this MMIO read is not emulated,
the driver refuses to continue execution.

E. Baseline Representativeness

To support our claim that Moneta’s No Snapshot configuration
is a stronger version of BSOD [39], we compare this base-
line configuration with the open-source version of BSOD4.
Although BSOD is a state-of-the-art GPU driver fuzzer that
offers several key contributions, our comparison specifically
focuses on its ability to record-and-replay the device-side
inputs of GPU drivers, namely MMIO and IRQ. Since the
open-source version of BSOD is tailored for fuzzing NVIDIA
GPU drivers operating with a different set of NVIDIA GPUs,

4Available at: https://github.com/0xf4b1/bsod-kernel-fuzzing
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we adjusted BSOD such that it uses the same I/O recordings
that Moneta’s device-side RnR used to emulate GPU-side
inputs. To ensure fairness, we also gave BSOD the same
the NVIDIA driver ioctl grammars we used. With these
adjustments, we performed 128-instance fuzzing of the same
target, i.e., the same NVIDIA driver running inside the same
guest kernel. The result depicted in Figure 7c confirms that
our own No Snapshot baseline outperforms BSOD.

F. Case Studies: Two OOB Writes in NVIDIA’s Driver

Of the 4 bugs in the NVIDIA GPU driver that require the
deterministic recall capability of Moneta via its snapshot
rehosting, we detail the two slab out-of-bounds (OOB) write
bugs, identified by Id. 1 and 2 in Table V. The vendor rated
the severity of these bugs as high, noting that their successful
exploitation could potentially lead to code execution, denial of
service, escalation of privileges, information disclosure, and
data tampering.

Moneta triggered each of these two bugs by restoring a
snapshot taken after a number of system calls, followed by
a single ioctl call on an existing file descriptor preserved
across rehosting. The payload of each bug-triggering ioctl
call contains three handle values (whose type is NvHandle) that
refer to driver-controlled resources, which must all be valid
handle values to trigger the bug. However, it is challenging
to reproduce valid handle values through RnR alone due to
nondeterminism, or through fuzzing. Also, even if we use
deterministic RnR, triggering these bugs would require long
fuzzing time without SnR.

Moneta triggered the first OOB bug by restoring a snapshot
taken after the GPU application invoked 339 system calls,
and subsequently invoking a fuzzer-crafted ioctl call. The
OOB access is triggered specifically in a graphics context
(i.e., vidmemConstruct IMPL), and, therefore, can only be
triggered by restoring snapshots obtained from graphics work-
loads. The post-snapshot recordings of the graphics workload
we used contained hundreds of the bug-triggering ioctl that
invokes the bug-triggering function, while the same ioctl was
rarely observed (up to only once) in the recordings obtained
from compute workloads. This bug could provide a constrained
write-where-what primitive. By crafting an ioctl payload, the
attacker can first overflow the size argument of a memory
allocation function. By controlling the amount of this unsigned
integer overflow, the attacker can allocate a memory region
whose size is smaller than the object it holds. The driver
subsequently accesses various fields of this object, most of
which go out-of-bounds overwriting the victim object adjacent
to the allocated memory region. With heap manipulation, the
attacker can (i) allocate this region right before the victim
object (implies where in write-where-what), and (ii) partially
control the value written to this adjacent object as the ioctl
payload influences this value (implies what).

Moneta triggered the second OOB bug by invoking an
ioctl call after restoring a snapshot taken after 9,441 system
calls. Similar to the first OOB bug, triggering this bug begins
with the attacker allocating a memory region that is smaller
than the object it is supposed to contain, caused by the
same unsigned integer overflow. Unlike the first OOB bug,
however, this object is an array, and the overflow occurs in

a different context (i.e., pmaRegmapScanDiscontiguous). A
loop in this context iterates over this array, with its termination
condition also determined by the ioctl payload, eventually
leading to out-of-bounds access. With the help of heap layout
manipulation, the attacker can allocate this object right before
the victim object (implies where in write-where-what). The
attacker can then trigger the out-of-bounds write bug, thereby
overwriting the victim object. Also, this attacker could control
the value which is written to the victim object (implies what),
because it is also part of the ioctl payload.

VII. DISCUSSION & LIMITATION

GPU-Side Attack Surface. While our work focuses on find-
ing vulnerabilities in kernel-mode GPU drivers that can be
triggered by user-mode adversaries, attacking the GPU driver
from the GPU side is also possible. GPUs could directly
be compromised from user-mode adversaries without com-
promising their kernel-mode drivers, which could then be
used as a stepping stone to attack kernel-mode drivers [27].
Alternatively, an attacker could physically attach a rogue PCIe
device to the victim machine, which advertises itself as a
GPU, using PCIe slots or even Thunderbolt ports [40] in
“drive-by” (e.g., evil maid) attack scenarios. Upon attaching
a rogue GPU, its corresponding GPU driver would be loaded
on the CPU side, which could then be attacked by sending
maliciously crafted I/O messages to the driver. We intend to
explore this GPU-side attack surface in the future by fuzzing
the I/O interface of the GPU drivers.

Remote Attack Surface. Our work fuzzes kernel-mode GPU
drivers, assuming full access to the user-mode-exposed inter-
face of the drivers. This interface could further be exposed
to remote untrustworthy users, albeit indirectly, through, e.g.,
WebGL [30] for accelerated rendering of web content, We-
bGPU [43] for accelerated general computation through the
web, or H.264-on-GPU for accelerated decoding of video
content [63]. These remote contents typically execute in a
sandbox [72], and, because of the sandbox, they may not be
able to trigger low-level GPU driver bugs found by Moneta. We
argue, however, that the bugs Moneta can find are still valuable,
because they are essential in constructing a full remote exploit
chain that compromises the kernel. Moreover, most of the
Moneta’s design except for the fuzzer implantation part can
also be applied to fuzzing the WebGL, WebGPU, and H.264
interfaces directly exposed to remote contents as well. In our
future work, we intend to augment Moneta’s capability to
directly fuzz these interfaces to the GPU software stack.

Fuzzing GPU Drivers in Non-Linux OSs. Our current imple-
mentation of Moneta targets kernel-mode GPU drivers running
in Linux. We expect that, with additional engineering effort,
our approach can be applied to fuzzing GPU drivers running in
other OSs as well. When targeting GPU drivers running in non-
Unix-like OSs such as Windows, most of the engineering effort
would be spent on reconciling the differences in the system
call interface. The ptrace-based implementation of Moneta’s
Guest Agent would also be replaced with a comparable process
introspection mechanism offered by non-Unix-like OSs. Other
components of Moneta implemented at the hypervisor level,
e.g., CPU feature subsetting, would seamlessly work across
OSs.
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Synergy with Other Dynamic Analysis. Moneta’s GPU
driver execution recall capability could also fulfill dynamic
analysis demands other than fuzzing, such as interactive debug-
ging and exploit development. When Moneta identifies bugs in
a GPU driver through fuzzing, one could interactively debug
them using Moneta. Interactive debugging could help with
developing a proper fix for the underlying issue, and assessing
the exploit potential of the bug. If the bug can be exploited,
Moneta could aid even interactive exploit development as
well. Besides, Moneta’s stateful fuzzing can benefit from other
dynamic bug finding techniques as well. Though we only
applied KASAN [36] and KUBSAN [51] to the GPU drivers,
other tools such as memory leak detectors and data race bug
detectors could also be employed with Moneta to find other
kinds of bugs.

VIII. RELATED WORK

Device-Free Driver Analysis. To put Moneta into a broader
context of device-free driver analysis, we further discuss
non-fuzzing approaches and other device-free fuzzing ap-
proaches. Non-fuzzing approaches use static pointer/pattern
analysis [10], [38], [9], [8], [41] or symbolic execution [49],
[37], [19], [45], [23] to statically reason about the behavior
of drivers. Another line of work uses static analysis to en-
hance driver fuzzing, via symbolic execution [56], [69], input
format inference [14], [25], and other driver-tailored static
analysis [17], [76]. All of these techniques analyze drivers
without requiring hardware devices, but could suffer from the
precision and scalability challenges of static analysis. Also,
since GPUs are omnipresent, one can easily use GPU-in-the-
loop approaches such as Moneta to complement static analysis.

Unlike prior work relying on static analysis, SATURN [70]
uses fuzzing to enhance USB driver fuzzing. The idea is to
configure a pair of USB drivers, one on the host side and the
other on the gadget (i.e., device) side, letting them interact
with each other. SATURN simultaneously fuzzes both sides
to trigger interesting (or buggy) behaviors on their opposite
sides. This approach does not trivially extend to GPU driver
fuzzing, however, due to the difficulty of fuzzing GPU (i.e.,
device-side) firmware.

Firmware Rehosting and Fuzzing. Firmware rehosting is a
technique that runs firmware in an emulated environment with-
out requiring hardware [68]. Due to its key advantage of not
requiring hardware, researchers proposed many firmware re-
hosting solutions that use a variety of static and dynamic anal-
ysis techniques to increase the fidelity of firwmare execution in
a rehosting environment [24], [50], [21], [16], [33], [75], [55],
[52], [29]. Moneta distinguishes itself from this line of work,
in that it targets GPU-equipped hardware platforms, which
are much more capable than embedded devices that firmware
rehosting targets. In particular, Moneta uses hardware-assisted
virtualization available in most of GPU-equipped hardware
platforms, and introduces new virtualization primitives that
facilitate rehosting virtual machine snapshots on a powerful
x86 machines that lack GPU hardware.

Snapshot Rehosting for Fuzzing. The idea of employing a
snapshot-and-rehost approach for fuzzing is inspired by prior
work on firmware rehosting that uses bare-metal memory
snapshots [50], [29]. This line of prior work is different

from ours in the following ways: (i) prior work takes bare-
metal memory snapshots whereas ours takes virtual machine
snapshots, (ii) prior work uses snapshots only, while ours
uses snapshots in combination with record-and-replay, which
requires careful state preservation, and (iii) prior work targets
a related but different problem of firmware fuzzing whereas
ours targets GPU device driver fuzzing. EASIER also uses
a snapshot technique to facilitate ex-vivo Android device
driver fuzzing [48]; however, it creates custom snapshots
by manually dumping portions of kernel memory and CPU
registers, requiring significant engineering efforts to rehost
those partial snapshots in an emulator. Additionally, unlike
Moneta, EASIER uses neither record-and-replay nor does it
conduct stateful fuzzing.

System Call Interposition for Kernel Fuzzing. System call
interposition has been proved useful in kernel fuzzing [15],
[11]. Moneta also uses system call interposition after each
in-vivo snapshot creation and ex-vivo snapshot restoration.
Specifically, Moneta uses the Linux ptrace API to inter-
pose the system calls invoked by the original GPU workload
process, (i) recording them after each snapshot creation, and
(ii) implanting the input executor by forcefully changing one
of them to execve after snapshot restoration. A well-known
disadvantage of ptrace, however, is its run-time overhead,
which could slow down post-snapshot recording creation, and
the GPU workload process itself. To address this limitation,
alternative system call interposition mechanisms optimized for
lower overhead could be used [65], [35], [64], [67], [66], [73],
[31], [28], [53].

IX. CONCLUSION

We presented Moneta, a new type of device driver fuzzer that
combines SnR and RnR to deterministically recall deep driver
states while remaining capable of evolutionary fuzzing. In its
observation phase, Moneta observes applications that interact
with the target driver in a virtual machine that implements our
proposed emulator-rehostable virtualization technique. Moneta
periodically generates system snapshots and system call traces
that serve as the corpora for its fuzzing phase. This full set of
techniques enables Moneta to fuzz efficiently and effectively
at large scale, using powerful testing infrastructure without
physical instances of the devices whose drivers we want to
fuzz. We thoroughly evaluated Moneta and demonstrated its
unique capabilities on a set of widely used open-source GPU
drivers. We found and responsibly disclosed 10 previously
undiscovered bugs.
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APPENDIX A
BUG REPRODUCTION STEPS

We disclose the steps to reproduce the bugs in Table VII. After
minimizing the fuzzer-generated, bug-triggering programs, we
used our Guest Agent to reproduce the bugs. For the bugs that
were discovered only through snapshot restoration, we used
the Guest Agent to execute the workload up to the specified
syscall count before executing the bug-triggering program.
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Table VII: Steps to reproduce the 10 bugs we found using Moneta. We verified that each bug can be triggered when there is a
physical GPU instance, and all of them were confirmed by the respective vendors.

Id. Bug Trigger

1

Execute the workload up to 339 syscalls.
r1 = fetch_preserved_fd$nvidia()
ioctl$nvidia(r1, 0xc0b8464a,

&(0x7f0000000140)="0200d0c10100005c020000000500005c000000000000000000000000000000d0c10700005c00000000↪→

95c4030300110003000000000000009e6000d87d1eced0000000000000000000000000008000fb000004000000000000000000000
0040500000000000000000000000000000000000000000000008aea17130000000000000000000000000400000000000000000000
00000000000000000000cd410000000000000000000000000000000000000000000000faff00")

2

Execute the workload up to 9,441 syscalls.
r1 = fetch_preserved_fd$nvidia()
ioctl$nvidia(r1, 0xc0b8464a,

&(0x7f00001f0c00)="0a00d0c10300efbe060000000000000000000000002000000000000000000000000000000000000000↪→

004c4732000000000000000dc003000004000004fffffff23824e9e030084e2f00000000ff03000000000000000000201e0000000
0000000000000000000000000000000000000000000000000000000000000004000000000000000000000ffffffffffffff422700
0000000000000000000000000000000000002000")

3
Execute the workload up to 341 syscalls.
r1 = fetch_preserved_fd$nvidia()
ioctl$nvidia(r1, 0xc020462a, &(0x7f00001f0c00)="0200d0c10100005c0214800000000000bd2a24fbfd7f0000030300")

4

Execute the workload up to 341 syscalls.
r1 = fetch_preserved_fd$nvidia()
ioctl$nvidia(r1, 0xc0384657, &(0x7f000001e600)="0a00d0c10300efbe2300f0ca19000000000000000000000000000200")
ioctl$nvidia(r1, 0xc020462a,

&(0x7f000001e640)="0a00d0c10400efbe10018020000000008097e97d6c7f00008400000000000000")↪→

5

mknodat$nvidia(0xffffffffffffff9c, &(0x7f0000069200)='/dev/nvidiactl\x00', 0x21b6, 0xc3ff)
r1 = openat$nvidia(0xffffffffffffff9c, &(0x7f0000069200)='/dev/nvidiactl\x00', 0x80802)
ioctl$nvidia(r1, 0xc020462b, &(0x7f0000069c40))
ioctl$nvidia(r1, 0xc020462b, &(0x7f000006ae00))
ioctl$nvidia(r1, 0xc020462a, &(0x7f0000070700)="0200d0c10200005c0201802000000000507cea8dfd7f0000fc0100")

6 r1 = openat$amdgpu(0xffffffffffffff9c, &(0x7f00000cb540)='/dev/dri/renderD128\x00', 0x0, 0x0)
ioctl$amdgpu(r1, 0xc1186451, &(0x7f0000000e00)={0xffffffffffff0000, 0x80000000, 0x7})

7
r1 = openat$amdgpu(0xffffffffffffff9c, &(0x7f0000173000)='/dev/dri/renderD128\x00', 0x0, 0x0)
ioctl$amdgpu(r1, 0xc1206440, &(0x7f0000001b80)={0x8, 0x0, 0x4, 0x9})
ioctl$amdgpu(r1, 0xc0206440, &(0x7f0000000140)={0x7fffffff, 0x0, 0x4, 0x9})

8
r1 = openat$amdgpu(0xffffffffffffff9c, &(0x7f0000002c80)='/dev/dri/renderD128\x00', 0x0, 0x0)
ioctl$amdgpu(r1, 0xc0106442, &(0x7f0000000b80)={0x1})
ioctl$amdgpu(r1, 0xc0206449, &(0x7f0000000100)={0x0, 0x2000000000000, 0x9, 0x0, 0x0, 0x1})

9

r1 = openat$mali(0xffffffffffffff9c, &(0x7f0000098380)='/dev/mali0\x00', 0x80802)
ioctl$mali(r1, 0xc0048034, &(0x7f0000098440))
ioctl$mali(r1, 0x40048001, &(0x7f0000098480))
ioctl$mali(r1, 0x40288028, &(0x7f00000000c0)="0809cb02a62d86010501400084d5")

10

r1 = openat$mali(0xffffffffffffff9c, &(0x7f0000098380)='/dev/mali0\x00', 0x80802)
ioctl$mali(r1, 0xc0048034, &(0x7f0000098440))
ioctl$mali(r1, 0x40048001, &(0x7f0000098480))
ioctl$mali(r1, 0x40018037, &(0x7f0000000140)="99")
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