
SHAFT: Secure, Handy, Accurate, and Fast
Transformer Inference

Andes Y. L. Kei
Department of Information Engineering
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong

Sherman S. M. Chow∗

Department of Information Engineering
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong

Abstract—Adoption of transformer-based machine learning
models is growing, raising concerns about sensitive data exposure.
Nonetheless, current secure inference solutions incur substantial
overhead due to their extensive reliance on non-linear proto-
cols, such as softmax and Gaussian error linear unit (GELU).
Driven by numerical stability needs, softmax approximations
(e.g., NeurIPS 2021) typically extract the maximum element of an
input vector, incurring logarithmic rounds (in the input length).
Existing GELU protocols (e.g., S&P 2024) use piecewise ap-
proximations with high-degree polynomials that rely heavily on
secure multiplications and comparisons, which are expensive.
Such complexities also hinder model owners unfamiliar with
cryptography from deploying their custom models easily.

SHAFT, our proposed system, provides a secure, handy, accu-
rate, and fast transformer inference framework for deployment.
Highlights of our contributions include 1) the first constant-
round softmax protocol for transformers, uniquely combining
the benefits of input clipping and characteristics of ordinary dif-
ferential equations, and 2) a highly accurate GELU protocol on a
novel characterization designed for Fourier series approximation.
Extending to broader contexts, our new protocols also apply to
general neural networks that use softmax as the final layer and
to transformer architectures with different activation functions.
Remarkably, SHAFT outperforms state-of-the-art SIGMA (PETS
2024), which uses secret sharing, and BumbleBee (NDSS 2025),
which additionally uses RLWE-based homomorphic encryption.
More specifically, SHAFT minimizes communication by 25-41%
and matches SIGMA’s running time while surpassing BumbleBee
in running time by 4.6-5.3× on LANs and 2.9-4.4× on WANs.
Alongside these improvements, SHAFT attains accuracy com-
parable to plaintext models, confirming its numerical stability.
Next in this progression, SHAFT provides an accessible open-
source framework for secure and handy deployment by smoothly
integrating with the Hugging Face library (EMNLP Demos 2020).

I. INTRODUCTION

Attention mechanisms, foundational to the transformer ar-
chitecture [1], compute relationships between different posi-

∗Sherman Chow (corresponding author) is supported by GRF 14210621.
Andes Kei is supported by the Hong Kong PhD Fellowship Scheme. The
authors are grateful to the reviewers for entrusting them with final revisions.
Kei thanks Yu Zheng for her comments on his first-year report (with different
softmax and GELU ideas) and for discussing Fourier series during the rebuttal.

tions within sequences to generate meaningful representations.
Yielding exceptional performance, transformer-based models
like BERT [2], GPT [3], and ViT [4] have been widely
deployed for many tasks in natural language processing (NLP).
Large-scale models have powered many transformative appli-
cations in generative artificial intelligence, such as ChatGPT.
Key privacy concerns arise as more users rely on these
models and submit numerous sensitive inference queries daily,
highlighting the need for privacy-preserving inference systems,
while service providers must also protect their models.

Secure multi-party computation (MPC) has significantly
advanced privacy-preserving machine learning (PPML), en-
abling secure inference that protects both queries and models.
Sophisticated solutions like GForce [5] complete an inference
query on the CIFAR-10 image dataset using VGG-16, a 16-
layer convolutional neural network (CNN), within 0.3 s [6].
Meeting the demands of private inference for transformer-
based models, however, remains challenging due to their
reliance on MPC-unfriendly (i.e., inefficient) non-linear func-
tions, notably softmax and Gaussian error linear unit (GELU).
Constructing a transformer inference system that addresses
these limitations is essential and needs the following features.
Security. Users cannot gain any knowledge about the private
inputs of others, namely, the query and the model parameters.
Handiness. The system should be deployable regardless of
users’ familiarity with cryptographic techniques or libraries.
Efficiency. The cost of private inference should be low even
for large models with hundreds of millions of parameters.
Reliability. The system should be reliable, with accuracy
comparable to plaintext counterparts.

A. Manifold Approaches to Non-linearity

Existing private transformer inference frameworks, such
as THE-X [7], Iron [8], MPCFormer [9], Privformer [10],
Primer [11], MPCViT [12], BOLT [13], and SecFormer [14]
(a comparison with more works is in Section II), can be
categorized based on their approach to non-linear functions:
Rough Replacement. Works like MPCFormer [9] replace
non-linear functions with simpler, MPC-friendly ones to speed
up inference, but this causes notable performance degradation,
with accuracy losses >5% [9, Table 4]. For mitigation, they
often employ knowledge distillation, requiring extra training
on plaintext data, which is not always feasible or desirable.

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.242287
www.ndss-symposium.org

https://dx.doi.org/10.14722/ndss.2025.242287
www.ndss-symposium.org

Precise Approximation. Non-linear functions can be more
precisely approximated by piecewise (high-order) polynomi-
als [13], iterative methods [14], or table lookups [8]. These
approaches introduce substantial overhead: piecewise poly-
nomials require many multiplications and (MPC-unfriendly)
comparisons, iterative methods involve numerous communi-
cation rounds, and table lookups are computation-intensive,
especially for large tables or inputs with a wide bitwidth.1

Exact Computation. Some other systems consider exact
evaluation by decrypting intermediate values to compute these
functions in plaintext [7] or with costly cryptographic tools
like garbled circuits [11]. However, the first method could
lead to recovery attacks [15], and the second suffers from
prohibitive costs (e.g., ∼400s running time [11, Table III]).
Alternative Architecture. Frameworks like Privformer [10]
and MPCViT [12] (marked as “Restricted” in Table I) adopt
simpler attention variants (e.g., [16], [17]) and activations
(e.g., rectified linear unit/ReLU) to avoid softmax and GELU,
achieving efficiency by targeting only specialized models.
However, they lack protocols for softmax and GELU, render-
ing them incompatible with general transformers like GPT [3].

Most of the above solutions are not open-sourced. To our
knowledge, existing works enable private inference only for a
predefined set of transformers (often limited to BERT [2] and
GPT [3]) using pretrained weights loaded onto local devices.
For custom models, ML researchers who are not familiar with
cryptographic implementations need to re-implement a private
version from scratch, which can be challenging.

Some frameworks (e.g., MP-SPDZ [18] and CrypTen [19])
are known for enabling the conversion of neural networks
from Python-like source code to PPML code. However, they
are limited to CNNs but not transformers due to the lack of
transformer-specific modules like GELU.

B. Our Contributions

Our framework, SHAFT (Secure, Handy, Accurate, and
Fast Transformer inference), overcomes the above limitations.
SHAFT is a two-party computation (2PC) framework based on
secret sharing (SS). As the cost of running a transformer is
dominated by the secure computations of non-linear functions
like softmax and GELU, we focus on designing new protocols
for these operations. Our key contributions include:
Stable Constant-Round Private Softmax. We introduce the
first constant-round softmax protocol that is numerically stable
(i.e., the output is unlikely to overflow regardless of input) in
private transformer inference. Typical approaches subtract the
maximum element from an input vector of length m, requiring
O(log2(m)) communication rounds. Instead, our new method
combines input clipping (with a refined input range) and
an ordinary differential equation (ODE) to prevent overflow,
reducing rounds to O(1) without notable loss of accuracy.

1Reducing bitwidth decreases data precision, generally affecting model
accuracy, while excessively high bitwidth imposes substantial computation
and communication overheads [6]. Designing efficient protocols with a rea-
sonable default bitwidth is challenging but essential for accuracy, and tailored
optimization of bitwidth while maintaining accuracy is highly beneficial.

Efficient and Precise Private GELU. We design a novel
GELU characterization for Fourier series (FS) approximation
with a maximum error of 4.60×10−3 and an average error of
7.39 × 10−4. Our secure GELU protocol surpasses the state-
of-the-art (SoTA) of BOLT [13] (Table III) by one round and
two secure multiplications, a crucial gain for transformers with
hundreds of thousands of GELU, while lowering 51% and 37%
of maximum and average error, respectively. Beyond GELU,
our formulation can generalize to other ReLU-like activations,
e.g., sigmoid linear unit (SiLU) function used in transformer
variants like the famous LLaMA model [20] from Meta AI.

Secure Embedding on Index Inputs. We present the first
private embedding protocol taking an index (unlike one-hot
vector in existing works) as input, aligning to the specification
of the standard PyTorch [21] ML library for seamless model
conversions. Our protocol uses precomputed randomness [22]
to securely convert an index to a one-hot vector in 1 round.

Interoperability with the Hugging Face Library. Building
on CrypTen [19] with ML-developer-friendly APIs, SHAFT
enables seamless import of pretrained models from the
popular Hugging Face transformer library [23] via ONNX,
an open standard format for representing neural networks.
ML researchers without cryptographic knowledge can thereby
easily perform private inference using a wide range of models.

Our experiments on four models (BERT-base, BERT-
large [2], GPT-2 [24], and ViT-base [4]) and three datasets
(QNLI, CoLA, and SST-2 from the GLUE benchmark [25])
in Section V demonstrate that SHAFT achieves lower private
inference costs than SIGMA [26] and BumbleBee [27], while
maintaining accuracy comparable to plaintext. SIGMA is the
SoTA function-SS (FSS)-based framework that uses smaller
bitwidths2, and the latter is a homomorphic-encryption (HE)-
based solution that reduces the communication of BOLT [13].
Section VII elaborates on optimizations for mixed-bitwidth
frameworks (e.g., SIRNN [28]) to further reduce costs.

II. RELATED WORKS

Literature on private neural network training and inference,
particularly CNNs, is extensive. We focus on SoTA techniques
for computing non-linear functions. For a comprehensive
discussion, see the recent systematization of knowledge [6].

Table I compares SHAFT with existing private transformer
inference frameworks, listed in chronological order.

A. MPC-Friendly Approximations of Softmax

Softmax(x⃗)i = exi/
∑

j e
xj is composed of two non-

linear functions: exponential ex and reciprocal 1/x. Since ex

overflows for large x and 1/x overflows when x ≈ 0, a typical
approach is to compute softmax on a “normalized” input
(x⃗−max (x⃗)) for numerical stability. As a result, the secure
softmax protocol in most existing works involves evaluating a
sequence of maximum, exponential, and reciprocal (“M+E+R”
in Table I). They are far from competing with us in softmax.

2CrypTen [19] does not support mixed-bitwidth operations.

2

TABLE I
COMPARISON OF PRIVATE TRANSFORMER INFERENCE FRAMEWORKS

Framework Properties Cryptographic Tools Implemented Models Softmax Methods GELU Methods

Security

Handiness SS OT HE GC
BERT GPT ViT

Restricted
Rough

M+E+R
Iterative

ODE LUT
Exact

Rough

Piece-Poly
LUT

Fourier
Exact

THE-X [7] # # # # # # # # # # # # # (2, 1) # # #
Iron [8] # # # # # # # # # # (-, -) # #
MPCFormer [9] G# # # # # # # # # # # # # (-, -) # # #
Privformer [10] # # # # # # # # # # # # # # (-, -) # # #
Primer [11] G# # # # # # # # # # # # # (-, -) # #
PUMA [29]∗ G# # # # # # # # # # # # (4, 6) # # #
CipherGPT [30]∗ G# # # # # # # # # # # (258, 1) # #
East [31]∗ G# # # # # # # # # # # (10, 3) # # #
MPCViT [12] G# # # # # # # # # # # # # # # (-, -) # # #
STIP [32]∗ # # # # # # # # # # # # # (-, -) # #
BOLT [13] G# # # # # # # # # # # (3, 4) # # #
SecFormer [14] # G# # # # # # # # # # # # (3, 1) # #
SIGMA [26] # # # # # # # # # # # (3, 1) # #
BumbleBee [27] # # # # # # # # (4, 6) # # #
NEXUS [33]∗ # # # # # # # # # # # (4, 6) # # #
SHAFT (This Work) # # # # # # # # # # (3, 1) # #

SS: Secret sharing, OT: Oblivious transfer, HE: Homomorphic encryption, GC: Garbled circuit, M+E+R: Maximum+Exponential+Reciprocal, ODE: Ordinary
differential equations, LUT: Lookup table. For security, # means known issues, G# means no known issues but no formal proof, and signifies formal proofs.
For Piece-Poly, (n, d) means an n-piece degree-d polynomial; (-, -) means it is not used. Entries with ∗ are preprints by the submission deadline (July 2024).

CrypTen [19] approximates ex by its limit characterization
(1+ x/2t)2

t

. It requires t sequential multiplications to bound
the maximum error by eO(−x2/2t). CryptGPU [34] approx-
imates 1/x by Newton’s method, computing yi = 2yi−1 −
xy2i−1 from an initial guess y0. It takes 2t multiplications for
a maximum error of eO(−2t) over t iterations. SIRNN [28] uses
two lookup tables (LUTs) to map the upper and lower bits of
x to ex. While secure table lookup might only take a constant
number of rounds [35] or consume bandwidth logarithmic in
input bitwidth [36], the computation cost remains exponential
in input bitwidth. This demands highly optimized LUTs with
carefully chosen sizes for practical application.

Despite recent advances in ex and 1/x approximations,
secure maximum computation remains a bottleneck. A com-
mon approach, known as the tree-reduction algorithm [19],
involves dividing the input into two halves and recursively
comparing each half’s elements. This is still dominantly costly,
requiring O(log2(m)) secure comparisons for input length m.

Zheng et al. [37] propose directly using an ODE to
approximate softmax. This method requires 2t multiplications
for accurate results, provided that max (x⃗) −min (x⃗) ≤ t. It
avoids evaluating ex and 1/x, thus bypassing any maximum
computation. The ODE-based approach demonstrated SoTA
performance in terms of running time for private CNN training
by setting t = 16 or 32. However, when it comes to transform-
ers with unbounded inputs and tens of thousands of softmax,
the above correctness condition can be easily violated, and the
errors accumulate over multiple softmax calls. In practice, to
provide reasonable accuracy in private transformer inference,
t needs to be as large as 128 or 256, diminishing the benefits.

For private transformer inference frameworks, PUMA [29],
East [31], SecFormer [14], BumbleBee [27], and NEXUS [33]

adopt iterative approximations3 from CrypTen [19] and Crypt-
GPU [34]. Iron [8], CipherGPT [30], BOLT [13], and
SIGMA [26] rely on previous LUT protocols [28], [38],
[39] to compute ex and 1/x. Interestingly, computing private
maximum is the standard method in all these works (apart
from weaker rough/revealing/inefficient/restricted approaches
in Section II-C). Improving secure softmax computations for
transformers addresses a critical bottleneck in private inference
frameworks. This focus drives our pursuit of new techniques
for secure softmax in transformers and motivates benchmark-
ing against specialized secure softmax protocols [19], [37].

B. MPC-Friendly Approximations of GELU

GELU is a common activation function in transformers.
It is defined as GELU(x) = 0.5x

(
1 + Erf

(
x/
√
2
))

, where
Erf(x) = (2/

√
π)
∫ x

0
e−u2

du is the Gaussian error function.
Iron [8] considers an approximation of GELU based on

tanh: GELU(x) ≈ 0.5x(1+tanh(
√
2/π(x+0.044715x3))). It

follows the idea of SIRNN [28] to evaluate the tanh function
(also a combination of ex and 1/x like softmax).

As GELU(x) is close to ReLU(x) = max(0, x) for larger
|x|, most existing private transformer inference frameworks
approximate GELU within a small range near 0 and set it as
ReLU outside this range. This method requires evaluating a
3-piece function with two comparisons and one multiplication.

PUMA [29], BumbleBee [27], and NEXUS [33] (all #
under GELU in Table I) use 2-piece, degree-6 polynomials,
requiring one comparison and three multiplications for
evaluation. CipherGPT [30] opts for a 256-piece, degree-1
polynomial, leveraging an LUT [38] to fetch coefficients
and one multiplication for evaluating degree-1 polynomials.

3ODE is also an iterative approximation. Table I singles it out as a distinc-
tive approach from those “Iterative” ones for more meaningful classifications.

3

East [31] (also all #) adopts an oblivious-transfer (OT)-based
approach to evaluate an 8-piece, degree-3 polynomial with one
comparison, one multiplication, and two OTs.

SIGMA [26] observes that ReLU(x)− GELU(x) is even. It
uses an LUT to store the output of this function for the input
range [0, 4]. For x ∈ [−4, 4], it evaluates the LUT on |x| =
2ReLU(x)− x. Computing ReLU(x) needs one comparison.

A concurrent work, SecFormer [14], uses an FS to approx-
imate Erf(x) around [−1.7, 1.7]. Securely evaluating an FS
takes one round [37]. While Table I marks both SecFormer
and SHAFT with “Fourier” and (3, 1) for 3-piece degree-1
polynomial approximation, GELU of SecFormer takes four
secure multiplications, while ours takes only one. Ours also
saves two rounds and, more importantly, enjoys order-of-
magnitude improvements in both maximum and average errors
(Table III). We note that the experimental results of SecFormer
rely on the 3PC truncation protocol from CrypTen, which has
been found to be insecure [40] (# for security in Table I).

BOLT [13] approximates an even function 0.5xErf
(
x/
√
2
)

using a degree-4 polynomial for x ∈ [0, 2.7] and evaluates it
(with two multiplications) on |x| for x ∈ [−2.7, 2.7]. Despite
using piecewise polynomials, its number of pieces and degree
are the smallest (apart from rough approximation). BOLT and
SecFormer are thus our main competitors in secure GELU
(Tables III and VI), but not others marked with “Rough,”
“LUT,” “Exact,” or all # under GELU (e.g., [27]) in Table I.

C. Other Private Transformer Inference Frameworks

MPCFormer [9] uses rough approximations for non-linear
functions (e.g., Softmax(x⃗) ≈ (x⃗+ c)2/

∑
j(xj + c)2, where c

is a constant), leading to an accuracy loss of >5%.
THE-X [7] reveals intermediate outputs and computes non-

linear functions on plaintexts, which is generally insecure [15].
STIP [32] transforms model weights and data with random
permutation matrices for inference on permuted plaintext,
violating standard MPC security guarantees.

Primer [11] uses computationally expensive garbled circuits
for exact non-linear function computations, requiring ∼400s
to run BERT-base [2] on a 30-token input query.

Privformer [10] focuses on an alternative transformer
architecture using a piecewise linear attention variant [17]
and ReLU activations (unlike GELU in typical transformers).
MPCViT [12] works on transformers with linear attention [16]
and replaces GELU with a linear function. These solutions do
not handle private softmax and GELU computations, making
them inapplicable to general transformers like GPT [3].

D. Conversions from Plaintext NNs to Secure NNs

Several PPML frameworks, such as MP-SPDZ [18], CrypT-
Flow [41], and CrypTen [19], enable the conversion of plain-
text NNs (usually in Python-like source code) to secure NNs.
This allows developers with limited cryptography knowledge
to deploy their models. Yet, most of them require familiarity
with the specific library designs, except for CrypTen, which
is built on the standard PyTorch [21] ML library. Moreover,

they all (including CrypTen) lack support for transformer-
specific functionalities (e.g., embedding layers and GELU). In
contrast, SHAFT enables seamless conversion from plaintext
transformers with just a few lines of code (Figure 2).

Regarding handiness, although SecFormer [14] in principle
supports converting PyTorch models to PPML code as it is
built on CrypTen, it is uncertain whether the conversion works
for transformers. Additionally, its code is not open-sourced.
This explains the G# indication in Table I.

III. PRELIMINARIES

A. Notations

Set {0, . . . , n − 1} is denoted by [n], n ∈ N. Matrices are
represented by bold capital letters like M. Column/row vectors
use lowercase letters, with xi referring to the i-th element of a
vector x⃗. 1⃗ denotes an all-one vector, 0⃗ is a zero vector, e⃗i is a
one-hot vector where the i-th element is 1 and all others are 0.
JyK← Π means the execution of an interactive protocol Π.

Scalar multiplication, element-wise product, inner product,
right cyclic rotation, and concatenation are denoted by ·, ∗,
⟨·, ·⟩, ≫, and ||, respectively. The indicator function 1b(x)(x)
returns 1 if predicate b(x) is true; 0 otherwise. The sign
function sgn(x) returns 1 if and only if x ≥ 0; −1 otherwise.

We use fixed-point encoding with a uniform bitwidth of
ℓ = 64 and precision t = 16. A floating-point value xR is
encoded as an integer x by scaling with 2f and rounding down:
x = ⌊xR · 2f⌋. Decoding recovers xR approximately as x/2f .

B. Transformer Architecture

A transformer comprises encoder and decoder blocks that
extract feature vectors from input sequences (words in NLP
or image patches in image processing) and generate outputs,
respectively. These blocks have similar structures, consisting
of many linear and non-linear layers, typically the following:
Embedding Layer is the first layer in transformers for NLP
tasks. It maps each word (encoded as an index i ∈ [dEmb])
in the input to a vector x⃗ ∈ Rdmodel based on an LUT TEmb,
where dEmb is the size of TEmb and dmodel is the dimension of
intermediate layers in transformers. If the input is in the form
of a one-hot vector e⃗i, then the embedding layer is a matrix
multiplication. In particular, this can be defined as follows:

x⃗ = TEmb[i] = e⃗iW
E ,

where the j-th row of WE equals to TEmb[j].
Attention Layer is a mapping from a query q⃗, a key-value
pair (k⃗, v⃗), to a weighted sum of values, where the weights
depend on q⃗ and k⃗. All the q⃗, k⃗, v⃗ are linearly projected from
the same input x⃗, i.e., q⃗ = x⃗WQ, k⃗ = x⃗WK , v⃗ = x⃗WV

for some trained weights WQ,WK ,WV . There are many
attention variants (e.g., scaled dot-product attention [1], strided
attention [42], FAVOR+ [17]). Here, we focus on the scaled
dot-product attention used in typical transformers. Let dk be
the dimension of k⃗. The attention layer can be computed by

Attention(q⃗, k⃗, v⃗) = Softmax

(
q⃗k⃗T√
dk

)
v⃗.

4

Multi-Head Attention (MHA) Layer extends the attention
layer by projecting q⃗, k⃗, v⃗ into h different linear subspaces,
where h is the number of heads, and performing the attention
function on them in parallel. Let WQ

i ,W
K
i ,WV

i ,W
O be

trainable weights. The MHA layer can be described as

MHA(x⃗) = (head0|| · · · ||headh−1)W
O,

headi = Attention(x⃗WQ
i , x⃗W

K
i , x⃗WV

i) for i ∈ [h].

Feed-Forward Network (FFN) consists of two linear layers,
with a GELU function in between. It can be represented as

FFN(x⃗) = GELU(x⃗W1 + b1)W2 + b2,

where Wi, bi are the weight and bias of the i-th linear layer.

Layer Normalization (LayerNorm) normalizes the distribu-
tion of the output of a layer. Given the layer output a⃗, this
operation can be formalized as follows:

LN(⃗a) =
g

σ
(⃗a− µ) + b,

µ =
1

H

H∑
i=1

ai, σ =

√√√√ 1

H

H∑
i=1

(ai − µ)
2
,

where H is the dimension of a⃗, and g, b are trainable
parameters that control the mean and variance of the output.

A residual connection [43], followed by LayerNorm, is
applied around each MHA and FFN layer. Altogether, the
output of a transformer block can be defined as

Block(x⃗) = LN(y⃗ + FFN(y⃗)), y⃗ = LN(x⃗+MHA(x⃗)).

C. Security Model

SHAFT supports secure outsourced inference [6], where the
model and data owners distribute private inputs via SS to two
untrusted servers, P0 and P1, typically large technology firms
with substantial computing power. Inputs can be reconstructed
only by combining shares from both. While it is possible
to distribute the inputs to more servers using replicated SS,
this raises the risk of secret recovery [6]. We consider static
semi-honest probabilistic polynomial time (PPT) adversaries
corrupting either P0 or P1, a standard assumption in private
(transformer) inference [13], [26], [44], suitable for use cases
where non-compliance risks reputational damage if caught.

Some protocols require precomputations, e.g., Beaver’s
triples [45] for multiplication. These can be prepared in a
data-independent offline phase by a semi-honest cryptographic
service provider (SP) offering triples-as-a-service [46], or
through 2PC protocols using HE [47] or OT [48]. We adopt
an SP for simplicity, as it does not participate in the online
phase and learns nothing about the inputs of P0 and P1.

Model extraction attacks [49] on plaintext model outputs lie
outside the scope of cryptographic inference. Concerns like
this can be mitigated by combining SHAFT with orthogonal
techniques like differential privacy [50], [51].

TABLE II
EXISTING BUILDING BLOCKS

Protocol Input/Output Description Rounds

Less-than, Π< JxK, JyK or y → J1x<y(x, y)K log2(ℓ) + 2
ReLU, ΠReLU JxK → JReLU(x)K log2(ℓ) + 3
Inv. sq. root, ΠrSqrt JxK → J1/

√
xK texp + 2trSqrt

Sine, Πsin JxK → Jsin(x)K 1

Protocol ΠrSqrt requires computing ex to obtain a good initial guess.
texp, trSqrt are iteration counts for approximating ex and 1/

√
x, respectively.

Specifically, we set texp = 8 and trsqrt = 5 in this work.

D. Cryptographic Primitives

Arithmetic Secret Sharing shares a scalar x ∈ Z/QZ among
a set of parties P , where Z/QZ is a quotient ring with Q
elements. Here, we use 2-out-of-2 arithmetic SS with Q = 2ℓ.
We denote the arithmetic SS of an ℓ-bit value x by JxK =
{JxKi}Pi∈P , where JxKi is the share of x held by party Pi.
Linear operations on (secret-)shared data, i.e., JzK = Jαx +
βy+γK for shared values JxK, JyK and public constants α, β, γ,
can be done non-interactively by having P0 and P1 compute
the linear operation on their shares of JxK and JyK.
Private Multiplication (Π×) evaluates JxyK on shared values
JxK and JyK. We use the one-round Beaver-triple-based proto-
col [45]. Multiplying two floating-point values (of precision t)
is followed by a truncation that is non-interactive in 2PC.

We also use secure protocols for some non-linear func-
tions [19], [37] (e.g., inverse square root), listed in Table II.

IV. SECURE TRANSFORMER INFERENCE

A. Overview of SHAFT

Figure 1 provides an overview of SHAFT’s design. Model
owners are machine-learning-as-a-service (MLaaS) providers
who offer inference services on their private models. Data
owners are MLaaS users who want to query the model with
their sensitive data. They are both users of SHAFT. Once
they outsourced the secure computations to two non-colluding
servers P0 and P1 by secret-sharing their private inputs, they
can go offline. Private inference between P0 and P1 is im-
plemented on SS-based protocols, some needing precomputed
triples obtained from MPC protocols or a semi-honest SP.

Transformers, as in Section III-B, consist of an embedding
layer, multiple transformer blocks, and a final single-layer NN
classifier. Each block includes MHA, FFN, and LayerNorm
layers. These layers are supported by our secure protocols for
softmax (ΠSoftmax), GELU (ΠGELU), and embedding (ΠEmb).

Like CrypTen [19], we implement the tensor-computation
APIs of the popular PyTorch library [21]. Our secure compu-
tations utilize highly optimized PyTorch operations, wrapped
within CrypTensor objects. While CrypTen allows model
owners to convert code from PyTorch to PPML via ONNX, it
lacks support for transformer-specific layers (e.g., embedding
and GELU) and private transformer inference. We bridge this
gap by implementing conversions from PyTorch to ONNX and
ONNX to PPML for these layers, enabling full interoperability
with PyTorch and compatible libraries like Hugging Face [23].

5

Model
Owner

ONNX
Importer

Secure Inference

P0 P1

Data
Owner

Crypto.
SP/MPC

Trans.
Block

1..B

Embed

Classifier

input

result

MHA

LN

FFN

LN

Protocols

Π×

ΠrSqrt

ΠSoftmax

(§IV-B)

ΠGELU

(§IV-C)

ΠEmb

(§IV-D)

import model

share

share triples

Fig. 1. SHAFT’s high-level design over transformer architecture with em-
bedding layer, B transformer blocks (LN denotes LayerNorm), and classifier

from transformers import (

AutoModelForSequenceClassification)

import crypten as ct
(standard) data loading and preprocessing omitted

load pretrained model from Hugging Face

model = AutoModelForSequenceClassification

.from_pretrained("user/bert-base-cased-qnli")

ct.init() # establish communication channels

load secret-shared model and data (on GPU)

model_ss = ct.nn.from_pytorch(model, dummy_data)

.encrypt().cuda()

data_ss = ct.cryptensor(data).cuda()

output_ss = model_ss(data_ss) # private inference

output = output_ss.get_plain_text() # recover result

Fig. 2. Private inference using a pretrained model from Hugging Face

Figure 2 shows how a pretrained transformer from Hugging
Face can be seamlessly imported and deployed for private
inference. Data owners invoke the standard Hugging Face APIs
to load and preprocess their datasets.4 Model owners load their
pretrained models from the Hugging Face repository with a
single from_pretrained() call. The users then initialize
communication channels with the servers by calling init().
The model is first converted from PyTorch to ONNX with
from_pytorch(), then to PPML code and shared with the
servers via encrypt(). The dataset is shared to the servers
through CrypTensor object creation. Private inference is
done by supplying the shared input data_ss into the shared
model model_ss. Finally, the data owner can recover the
shared output output_ss using get_plain_text().

In addition to importing models from Hugging Face, users
of SHAFT, such as ML researchers, can develop and train their
transformers with a customized architecture (e.g., alternative
attention variants or transformer blocks) in PyTorch and
similarly import them into PPML code. This design enables
flexible deployment of diverse transformers.

4Examples can be found in the Hugging Face’s Github repository.

B. Private Softmax

For secure computation of the MHA layer, designing an effi-
cient private softmax protocol is essential. Recall the definition
of softmax on an input x⃗ ∈ Rm:

Softmax(x⃗)i =
exi∑
j e

xj
=

exi−max (x⃗)∑
j e

xj−max (x⃗)
.

As ex and 1/x overflow easily, a common way is to evaluate
the second expression so that exponentials are computed only
on non-positive values and the reciprocal input is within the
range [1,m]. Computing this expression requires an expensive
O(log2(m))-round secure maximum computation.
Avoiding Private Maximum. To bypass the logarithmic round
complexity, we begin by directly approximating the first
expression (without the max (x⃗) terms) using an ODE. This
method starts with a constant initialization y⃗0 = 1⃗/m and
iteratively updates over t iterations as follows:

y⃗i = y⃗i−1 +
1

t
·
(
x⃗− ⟨x⃗, y⃗i−1⟩ · 1⃗

)
∗ y⃗i−1.

Theorem 1 shows the correctness of the ODE approximation.

Theorem 1 ([37]). Suppose max (x⃗)−min (x⃗) ≤ t:
(i) For all i ∈ [t + 1], y⃗i is a probability distribution, i.e.,

(yi)j ∈ [0, 1] for all j ∈ [m] and 1⃗T y⃗i = 1.
(ii) (yi)j ≤ (yi)k ⇐⇒ xj ≤ xk ∀i ∈ [t+ 1], j, k ∈ [m].

(iii) limi→+∞ y⃗i = Softmax(x⃗).

While this idea seems correct, it is far from enough to yield
accurate results. Observe that the ODE approximation may not
converge if the input assumption max (x⃗)−min (x⃗) ≤ t is not
met. In transformers, softmax inputs are unbounded, implying
this assumption can be violated easily if t is set to a small value
like 16. Determining a suitable t without prior knowledge of
the model and data is challenging. In practice, a conservative
choice is to set a large t for reasonable accuracy, such as 128
or 256. However, this is inefficient as the costs of privately
running the ODE approximation scale linearly with t.
Ensuring the Correctness of ODE. We propose clipping
the inputs to a predefined range [a, b]. Setting t = b − a
can then satisfy the input assumption, even when t is small.
Clipping may cause errors when inputs fall outside the range,
but selecting [a, b] properly maintains the precision. Thus, we
focus on choosing a suitable range for transformer inference.

Softmax in the attention layer converts weights that rep-
resent the relevance into a probability distribution, assigning
probabilities in proportion to their relatedness. Taking NLP as
an example, typically, a word is closely related to only a few
other words in a sentence.5 This observation suggests that most
transformer inputs are small, but clipping the few large inputs
causes larger errors as their exponents “dominate” the softmax
denominator. So, we set a larger positive b to minimize errors
from large inputs and a slightly negative a to include most
small inputs. Specifically, we set t = 16, a = −4, b = 12.

5For instance, “it” in “The animal didn’t cross the street because it was too
tired” refers to “animal” rather than any other word (from Google Research).

6

https://github.com/huggingface/transformers/tree/main/examples/pytorch
https://research.google/blog/transformer-a-novel-neural-network-architecture-for-language-understanding

Protocol 1: Softmax, ΠSoftmax(Jx⃗K)
Parameters: P0 and P1 know public values t, a, b.
Data: P0 and P1 hold shares of x⃗.
Result: P0 and P1 get shares of Softmax (x⃗).

1 Jδ⃗aK || Jδ⃗bK← ΠReLU(a− Jx⃗K || Jx⃗K− b);
2 Jx⃗K← Jx⃗K + Jδ⃗aK− Jδ⃗bK; // clip x⃗ into [a, b]

3 Jx⃗K← (1/t)Jx⃗K; // multiply 1/t at first
4 m← len(Jx⃗K); // get length of x⃗
5 P0: Jy⃗0K0 ← 1⃗/m; P1: Jy⃗0K1 ← 0⃗; // initialize y⃗0
6 for k = 1, . . . , t do
7 J⃗aK← Π× (Jx⃗K, Jy⃗k−1K); // a⃗← x⃗ ∗ y⃗k−1

8 Jq⃗K← (
∑

iJaiK)⃗1; // q⃗ ← ⟨x⃗, y⃗k−1⟩ · 1⃗
9 Js⃗K← Π× (Jq⃗K, Jy⃗k−1K); // s⃗← q⃗ ∗ y⃗k−1

10 Jy⃗kK← Jy⃗k−1K + J⃗aK− Js⃗K;
11 end
12 return Jy⃗tK;

Secure Protocol for Softmax. Protocol 1 describes our
softmax protocol. The inputs are first clipped into [a, b] in
Lines 1-2. Instead of multiplying 1/t in each iteration, we
can do it once at the beginning (Line 3) without affecting the
correctness. We get the input length from its shares locally
(Line 4) for initializing y⃗0 (Line 5) and perform iterative
updates in Lines 6-11. Finally, we output y⃗t in Line 12.

Cost Analysis. ΠSoftmax requires log2(ℓ)+2t+3 = 41 rounds,
including 1 ΠReLU call and 2t calls to Π×.

Comparison to Existing Works. Many frameworks (e.g.,
[19], [14], [27]) compute a sequence of maximum, exponen-
tial, and reciprocal. For m = 128 (common in NLP), CrypTen
requires 116 rounds (O(log2(m)) comparisons for maximum,
8 rounds for exponential, and 28 rounds for reciprocal). Also,
adopting naı̈ve ODE approximation [37] with a larger t = 128
(and without clipping) takes 2t = 256 rounds.

C. Private GELU

Most private transformer inference frameworks (e.g., [13],
[27]) utilize piecewise (high-order) polynomials to approxi-
mate GELU. We explore a fundamentally different approach,
outperforming them in both accuracy and communication cost.

The starting point of our GELU protocol is the FS approx-
imation and an efficient sine protocol from Zheng et al. [37],
which provides a precise approximation (within a bounded
input range) of non-linear functions with a sinusoidal shape (in
the approximation range). Unfortunately, the GELU function
is not sinusoidal, and its inputs are unbounded.

Designing Suitable Function. A natural idea in a concurrent
work [14] is to approximate the Erf(x) function. However,
recall that GELU(x) = 0.5x

(
1 + Erf

(
x/
√
2
))

, computing
GELU(x) from Erf(x) needs an extra multiplication by 0.5x,
increasing communication costs and amplifying errors for
x > 2. We formulate δ(x) = sgn(x) (GELU(x)− ReLU(x)),

Protocol 2: GELU, ΠGELU(JxK)

Parameters: P0 and P1 know public vectors β⃗, k⃗.
Data: P0 and P1 hold shares of x.
Result: P0 and P1 get shares of GELU (x).

1 JxReLUK← ΠReLU(JxK);
2 JxabsK← 2JxReLUK− JxK;
3 JbK← Π<(JxabsK, 4); // b← 1|x|<4(x)

4 Jx⃗sinK← Πsin(k⃗JxabsK); // x⃗sin ← sin(k⃗|x|)
5 Jδ⃗K← β⃗Jx⃗sinK;
6 JxδK←

∑
iJδiK; // xδ ← 1⃗T

(
β⃗ sin(k⃗|x|)

)
7 return JxReLUK +Π×(JbK, JxδK);

a function for a GELU characterization that eliminates Erf(x)
and the extra multiplication to avoid these issues:

GELU(x) = ReLU(x) + (GELU(x)− ReLU(x))

= ReLU(x) + sgn(|x|) (GELU(|x|)− ReLU(|x|))
= ReLU(x) + δ(|x|).

The δ(x) function is sinusoidal near x = 0 and is close to 0
for larger |x|, making it ideal for accurate FS approximation.
While δ(x) is similar to GELU(x)−ReLU(x) in SIGMA [26],
the latter is not sinusoidal. We adopt an FS-based approach,
unlike the computation-intensive LUT protocol in SIGMA.
Our FS Approximation. To approximate δ(x), we use the
following K-term FS6 for the input range (−4, 4):

δ(x) ≈ 1|x|<4(x)

K∑
n=1

βn sin
(nπx

4

)
where β⃗ = [β1, . . . , βK] is a vector of predefined constants:

βn =
1

4

∫ 4

−4

δ(u) sin
(nπu

4

)
du.

We express
∑K

n=1 βn sin (nπx/4) as vector 1⃗T
(
β⃗ sin(k⃗x)

)
,

where k⃗ = [π/4, . . . ,Kπ/4], for simplicity. In this work,
we fix K = 8 and have β⃗ = [−0.0818,−0.0809,−0.0424,
−0.0176,−0.0079,−0.0043,−0.0026,−0.0017].
Secure Protocol for GELU. Our protocol is described in
Protocol 2. We compute ReLU(x) in Line 1, evaluate |x| =
2ReLU(x)− x locally in Line 2, and check if x ∈ (−4, 4) by
comparing |x| with 4 in Line 3. We approximate δ(|x|) with
FS in Lines 4-6 and output the result in Line 7.
Cost Analysis. ΠGELU requires 2 log2(ℓ) + 7 = 19 rounds
(1 ΠReLU call, 1 Π< call, 1 Πsin call, and 1 Π× call).
Accuracy. Figure 3 compares our approximation to the actual
GELU. The maximum and average (absolute) errors are 4.60×
10−3 and 7.39×10−4 for the input range [−5, 5], respectively.7

6We omit the constant and cosine terms (all equal 0 because δ(0) = 0 and
δ(x) is odd) used in general FS approximations for simplicity.

7Another common error measure for numerical approximations is units in
last place (ULPs). For a numerical precision of 12 bits, our results show 19
maximum and 3 average ULPs, cf., BOLT’s 39 maximum and 5 average ULPs.

7

Fig. 3. Comparison of the original and FS-approximated GELU

TABLE III
PERFORMANCE COMPARISON OF GELU PROTOCOLS

SecFormer [14] BOLT [13] SHAFT

Maximum error 1.94× 10−2 9.36× 10−3 4.60× 10−3

Average error 5.00× 10−3 1.18× 10−3 7.39× 10−4

Π<, ΠReLU calls 2, 0 1, 1 1, 1
Π×, Πsin calls 4, 1 3, 0 1, 1
Rounds∗ 2 log2(ℓ) + 9 2 log2(ℓ) + 8 2 log2(ℓ) + 7

∗For a fair comparison, we assume the same ΠReLU,Π<,Π× protocols
from CrypTen [19] and the same Πsin protocol [37] are used.

Table III compares the performance of our approach to
the SoTA and related methods. Compared to the piecewise
polynomial in BOLT [13], our protocol saves one round
while reducing the maximum and average error by 51% and
37%, respectively. Compared to the FS approximation in
SecFormer [14], our protocol lowers the maximum error by
76%, the average error by 85%, and reduces two rounds.

Extension to Other Activations. Our characterization for FS
approximations is not only useful for GELU but also for other
ReLU-like activations, notably SiLU(x) = x ∗ σ(x), where
σ(x) = 1/(1+e−x). When using a 12-term FS to approximate
sgn(x)(SiLU(x)−ReLU(x)) within the input range (−8, 8), the
maximum and average errors are 5.40×10−3 and 8.89×10−4,
respectively (see Figure 4 for a comparison).

D. Private Embedding

The embedding layer in PyTorch is designed to accept in-
puts encoded as integer indices. Unfortunately, existing private
transformer inference frameworks often assume inputs are one-
hot vectors. Implementing a converted embedding layer to
accommodate this assumption impairs code readability and
burdens data owners with an extra one-hot vector conversion.

We address this limitation by introducing the first private
embedding protocol that directly accepts indices as inputs,
along with an index-to-one-hot protocol using precomputed
pair (JrK, Je⃗rK) to translate arithmetic operations on scalars to
cyclic rotations on one-hot vectors [22].

Fig. 4. Comparison of the original and FS-approximated SiLU

Protocol 3: Index to One-Hot, ΠIdx2v(JiK)
Data: P0 and P1 hold shares of i.
Result: P0 and P1 get shares of e⃗i.
Common Randomness: P0 and P1 hold shares of r, e⃗r.

1 JδK← JiK− JrK;
2 Reconstruct δ;
3 Je⃗iK← Je⃗rK ≫ δ;
4 return Je⃗iK;

Protocol 4: Embedding Layer, ΠEmb(JiK, JWEK)
Data: P0 and P1 hold shares of i,WE (corr. to TEmb).
Result: P0 and P1 get shares of TEmb[i] = e⃗iW

E .
1 Je⃗iK← ΠIdx2v(JiK); // get one-hot vector corr. to i

2 return Π×(Je⃗iK, JWEK); // “table lookup” by mult.

Converting Index to One-Hot Vector. Protocol 3 converts a
shared index JiK to one-hot vector Je⃗iK. P0 and P1 first hide i
by JδK = JiK− JrK (Line 1) and reconstruct δ (Line 2). They
then apply right cyclic rotations to Je⃗rK (Line 3).
Correctness. To see the correctness of the protocol, consider

Je⃗iK0 + Je⃗iK1 = (Je⃗rK0 ≫ δ) + (Je⃗rK1 ≫ δ)

= (Je⃗rK0 + Je⃗rK1) ≫ δ

= e⃗r ≫ (i− r) = e⃗i.

Secure Protocol for Embedding. Our embedding protocol
(Protocol 4) invokes Protocol 3 to obtain a one-hot vector e⃗i
from an index i and then multiplies it by WE .
Cost Analysis. ΠIdx2v requires 1 round for reconstructing the
blinded index, while ΠEmb takes 2 (1 for ΠIdx2v and 1 for Π×).

V. EVALUATION

A. Experiment Setup

We perform experiments on a server with Intel Xeon Gold
5318Y CPUs at 2.10 GHz, two NVIDIA A40 GPUs, and 256
GB of RAM. Like CrypTen [19], each party is assigned a GPU,
and all experiments run in separate processes on the same
machine. We implement our secure protocols on CrypTen [19].

8

TABLE IV
ARCHITECTURE HYPERPARAMETERS OF MODELS

Model # of Parameters B h dmodel dEmb

BERT-base 110M 12 12 768 30522

BERT-large 340M 24 16 1024 30522

GPT-2 117M 12 12 768 50257

ViT-base 86.6M 12 12 768 -

B: Number (#) of transformer blocks. h: # of attention heads.
dmodel: Dimension of intermediate layers. dEmb: Size of TEmb.

Models and Datasets. Using pretrained weights from Hugging
Face [23], we evaluate the cost of private transformer inference
for four models (BERT-base, BERT-large [2], GPT-2 [24],
and ViT-base [4]). Table IV details the models. Like prior
works [13], [26], [27], we run BERT and GPT-2 on length-
128 text sequences and ViT-base on 224× 224 RGB images.
Moreover, we evaluate the private inference accuracy of BERT-
base (fine-tuned for 3 epochs with the AdamW optimizer and
a learning rate of 2× 10−5) on the QNLI, CoLA, and SST-2
classification tasks from the GLUE benchmark [25].

Metrics. We evaluate the efficiency of SHAFT by running time
and communication cost. Like most private frameworks (recent
ones included [13], [27]), we do not separate offline and online
costs (CrypTen comes with no easy phase separation). Each
query takes offline and online computation, but our online cost
is much lower than our offline cost, like other frameworks. The
accuracy metric is dataset-specific and will be specified when
results are reported. The results are averaged over 10 runs.

B. Comparison of Non-linear Protocols

Secure Softmax. We compare our softmax protocol with the
SoTA approach from CrypTen [19] adopted in many private
transformer inference frameworks (e.g., [14], [27]) and the
naı̈ve ODE approximation by Zheng et al. [37]. Table V shows
the costs of evaluating an ℓ-input softmax, including time,
communicated bytes (Comm.), and rounds (Rd.). For ODE-
based approaches, the running time and rounds remain con-
stant, and the communication increases linearly with ℓ. While
having the same theoretical complexity [37], our protocol is
6× faster, saving 76% in communication and 84% in rounds.
Compared with CrypTen, where running time and rounds
grow logarithmically with ℓ, and communication cost increases
linearly with ℓ, our protocol is 2.2-2.5× faster, saves 61-67%
in rounds, and incurs only 1.3-1.4× more communication.

Secure GELU. We evaluate our GELU protocol on two
input sizes, (128, 3072) (used in BERT-base, GPT-2, and ViT-
base) and (128, 4096) (used in BERT-large), comparing it to
BOLT [13], the SoTA with a 3-piece degree-4 polynomial,
and SecFormer [14], using an FS approximation like SHAFT.
From Table VI, our protocol is 1.05-1.11× faster and saves
5-6% communication over these two works. It also requires
one fewer round than BOLT and two fewer than SecFormer.
Moreover, Table III shows that our protocol reduces maximum
and average errors by 51-76% and 37-85%, respectively. These

TABLE V
COST OF SECURE SOFTMAX (TIME IN S, COMM. IN MB)

Framework ℓ = 32 ℓ = 64

Time Comm. Rd. Time Comm. Rd.

CrypTen [19] 0.3230 0.0453 105 0.3470 0.0843 115
Zheng et al. [37] 0.9398 0.2500 256 0.9322 0.5000 256
SHAFT 0.1464 0.0596 41 0.1450 0.1191 41

Framework ℓ = 128 ℓ = 256

Time Comm. Rd. Time Comm. Rd.

CrypTen [19] 0.3662 0.1817 116 0.3835 0.3379 126
Zheng et al. [37] 0.9306 1.0000 256 0.9533 2.0000 256
SHAFT 0.1420 0.2383 41 0.1505 0.4766 41

TABLE VI
COST OF SECURE GELU (TIME IN S, COMM. IN MB)

Framework (128, 3072) (128, 4096)

Time Comm. Rd. Time Comm. Rd.

BOLT [13] 0.2363 372.0 20 0.2970 496.0 20
SecFormer [14] 0.2448 378.0 21 0.3057 504.0 21
SHAFT 0.2203 354.0 19 0.2818 472.0 19

results confirm that our secure GELU protocol outperforms
existing works in running time, communication, and accuracy.

C. Comparison of Private Transformer Inference

Table VII compares SHAFT to SIGMA [26], Bumble-
Bee [27], and BOLT [13]. FSS-based SIGMA uses highly
optimized LUTs and smaller bitwidths. BOLT is the SoTA HE-
based work, while BumbleBee claims performance improve-
ment over BOLT. As the code of SIGMA and BumbleBee were
not available8 and we could not compile the code of BOLT, we
quote their results and detail how we ensure fair comparisons.9

Accurately measuring the empirical running time requires
isolating the uncontrollable fluctuations introduced by inter-
process communication. The running time of SHAFT is calcu-
lated as: computation time+2×communication÷bandwidth+
rounds × latency. The “2” refers to the 2 parties in the pro-
tocols. Unless stated otherwise, our reported results are based
on the same network settings as BumbleBee [27]: a local-area
network (LAN) with 1 GBps bandwidth and 0.5 ms latency
and a wide-area network (WAN) with (400 MBps, 4 ms).

FSS-based frameworks like SIGMA need large offline key
transfers. SIGMA runs on a very high-performant LAN with
(9.4 Gbps, 0.05 ms). For 1 Gbps LAN, the estimated running-
time lower bound is: computation time+key generation time+
2× (communication + key size)÷ bandwidth.

8The acceptance of these two preprints became public only shortly before
our submission deadline, with the latter appearing just two days prior.

9Fair experimental comparisons across different prototypes are challeng-
ing [6], exacerbated by the cost and time-consuming nature of cryptographic
ML computation. Compared to the HE-based BumbleBee, SS-based solutions
(counting both offline and online costs) we adopted are known to be much
faster [6]. Communication comparisons are more straightforward, as all
parameters are known, and their determination is simple and deterministic.

9

TABLE VII
COST OF PRIVATE INFERENCE (TIME IN S, COMM. IN GB)

Model Framework Time Comm.
LAN WAN

BERT-base

SIGMA [26] †38.42 - 17.68
BumbleBee [27] 153.00 291.60 6.40
BOLT [13] ‡190.80 ‡1563.00 59.61
SHAFT 28.60 66.46 10.46

BERT-large
SIGMA [26] †103.30 - 47.69
BumbleBee [27] 371.40 588.60 16.37
SHAFT 77.13 176.21 28.46

GPT-2 (ℓ = 64) BumbleBee [27] 88.80 123.00 2.77
SHAFT 19.32 42.37 5.76

GPT-2 (ℓ = 128) SIGMA [26] †32.68 - 14.99
SHAFT †32.59 73.47 11.27

ViT-base BumbleBee [27] 239.40 - 11.56
SHAFT 45.66 108.24 18.41

LAN: (1Gbps, 0.5ms), WAN: (400Mbps, 4ms), unless otherwise specified.
†: Here, we estimate running time by assuming (1 Gbps, 0.05 ms) for LAN.
‡: LAN uses (3 Gbps, 0.8 ms) and WAN uses (200 Mbps, 40 ms).

Comparison with SIGMA. Despite using a larger bitwidth
(64 vs. 50), SHAFT is 1.3× faster for BERT models and has
comparable running time for GPT-2 on LAN, while reducing
communication by 25-41%. SIGMA lacks WAN results, but
we anticipate greater running-time improvements, as the key
transfer time increases substantially on slower WANs.

Comparison with BumbleBee. SS-based frameworks gen-
erally compute faster but require more communication than
HE-based ones [6].10 SHAFT, as an SS-based framework,
is 4.6-5.3× faster on LAN and 2.9-4.4× faster on WAN
while increasing communication by 59-108%. The running
time improvements on slower WAN demonstrate that SHAFT
achieves better computation-communication tradeoff.11

Comparison with BOLT. SHAFT is 6.7× faster than BOLT
on LAN (with a smaller bandwidth). On WAN with (200
Mbps, 40 ms), the running time of SHAFT is 173.83 s, 9.0×
faster than BOLT. Moreover, it saves 82% of communication.

D. Performance Breakdown

Figure 5 shows SHAFT’s breakdown of computation time,
communication, and rounds. Private transformer inference
mainly uses five modules – embedding, matrix multiplication
(MatMul), softmax, GELU, and LayerNorm. The “Other”
category includes most non-interactive operations, the tanh
function in BERT’s classifier (using the default approximation
and parameters from CrypTen [19]), and a (linear) convolution
performed at the beginning of ViT-base.

10For SS-based frameworks, communication dominates running time since
SS computations are almost as efficient as plaintext. In SHAFT, communica-
tion accounts for 70-80% of the time on LAN and 85-90% on WAN.

11Our new method relies on iterative approximations requiring multiple
rounds. A hybrid approach [6] combining existing HE-based optimizations
(e.g., [27]) with our SS-based secure protocols for non-linear layers could
negate our unique advantages, as such integration risks inheriting the draw-
backs of both paradigms due to the high computational cost of HE operations.

TABLE VIII
ACCURACY ON THE GLUE BENCHMARK

Dataset Size Metric Plaintext SHAFT

QNLI 5463 Accuracy 90.77% 90.38%

SST-2 872 Accuracy 92.66% 92.20%

CoLA 1043 Matthews correlation 0.5778 0.5685

Computation Time Breakdown. MatMul dominates, taking
58-77% of computation time. CrypTen [19] utilizes GPU for
efficient MatMul but avoids overflow by decomposing 64-
bit floating-point values into 4 partitions, requiring numerous
cross-term multiplications [6]. We identify these multiplica-
tions as the major bottleneck. Embedding (in BERT/GPT)12

accounts for 7-19% of the time due to large MatMuls. In
contrast, softmax and GELU only take 8-11% and 1-2% of the
time, respectively. These findings highlight the effectiveness of
our non-linear protocols in reducing computation.

Communication Breakdown. Softmax and GELU dominate
communication, accounting for 38-55% and 35-40%, respec-
tively [13], [27]. Our protocols can be further adapted to
smaller bitwidths (fixed to 64 for now) to significantly reduce
communication, to be elaborated in Section VII.

Rounds Breakdown. With our constant-round protocol, the
softmax module, while still requiring a moderate number of
rounds (33-34% of the total), is no longer dominating. Instead,
the LayerNorm module using iterative methods to approximate
1/
√
x accounts for the largest portion (43-45%) of rounds.

Our breakdowns reveal promising directions. Designing a
more efficient secure MatMul protocol on GPU could reduce
computation time by >50%. Also, existing protocols for 1/

√
x

(e.g., [19]) target general NNs. We could develop transformer-
specific protocols, aiming to reduce round complexity.

E. Accuracy

We perform private inference on the full validation set (cf., a
subset [27]) of three GLUE classification tasks (QNLI, CoLA,
SST-2) using BERT-base. Table VIII confirms that SHAFT
achieves accuracy comparable to the plaintext setting.

VI. SECURITY ANALYSIS

We prove the security of SHAFT13 following the ideal/real-
world paradigm [54]. Table IX defines the ideal functionalities
for our protocols14 and building blocks15 [19], [37].

12Recall that ViT for computer vision does not have an embedding layer.
13The security of our private inference should follow straightforwardly [26]

from our protocols, as transformers involve sequential compositions and
concurrent self-compositions of these protocols preserve security [52], [53].

14Since softmax and GELU are not computed exactly, their ideal (ap-
proximated) functionalities match their real protocols, with the underlying
approximation protocols replaced by the corresponding ideal functionalities,
rather than by the protocols for exact computation.

15CrypTen has two truncation protocols: a non-interactive one for 2PC and
an interactive one using precomputed randomness for MPC with ≥3 servers.
Li et al. [40] show that the latter is insecure due to the misuse of precomputed
randomness. SHAFT uses the first one, which remains secure.

10

Fig. 5. Breakdown of computation time (left), communication (middle), and rounds (right) for SHAFT on four transformers

TABLE IX
DEFINITIONS OF IDEAL FUNCTIONALITIES

Ideal Functionality Input/Output Description Proof

Multiplication F× JxK, JyK → JxyK [55, §4.1]
Less-than F< JxK, JyK or y → J1x<y(x, y)K [19, App. B]
ReLU FReLU JxK → JReLU(x)K [19, App. B]
Sine Fsin JxK → Jsin(x)K [37, App. C]

Softmax FSoftmax Jx⃗K → JSoftmax(x⃗)K §VI-A
GELU FGELU JxK → JGELU(x)K §VI-B
Index to one-hot FIdx2v JiK → Je⃗iK §VI-C
Embedding FEmb JiK, JWEK → Je⃗iWEK §VI-C

Definition 1 ([54]). Let F = (F0,F1) be a functionality, Π
be a protocol, viewΠ

i be the view of Pi in the execution of Π,
outΠ be the output of Π, and in = (in0, in1) be the input of
F and Π. Π securely realizes F in the presence of a static
semi-honest adversary if there exist PPT simulators S0,S1 s.t.

• {S0(in0,F0(in)),F(in)}
c≡ {viewΠ

0 (in), out
Π(in)},

• {S1(in1,F1(in)),F(in)}
c≡ {viewΠ

1 (in), out
Π(in)},

for any in, where
c≡ denotes computational indistinguishability.

A. Security of Private Softmax

Theorem 2. Suppose ΠReLU, Π× securely realizes FReLU,
F×, respectively. ΠSoftmax (Protocol 1) securely realizes the
functionality FSoftmax against static semi-honest adversaries.

Proof. Let in be arbitrary and {ΠReLU,Π×} securely realizes
{FReLU,F×}. By definition, FSoftmax(in)

c≡ outΠSoftmax(in).16

Observe that ΠSoftmax sequentially calls ΠReLU and Π×.
By the sequential composition theorem [52, Corollary 7],
Si(ini,Fi(in))

c≡ viewΠSoftmax
i (in) for i ∈ {0, 1}.

B. Security of Private GELU

Theorem 3. Suppose {ΠReLU,Π<,Πsin,Π×} securely realizes
{FReLU,F<,Fsin,F×}. ΠGELU (Protocol 2) securely realizes
FGELU in the presence of static semi-honest adversaries.

Proof. Let in be arbitrary and {ΠReLU,Π<,Πsin,Π×} securely
realizes {FReLU,F<,Fsin,F×}. By definition, FGELU(in)

c≡
outΠGELU(in). Since ΠGELU sequentially invokes ΠReLU, Π<,

16While Definition 1 is defined in a joint-distribution manner, we can
analyze the former and latter distributions separately without affecting the
security [54], as all our functionalities are deterministic.

Πsin, and Π×, by the sequential composition theorem [52],
Si(ini,Fi(in))

c≡ viewΠGELU
i (in) for i ∈ {0, 1}.

C. Security of Private Embedding

Theorem 4. ΠIdx2v (Protocol 3) securely realizes FIdx2v in the
presence of any static semi-honest PPT adversaries.

Proof. Let in = (JiK, JrK, Je⃗rK) be arbitrary. The correctness
FIdx2v(in)

c≡ outΠIdx2v(in) is explained in Section IV-D. We first
consider P0 is corrupted. We have viewΠIdx2v

0 (in) = (JiK0, JδK1).
With in0 = (JiK0, JrK0, Je⃗rK0) and F0(in) = Je⃗iK0, S0 can
enumerate all len(e⃗i) possible values of δ and find the one
that satisfies Je⃗iK0 = Je⃗rK0 ≫ δ (Line 3) and evaluate JδK1 =

δ−JδK0. Thus, S0(in0,F0(in))
c≡ viewΠIdx2v

0 (in). By symmetry,
S1(in1,F1(in))

c≡ viewΠIdx2v
1 (in) holds as well.

Theorem 5. Suppose ΠIdx2v, Π× securely realizes FIdx2v, F×,
respectively. ΠEmb (Protocol 4) securely realizes FEmb in the
presence of static semi-honest adversaries.

Proof. Let in be arbitrary and {ΠIdx2v,Π×} securely realizes
{FIdx2v,F×}. The correctness FEmb(in)

c≡ outΠEmb(in) holds
by definition. Observe that ΠEmb sequentially invokes ΠIdx2v

and Π×. By the sequential composition theorem [52], we have
Si(ini,Fi(in))

c≡ viewΠEmb
i (in) for i ∈ {0, 1}.

VII. OPTIMIZATIONS FOR MIXED-BITWIDTH SETTINGS

We instantiate SHAFT on fixed-bitwidth CrypTen [19].
When instantiating SHAFT using mixed-bitwidth frameworks
like SIRNN [28], communication costs can be further reduced.
Below, we discuss how our protocols can use a shorter bitwidth
with other optimizations enabled by our design.

A. Optimizations for Softmax

Secure ReLU. Recall that in transformers, softmax is always
preceded by a MatMul, and followed by a truncation of t = 16
bits. Thus, the (effective) bitwidth for the input of ReLU is
n − t = 48 (i.e., the high-end 16 bits are ignored). By the
definition of ReLU, the output bitwidth is 48 as well.
Secure Multiplication. By Theorem 1, we have (yk)i ∈ [0, 1]
and 1⃗T y⃗i = 1. For (a, b) = (−4, 12), after input clipping, we
have |xi| < 12, implying |⟨x⃗, y⃗i−1⟩| < 12. So, the bitwidth
of y⃗, x⃗, ⟨x⃗, y⃗i−1⟩, calculated by 1 (sign bit) + 16 (precision) +
⌈log2(upper bound of value)⌉, are 18, 21, 21, respectively.

11

Fig. 6. The original and FS-approximated GELU with comparison errors

B. Optimizations for GELU

Secure ReLU. Similar to softmax, the bitwidth of ReLU is 48
since GELU is also preceded by a MatMul and a truncation.

Secure Comparison. Besides ignoring the high-end 16 bits,
our GELU formulation allows skipping some low-end bits,
despite potential comparison errors. For example, ignoring the
last 16 bits could round both 2.01 and 2.99 to 2, leading to an
incorrect comparison of J4.98K = (J4.98K0 = 2.99, J4.98K1 =
1.99) with 4. Fortunately, our FS approximation remains
accurate not only within [−4, 4] but also over a broader range
(Figure 6 shows a plot by assuming J1K ← Π<(JxK, 4) for
x ∈ [−6, 6]), tolerating such errors. With optimizations at both
ends, the input bitwidth of comparison can be reduced to 32.

Secure Sine. As 264 is divisible by the period of our FS
(i.e., 8), both parties can take a modulo 8 (floating-point)
operation on their input shares without affecting the result.
This reduces the sine input bitwidth to 19. Note that the sign
bit is not needed because the shares are in [0.0, 8.0).

Secure Multiplication. The outputs of Π<(JxK, 4) and our FS
lie in {0, 1} and [−0.17, 0.17], respectively. So, the bitwidths
of b and xδ are 17 and 15, respectively.

VIII. CONCLUSION AND FUTURE WORKS

We introduce SHAFT, a secret-sharing-based framework for
secure, handy, accurate, and fast transformer inference.17 It
is powered by the first constant-round softmax protocol for
transformers using a new input-clipped-ODE approach, and
an efficient GELU protocol derived from a characterization
tailored for FS approximations, which is also applicable to
SiLU. We also present the first protocol that directly handles
secret-shared indices for inputs of embedding layers.

SHAFT outperforms state-of-the-art private transformer in-
ference frameworks in computation and communication, while
maintaining plaintext-comparable accuracy verified through
empirical analyses, and providing formal security guarantees.

17We hope SHAFT embodies the literary essence of a “shaft of light”—
delivering sharp and illuminating responses with the “lightning” speed and
precision of a well-trained transformer model, all while safeguarding privacy.

As the first private transformer framework with a constant-
round softmax protocol and an accurate GELU protocol that
surpasses prior arts in computation and communication costs,
SHAFT offers a strong foundation for further advancements.

We have open-sourced our code and implemented the con-
version from PyTorch to PPML for transformer-specific layers,
enabling seamless import of pretrained transformers from the
popular Hugging Face library. This bridges our scientific work
with real-world applications, addressing the pressing need
for privacy-preserving solutions in widespread transformer
inference deployments and paving the way for future research
and development by machine learning practitioners to design
and deploy cryptographically secure transformer models.

We conclude by sharing two directions for future work:

Private Transformer Fine-Tuning is an important future di-
rection. Fine-tuning pretrained models like BERT [2] on small,
task-specific datasets is often necessary, but such datasets
may contain sensitive data. It is crucial to support fine-tuning
without revealing the model or data [56]. Unlike inference,
fine-tuning requires computing the derivatives of non-linear
functions. Our non-linear protocols perform linear operations
and comparisons, with secure derivative computations imple-
mented on CrypTen [19]. The only missing piece is an efficient
protocol for computing cos(x) (i.e., the derivative of sin(x)),
which can be computed via cos(x) = sin(π/2 − x). While
extending SHAFT to private fine-tuning is technically feasible,
we leave its implementation and evaluation to future work.

Security against Malicious Adversaries is desirable in some
use cases. Existing works provide malicious security for
private CNN training and inference using replicated SS [57] or
customized SS [58]. Potential extensions of SHAFT include
instantiating our protocol within these frameworks or using
authenticated SS [48] to defend against malicious adversaries.

REFERENCES

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in NeurIPS,
2017.

[2] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of
deep bidirectional transformers for language understanding,” in NAACL-
HLT (1), 2019.

[3] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving
language understanding by generative pre-training,” 2018, OpenAI blog.

[4] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words:
Transformers for image recognition at scale,” in ICLR, 2021.

[5] L. K. L. Ng and S. S. M. Chow, “GForce: GPU-friendly oblivious and
rapid neural network inference,” in USENIX Security Symposium, 2021.

[6] ——, “SoK: Cryptographic neural-network computation,” in S&P, 2023.
[7] T. Chen, H. Bao, S. Huang, L. Dong, B. Jiao, D. Jiang, H. Zhou,

J. Li, and F. Wei, “THE-X: Privacy-preserving transformer inference
with homomorphic encryption,” in ACL (Findings), 2022.

[8] M. Hao, H. Li, H. Chen, P. Xing, G. Xu, and T. Zhang, “Iron: Private
inference on transformers,” in NeurIPS, 2022.

[9] D. Li, R. Shao, H. Wang, H. Guo, E. P. Xing, and H. Zhang, “MPC-
Former: Fast, performant and private transformer inference with MPC,”
in ICLR, 2023.

[10] Y. Akimoto, K. Fukuchi, Y. Akimoto, and J. Sakuma, “Privformer:
Privacy-preserving transformer with MPC,” in EuroS&P, 2023.

[11] M. Zheng, Q. Lou, and L. Jiang, “Primer: Fast private transformer
inference on encrypted data,” in DAC, 2023.

12

[12] W. Zeng, M. Li, W. Xiong, T. Tong, W. Lu, J. Tan, R. Wang, and
R. Huang, “MPCViT: Searching for accurate and efficient MPC-friendly
vision transformer with heterogeneous attention,” in ICCV, 2023.

[13] Q. Pang, J. Zhu, H. Möllering, W. Zheng, and T. Schneider, “BOLT:
Privacy-preserving, accurate and efficient inference for transformers,” in
S&P, 2024.

[14] J. Luo, Y. Zhang, Z. Zhang, J. Zhang, X. Mu, H. Wang, Y. Yu, and
Z. Xu, “SecFormer: Fast and accurate privacy-preserving inference for
transformer models via SMPC,” in ACL (Findings), 2024.

[15] H. W. H. Wong, J. P. K. Ma, D. P. H. Wong, L. K. L. Ng, and S. S. M.
Chow, “Learning DNN model with error - Exposing the hidden model
of BAYHENN,” in IJCAI, 2020.

[16] X. Wang, R. B. Girshick, A. Gupta, and K. He, “Non-local neural
networks,” in CVPR, 2018.

[17] K. M. Choromanski, V. Likhosherstov, D. Dohan, X. Song, A. Gane,
T. Sarlós, P. Hawkins, J. Q. Davis, A. Mohiuddin, L. Kaiser, D. B.
Belanger, L. J. Colwell, and A. Weller, “Rethinking attention with
performers,” in ICLR, 2021.

[18] M. Keller, “MP-SPDZ: A versatile framework for multi-party computa-
tion,” in CCS, 2020.

[19] B. Knott, S. Venkataraman, A. Y. Hannun, S. Sengupta, M. Ibrahim, and
L. van der Maaten, “CrypTen: Secure multi-party computation meets
machine learning,” in NeurIPS, 2021.

[20] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M. Lachaux, T. Lacroix,
B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin,
E. Grave, and G. Lample, “LLaMA: Open and efficient foundation
language models,” arXiv 2302.13971, 2023.

[21] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Z. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: An imperative style, high-
performance deep learning library,” in NeurIPS, 2019.

[22] K. Storrier, A. Vadapalli, A. Lyons, and R. Henry, “Grotto: Screaming
fast (2 + 1)-PC for Z2n via (2, 2)-DPFs,” in CCS, 2023.

[23] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer,
P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger,
M. Drame, Q. Lhoest, and A. M. Rush, “Transformers: State-of-the-art
natural language processing,” in EMNLP (Demos), 2020.

[24] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” 2019, OpenAI
blog.

[25] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman,
“GLUE: A multi-task benchmark and analysis platform for natural
language understanding,” in ICLR (Poster), 2019.

[26] K. Gupta, N. Jawalkar, A. Mukherjee, N. Chandran, D. Gupta, A. Pan-
war, and R. Sharma, “SIGMA: Secure GPT inference with function
secret sharing,” Proc. Priv. Enhancing Technol. (PETS), no. 4, 2024.

[27] W. Lu, Z. Huang, Z. Gu, J. Li, J. Liu, C. Hong, K. Ren, T. Wei, and
W. Chen, “BumbleBee: Secure two-party inference framework for large
transformers,” in NDSS, 2025.

[28] D. Rathee, M. Rathee, R. K. K. Goli, D. Gupta, R. Sharma, N. Chandran,
and A. Rastogi, “SiRnn: A math library for secure RNN inference,” in
S&P, 2021.

[29] Y. Dong, W. Lu, Y. Zheng, H. Wu, D. Zhao, J. Tan, Z. Huang, C. Hong,
T. Wei, and W. Chen, “PUMA: Secure inference of LLaMA-7B in five
minutes,” arXiv 2307.12533, 2023.

[30] X. Hou, J. Liu, J. Li, Y. Li, W. Lu, C. Hong, and K. Ren, “CipherGPT:
Secure two-party GPT inference,” Cryptology ePrint 2023/1147, 2023.

[31] Y. Ding, H. Guo, Y. Guan, W. Liu, J. Huo, Z. Guan, and X. Zhang, “East:
Efficient and accurate secure transformer framework for inference,”
arXiv 2308.09923, 2023.

[32] M. Yuan, L. Zhang, and X. Li, “Secure transformer inference protocol,”
Cryptology ePrint 2023/1763, 2023, version 20240508:021841.

[33] J. Zhang, X. Yang, L. He, K. Chen, W. Lu, Y. Wang, X. Hou,
J. Liu, K. Ren, and X. Yang, “Secure transformer inference made non-
interactive,” in NDSS, 2025.

[34] S. Tan, B. Knott, Y. Tian, and D. J. Wu, “CryptGPU: Fast privacy-
preserving machine learning on the GPU,” in S&P, 2021.

[35] D. Heath, V. Kolesnikov, and L. K. L. Ng, “Garbled circuit lookup tables
with logarithmic number of ciphertexts,” in EUROCRYPT Part V, 2024.

[36] J. Doerner and a. shelat, “Scaling ORAM for secure computation,” in
CCS, 2017.

[37] Y. Zheng, Q. Zhang, S. S. M. Chow, Y. Peng, S. Tan, L. Li, and S. Yin,
“Secure softmax/sigmoid for machine-learning computation,” in ACSAC,
2023.

[38] A. Brüggemann, R. Hundt, T. Schneider, A. Suresh, and H. Yalame,
“FLUTE: Fast and secure lookup table evaluations,” in S&P, 2023.

[39] S. Wagh, “Pika: Secure computation using function secret sharing over
rings,” Proc. Priv. Enhancing Technol. (PETS), no. 4, 2022.

[40] Y. Li, Y. Duan, Z. Huang, C. Hong, C. Zhang, and Y. Song, “Efficient
3PC for binary circuits with application to maliciously-secure DNN
inference,” in USENIX Security Symposium, 2023.

[41] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Rastogi, and
R. Sharma, “CrypTFlow: Secure tensorflow inference,” in S&P, 2020.

[42] R. Child, S. Gray, A. Radford, and I. Sutskever, “Generating long
sequences with sparse transformers,” arXiv 1904.10509, 2019.

[43] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016.

[44] J. P. K. Ma, R. K. H. Tai, Y. Zhao, and S. S. M. Chow, “Let’s stride
blindfolded in a forest: Sublinear multi-client decision trees evaluation,”
in NDSS, 2021.

[45] D. Beaver, “Efficient multiparty protocols using circuit randomization,”
in CRYPTO, 1991.

[46] N. P. Smart and T. Tanguy, “TaaS: Commodity MPC via triples-as-a-
service,” in CCSW@CCS, 2019.

[47] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in EUROCRYPT, 1999.

[48] M. Keller, E. Orsini, and P. Scholl, “MASCOT: Faster malicious
arithmetic secure computation with oblivious transfer,” in CCS, 2016.

[49] N. Carlini, F. Tramèr, E. Wallace, M. Jagielski, A. Herbert-Voss, K. Lee,
A. Roberts, T. B. Brown, D. Song, Ú. Erlingsson, A. Oprea, and
C. Raffel, “Extracting training data from large language models,” in
USENIX Security Symposium, 2021.

[50] M. Du, X. Yue, S. S. M. Chow, and H. Sun, “Sanitizing sentence
embeddings (and labels) for local differential privacy,” in The Web, 2023.

[51] M. Du, X. Yue, S. S. M. Chow, T. Wang, C. Huang, and H. Sun, “DP-
Forward: Fine-tuning and inference on language models with differential
privacy in forward pass,” in CCS, 2023.

[52] R. Canetti, “Security and composition of multiparty cryptographic
protocols,” J. Cryptol., vol. 13, no. 1, 2000.

[53] E. Kushilevitz, Y. Lindell, and T. Rabin, “Information-theoretically
secure protocols and security under composition,” in STOC, 2006.

[54] O. Goldreich, The Foundations of Cryptography - Volume 1: Basic
Techniques. Cambridge University Press, 2001.

[55] D. Bogdanov, S. Laur, and J. Willemson, “Sharemind: A framework for
fast privacy-preserving computations,” in ESORICS, 2008.

[56] L. K. L. Ng, S. S. M. Chow, A. P. Y. Woo, D. P. H. Wong, and Y. Zhao,
“Goten: GPU-outsourcing trusted execution of neural network training,”
in AAAI, 2021.

[57] S. Wagh, S. Tople, F. Benhamouda, E. Kushilevitz, P. Mittal, and
T. Rabin, “Falcon: Honest-majority maliciously secure framework for
private deep learning,” Proc. Priv. Enhancing Technol. (PETS), no. 1,
2021.

[58] N. Koti, M. Pancholi, A. Patra, and A. Suresh, “SWIFT: Super-fast
and robust privacy-preserving machine learning,” in USENIX Security
Symposium, 2021.

ARTIFACT APPENDIX

A. Description & Requirements
1) How to access: SHAFT’s source code is available on

GitHub.18 The main branch contains the latest version, while
the ndss-25-ae tag corresponds to the exact code submitted
for artifact evaluation. This tagged version is also on Zenodo.19

2) Hardware dependencies: We conducted experiments on
a machine with Intel Xeon Gold 5318Y CPUs at 2.10 GHz,
two NVIDIA A40 GPUs, and 256 GB of RAM.

3) Software dependencies: We implemented SHAFT using
Python 3.10.12. The dependencies for SHAFT (and the fol-
lowing experiments) are detailed in requirements.txt.

18https://github.com/andeskyl/SHAFT.
19https://doi.org/10.5281/zenodo.14253770

13

https://github.com/andeskyl/SHAFT
https://doi.org/10.5281/zenodo.14253770

4) Benchmarks: (1) Datasets: QNLI, SST-2, CoLA. (2)
Models: BERT-base20, BERT-large, GPT-2, ViT-base.

B. Artifact Installation & Configuration

Download the SHAFT artifact, e.g., via the “git clone
https://github.com/andeskyl/SHAFT” command.
Our repository includes README.md files with step-by-step
installation instructions for SHAFT and its dependencies.

C. Major Claims

• (C1): Our secure softmax protocol outperforms the SoTA
approaches [19], [37] in both running time and commu-
nication rounds. This is proven by the experiment (E1),
with results reported in Table V.

• (C2): Our private GELU protocol surpasses the SoTA
method [13] in accuracy, running time, and communica-
tion. This is demonstrated by the experiments (E2), with
results reported in Tables III and VI.

• (C3): For private transformer inference, SHAFT out-
performs SIGMA [26] in communication and Bumble-
Bee [27] in running time. This is proven by the experi-
ment (E3), with results reported in Table VII.

• (C4): SHAFT achieves comparable accuracy to plaintext
transformer inference. This is shown by the experiment
(E4), with results reported in Table VIII.

D. Evaluation

1) Experiment (E1): [Softmax performance] [5 human-
minutes + 1 compute-minute]: This experiment benchmarks
the performance of our secure softmax protocol.

[Preparation] Go to the examples/unit-test folder.
[Execution] Run the command below.

$ python run_test_softmax.py

[Results] A similar output21 as follows should be shown:

l=32 time: 0.1464s, bytes: 0.0596 MB, rounds: 41

l=64 time: 0.1450s, bytes: 0.1191 MB, rounds: 41

l=128 time: 0.1420s, bytes: 0.2383 MB, rounds: 41

l=256 time: 0.1505s, bytes: 0.4766 MB, rounds: 41

2) Experiment (E2): [GELU performance] [1 human-
minute + 1 compute-minute]: This experiment examines the
performance of our secure GELU protocol.

[Preparation] This can be done right after (E1).
[Execution] Run the command below.

$ python run_test_gelu.py

[Results] A similar output as follows should be shown:

20BERT models need fine-tuning on task-specific datasets for inference. To
ensure the reproducibility of accuracy results, we have uploaded our fine-
tuned BERT-base models for SST-2 (bert-base-cased-sst2), CoLA (bert-base-
cased-cola), and QNLI (bert-base-cased-qnli) to Hugging Face. With SHAFT’s
seamless import from Hugging Face, users need not download them manually.

21Transferred bytes should match the expected results, but the running time
may vary (e.g., due to system load or inter-process communication latency).

max error: 0.0046, avg error: 0.000739

(128,3072) time: 0.2203s, bytes: 354 MB, rounds: 19

(128,4096) time: 0.2818s, bytes: 472 MB, rounds: 19

3) Experiment (E3): [Private transformer inference cost]
[5 human-minutes + 20 compute-minutes]: This experiment
verifies SHAFT’s private inference cost over different models.

[Preparation] To test the private inference cost of {BERT,
GPT, ViT} model, go to the {text-classification,
text-generation, image-classification} folder
under the examples directory. Then, run the following
command to install the additional dependencies:

$ pip install -r requirements.txt

[Execution] The running time of private inference is re-
ported using formula: computation time+2×communication÷
bandwidth+ rounds× latency. We provide scripts (in the form
of test_<model>_<in_size>_<comp/comm>.sh) to
evaluate private BERT/GPT/ViT inference costs. Please refer
to README.md for detailed steps for evaluating each model.

As an example, consider evaluating private BERT-base
inference costs on length-128 input. The following two com-
mands evaluate the computation and communication costs.

$ bash test_bert_base_128_comp.sh
$ bash test_bert_base_128_comm.sh

[Results] An example output of the above scripts:

comp time: 6.93s

comm byte: 10.46 GB, round: 1495

With the results, we can calculate the running time for different
network settings using the above formula, e.g., under the LAN
setting with 1 Gbps bandwidth and 0.5 ms latency, the running
time is 6.93+2×10.46÷1+1495× (0.5÷1000) = 28.60 s.

4) Experiment (E4): [Private transformer inference accu-
racy] [3 human-minutes + 1 compute-hour]: This experiment
validates our accuracy. Given its time-consuming nature, we
suggest evaluating only the accuracy of the SST-2 dataset, the
smallest one among the three reported in Table VIII.

[Preparation] Go to text-classification.
[Execution] Assume that the dependencies have already

been installed in experiment (E3). Run the command below.

$ bash test_bert_base_acc.sh

By default, the above script evaluates the SST-2 dataset. To
evaluate QNLI and CoLA datasets, replace the “sst2” in the
first line of the script with “qnli” and “cola”, respectively.

[Results] A similar output as follows should be shown:

running private inference, samples_seen=1

...

running private inference, samples_seen=872

metric: {'accuracy': 0.9220183486238532}

running time: 3804.113387823105s

14

https://huggingface.co/andeskyl/bert-base-cased-sst2
https://huggingface.co/andeskyl/bert-base-cased-cola
https://huggingface.co/andeskyl/bert-base-cased-cola
https://huggingface.co/andeskyl/bert-base-cased-qnli

	Introduction
	Manifold Approaches to Non-linearity
	Our Contributions

	Related Works
	MPC-Friendly Approximations of Softmax
	MPC-Friendly Approximations of GELU
	Other Private Transformer Inference Frameworks
	Conversions from Plaintext NNs to Secure NNs

	Preliminaries
	Notations
	Transformer Architecture
	Security Model
	Cryptographic Primitives

	Secure Transformer Inference
	Overview of SHAFT
	Private Softmax
	Private GELU
	Private Embedding

	Evaluation
	Experiment Setup
	Comparison of Non-linear Protocols
	Comparison of Private Transformer Inference
	Performance Breakdown
	Accuracy

	Security Analysis
	Security of Private Softmax
	Security of Private GELU
	Security of Private Embedding

	Optimizations for Mixed-bitwidth Settings
	Optimizations for Softmax
	Optimizations for GELU

	Conclusion and Future Works
	References
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Major Claims
	Evaluation
	Experiment (E1)
	Experiment (E2)
	Experiment (E3)
	Experiment (E4)

