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Abstract—In recent years, the app-in-app paradigm, involving
super-app and mini-app, has been becoming increasingly popular
in the mobile ecosystem. Super-app platforms offer mini-app
servers access to a suite of powerful and sensitive services,
including payment processing and mini-app analytics. This access
empowers mini-app servers to enhance their offerings with robust
and practical functionalities and better serve their mini-apps. To
safeguard these essential services, a credential-based authenti-
cation system has been implemented, facilitating secure access
between super-app platforms and mini-app servers. However,
the design and workflow of the crucial credential mechanism
still remain unclear. More importantly, its security has not been
comprehensively understood or explored to date.

In this paper, we conduct the first systematic study of the
credential system in the app-in-app paradigm and draw the
security landscape of credential leakage risks. Consequently, our
study shows that 21 popular super-app platforms delegate sensi-
tive services to mini-app servers with seven types of credentials.
Unfortunately, these credentials may suffer from leakage threats
caused by malicious mini-app users, posing serious security
threats to both super-app platforms and mini-app servers. Then,
we design and implement a novel credential security verification
tool, called KeyMagnet, that can effectively assess the security
implications of credential leakage. To tackle unstructured and
dynamically retrieved credentials in the app-in-app paradigm,
KeyMagnet extracts and understands the semantics of credential-
use in mini-apps and verifies their security. Last, by applying
KeyMagnet on 413,775 real-world mini-apps of 6 super-app
platforms, 84,491 credential leaks are detected, spanning over
54,728 mini-apps. We confirm credential leakage can cause
serious security hazards, such as hijacking the accounts of all
mini-app users and stealing users’ sensitive data. In response,
we have engaged in responsible vulnerability disclosure with the
corresponding developers and are actively helping them resolve
these issues. At the time of writing, 89 reported issues have been
assigned with CVE IDs.

*Co-first authors.

I. INTRODUCTION

In recent years, the app-in-app paradigm, involving super-
app and mini-app, has been becoming increasingly popular in
the mobile ecosystem. Mobile apps, often referred to as super-
apps, offer a mini-app runtime environment, allowing them to
delegate various functionalities to mini-apps. This integration
enables mobile users to experience a wide range of function-
alities within these super-apps. More than 20 leading mobile
app platforms (e.g., WeChat and TikTok) have embraced this
innovative paradigm, hosting an extensive collection of over 7
million mini-apps [1], which is more than four times the size of
Google Play (1.68 million apps [2]). As an example, WeChat,
one of the most globally-used instant-messaging mobile apps,
functions as a super-app, and its mini-apps have engaged 600
million daily active users [3].

The app-in-app ecosystem’s security, despite its paramount
importance, still necessitates in-depth explorations and under-
standing. As shown in Figure 1, super-app platforms offer
mini-app servers access to an extensive array of essential
resources and services, e.g., payment processing, cloud use,
AI service and mini-app analytics (step 2⃝). This access
empowers mini-app servers to enhance their offerings with
robust and practical functionalities and better serve their
mini-apps (step 3⃝). To safeguard these essential services, a
credential-based authentication system has been implemented.
In particular, before accessing these services, the mini-app
server first retrieves a credential from the super-app platform
(step 1⃝). Second, when a privileged service is called in mini-
app server (step 2⃝), it sends an authentication request with the
credential. Last, the super-app platform verifies the credential
for request approval. Similar to other credential-use scenarios
[4], [5], [6], [7], [8], the credential mechanism may suffer from
credential leakage risks. Recently, this has been demonstrated
by concrete case studies [9], [10], which focus on the hard-
coded credential leakage in mini-app clients. However, the
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Fig. 1. The Credential System in the App-in-app Paradigm

design of the whole crucial credential mechanism still remains
ambiguous. More importantly, its security has not been com-
prehensively understood or explored to date.
Understanding Credential Security. In this work, we con-
duct the first systematic study of the credential system in
the app-in-app paradigm and draw the security landscape of
credential leakage risks. We first understand what credentials
are in the scenario of the app-in-app diagram and how they
are used to secure super-app service access. We target 21
popular super-app platforms and conduct manual analysis on
their documentation and sample mini-apps. We observe that
most credentials are dynamically retrieved from the mini-app
servers and do not have a fixed or unified format. This is
totally different from other scenarios [4], [11], [12], [5], [13],
[6], [14], [10], whose credential formats are hard-coded and
structured. Moreover, we find that all super-app platforms
enforce credential-based authentication. Our study unveils
seven types of credentials in total, which perform different
functionalities. For example, some of them are used to gen-
erate and manage other credentials, while some are applied
to secure communication data. To better understand their use
scenarios, we classify them into three novel categories.

Guided by the credential-use scenarios and categories, we
manually analyse the security of credential usage in mini-apps.
Our analysis reveals that the responsibility for safeguarding
and managing credentials primarily falls on mini-app servers.
When a mini-app (i.e., mini-app client) utilizes super-app
services provided by its mini-app server (like image editing
or optical character recognition), it is crucial for the server
to authenticate the client and use its corresponding credential
for accessing super-app services and returning the results (as
shown in step 2⃝ and step 3⃝ of Figure 1). However, unfor-
tunately, mini-app developers may lack security awareness,
resulting in a deficient understanding of the security and mean-
ings of these credentials. They may improperly share their
credentials with mini-app clients, i.e., credential migration,
allowing their clients to interact directly with super-app plat-
forms without server-side intervention (step 4⃝). This common
practice inevitably leads to security breaches when malicious
mini-app users capture and abuse the shared credentials in
their rooted devices. The credential leakage will threaten the
security of both mini-app servers and super-app services, and

the finding is further corroborated by our subsequent security
impact assessment.

Detecting Credential Leakage. After thoroughly studying
and understanding the security of credentials, we aim to learn
and assess the security risks of credential leakage. Considering
the large number of available mini-apps, an automated creden-
tial leakage detection tool is demanded. However, it is not an
easy task to design and implement such a detection tool. In
particular, as discussed in our aforementioned security study,
the data value formats of the credentials used in the app-in-app
authentication lack distinctive characteristics. Some of them
are even transformed, e.g., encoded or encrypted. Existing
credential detection solutions were designed only for structural
and well-defined credentials, therefore, are not suitable for the
scenarios focused on in this paper.

In this paper, we propose a novel credential security anal-
ysis approach, called KeyMagnet, that addresses the above
challenge by understanding and verifying the credential-use
semantics in both mini-app client- and server- sides. One
key point behind our KeyMagnet approach is that during
the credential migration from the mini-app server-side to the
client-side, the credential-use behaviors still exhibit similar
patterns on both sides when communicating with the super-app
services. Therefore, our main idea is that we can compare the
credential-use semantic patterns learned from both mini-app
clients and servers. If a mini-app client has similar credential-
use semantics, which should only be placed in the mini-app
server-side, the risk of credential leakage may exist.

Guided by this, we design our KeyMagnet approach with
three phases. First, KeyMagnet understands the credential-use
semantics that should be held in mini-app servers. Although
these semantics often occur in the background and are hardly
retrieved, we find the mini-app development documentation
provided by super-app platforms offers sufficient hints. There-
fore, we conduct a documentation analysis to extract and
formulate the credential semantics in mini-app servers. To
achieve this, KeyMagnet designs and constructs a novel API-
level semantic graph, called credential-use semantic graph
(CSG), by mining credential-related interfaces and inferring
their relationships from the large volume of documentation.
Second, KeyMagnet learns the client-side credential semantics.
Despite the credential formats being diverse and flexible, we
observe that credentials are dynamically created and shared
through the network. This means the client-side network
behaviors must be a super-set of credential-use semantics.
Thus, we download mini-app clients and conduct code se-
mantic analysis by employing fine-grained data flow analysis
in the mini-app client code. Through analyzing the data flows
corresponding to network APIs, which reflect credential-use
behaviors in the mini-app client, we can build a client-
side behavior graph (CBG). Last, KeyMagnet compares the
credential-use behaviors of the server- and client- sides, i.e.,
applying semantic-based analysis to detect similarity between
the server- and client-side semantics (CSG and CBG). To
this end, KeyMagnet bridges the semantic gap between CSG
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and CBG, and devises a novel graph matching technique to
compute their similarity.
Our Findings. We implement the prototype of KeyMagnet,
and apply it on 413,775 real-world mini-apps. Our results
unveil that KeyMagnet accurately discovers leaked credentials
in mini-apps (with a precision of 95.04% and a recall of
85.56%). Besides, we find that credential leakage is prevalent
in the app-in-app ecosystem with 84,491 detected credential
leaks, spanning over 54,728 mini-apps. Notably, our research
points out that credential leakage appears in prominent cor-
porations (e.g., Tencent and Baidu) and sensitive categories
(e.g., Education and Government). In addition, severe security
hazards may be caused by credential leakage, e.g., hijacking
all users’ accounts, stealing sensitive data of mini-app users
and broadcasting malicious content through official channels.
Upon further analysis, we discover that many credential leaks
occur across mini-apps, e.g., a Baidu mini-app leaks the
credential of its corresponding WeChat mini-app. We made
efforts to collect the contact information of detected mini-
apps and have reported the vulnerabilities to the corresponding
developers. As of now, 89 reported issues have been assigned
with CVE IDs and 38 of them are rated high severity.

In short, we make the following contributions.
• To the best of our knowledge, our work is the first to

systematically study the app-in-app credential system and
unveil its security implications.

• We propose a novel approach, called KeyMagnet1, to
detect the credential leakage in mini-apps.

• We have evaluated KeyMagnet with 413,775 mini-apps
and have identified 84,491 credential leaks. We analyse
the root causes of the prevalent leakage and propose
corresponding mitigation strategies.

II. STUDY OF MINI-APP CREDENTIAL SYSTEM

A. App-in-App Background
Mobile apps recently introduced the app-in-app paradigm,

which consists of super-app and mini-app platforms. Each
platform has client-side and server-side. In a mobile device, a
mobile app acts as super-app client and provides a web runtime
to host mini-app client. A mini-app client is deployed as a web
app. In the runtime, both super-app and mini-app client may
communicate with their own servers. As introduced in Section
I, super-app platforms provide mini-app servers a number of
privileged resources and services, allowing mini-app servers
to ease their mini-app clients’ development and offer powerful
services to their clients.

Super-app platforms apply a credential-based authentica-
tion to protect sensitive services. Specifically, as illustrated
in Figure 1, the typical workflow of authentication is that
super-app platforms issue credentials to mini-app servers. The
credentials can only be used in the mini-app servers and cannot
be disclosed to the mini-app clients. Before these services are
accessed, the credentials should be provided to super-apps for

1The source code is avaliable at https://github.com/KeyMagnetProject2025/
KeyMagnet.

verification. Thus, if credentials are leaked, anyone, in addition
to the mini-app servers, can access these services. Recently, [9]
and [10] have demonstrated the potential risks with concrete
credential leakage cases. However, existing work only revealed
a tip of the iceberg of the credential system. The design of the
whole crucial credential mechanism still remains ambiguous.
More importantly, its security has not been comprehensively
understood or explored to date.

B. Understanding Credential System

We conduct a comprehensive study to understand the
credential system in the app-in-app paradigm. To this end,
we first collect and build our super-app dataset. We crawl
popular Android apps from Google Play and their develop-
ment documentation. In addition, we use the Google search
engine to search for related keywords (e.g., “mini app” and
“super app”) and find more potential super-apps. By scanning
these applications’ documentation based on the keywords,
we finally gathered 21 super-apps as our preliminary study
dataset. These apps feature the app-in-app paradigm and are
popular worldwide. In order to understand the credential mech-
anisms in these super-apps, two experts spend half a month
on reading the developer documentation and analyzing the
protocols designed by super-apps. The documentation explains
the meanings of various parameters used in super-app provided
services, and some documentation defines the credentials pro-
vided for mini-app developers to access these services. We can
identify credentials based on the descriptions and understand
their functionalities. Consequently, we successfully discover
seven types of credentials across all super-apps (Table I).
These credentials are mostly unstructured and dynamically
retrieved from the mini-app servers. They are used to enforce
the authentication before the service is accessed by mini-app
servers.

Definition 1 (Unstructured Credentials): A structured
credential is a type of credential that includes a fixed prefix,
suffix, or string pattern. For instance, Amazon AWS cre-
dentials contain a fixed prefix string AKIA [5]. In contrast,
unstructured credentials lack a fixed string pattern and are
generated with random values. For instance, AppSecret in
WeChat is a 32-character hexadecimal string, a format that
many other strings also fit, making it difficult to distinguish
the credentials from unrelated variables.

Definition 2 (Dynamically Retrieved Credentials): A
dynamically retrieved credential is obtained from the server
side and transmitted through network traffic. Compared to
hard-coded credentials, they are not attached to the client, and
thus cannot be discovered by static analysis of the client-side
code.

We then study how these credentials are used, i.e., their
functionalities and usage workflows. However, we find these
credentials are designed in diverse ways, especially consider-
ing different super-app platforms are designed in inconsistent
architectures. To unify and abstract their functionalities, we
conducted an in-depth analysis of the credentials and found
that most of them are used either to access privileged services
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TABLE I
Credential Utilization in High-profile Super-apps. Super-apps may have multiple credentials in certain types, such as Alipay and UnionPay have two types of

data encryption keys. In total, there are 64 credentials across all super-apps.
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provided by super-apps or to safeguard data confidentiality
during communication. Consequently, we grouped the creden-
tials into three novel types: access credentials, cryptographic
credentials, and root credentials. The first two types handle the
functionalities mentioned above, while the last type is used to
derive and manage the other two types. Next, we dive into the
credential security. More details are discussed in the remaining
subsections.

C. Threat Model

In the credential system, we assume that the super-app
client and server, as well as the mini-app server, are trusted.
In contrast, the mini-app client is untrusted. The attacker is
a malicious mini-app user, which can impersonate a regular
mini-app client to access sensitive resources and services
with leaked credentials. Mini-app developers may migrate
credentials to the mini-app client from mini-app server, which
can be obtained by an attacker.

The attack objective is to compromise other mini-app clients
(regular users), mini-app servers (developers), and super-app
services. The attacker possesses the ability to manipulate the
network traffic of the mini-app client, as the attacker’s mobile
device can be rooted. Besides, the attacker can directly launch
attacks using leaked credentials without the need to develop
malicious mini-apps, to hack into the mini-app server, or to
install a malicious mini-app on user’s mobile. We believe this
attack scenario is practical and relatively easy to achieve.

D. Credential Leakage

Credential plays a crucial role in ensuring secure access
to super-app services. In real-world practices, there is so-
phisticated access among different parties in the app-in-app
diagram. As illustrated in Figure 1, the erroneous practice of
mini-app servers is to share critical credentials with their mini-
app clients. This creates a shortcut that allows their clients to
directly communicate with super-app platforms without having
to go through mini-app servers each time they access super-
app services. As discussed in Section I, this inevitably leads to
the credential leakage issue. We manually verify the credential
security of the super-app platforms in our dataset and analyze

the security hazards caused by the credential leakage. More
details about the attack vectors are presented in Table I
and Section II-E. Through stolen credentials, an attacker can
easily bypass security enforcement deployed in both mini-app
and super-app services, which can introduce serious security
hazards, e.g., user account hijacking, user private information
leakage and illegitimate paid services access.

E. Generalizing Attack Vectors

As summarized in Table I, we understand and generalize the
attack vectors from the three proposed credential types (i.e.,
access, cryptographic, and root credentials), especially their
functionalities and security mechanisms.
Access Credential. Access credential is used in super-app
platforms to authenticate whether a requester has permission
to access the resources and services (provided by super-app
platforms). For instance, the high-profile short-form video app
‘TikTok’ utilizes an access credential (i.e., accessToken)
to manage the access to its e-commerce service and fraud
detection service. When a malicious mini-app user (e.g.,
Mallory) obtains an access credential, Mallory can freely
access any services that should be paid, and steal the sensitive
information, e.g., the logistics information and mini-app use
data.
Cryptographic Credential. This class of credentials is
widely adopted with popular cryptosystems, e.g., AES and
RSA. They play a crucial role in ensuring the security of
the communication channels between mini-apps and super-
apps. Cryptographic credential is vital in protecting sensitive
resources from being intercepted and tampered with malware
data. For instance, Alipay implements a strict access mecha-
nism combining symmetric and asymmetric keys to ensure the
confidentiality and integrity of the communication process.

The secure practice for mini-app servers is to use the
cryptographic credentials only in the communication between
super-app platforms and mini-app servers. However, credential
migration will leak cryptographic credentials. Specifically,
many mini-app developers (e.g., a high-profile logistics mini-
app ‘Y***’ and an aviation mini-app ‘U***’) directly send
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these credentials, i.e., sessionKey in WeChat, to the mini-
app client-side.

When a cryptographic credential is compromised, serious
attack effects can also be caused, e.g., hijacking all users’
accounts belonging to the vulnerable mini-app servers. By
using such a credential, a malicious mini-app user can con-
tact either mini-app servers or super-app platforms and thus
deceive them with fraudulent messages to launch security
exploits. For instance, WeChat enables a ‘One-Click Login’
feature to let a mini-app client conveniently log into mini-
app servers with a user’s phone number. Technically, when
a mini-app client requests One-Click Login, the super-app
client and server support it by encrypting the user phone
number n to n′ with a sessionKey k. Please note that
k is dynamically generated by the super-app platform and
shared with the mini-app server. In normal cases, k and n’s
plain values are unknown to the mini-app client, which only
holds n′. Then, the mini-app client forwards n′ to the mini-
app server for login approval. Last, the mini-app server verifies
and decrypts n′ with k to retrieve the user’s phone number and
let the mini-app client log in. However, oppositely, when k is
leaked due to credential migration, a malicious mini-app user
can capture k in the memory of his mini-app client and thus
replace n with arbitrary phone numbers for content encryption.
As a result, the attacker can successfully log into the mini-app
server with other users’ accounts and achieve mini-app account
hijacking.
Root Credential. Different from the above two types of
credentials, a root credential is not directly involved in the
enforcement of service access control and communication
confidentiality. Instead, it is applied to derive and manage other
credentials. For example, AppSecret is the root credential
in WeChat, and can be used to derive the access credential
accessToken, which can control security access to all
super-app services.

We discover that some mini-apps (e.g., a high-profile car
information mini-app ‘D***’ in WeChat and a popular retail
business mini-app ‘I***’ in Line), particularly those developed
by outsourcing companies, leak the root credentials. Since all
other credentials can be derived, all super-app services and
mini-app servers (e.g., all mini-app users’ accounts) may be
directly exposed.

III. KEYMAGNET DESIGN

In this work, we propose a novel vulnerability detection
approach, named KeyMagnet, to vet the security of real-
world mini-apps against the credential leakage issue. As
discussed in Section I, it’s challenging to detect the leaked
credentials used in the app-in-app authentication. Different
from existing related problems [4], [11], [12], [5], [13], [6],
[14], [10], we focus on the credentials used in the app-in-
app ecosystem, which are mostly not hard-coded and lack
distinctive characteristics. KeyMagnet tackles the difficulty by
proposing a novel semantic analysis and comparison technique
with three analysis phases as illustrated in Figure 2. First,
KeyMagnet employs documentation analysis to automatically

Mini-app 

Documentation 

Collection

Documentation 

Analysis

Mini-app 

Collection

Data Flow 
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Fig. 2. KeyMagnet Workflow

handle the developer documentation provided by different
super-apps to extract credential-related elements and learn
server-side credential semantics. Then, KeyMagnet conducts
a fine-grained data flow analysis to extract all potentially
important behaviors of mini-app client related to crucial data,
including credentials. Specifically, KeyMagnet constructs the
inter-procedure control flow graph to track the mini-app be-
haviors. Besides, to compare the semantics of mini-app server-
side and client-side, we propose two novel graph structures to
represent the credential semantics to bridge the semantic gap.
Finally, KeyMagnet conducts semantic comparison between
the semantic graphs with a novel graph matching technique
and verifies whether a credential semantic pattern of the mini-
app server-side appears in the mini-app client-side.

More technical details are presented in the remaining sub-
sections. Specially, we first discuss the challenges and design
insights, and then discuss each analysis phase.

A. Real-World Example and Design Insights

   encryptKey = sendRequest({

      url: "https://***/getopenid", 

      data: {code: login_code, ...}

   })

   phoneNum = phoneLogin(encryptKey,)

   login_code = getLoginCode();A1    encryptKey = sendRequest({

      url: "https://***/getencryptkey", 

      data: {request_body.login_code,...}

   })

   phoneNum = decryptPhone(encryptKey,)

B1

B2

B3

B4

B5

Mini-app Client Mini-app Server

①A

B’

B

mis-placed

①’

B1'

B2'

B3'

B4'

B5'

Fig. 3. An Abstracted Example of Vulnerable Practice

We walk through a real-world example and explain our
design motivation and insights as illustrated in Figure 3. In part
A, the mini-app client obtains login_code from super-app
platform using getLoginCode. The login_code serves
as a unique identifier of current mini-app user. In part B, the
mini-app server first extracts login_code from the request
body in line B3. Then, the mini-app server sends a request to
the super-app platform to obtain the cryptographic credential
encryptKey in line B1. The secure practice should be to use
the credential in the mini-app server-side, i.e., line B5 of part
B. However, the mini-app developer may share the credential
with the mini-app client, by misplacing operations B1-B5 to
mini-app client (B1’-B5’). In line B1’, the mini-app client
sends a request to fetch the credential with the login_code
obtained before, which will lead to the credential leakage.
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As illustrated by the motivating example, there are two main
design insights:
Insight 1: Client-side Preserved Operations. The credential-
based authentication provided by super-apps often requires
the mini-apps to perform specific client-side operations to
launch the authentication process. Unlike misplaced server-
side preserved operations (part B’ in Figure 3), such opera-
tions in mini-app clients are well-defined by mini-app frame-
work interfaces, e.g., getLoginCode, which corresponds
to wx.login in WeChat and swan.login in Baidu. Our
analyzer first locates these operations and then infers the
misplaced operations by analyzing similar contexts.
Insight 2: Data Dependency between Client-side and
Server-side Preserved Operations. During credential migra-
tion, the credential-use behaviors still exhibit similar patterns
in both sides when communicating with the super-app services.
Specifically, mini-app developers will migrate corresponding
interfaces to the mini-app client from mini-app server (with
customized implementations) and the dependencies between
client-side preserved operations and server-side preserved op-
erations, whether they are misplaced or well-placed, remain
unchanged (dependency 1⃝ and 1⃝’). Thus, we can analyze
the dependencies to identify if credential semantic patterns of
the mini-app server-side appear in the mini-app client-side.

B. Server-side Credential Semantic Analysis

The credential-use semantics of the mini-app server-side
are not straightforward, as many related operations run in
the background and are out of reach. Nevertheless, the mini-
app development documentation provided by super-apps offer
some hints, e.g., credential interfaces (API) and their usage.
Thus, our main idea for learning server-side semantics is
conducting documentation analysis and building API-level cre-
dential semantics. To achieve this goal, we need to answer the
following two crucial questions: 1) How to identify client-side
preserved operations and server-side preserved operations? 2)
Upon these found APIs, how to understand or reconstruct
server-side credential semantics?

To answer the questions, the first step is to mine credential-
related APIs for each super-app platform. Given that the de-
velopment documentation presents each API in well-structured
HTML elements, KeyMagnet can automatically parse the
HTML content and extract the contained API information
(such as API names, parameters, and descriptions). For client-
side preserved operations, super-apps have provided their list,
such as [15] in WeChat. For server-side preserved opera-
tions, KeyMagnet identifies these operations based on data
dependencies between different APIs. We design a heuristic
strategy to extract the API-level relationships according to
the following observation: to facilitate mini-app developers to
implement server-side operations, super-app platforms often
indicate how to obtain parameters of one API in the de-
scriptions. Specifically, API descriptions often directly attach
hyperlinks pointing to the sources of the parameters, e.g., the
description of loginCode contains a hyperlink, which points
to its source API getLoginCode in Figure 4-a. Therefore,

getLogin
Code
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Request Address
GET 

Request Parameters

  code            obtained through getLoginCode
  name        description

Return Values

(a) simplified documentation (b) CSG

  encryptKey  ...    
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Request Parameters
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Num
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POST https://api.weixin.qq.com/wxa/...

Request Address

Framework API
Credential Interface
Data Flow

Framework API
Credential Interface
Data Flow

Fig. 4. Constructing Credential-use Semantic Graph

KeyMagnet starts from the client-side preserved operations
and identifies the associated APIs based on the descriptions.
This process continues iteratively until no new APIs are found.
To comprehensively restore dependencies between APIs, we
supplement the analysis by leveraging the naming similarity
of corresponding variables, e.g., the WeChat cryptographic
credential appearing in all APIs is named session_key.
This approach can be easily extended to multiple super-app
platforms due to well-organized documentation (i.e., needing
less than 20 LoC updates on average for each super-app
platform), and experiments demonstrate its scalability.

To represent the API-level semantics and accommodate the
correlations between credential APIs, we design a novel graph,
called credential-use semantic graph or CSG.

Definition 3 (Credential-use Semantic Graph): A
credential-use semantic graph (CSG) represents the semantic
of mini-app server-side and comprises credential-related oper-
ations. CSG =< N,E >, where N are extracted credential
APIs and encompass two types of nodes: client-side preserved
operations and server-side preserved operations. Besides, E ⊆
N ×N , which suggests the API dependencies.

We illustrate an example of CSG in Figure 4-b, in which
each node represents the signature of different actions (e.g.,
API1 and API2), and the edge shows the data dependency
between nodes. This graph shows the process of the acquisi-
tion and utilization of the credentials and contains semantic
meanings. Then, we construct a collection of semantic graphs
based on the usage patterns of different credentials, which will
be utilized for further analysis.

C. Client-side Credential Semantic Analysis

In this step, KeyMagnet attempts to learn client-side cre-
dential semantics. As discussed in Section I, it is challenging
to do so as credentials do not have obvious characteristics
in the mini-app client-side. To address this, we introduce data
flow analysis for different types of mini-apps. Some super-apps
provide customized runtime engines (e.g., WeChat, Baidu, and
Alipay), and we can crawl mini-apps’ code packages. There-
fore, we perform a fine-grained data flow analysis to track
network data and extract the potential important behaviors in
mini-apps, as illustrated in Figure 5. However, some super-
apps run mini-apps in a WebView environment. This type
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Fig. 5. Constructing Client-side Semantics

of mini-app needs to load code from the mini-app’s own
server. To analyze these WebView-based mini-apps, we design
a dynamic crawler to fetch mini-app client-side behaviors.
Besides, we design a novel graph, called client-side behavior
graph or CBG to represent the mini-app client-side semantics.

Definition 4 (Client-side Behavior Graph): A client-
side behavior graph (CBG) represents the behaviors in mini-
app client-side. It encompasses two types of nodes: mini-app
framework interfaces and customized client-side interfaces.
The edges within the graph depict the data dependencies
between these nodes. Figure 5-b illustrates an example of
CBG.
CBG Construction. The key to constructing the CBG lies
in establishing data dependencies between different nodes,
including both explicit and implicit dependencies.

To extract the explicit dependencies, we first perform a
fine-grained data flow analysis on the mini-app client code.
Based on a static analysis tool JAW[16], we model the specific
APIs provided by different super-apps and construct the inter-
procedure control flow graph (ICFG) of each file in mini-
apps. Since many function calls are cross-file in mini-apps,
we need to perform inter-file analysis. For inter-file function
calls, we resolve the ‘require’ relations and connect inter-
file call edges to enhance the call graph. Then we extract
the credential-related context information of parameters along
the data flow to enrich the behavior semantics. For example,
as illustrated in Figure 5-a, the context information of the
parameter loginCode in line 5 contains its key code and
source API getLoginCode. Through inter-file analysis of
mini-app code packages, we can easily extract the dependency
relations along the data flow. For example, if the return value
of API A is further used by API B, there is an edge between
A and B.

We also implement a dynamic analysis to complement our
result. We simulate user interactions to explore the WebView-
based mini-apps based on Android UI Automator [17]. Due to
that the dynamic analysis is greatly limited in code coverage
[18], [19], [20], we adopt some heuristic strategies to optimize
it. Specifically, we observe that mini-app developers often
provide hints near input boxes to help users effectively fill in
valid information, such as data type. Therefore, we first dump

the GUI hierarchy and collect elements near the ‘EditText’
to extract the hints. Then, we fill in the input boxes with
pre-defined data based on these hints. Given that super-
apps are in different countries, we customize this method to
cater to the specific languages of each country, e.g., Japan
and Russia. Finally, we propose a value-based approach to
establish correlations between different APIs. We compare
the values of parameters and return values of different APIs
to analyze dependencies between them. We do not take into
account the scenario of encrypted traffic, which is out of our
work.

To extract the implicit data dependencies, we thor-
oughly analyze the developer documentation and model
the patterns of implicit dependencies to complement
the CBG. For example, WeChat mini-apps usually use
wx.setStorageSync(key,value) to store necessary
data and use wx.getStorageSync(key) to fetch the
stored data with the same key, which cannot be directly
traced by aforementioned steps. We notice that these pat-
terns are mostly paired, especially in getter-setter pattern,
such as wx.setStorageSync/wx.getStorageSync
and wx.setStorage/wx.getStorage. Therefore, this
problem can be transformed into identifying the paired implicit
dependencies among the nodes. Then, we manually analyze
the developer documentation to find data-related operations,
including data setting and data getting, and collect these
patterns. In addition to getter-setter pairs, we also identify the
global variables that can bridge implicit data dependencies.
We then employ a pattern-based approach to identify potential
implicit dependencies on the same variable and supplement
edges to the CBG.

D. Semantic-based Similarity Analysis

getLogin
Code

API1

API2

API1'

API2'
API3'

API4'

… 

API6'

API7'

getLocation

API5'

getPhone
NumgetPhone

Num

(a) CSG (b) CBG

getLogin
Code

Signa-
ture

Fig. 6. Similarity Analysis Between CSG and CBG. The red dotted lines
connect similar nodes and other lines represent the data flow.

After we understand the credential semantics in the mini-
app client- and server-side, i.e., CSG and CBG, our objective is
to determine whether the semantics of CSG exist within CBG,
i.e., whether CSG corresponds to a subgraph of CBG. As these
semantics are collected from different perspectives, there is a
gap between these two-level semantics. To bridge the semantic
gap and find if there are credential semantics in the mini-app
client, we turn to prove the semantic isomorphism between the
CSG and CBG, and design a novel semantic-based similarity
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analysis algorithm to detect credential leakage based on CSG
and CBG. We achieve this by identifying the existence of a
bijective function between the nodes of CSG and CBG, i.e.,
whether CSG corresponds to a subgraph of CBG.

For each CSG previously constructed, we can directly match
client-side preserved operations, e.g., getLoginCode and
getPhoneNum, which remain unchanged during credential
migration. Concerning other operations, we find that opera-
tions with same functionalities have similar contexts or sig-
natures (e.g., parameters and data dependencies) in mini-app
client- and server-side. Consequently, we can match the nodes
based on the signature information. As illustrated in Figure 6,
API1 in CSG and API ′1 in CBG accept the same parameter
from getLoginCode. Besides, API2 and API ′2 in the two
graphs accept the same parameters from getPhoneNum,
and similar parameters from API1 and API ′1. Therefore,
we can correlate these nodes based on similar signatures.
In the simplest scenario, where mini-app developers migrate
credential APIs (involving credentials in parameters or return
values) directly to the mini-app client-side, we can readily
identify vulnerable practices and do not need the following
steps. As for other scenarios, we also need to check the
dependencies between nodes to match the semantic graphs.
In summary, we take a two-step way to perform subgraph
matching: the first step is to match the nodes, and the second
step is to compare the relations among these nodes. Based on
the above observations, we design an algorithm that leverages
the context information to bridge the semantic gap and prove
the semantic isomorphism between CSG and CBG (Algorithm
1). The detailed steps are outlined below.

Node Inference. In the first step, we aim to find the
equivalent nodes in CSG and CBG. If these nodes are client-
side preserved operations, e.g., wx.login, we can directly
match them based on the signature. It’s challenging to detect
misplaced server-side preserved operations as they are in
various implementations in the mini-app client-side. The key
insight is that the equivalent nodes have similar contexts or
signatures. We first analyze the parameter information. As
for each parameter of the nodes, we fetch the source of it
based on data dependencies, that is, the client-side behavior
that generates the parameter. If the sources are the same (e.g.,
the same framework APIs), we assume that the parameters
are also the same. Although most custom parameters do not
have distinct sources and even obfuscated, the information
during data propagation and usage can help us understand the
semantics of the parameters. For example, if a parameter pvar
originates from a custom API getPassword, we can extract
its semantic information related to ‘password’.

Therefore, we first obtain the contexts of the parameters,
which includes data dependencies (extracted based on the
dataflow analysis) and parameter names. Then we perform
similarity analysis on the context information using the Lev-
enshtein Distance algorithm [21]. In order to increase the
accuracy of node inference, we perform a preliminary study to
choose the best similarity threshold for our evaluation. Inspired

by previous work [22], [23], we change the similarity threshold
from 0.8 to 0.95 with 0.05 as an interval, and manually check
the corresponding detection result. Consequently, we choose a
strict threshold of 0.9 to compare the context similarity while
keeping low false positives. Finally, if a CBG node nj has the
same source or has similar contexts to a CSG node ni, we can
correlate these nodes.

Algorithm 1: Algorithm of Semantic-based Similarity
Analysis

Input : CSG G1 of a credential and CBG G2 of the target
mini-app

Output: Matching result isDetected between G1 and G2

Data : Corresponding nodes map M

// step 1: infer the corresponding nodes
between G1 and G2

1 M ← {};
2 for action node ni, id in G1 do
3 for action node nj in G2 do
4 if ni.url == nj .url then
5 M[id].add (nj );
6 continue;

7 if ni and nj are the same operations then
8 M[id].add (nj );
9 continue;

10 isMatched = true;
11 for parameter p in ni do
12 if source of p not in source of nj then
13 if context of p and context of nj are not similar

then
14 isMatched = false;
15 break;

16 if isMatched == true then
17 M[id].add (nj );

// step 2: match the relations among nodes
18 isDetected← true;
19 for edge e in G1 do
20 idi, idj = e.nodes; // extract nodes of the edge
21 hasEdge← false;
22 for nodeprev in M [idi] do
23 for nodenext in M [idj ] do
24 if an edge exists between nodeprev and nodenext

then
25 hasEdge = true;
26 break;

27 if hasEdge then
28 break;

// no corresponding edge in CBG
29 if not hasEdge then
30 isDetected = false;
31 break;

Similarity Analysis. In the second step, we compare the
edges in these two graphs, that is, the data dependencies be-
tween the nodes. We apply a depth-first exploration strategy to
explore the edges in CSG and check if there are corresponding
edges between the nodes in CBG. Each time we select an edge
from the CSG and traverse the corresponding nodes in CBG,
i.e., nodeprev and nodenext in CBG which are acquired during
the node inference phase. Then we check if there is an edge
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between nodeprev and nodenext. Since there may be multiple
corresponding nodes, as long as there are data dependencies
between any pair of nodeprev and nodenext, we consider there
is an edge. We can also correlate nodeprev and nodenext based
on the data dependencies when there are other nodes between
them. If all the edges in CSG match the edges in CBG, the
round of similarity analysis is finished, and it can be inferred
that the mini-app leaks the credential corresponding to CSG.
Since multiple credentials may be leaked in the mini-app, we
will match all semantic graphs to check for any leaks.

IV. LARGE-SCALE ASSESSMENT OF CREDENTIAL
LEAKAGE

We apply KeyMagnet to understand and assess the creden-
tial leakage issue on a large scale of real-world popular mini-
apps. In this section, we first introduce the experiment setup
and then present the overview of our assessment results. Next,
we evaluate the accuracy of KeyMagnet. Last, we discuss the
interesting findings and the potentially caused security hazards
with case studies.

A. Experiment Setup

Prototype Implementation. We implement the first module
(the documentation analysis) and the third phase (the graph
matching algorithm) in Python with 3,205 lines of code (LoC)
in total. We implement our fine-grained data flow analysis
based on the static tool JAW [16] with 2,562 JavaScript LoC
and 1,827 Python LoC, and our dynamic analysis based on UI
Automator [17] with 910 Python LoC.
Dataset Collection. We find many super-apps listed in Table I
belong to the same ‘family’ (e.g., both WeChat and QQ belong
to Tencent) and have similar credential systems. To evaluate
the effectiveness of our solution across different credential
systems, we cluster these 21 super-apps and select popular
ones for our further analysis. Then, we extend the open-
source tool MiniCrawler [24] to support mini-app crawling of
different super-apps. Finally, we totally collect 413,775 mini-
apps as our database, including 214,602 WeChat mini-apps,
86,570 Baidu mini-apps, 93,130 Alipay mini-apps, 15,064
TikTok mini-apps, 3,984 Line mini-apps and 425 VK mini-
apps.

B. Experiment Result Overview

We apply KeyMagnet on our dataset on a server with 64
CPU cores (2.3GHz) and 206GB memory. We successfully
analyze 402,527 mini-apps and the remaining mini-apps fail
to be analyzed due to timeout or AST parsing errors. On
average, our analysis takes 23.6s for each mini-app. The
results unveil that credential leakage is prevalent in the app-in-
app ecosystem, with 84,491 detected credential leakage issues
spanning over 54,728 mini-apps. Severe security hazards may
be caused by credential leakage, e.g., hijacking all users’
accounts belonging to mini-app servers, stealing the sensitive
data of mini-app users and maliciously manipulating the
functionalities of mini-app servers. Moreover, we find many
credential leaks are cross-app and introduced by vulnerable

TABLE II
Performance of KeyMagnet

Super-
app TP FP TN FN Precision Recall F1-score

WeChat 466 34 389 111 93.20% 80.76% 86.54%
Baidu 483 17 488 12 96.60% 97.58% 97.09%
Alipay 478 22 430 70 95.60% 87.23% 91.22%
TikTok 476 24 363 137 95.20% 77.65% 85.53%

Line 110 8 490 10 93.22% 91.67% 92.44%
VK 0 0 425 0 - - -

Overall 2013 105 2585 340 95.04% 85.56% 90.05%

mini-app development templates, which makes the issue more
serious. For example, we find 35 vulnerable mini-apps in our
dataset, developed with the same mini-app template, leak their
root credentials due to the vulnerable template. As of now, 89
reported issues have been assigned with CVE IDs.

C. Accuracy

Given that there is no ground truth, we evaluate the false
positives of KeyMagnet by randomly selecting 500 mini-apps
identified as vulnerable from each super-app. To evaluate
the false negatives, we randomly selected 500 mini-apps that
KeyMagnet marked as without credential leakage. If the count
of detected mini-apps is less than 500, we used the entire
dataset for evaluation.

Then we manually check the sampled dataset. First, two
experts separately verify these potentially leaked credentials
with validation APIs (e.g., getAccessToken [25] as used
in [10]), which can be successfully called if the credential is
valid. We only consider the credential leakage a true positive
if two experts both agree. Second, to check false negatives of
KeyMagnet, the experts manually analyze the mini-app code
and monitor network traffic to check for credential leakage.
The results are summarized in Table II. KeyMagnet can
achieve good performance in all super-app platforms and the
F1-score even reaches 97.09% in Baidu. The average precision
of KeyMagnet is 95.04% and the recall is 85.56%.

False Positives. Most of the false positives are introduced
during the node inference phase (Section III-D). Unrelated
APIs with similar semantic structures in mini-apps may be
identified as credetial-related APIs, which can lead to the
failure of node inference. Additionally, several mini-app de-
velopers use customized parameters in credential-related APIs,
which maintain the data dependencies and can match the
CSG. Consequently, KeyMagnet incorrectly considers these
parameters as potential credentials, resulting in false positives.

False Negatives. The false negatives are primarily attributed
to incomplete API dependencies. Mini-app developers share
valid credentials with the mini-app client, but the credentials
are not further used. KeyMagnet cannot determine whether it
is a credential without credential-use semantics. Besides, some
mini-apps leak credentials in the network traffic, but do not
retrieve or use the the credentials in the mini-app client side.
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TABLE III
The Statistics of Large-scale Assessment

Super
-app

Root Credential Access Credential Crypto Credential
#app %total #app %total #app %total

WeChat 22207 10.89% 20987 10.29% 23421 11.48%
Baidu 517 0.60% 336 0.39% 1085 1.26%
Alipay 3929 4.24% 5916 6.38% 3092 3.33%
TikTok 268 1.78% 1889 12.56% 726 4.83%
Line 69 1.73% 49 1.23% 0 0
VK 0 0 0 0 0 0

Overall 26990 6.71% 29177 7.25% 28324 7.04%

D. Landscape of Credential Leakage

Prevalence. We find that the credential leakage problem is
prevalent in practice. As shown in Table III, we have detected
84,491 credential leakage issues in mini-apps. To make matters
worse, our findings reveal that many vulnerable mini-apps
are from prominent companies, including Tencent and Baidu,
which pose a significant risk to the sensitive data of hundreds
of millions of users.

The result shows that there are more vulnerable mini-apps
in WeChat due to the large base. Additionally, the access
credentials are leaked most because developers frequently
employ them to access various services. The leakage of root
credential and cryptographic credential is also widespread.
The main reason is that mini-app developers often acquire
access credentials with root credentials in mini-app client-
side, which leads to the leakage of both credentials. Moreover,
cryptographic credentials are frequently used in mini-apps to
handle encrypted data, e.g., the phone number.

Fig. 7. Distribution of Vulnerable Mini-app Categories

Distribution. We then analyze the number of vulnerable
mini-apps across different categories from WeChat and Baidu,
which provide category information for the mini-apps. Finally,
we obtain category information for 41,015 vulnerable mini-
apps and Figure 7 illustrates the distribution. We find there are
more vulnerable mini-apps in the categories that are frequently
used by users, e.g., Shopping and Food. We randomly select
100 mini-apps from these categories and find most of them

are developed by third parties with similar designs. It is worth
noting that several crucial categories, e.g., Government and
Education, also have a high proportion of credential leakage.

Credential Leakage Crossing Apps. By analyzing the
results, we find that many mini-apps in different super-app
ecosystems share the same security patterns, especially for
the cases that are developed by the same mini-app developers
or companies. Although different super-apps have their own
interfaces and designs, the mini-apps developers still keep the
same core code and only adjust a little bit of code for super-
app specifications. In order to minimize the development costs
on different super-apps, it is common practice for mini-app
developers to use third-party mini-app frameworks, such as
taro [26], uni-app [27], or code conversion tools [28], [29] with
slight modifications to implement cross-superapp conversion
for mini-apps. These approaches help to streamline the devel-
opment process and reduce the overall cost of developing mini-
apps for different super-apps. However, this also amplifies the
problem of credential leakage. If there is credential leakage
in a mini-app of one super-app, there may be credential
leakage in other super-apps as well. For instance, a Baidu
e-commerce mini-app ‘J***’ leaks the WeChat root credential
of the corresponding mini-app in WeChat, due to that the
vulnerable code is retained during mini-app development.

In addition to the cross-superapp leakage, we also find
cross-miniapp credential leakage. We randomly sampled 100
WeChat mini-apps which leak the root credential and manually
recover the credential value. Then, we use a regular expression
wx[a-f0-9]{16} to search for possible appIds in the mini-
app and check which appId the leaked root credential belongs
to. We find 47 mini-apps that leak the root credentials of other
mini-apps. Moreover, there may be cooperative relationships
between different mini-apps, where one mini-app invokes ser-
vices from other mini-apps (e.g., a hotel mini-app invokes the
‘getQRCode’ service with the root credential of a management
mini-app ‘K***’), which can cause cross-miniapp credential
leakage.

Template-based Leakage. We find tens of thousands of
mini-apps are developed with mini-app templates and thus
share similar vulnerabilities. Due to the lack of development
capabilities, many merchants delegate the development and
management of their mini-apps to third-party platforms (e.g.,
youzan[30], weimob[31], CloudBase[32]). These platforms
use mini-app templates to provide development services and
more than 300 platforms that provide template services are
found in our dataset. However, the templates have introduced
new attack vectors and led to the propagation of vulnerabil-
ities. For example, if a mini-app has credential leakage, it is
highly probable that other mini-apps developed with the same
template or even by the same third-party platform also suffer
credential leakage.

Leakage Scenarios. We conduct an in-depth analysis of
scenarios where credentials are frequently leaked, that is, the
functional scenarios that mini-app developers tend to share
credentials with mini-app clients. Leveraging the credential
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TABLE IV
Functionality of Credentials in Mini-apps

Service WeChat Baidu Alipay Tiktok Line VK

Mini-app Login ! ! ! ! ! !
UserInfo Retrival ! ! !

Data Analysis Service ! ! ! !
Customer Service ! ! ! !
Message Service ! ! ! ! ! !

Cloud Development !
Payment Service ! ! ! !

AI Service !
Logistics Service ! !
Shopping Service ! ! !
Promotion Service ! ! !

Live Streaming Service ! !
Bio-authentication ! !

Content Security Check ! ! ! !
Short Link Generation ! ! ! ! !

semantic graphs previously constructed, we can pinpoint the
credential semantics associated with the credential leakage and
the credential-use behaviors in the mini-app client-side.

We find the most common vulnerable scenarios are
‘phoneLogin’ and ‘createQRCode’. The first scenario corre-
sponds to the ‘One-Click Login’ feature provided by super-
apps to easily log into mini-apps with the cryptographic
credential. The second one is to generate the QR code of
mini-apps with the access credential, which is also a common
functionality to prompt the mini-apps. However, the access
credential can also be used to access many privileged services,
e.g., mini-app use analysis. Mini-app developers may not be
aware of security hazards and expose the credentials.

E. Security Hazards and Case Studies

In order to understand the security hazards that can be
caused by credential leakage, we analyze the super-app re-
sources and services that can be accessed with credentials.
By analyzing development documentation provided by super-
apps, we have identified 15 sensitive services provided by
super-apps, as illustrated in Table IV. Most of the vulnerable
services can introduce security impacts on mini-app users, e.g.,
Mini-app Login, UserInfo Retrival and Message Service. We
have verified that when a credential is leaked, these sensitive
services can be freely abused, which can cause severe hazards,
including account hijacking, phishing attack, and sensitive
information theft.

Furthermore, many services are used for mini-app devel-
opment, e.g., payment service and cloud development. This
implies that leakage attacks can also pose security threats
to mini-app developers. Attackers can exploit these services
under the guise of the developers’ identities, potentially dis-
rupting the normal operations of developers in mini-apps.
Besides, attackers may forge requests as the victim developers
to deceive the mini-app server with leaked credentials, thereby
bypassing the necessary security checks.

userLogin

encrypted

Phone

encrypted

Phone

encryptKey

ek

Mini-app Client Mini-app Server

Wechat Platform

phoneLogin

③ obtain the 

leaked credential

⑤ tamper the 

encryptedPhone

victim's token

① acquire 

encryptKey

② acquire 

encryptKey

④ acquire 

phoneNum

⑥ log into 
account

getEncryptKeygetKeygetPhoneNum

ek

Fig. 8. Process of Account Hijacking. The boxes represent the mini-app
client- and server-side behaviors and the red lines represent vulnerable parts
that can be monitored or manipulated by attackers.

Below, we discuss more details of the caused security
consequences with case studies.
Account Hijacking. ‘One-Click Login’ is a common service
used to quickly log into mini-apps, which may suffer account
hijacking attack due to credential leakage, as illustrated in
Figure 8. In the error practice, the cryptographic creden-
tial encryptKey is leaked in the response of getKey
(step 1⃝). Specifically, an attacker can monitor the network
traffic and obtain the leaked credential in step 3⃝. Then,
the attacker can intercept the network traffic and get the
encryptedPhone, which is retrieved by getPhoneNum
(step 4⃝). With the leaked credential, the attacker can tamper
the encryptedPhone with any user’s phone number in step
5⃝ and send the tampered data to the mini-app server. When
the mini-app server receives the tampered data, it extracts the
tampered phone number and returns the token bound with
the tampered phone number for request approval. Finally, the
attacker can successfully hijack any user’s account and fetch
all the user’s information stored in the mini-app, e.g., health
status, billing address, and education information.

We have found that a high-profile logistics mini-app ‘Y***’
in WeChat, which more than 100,000 users have visited
recently, leaks the cryptographic credential. We successfully
hijack the testing account with the testing phone number. Then,
the victim’s sensitive information, such as purchase history and
billing address, will be exposed. We have reported this issue
to the corresponding developers. They promptly acknowledged
the issue and fixed it before the article was submitted.

Mini-app Client Mini-app Server

Super-app Platform

① order request

② payment order

③ payment request

④ payment 
result

⑤ payment 

notification

Fig. 9. Workflow of Payment Service

Payment Deception. Some credentials are used to safeguard
the payment process, which are called payment credentials.
We illustrate the payment workflow in Figure 9. The mini-app
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client first sends an order request to the mini-app server (step
1⃝). Then the mini-app server generates a signed order with

a payment credential and sends it to the mini-app client (step
2⃝). To launch the payment process, the mini-app client sends

a payment request to the super-app platform with the signed
order (step 3⃝). When the payment is finished, the super-app
platform will return the result to the mini-app client (step
4⃝) and send an asynchronous notification to a notification

url which is set by the merchant in the meantime (step 5⃝).
Yang et al[4] defined several security rules for in-app

payment, and one rule emphasises that never to place any
credential (e.g., the private key for signing) in the merchant
app (i.e., the mini-app client). However, several mini-app
developers violate these rules. For example, we find a case
of cross-superapp leakage in a mini-app designed for selling
building materials. Specifically, the WeChat mini-app leaks
Alipay’s cryptographic credentials. With the leaked creden-
tials, an attacker can manipulate the order information, such
as tampering with the price, and generate a valid signature,
and even shop for free.

Phishing Attack. Line provides a messaging channel to mini-
app developers and lets them send messages/notifications to
the users. In the process, an access credential is used as a
mean of authentication for channels. The root credential in
Line can be used to retrieve the access credential. When
the access credential or the root credential gets leaked, an
attacker can access and use the messaging channel to broadcast
malicious messages. Because users cannot distinguish whether
the message is sent by the developer or the attacker from the
client-side, they are susceptible to deception. For example, we
find that a retail mini-app ‘M***’ leaks the access credential
in the response of ***/members_card(mini-app url).

Sensitive Information Theft. Access credentials can be
used to safeguard sensitive resources, such as the logistics
information, user portrait and mini-apps’ realtime logs, which
are stored in the super-app server. When their leakage occurs,
severe security issues may be caused. For example, an attacker
can use leaked access credentials to obtain express orders and
mini-app logs from super-app servers, which include records
of user activities within the mini-apps. This process requires no
additional requirements, such as installing a malicious mini-
app on user’s mobile, as these information is managed by the
super-app platforms. To understand the impacts, we perform
an analysis on the logs in 11,955 mini-apps which uses the
log API [33]. Then we leverage the variable name in the mini-
app code to understand the semantic meaning. In the end, we
find 1,930 mini-apps record sensitive information in logs and
present the top-6 ones in Table V, e.g., user’s location and
account information.

Mini-app Function Manipulation. With the leaked access
credentials, attackers can manipulate certain functionalities
integrated in mini-apps provided by super-apps, e.g., live
streaming service in WeChat [34]. Attackers can manipulate
the product information sold in live rooms, such as modifying
prices or directly deleting products. As for the logistics service,

TABLE V
Top Private Information Recorded in Mini-app Logs

Item # mini-app Item # mini-app

Location 31 Account info 33
Phone number 12 Device info 95

Credential 60 Setting info 221

apart from sensitive information leakage, attackers can cancel
users’ delivery orders, which can greatly disrupt the normal
use of the mini-app.

V. DISCUSSION

Ethical Considerations and Vulnerability Disclo-
sure. Throughout the course of our research, ethical
considerations are at the forefront. We have complied with all
relevant laws/regulations and followed community practices,
such as [35]. This whole research has been approved by our
institution’s IRB and this study is considered as “minimal
risk” when consulting with IRB staff.

To check the validity of credentials, we take multiple
precautions to call the validation APIs and do not store any
data returned from the calls. To understand the security hazards
caused by credential leakage, we develop our own testing mini-
apps for the in-depth analysis and restrict the vulnerability
exploitation verification to internal tests using our own ac-
counts, with the explicit consent of all participants involved.
Furthermore, to prevent unintended access, we configure the
testing mini-apps to be unsearchable. We make sure not to
store any leaked credentials or launch any attacks against third-
party entities to collect or manipulate their data.

Finally, we adhere to responsible disclosure practices of our
findings to the super-app platforms and mini-app developers.
We actively worked together with them to fix these problems.
Given the widespread and serious nature of the credential
leakage issue, we reported the detected vulnerabilities to the
super-app platforms and provided several mitigation measures.
Then we tried to notify the affected developers. Unlike the
marketplaces of mobile applications (such as Google Play),
which provide developer contact information [36], super-
app platforms do not provide such information. Therefore,
we made efforts to extract contact information from various
sources, including privacy policies, and the official websites
of the companies behind the mini-app. Consequently, we
collected emails for 18,398 mini-apps. Most of the remaining
mini-apps possess no privacy policy and were developed
by individual developers, making it difficult to collect the
corresponding contact information. We have reported the vul-
nerabilities to the corresponding developers.

To ease the burden on mini-app developers in understanding
the vulnerability report, we first explained the nature of
credentials in mini-apps and the credential leakage issue.
Additionally, we put the detailed information in an attached
report and proposed several fix suggestions to remove the
credential logic from the mini-app client. To help developers
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verify and fix the vulnerability themselves, we explained
the potential vulnerable APIs used in the mini-app client.
This allows mini-app developers to easily analyze the server-
side logic and determine if these APIs are susceptible to
credential leakage issue. Note that the responsible disclosure is
private and only available to the relevantly affected mini-app
developers. All vulnerable mini-apps discussed in this paper
are anonymized or masked. Most of the mini-app developers
were previously unaware of the security risks associated with
sharing credentials in the mini-app client-side. A mini-app
developer responded that they were aware of the issue and
did it this way to meet the development deadline.

As of the time of writing, 89 vulnerabilities are assigned
with CVE IDs, with 38 of them rated as high severity, while
the remaining are rated as medium severity. For example,
CVE-2023-3***2, which is related to root credential leakage,
has a CVSS score of 8.2. Although all the CVEs are credential
leakage, it appears to involve a degree of subjective judgment
regarding CVSS score. For mini-apps with similar function-
alities, the “Confidentiality Impact” scores for some reported
mini-apps were all high, whereas the scores for others were all
low, resulting in some being rated as medium. Upon sampling
100 reported vulnerabilities and rechecking them, we find that
26 mini-app developers have fixed the issues or taken down
their mini-apps.

Generality of KeyMagnet. It is important to note that our
approach is extensive and scalable. Our approach relied on
the analysis of the development documentation (provided by
super-app platforms) to extract necessary information (e.g.,
credential-related APIs). Since the documentation of different
super-app platforms is often well-organized, we can easily
extend our approach to multiple super-app platforms with
minimal human effort. The primary effort involves updating
the documentation sources and HTML patterns (i.e., needing
less than 20 LoC updates on average for each super-app
platform). Besides, we have conducted analyses on six differ-
ent super-app platforms. The experimental results demonstrate
our method’s effectiveness in detecting credential leakage on
different super-app platforms.

Limitations and Future Work. The assessment shows the
effectiveness of KeyMagnet in detecting credential leakage
in the app-in-app ecosystem. Below we will discuss the
limitations of KeyMagnet.

First, as stated in Section IV-D, our method will introduce
some false negatives, mainly because the leaked credentials
are not further used. Besides, developers may use credentials
in a way that does not follow the documentation. We now
take a conservative strategy to improve the soundness and
plan to adopt a more relaxed strategy to cover these situations.
Due to limitations in code coverage during dynamic analysis,
we might overlook network traffic that exposes credentials.
Additionally, our strategies can not fully bypass scenarios
that require login or registration to proceed in certain mini-
apps. Such scenarios necessitate human intervention, and in
the future, reinforcement learning strategies may be employed

to improve the progress of dynamic analysis. Furthermore,
our current work focuses on the analysis of mini-apps in
6 prominent super-apps. The evaluation can demonstrate the
scalability of KeyMagnet, and we plan to extend KeyMagnet
to analyze the mini-apps in other super-apps in the future.

Mitigations. In order to mitigate the vulnerabilities, mini-
app developers must be vigilant and ensure that credentials
are strictly utilized in the mini-app server-side, avoiding any
embedding or transmission to the mini-app client-side. Be-
sides, mini-app developers should check if any credentials are
contained in the traffic data that can be obtained by attack-
ers. Upon discovering a mini-app that leaks its credentials,
mini-app developers should check whether other developed
mini-apps in different super-apps have similar vulnerabilities.
Additionally, third-party development platforms need to be
especially vigilant regarding this issue. Given that many mini-
apps are developed with mini-app development templates, they
should be responsible for ensuring the prevention of credential
leakage before offering development services.

As for the super-apps, it is crucial to provide mini-app
developers with clear and accurate documentation, particularly
ready-to-use example code, to help them understand how to
correctly use credentials. Existing developer documentation
tends to be convoluted, and the official examples are rather
abstract, posing challenges for mini-app developers in under-
standing. What’s worse, the examples provided by official
sources may not necessarily be secure, and those incorrect
usage examples can lead to mini-app developers’ erroneous
practices. For example, we find an official example provided
by a famous online shopping super-app for implementing
RSA encryption suggests mini-app developers write the private
key in the client-side. We have reported these issues to the
corresponding platforms. Additionally, before a mini-app is
released, super-app platforms need to detect potential creden-
tial leakage. We believe that KeyMagnet provides a valuable
tool for detecting and mitigating credential leakage in the app-
in-app ecosystem, and it is feasible to integrate our checks into
the workflow of super-app platforms.

From the perspective of protection after credential leakage,
super-app platforms can provide developers with measures
such as IP whitelist to prevent malicious access by attack-
ers. For cryptographic credentials, super-app platforms can
introduce verification mechanisms to check the integrity of
encrypted data and prevent tampering by attackers. Further-
more, these credentials can be rotated regularly and have a
revocation mechanism in place. Besides, super-app platforms
can implement fine-grained access control, restricting the
resources and services that the credential holder can access.

More importantly, super-app platforms can establish a com-
prehensive vulnerability disclosure mechanism for mini-apps.
It is often difficult for security researchers to contact mini-
app developers directly. Therefore, super-app platforms can
offer a reporting channel to help quickly fix vulnerabilities
and enhance the security of the entire app-in-app ecosystem.
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VI. RELATED WORK

Detection of Credential Leakage. Credential leakage is a
serious security problem. In past years, several techniques have
been proposed to detect the problem. However, as discussed in
this work, existing techniques mainly worked on the detection
of hard-coded and well-structured credentials. Existing tech-
niques mainly focused on open-source repositories [5], [7],
[37], [8] and revealed numerous credentials, including API
keys, passwords, and cryptographic keys, might leaked. It is
particularly concerning that many developers stored the crucial
credentials in plain text in client-side [5], [8], [37], which
posed a significant security risk.

Pattern-based search and heuristics-driven filtering tech-
niques are the primary methods for detecting credential leak-
age [5]. However, these approaches introduce many false
positives and false negatives. In recent years, machine learning
has emerged as a powerful tool for learning the characters [38].
A number of studies [7], [37], [39] have explored the use of
machine learning techniques to decrease the false positives
of traditional approaches in credential leakage detection. For
example, PassFinder [38] utilized contextual information to
detect passwords in source code.

The most similar studies to us are [10], [9]. They used a
pattern-based method to detect credential leakage. [10] used
a regular expression with a 32-byte hex-string format of
[a-f0-9]{32} to search for possible credentials in the mini-
apps, and [9] extended the regular expression to find more
potential credentials. However, like the previous work, this
introduced many false negatives and could only detect the
hard-coded credentials. Table VI highlights how our paper
compares with other existing related work. Based on the forms
of credential leaks, we categorize them into three types. For
the hard-coded credentials, some of them have fixed structures,
such as AWS keys, but most are unstructured. In addition,
some developers may employ transformation techniques to
safeguard their credentials. Most of current work cannot
detect the unstructured credentials and the dynamically leaked
credentials. Therefore, existing techniques cannot be applied
or extended to address the research problem that this paper
aims to address. Our paper proposes a novel method based
on credential semantics that can effectively detect credential
leakage among sophisticated scenarios.
Studies on Mini-app and Its Security. As the popularity of
mini-apps, there are several studies focusing on their security.
[43] first systematically studied on the resource management
in app-in-app systems and revealed some privilege escalation
vulnerabilities. [24] developed MiniCrawler and conducted a
large-scale analysis on mini-apps. [44] performed a systematic
study of privacy over-collection in mini-apps. [45] discovered
identity confusion vulnerabilities against mini-apps, which
allow an attacker to invoke privileged capabilities and can
lead to severe consequences, such as manipulating users’
financial accounts. Another vulnerability has been discov-
ered by [46], and they found the security issues of cross-
miniapp communication, which allow attackers to inject a

TABLE VI
Comparison with existing work on credential leakage detection. “Structured”

means credentials in fixed format; “Transformed” means credentials with
transformation measures such as concatenation and encryption; “Dynamic”

means dynamically retrieved credentials without fixed and well-defined
formats.

Detector Structured Transformed Dynamic

PlayDrone[40] ! % %

Sinha et al.[12] ! % %

Yang et al.[4] ! % %

Wen et al.[41] ! % %

Meli et al.[5] ! % %

Saha et al.[7] ! % %

Lounici et al.[37] ! % %

GitLeaks[8] ! % %

PassFinder[38] ! % %

PrivRuler[42] ! % %

Zhang et al.[10] ! % %

Baskaran et al.[9] ! % %

CredMiner[13] ! ! %

LeakScope[6] ! ! %

KeyMagnet ! ! !

forged request into a vulnerable mini-app leading to various
security consequences, such as sensitive information leakage
and even shopping for free. [47] and [48] conducted research
on discrepancies for super-apps in different platforms and
found several discrepancies in WeChat. [49] revealed hidden
undocumented APIs in super-apps, which can be potentially
expolited to access protected resources.

Most recently, [10], [9] proposed a concrete credential
leakage problem in mini-apps and found that many mini-app
developers hard-code the AppSecret in mini-apps. How-
ever, most credentials are dynamically generated by super-app
platforms and do not have a fixed or unified format. In this
work, we conduct the first systematic study on the app-in-app
credential system and propose a novel approach to unveil the
vulnerabilities inside it.

Security Analysis of JavaScript Programs. There has been a
significant amount of researches conducted on the analysis of
web and JavaScript programs [50], [51], [52], [53], [54], [55].
Numerous studies have focused on identifying vulnerabilities
and potential attacks in JavaScript code and developing tech-
niques for detecting and mitigating these security risks. For
instance, JAW [16] proposed a hybrid structure to detect client-
side CSRF vulnerabilities. Kang et al. proposed ProbeThe-
Proto [56] and measured the client-side prototype pollution
among websites. However, there are still challenges to be
addressed due to the unique features of mini-apps. Recently,
Chao et al. proposed TaintMini [57] and built a universal data
flow graph to detect the flow of sensitive data in mini-apps.
Li et al. proposed MiniTracker [58] to detect privacy leakage
automatically in mini-apps. KeyMagnet extend the capabilities
to analyze mini-apps in different super-apps.
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VII. CONCLUSION

In this work, we make the first step to systematically under-
stand the credential system and its security in the app-in-app
paradigm and point out the root cause of credential leakage.
We propose a novel semantic-oriented security-verification
approach, called KeyMagnet, that can detect the vulnerability
based on the similarity of credential semantics between the
client- and server-side. By applying KeyMagnet on 413,775
real-world mini-apps, 84,491 credential leaks are detected and
54,728 mini-apps are subject to credential leakage attacks. Our
experiment results show that KeyMagnet is scalable, effective,
and accurate. In addition, the results remind us that we need
to pay attention to the security issues caused by third-party
development platforms. Our research can provide a successful
experience for super-apps to take actions to ensure the security
of the app-in-app ecosystem.
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