
Unleashing the Power of Generative Model
in Recovering Variable Names from Stripped Binary

Xiangzhe Xu Zhuo Zhang Zian Su Ziyang Huang Shiwei Feng Yapeng Ye
Nan Jiang Danning Xie Siyuan Cheng Lin Tan Xiangyu Zhang

Purdue University
{xzx, zhan3299, su284, huan1562, feng292, ye203, jiang719, xie342, cheng535, lintan}@purdue.edu

xyzhang@cs.purdue.edu

Abstract—Decompilation aims to recover the source code
form of a binary executable. It has many security applications,
such as malware analysis, vulnerability detection, and code
hardening. A prominent challenge in decompilation is to recover
variable names. We propose a novel technique that leverages the
strengths of generative models while mitigating model biases. We
build a prototype, GENNM, from pre-trained generative models
CodeGemma-2B, CodeLlama-7B, and CodeLlama-34B. We fine-
tune GENNM on decompiled functions and teach models to
leverage contextual information. GENNM includes names from
callers and callees while querying a function, providing rich
contextual information within the model’s input token limitation.
We mitigate model biases by aligning the output distribution
of models with symbol preferences of developers. Our results
show that GENNM improves the state-of-the-art name recovery
precision by 5.6–11.4 percentage points on two commonly used
datasets and improves the state-of-the-art by 32% (from 17.3%
to 22.8%) in the most challenging setup where ground-truth
variable names are not seen in the training dataset.

I. INTRODUCTION

Deployed software often has the form of binary executable.
Understanding these prevalent binaries is essential for various
security and safety aspects of software, including conduct-
ing security assessments of contemporary devices such as
home automation systems [4], [24] and autopilot technol-
ogy [61], maintaining and hardening legacy software [13],
[41], [12], detecting vulnerabilities in commercial-off-the-shelf
software [68], [37], [64], [57], [63], and analyzing malware
that threatens our daily lives [67], [55], [5]. A significant chal-
lenge, however, is presented by the fact that most of these bina-
ries are shipped without source code, making them extremely
difficult to comprehend. To bridge this gap, reverse engi-
neering techniques have emerged to recover source-code-level
details. Over the past decade, techniques like disassembly [7],
[47], [42], [2], [70], function boundary identification [3], type
inference [38], [53], [36], [54], [71], [46], recovery of high-
level abstractions [52], [32], [65], code structure [6], and data
structures [52] have advanced significantly.

Despite these successes, a crucial step of reverse-
engineering pipelines, namely recovering variable names, re-
mains inadequately addressed. Recovering names from fully
stripped binary programs entails an in-depth understanding of
both machine semantics, concerning data-flow and control-
flow, and descriptive semantics, reflecting how the code is
understood by human developers. This duality poses a signif-
icant challenge for conventional analysis methods [10], [69]
that primarily focus on machine semantics, resulting in the
failure of recovering meaningful variable names.

Recent work in renaming variables benefits from advances
in machine learning models [35], [15], [45]. They formulate
the problem as a classification task (a.k.a., a closed-vocabulary
sequence labeling task). In the training stage, a model learns
a set of variable names, i.e., the vocabulary. In the inference
stage, it takes as input a decompiled function, and predicts the
name for each variable by picking one from the vocabulary.
Although such methods have achieved good results, their
generality is limited due to the following reasons. (1) A
classification model can only predict names within its training
vocabulary. (2) Variable name distributions are largely biased,
and it is challenging to train a good classifier on biased
distributions [25], [29]. (3) Existing methods process one
function at a time, due to models’ input size limits or model
capacity, missing important contextual information.

In particular, a classification model can only select names
from the training vocabulary. It cannot “invent” new names
based on program contexts. Consequently, the state-of-the-art
model achieves a precision of less than 10% for variables
whose ground-truth names are not in the training dataset (see
Section VI-D). Moreover, distributions of variable names are
biased. For example, in datasets constructed from GitHub
repositories [15] or Linux packages [45], more than 50% of
names appear less than 2 times, whereas 0.1% of names appear
over 1,000 times. A typical classification loss that maximizes
the probability of selecting the ground-truth names would
undesirably emphasize the frequent names. As a result, the
performance of classification model degrades by 57.5% (from
31.8% to 13.5%) for names rarely present in the training
dataset (see Section VI-D). Finally, most existing models
used in reverse engineering have a limited input window and
hence analyze individual decompiled functions independently,
missing important information in the calling context.

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.240276
www.ndss-symposium.org

To address the challenges, we propose GENNM as a system-
atic solution to recovering names from fully stripped binaries.
GENNM leverages a generative code language model fine-

tuned with contextual information and symbol preferences. It
composes variable names from tokens, and thus has better
chance to generalize to rarely present or even unseen names.
Intuitively, a human developer seldom considers complex
variable names as an atomic word. Instead, she understands
it as a composition of several keywords. For example, a rare
name ip hdrlen is composed from three frequent sub-
words: ip, header, and length. The generative nature
of model thus naturally aligns with the cognitive model of a
human developer. Our evaluation results in Section VI-D show
that more than 95% rare names are composed from commonly
appeared tokens.

To leverage the power of a generative model, a typical fine-
tuning technique such as that in DIRE [35] and ReSym [62]
simply guides a model to predict names from individual
binary functions. Consequently, the trained model has limited
knowledge about how to leverage contextual information.
Nevertheless, information from the calling context plays a
crucial role in understanding binary programs, as the absence
of meaningful function names hinders the model’s ability to
deduce the semantics of calling contexts. We thus propose a
novel context-aware fine-tuning paradigm that teaches a model
to reason a binary function with both the function body and
the information from its calling contexts. The model thus can
learn the relation between names of local variables and names
in the calling contexts.

Moreover, we formulate the implicit biases in the training
dataset as misalignment between data frequencies and symbol
preference of developers. Symbol preference denotes that a
developer prefers one name over another in a specific program
context. For example, in the context of network programming,
a developer typically names the data sent over network as
packet instead of array, although array may be a more
frequent name in the whole dataset. We therefore propose
an additional training stage named SYMbol Preference Op-
timization (SymPO) to explicitly guide our model to pick the
preferred name over the sub-optimal ones under given program
contexts.

We design the inference stage of GENNM as an iterative
process. It is inspired by recent studies on human reverse
engineering [40], [11], which emphasize the practice of in-
specting all functions in a breadth-first manner, followed
by iterative refinement. Initially, GENNM generates variable
names for each function based on local context (i.e., the
function body). Next, we traverse the program call graph to
propagate contextual information from each function to its
caller and callee functions, aligning with the training objective.
Inspired by previous work [62], we leverage program analysis
and majority voting to pick the final name across different
iterations.

We summarize our contributions as follows:
• We propose a novel context-aware fine-tuning paradigm

that teaches a model to leverage contextual information

when reasoning a decompiled function.
• We encode the symbol preference for variable names in

the training pipeline, guiding the model to select names
relevant to program context with higher probabilities.

• We design an iterative inference process aligned with
the way human reverse engineers leverage contextual
information.

• We develop a prototype GENNM (Unleashing the Power
of Generative Model in Recovering Variable Names from
Stripped Binary)1. GENNM improves the name recovery
accuracy over the state-of-the-art techniques [45], [62]
by 5.6–11.4 percentage points on two commonly used
datasets with the most challenging setup. On challenging
cases where the ground-truth names are not seen dur-
ing training, GENNM improves over the state-of-the-art
techniques [45], [62] by 168% (8.5% versus 22.8%) and
32% (17.3% versus 22.8%), respectively.

II. MOTIVATION AND OVERVIEW

We use a motivating example to illustrate the limitations
of the state-of-the-art technique for renaming decompiled
variables. Following this, we demonstrate our method.

A. Motivating Example

Fig. 1a shows our motivating example, which is adapted
from the function send packet() in an exploit for CVE-
2018-4407 [17]. The function sends a TCP packet that triggers
a buffer-overflow vulnerability. The code snippet in Fig. 1a
illustrates the logic to initialize the IP packet header (ip hdr,
lines 4–7) and compute the checksum for the TCP packet
(line 9).

We show the corresponding decompiled code in Fig. 1b.
Each line in the decompiled code is aligned with the related
source code line, and the corresponding variables are high-
lighted with the same colors. For variables s and n in the
decompiled code, the decompiler (IDA-Pro [31] in this case)
synthesizes their names based on calls to library functions and
the types of the two variables. Although synthesized names
may help understanding (e.g., n may indicate the length of
some buffer), they can hardly reflect the context and are hence
much less informative than the original symbol names. For
example, the source code variable related to n is ip hdrlen,
which denotes the length of the IP packet header. The syn-
thesized name n fails to reflect this information. Similarly,
the variable name v29 is simply a placeholder name that
is not meaningful. In both cases, the variable names in the
decompiled code cannot reflect similar semantics to their
source code counterparts.

The goal of variable name recovery is hence to generate
meaningful names for variables with placeholder names or
names synthesized from library functions.

1Available at https://doi.org/10.5281/zenodo.14220042

2

https://doi.org/10.5281/zenodo.14220042

int send_packet(...) {
 ...
 memset(packet, 0, sizeof(packet));
 struct iphdr* ip_hdr =(struct iphdr*)packet;
 ...
 // Fill in the IP Header
 memset(ip_hdr, 0, 0x3c);
 ip_hdr->ihl = ip_hdrlen >> 2;
 ip_hdr->tos = 0;
 ip_hdr->id = htonl(...);
 ...
 // Compute checksums
 tcp_checksum(ip_hdr,ip_hdrlen,...);
 ...}

0

1
2

3
4
5
6
7

8
9

int sub_401430(...){
 ...
 memset(s, 0, 0x400);
 v29 = s;
 ...

 memset(v29, 0, 0x3c);
 *v29 = (n >> 2) & 0xF;
 ((char)v29+1) = 0;
 ((uint16)v29+2) = htonl(...);
 ...

 sub_40197A(v29, n,...);
 ...}

A0

A1
A2

A3
A4
A5
A6

A8

(a) Source code

int send_packet(...) {
 ...
 memset(packet, 0, sizeof(packet));
 struct iphdr* ip_hdr =(struct iphdr*)packet;
 ...
 // Fill in the IP Header
 memset(ip_hdr, 0, ip_hdrlen);
 ip_hdr->ihl = ip_hdrlen >> 2;
 ip_hdr->tos = 0;
 ip_hdr->id = htonl(...);
 ...
 // Compute checksums
 tcp_checksum(ip_hdr,ip_hdrlen,...);
 ...}

0

1
2

3
4
5
6
7

8
9

int sub_401430(...){
 ...
 memset(s, 0, 0x400);
 v29 = s;
 ...

 memset(v29, 0, 0x3c);
 *v29 = (n >> 2) & 0xF;
 ((char)v29+1) = 0;
 ((uint16)v29+2) = htonl(...);
 ...

 sub_40197A(v29, n,...);
 ...}

A0

A1
A2

A3
A4
A5
A6

A8

(b) Decompiled code

A: v29 -> ip_hdr
 s -> packet
 n -> ip_hdrlen

int sub_401430(...){
 ...
 memset(s, 0, 0x400);
 v29 = s;
 ...
 memset(v29, 0, 0x3c);
 *v29 = (n >> 2) & 0xF;
 ((char)v29+1) = 0;
 ((uint16)v29+2)
 = htonl(...);
 sub_40197A(v29, n,...);
 ...}

Q: v29 , s , n

(c) Input to fine-tune GENNM

Fig. 1: Code snippets for the motivating example. Corresponding variables are highlighted with same colors.

B. Challenges and Limitations of State-of-the-Art

The state-of-the-art technique VarBERT [45] leverages the
Transformer model [59] to recover variable names. The model
takes as input a decompiled function and predicts a name for
each variable. The problem is formulated as a classification
task. A set of variable names is first collected from the training
data, noted as the vocabulary. A model is trained to select a
name from the vocabulary for each variable in the decompiled
function. We show with the motivating example three major
challenges in recovering variables from stripped binaries and
thus discuss the limitations of state-of-the-art. The predictions
of VarBERT for the motivating example are shown in the
second column of Fig. 2.
Challenge 1: Cannot predict names not in the vocabulary.
A classification model can only select names from those seen
during training (i.e., the vocabulary). It cannot compose new
names based on program contexts. In Section VI-D, we will
show that 16% of the variables in our test dataset have ground-
truth names not seen in the training dataset 2. As a result,
VarBERT achieves only 8.5% precision on those variables. In
our motivating example, the ground-truth name for variable
n (at line A4 in Fig. 1b) is ip hdrlen, which indicates
the length of an IP packet header. However, the name never
occurs in the training dataset. Thus, VarBERT mistakenly
predicts the name of n as duk len, where duk is an
irrelevant program in the training dataset. For unseen names,
GENNM outperforms VarBERT by 168%, i.e., 8.5% versus
22.8% (details in Section VI-D).
Challenge 2: Long-tail distribution of variable names
makes correct prediction difficult. The distribution of vari-
able names is imbalanced and has a long tail. For example,
Fig. 3 shows the distribution of names in our dataset in terms
of frequency. Observe that the most frequent name appears
around 50k times, while 50% of the names appear only
once. It is hence challenging to train a classification model
from such data with a significantly biased distribution [25],

2Our dataset is derived from a high-quality dataset VarCorpus, with a train-
test split ratio of 9:1. See Section V for details.

<Context>
sub_40197A(ip_hdr,
 ip_hdrlen...)
</Context>

int sub_401430(...){
 ...
 memset(s, 0, 0x400);
 v29 = s;
 ...
 memset(v29, 0, 0x3c);
 *v29 = (n >> 2) & 0xF;
 ((char)v29+1) = 0;
 ((uint16)v29+2)
 = htonl(...);
 sub_40197A(v29, n,...);
 ...}

Q: v29 , s , n

n

ip_0

buffer

VarBERT

v29

s

duk_len

Placeholder
Varname

data

ip_hdr
tcp_hdr

udp_hdr

ip_hdr
tcp_hdr

udp_hdr

data

buffer

message

packet
buf

message

packet
buffer

buf

buf_len

ip_len

ip_hdrlen

addr

ip_hdrlen

ip_len

buf_len

addr

GenNm-SymPO +Context

Fig. 2: Name selections for baseline (VarBERT) and name dis-
tributions for the predictions of GENNM. Each column denotes
the predictions of a technique. VarBERT denotes the baseline
model, GenNm-SymPO denotes the GENNM model after fine-
tuning and symbol preference optimization. +Context denotes
the model is used with the contextual information propagated
along the call graph. Blue, pink, and yellow colors denote
predictions for v29, s, and n. Names are ranked by their
probability where a longer bar denotes a higher probability.
Names highlighted with bold fonts are names similar or equal
to ground-truth names. Names with outlines are those selected
by the name validation algorithm.

[29]. A typical classification loss used in training optimizes
the model’s probability to predict the ground-truth name for
each variable. This training loss undesirably emphasizes the
frequent names. For example, the VarBERT model predicts
the name of s (at lines A1–A2 in Fig. 1b) as buffer. We
analyze the training dataset and find that the variable name
buffer is passed as the first argument to memset for more
than 500 times in the training samples. On the other hand,
the ground-truth name in this case, packet, appears with
memset for only 25 times in the training data. Therefore,

3

Variable Names
100

102

104

Fr
eq

ue
nc

y
50% Names

Fig. 3: Distribution of name frequencies. More than 50% vari-
able names (in orange) appear only once in the training dataset.

the model biases towards the name buffer after seeing the
variable is used as the first argument to memset in the query.
Please see Appendix C for a quantified statistical test.
Challenge 3: Missing contextual information makes pre-
diction difficult. Limited by the input length and the un-
derstanding capability of typical classification models (which
are smaller than pre-trained generative models), VarBERT
and many other existing works [35], [15] analyzes only one
function at a time. This practice, however, misses important
information from the calling context. For example, at line A8
of Fig. 1b, a model has no knowledge about the callee function
sub 40197A without contextual information. Consequently,
it can hardly deduce the semantics of variable v29, which
is passed as the first argument to sub 40197A. VarBERT
mistakenly predicts v29 as ip 0, while the ground-truth
name is ip hdr.

C. Our Method
We alleviate the closed vocabulary problem by fine-tuning

generative models that can compose unseen names. To aug-
ment a query function with better context, we propagate
information of individual functions through the call graph. We
design a new context-aware fine-tuning paradigm to teach the
generative model how to predict names considering additional
contextual information. To accommodate the generative model
to the biased distribution of variable names, we design symbol
preference optimization that aligns the model with the symbol
preference of developers.
Solution for Challenge 1: Fine-tuning generative models. A
generative model can concatenate multiple tokens to construct
a variable name and hence has potential advantages over
classification-based methods. Large language models (LLMs)
(e.g., ChatGPT and GPT-4 [44], [43]) are advanced pre-trained
generative models. They demonstrate strong capabilities in
understanding both natural language text and source code.
However, the distribution of decompiled code is dissimilar to
either. Our evaluation in Section VI-F shows that ChatGPT and
GPT-4 underperform our model by 11.3 percentage points in
terms of precision.

To bridge the gap between the distribution of the pre-
training knowledge in a generative code language model and
the distribution of decompiled code, we fine-tune a generative
model using decompiled code. An example input used in
the fine-tuning stage is shown in Fig. 1c, where the grey
box contains the query decompiled function and a list of
placeholder variable names; the blue box contains the expected
response of GENNM, consisting of a map from a placeholder
name to a ground-truth variable name. Intuitively, the fine-
tuning guides the model to generate the expected variable

<Context>
sub_40197A(ip_hdr,
 ip_hdrlen...)
</Context>

int sub_401430(...){
 ...
 memset(s, 0, 0x400);
 v29 = s;
 ...
 memset(v29, 0, 0x3c);
 *v29 = (n >> 2) & 0xF;
 ((char)v29+1) = 0;
 ((uint16)v29+2)
 = htonl(...);
 sub_40197A(v29, n,...);
 ...}

Q: v29 , s , n

n

ip_0

buffer

v29

s

duk_len

VarBERT

mgt_data

ip_hdr
tcp_hdr

udp_hdr

ip_hdr
tcp_hdr

udp_hdr

mgt_data

buffer

message

packet
buf

buffer

packet
message

buf

buf_len

ip_len

ip_hdrlen

addr

ip_hdrlen

ip_len

buf_len

addr

GenNm-SymPO +Program AnalysisFig. 4: Query prompt to GENNM augmented with the infor-
mation propagated from the calling context (the green box).
Dataflow used in name validation are indicated by green
arrows, with most relevant ones highlighted.

names based on the query function. The last row at the third
column (GenNm-SymPO) of Fig. 2 shows that after fine-
tuning, GENNM composes the unseen name ip hdrlen as
a top candidate.
Solution for Challenge 2: Symbol preference optimiza-
tion (SymPO). Similar to a classification model trained only
on ground-truth names, a generative model trained only on
ground-truth names inherits the biases in the training dataset.
Our key insight is that developers’ preference over symbol
names is implied by the ground-truth names, and the prefer-
ence can be used to mitigate the biases in the training dataset.
We propose the concept symbol preference, denoting that a
name is preferred over other names given certain program
context. For example, the variable marked in pink in Fig. 2 has
the ground-truth name packet. That is because packet is
more relevant to the context of network programming, and is
thus more preferable than the highly frequent name buffer.

Technically, after training a generative model with the
ground-truth names, we use the trained model to perform
inference on the training dataset. We then collect the cases that
the model makes mistakes. Intuitively, these counterexamples
reflect the misalignment between the model’s biases and the
symbol preference. We adapt a loss function used in the
direct preference optimization (DPO) [49] algorithm, guiding
the model to select the preferred names over the biased ones.
As a result, as shown in the third column (GenNm-SymPO)
of Fig. 2, after SymPO the preferred name packet (in pink
rows) and ip hdr (in blue rows) have high probabilities,
comparable to the most frequent names buffer (in pink
rows) and data (in blue rows).
Solution for Challenge 3: Iterative inference and context-
aware fine-tuning. Individual decompiled functions have
limited contextual information. The local information in a
function may not be sufficient for a model to generate correct
names. Take v29 as an example. GENNM generates with high
probabilities three similar names: ip hdr, tcp hdr, and

4

udp hdr, as shown at the blue rows of the column GenNm-
SymPO in Fig. 2. However, without the contextual infor-
mation from the callee function sub 40197A, it is chal-
lenging to decide the precise name for v29. A straight-
forward solution to leverage global contextual information
would be including caller and callee code bodies into the
query. However, this naive solution incurs a substantially
higher cost due to the much larger number of tokens entailed.
Moreover, although LLMs have a relatively long context-
window length, the performance degrades when the input
becomes longer [27](detailed discussion is in Appendix F
of an extended version of this paper [66]). Therefore, we
use function signatures as summaries for calling contexts.
Specifically, we design an iterative inference process. We first
ask GENNM to generate names based on local information
(e.g., the function shown in the grey box of Fig. 1c) for
individual functions, and then gather the predicted names
along the program call graph, adding contextual information
to the queries of individual functions. For example, the green
box in Fig. 4 shows the context propagated to our motivating
example. Note that names ip hdr and ip hdrlen in the
green box are predicted based on the function body of the
callee function sub 40197A (not shown in the figure). The
last column (+Context) of Fig. 2 shows the output distribution
of GENNM when contextual information is introduced to the
query. We can see that the model correctly predicts v29 and
n with the ground-truth names.

A generative model fine-tuned with only the function body
and the ground-truth names (as shown in Fig. 1c) may
have limited knowledge about how to effectively leverage the
contextual information. We therefore design a novel context-
aware fine-tuning paradigm, providing contextual information
(as shown in the green box in Fig. 4) during fine-tuning so that
the model can learn the relation between the names of local
variables and the names in the calling contexts. According to
our experiments in Section VI-G, this is the key reason for
GENNM’s superior performance.

Finally, to select the best name across multiple inference
iterations, we propose a name validation algorithm to select
(from top-ranked candidates) the name that is most consistent
with the local program context. We propagate names along
program data-flow. For example, to select the best name for
variable s, the data-flow edges highlighted in Fig. 4 connects
it to v29, and v29 is further connected to the first argument
ip hdr of the callee function sub 40197A. They indicate
the names of those variables may have semantics relevance
with s. GENNM calculates the semantics similarity between
the names of those variables and the candidate names of s
(i.e., message, packet, buffer, and buff). It then finds
that the name packet is the most relevant with the names of
the other two variables.

III. PROBLEM DEFINITION

To facilitate discussion, we formalize the problem as shown
in Fig. 5. We use id to refer to the placeholder names
synthesized by the decompiler, and use name to refer to

B ∈ Binary ::= {bid : id, funcs : list F , cg:set F × F}
F ∈ Function ::= {fid : id, body : str, ids : set id}
N ∈ NameMap ::= id→ id→ str
D ∈ Dataset ::= list (B ×N)

⟨FuncBody⟩ F .body ::= R;S ⟨Params⟩ R ::= list id

⟨Expr⟩ E ::= id | id(A) | Other ⟨Args⟩ A ::= list E

⟨Stmt⟩ S ::= S1;S2 | E0 := E1 | return E | while(E){S} |
if(E){S1}else{S2}

Fig. 5: Formal definitions of the problem

meaningful names. A binary program consists of an id, a list
of binary functions, and a call graph. The call graph is a set of
edges from caller functions to callee functions. A decompiled
function consists of a function id, the string of decompiled
code, and a set of identifiers used in the function. A name
map is associated with a binary program. It takes as input
the id of a function, the id of a variable in this function, and
returns a meaningful name for the variable. The dataset of
binary programs D has the type of a list of pairs. Each pair
consists of a binary program and the corresponding name map
containing the ground-truth names.

We transform the decompiled code of a function to a
program in a simple language to simplify the discussion. The
language definition is shown in the lower part of Fig. 5.
The definitions are standard. Note that we omit most types
of expressions and only focus on expressions containing an
identifier (id) and a function call (id(A)).

IV. METHOD

A. Overview

Training. We show the training pipeline of GENNM in Fig. 6.
We train GENNM in three steps: (1) The training process
starts from a pre-trained checkpoint of a code language
model (e.g., CodeLlama-7B). It first fine-tunes the pre-trained
model on decompiled code to align the distribution of the
pre-trained model to the distribution of decompiled code
(and the ground-truth names), resulting in a model noted
as GENNMCtx. (2) We use GENNMCtx to inference on the
training dataset, and construct a pairwise symbol preference
dataset from the model’s predictions. Each data sample in the
symbol preference dataset contains a preferred name and a less
preferred name. (3) We further train the model with the symbol
preference optimization on the preference dataset, resulting in
a model noted as GENNMSymPO.
Inference. The inference process is depicted by Fig. 7. We
solve the name recovery problem with an iterative process. At
each round, the GENNM model predicts names for individual
decompiled functions, using the global contextual information
collected from previous rounds (Step 1). Then the predictions
are added to a candidate name map from a variable to the
candidate names of this variable seen across rounds (Step
2). We then leverage the name validation algorithm to select
best candidate names based on program data-flow (Steps 3–
4). Finally, the selected names are propagated following the

5

Step1
Fine-tuning Generative Code Models

Step2
Building a Symbol Preference Dataset

Step3
Symbol Preference Optimization

Decompiled
Code

Causal Language
Modeling (CLM)

Decompiled
Code

Context

+

var1 -> c

Fine-tuning code
language models on
ground-truth
names.

Propagating
information
along call
graph.

Dec. Code

Context

GenNm-Ctx

var1->char
var1->eccBlk

var1->eccBlk
var1->char

…

Inferencing on the
training dataset
with the !ne-tuned
model.

Sampling multiple
names for each
variable.

Constructing
pairwise dataset
re"ecting symbol
preference.

Dec.
Code

Ctx

eccBlk char

GenNm-SymPO

0.05 0.12<

Composing two
queries with the
same code, for
better and worse
names, repsectively.

Requiring the
probability for the
better name to be
larger.

Dec.
Code

Ctx

Appending
contextual
information to
prompts.

Calculating the
probabilities for
generating both
names.

Fig. 6: Training pipeline of GENNM

Decompiled
Code

Context

Predictions for one round

GenNm-SymPO

var1 -> len

var1
c
len
str
buf

var1 -> c

Name candidates saved
across rounds

Name validation following
program data-flow

Selected namesName propagation
following the call graph

1

2

345

Fig. 7: Inference pipeline of GENNM

call-graph, updating the quries to the GENNM model (Step
5) in the next round. It terminates when no variable name is
updated or until a predefined budget is reached.

We discuss the training pipeline in Sections IV-B and IV-C.
The inference process is discussed in Section IV-D.

B. Fine-tuning Generative Model

To bridge the gap between the distribution of a pre-trained
code language model and the decompiled code, we fine-tune
our model from checkpoints of a pre-trained model (e.g.,
CodeLlama-7B). Our fine-tuning involves two types of
datasets: one dataset that contains individual decompiled
functions and the corresponding ground-truth variable names
and the other dataset that additionally contains the global
contextual information obtained following the program call
graph. We fine-tune a model with both datasets because we
want our model to have the capabilities of inferring names
from local information and generating names considering
global contextual information. The training objective aligns
with how the fine-tuned model is used in the inference stage.
We leverage the causal language modeling (CLM) [48] loss
for fine-tuning. The loss is computed on tokens in both the
query decompiled functions and the output names.
Dataset w/ local information. We note the dataset that
contains individual decompiled functions as Dloc. Formally,

the dataset Dloc is defined as follows:

Dloc ::=
{
(query : (f.body, f.ids),
resp : n[f.fid])

∣∣(b, n) ∈ D ∧ f ∈ b
}
,

(1)

where D denotes the list of binary programs used for training,
and b and n a binary and its name map, respectively, as defined
in Fig. 5. Hence n[f.fid] denotes the map from a placeholder
variable name to the ground-truth variable name for function f .
Context Propagation. Names in calling contexts can help the
model understand the semantics of the function. Intuitively,
names from the caller functions may provide hints about
the higher-level purpose of the function, and names from
the callee functions may provide details about the primitive
functionalities of the analyzed function. We first discuss the
context propagation algorithm that gathers names following
the program call graph, and then discuss how we use it to
construct the dataset with additional contextual information.
Note that the algorithm is used to construct the contextual
dataset during the training time and to propagate and update
model query inputs during the inference time.

The context propagation algorithm takes as input the call
graph of a program and the predictions for individual functions
and propagates the predicted names along the call graph.
Intuitively, the propagation algorithm gathers information from
both the caller functions and the callee functions of an
analyzed function f . For the caller functions, the algorithm
identifies the callsites, i.e., the call expressions that call f .

6

It then renames the placeholder names in the corresponding
call expressions with the names predicted from the local
context of the caller function, and appends the renamed call
expressions to the query of f . Similarly, the algorithm renames
the signature of the callee functions of f and appends them
to the query of f .

Given a function f , we formally define the context propa-
gation rules as follows:

CallerCtx(f, n) ::=
⋃{

rename(f.fid(a), n[clr.fid])∣∣(clr, f) ∈ b.cg ∧ f.fid(a) ∈ clr.body
}

(2)

CalleeCtx(f, n) ::=
⋃{

rename(cle.fid(r), n[cle.fid])∣∣(f, cle) ∈ b.cg ∧ (r,) = cle.body
} (3)

Ctx(f, n) ::=CallerCtx(f, n) ∪ CalleeCtx(f, n) (4)

where b and n are the binary program that the function
f belongs to and the corresponding name map. The name
map contains the ground-truth names when constructing the
training dataset and the predicted names when propagating
names during inference. The utility function rename(x, y)
renames all ids in x according to the name map y.

Given a data sample containing a decompiled function f ,
Equation 2 depicts the rule to propagate names from its caller.
Specifically, (clr, f) ∈ b.cg describes the constraint that clr
is a caller of f , and f.fid(a) refers to a call expression in the
body of clr that calls f ; f.fid denotes the placeholder name of
f and a denotes the argument list. The propagation algorithm
uses names in n[clr.fid] to rename the placeholder names in the
call expression, and then adds it to the context of f . Similarly,
Equation 3 depicts the rule to propagate context from the callee
of f . As defined in Fig. 5, r denotes the parameter list of cle,
and cle.fid refers to the placeholder name of cle. Therefore,
cle.fid(r) denotes the signature of the callee function cle. The
algorithm renames the placeholder names in the signature of
the callee function and adds it to the context of f . Fig. 8 shows
a concrete example.

An alternative design is simply appending the bodies of
caller and callee functions to a query function. As discussed
in Section II-C, it is neither efficient since it significantly
increases the number of query tokens nor effective due to the
degradation of model’s performance with longer input context.
Dataset w/ contextual information. We formally define the
dataset with contextual information (noted as Dctx) as follows:

Dctx ::=
{
(query : (f.body, Ctx(f, n), f.ids),
resp : n[f.fid])

∣∣(b, n) ∈ D ∧ f ∈ b
}
,

(5)

where D denotes binaries used for training, and b and n a
binary and its name map, respectively, as defined in Fig. 5;
Ctx(f, n) denotes the contextual information gathered by the
context propagation algorithm.
Loss function for fine-tuning. We use a CLM loss to fine-
tune on both datasets. The loss is formally defined as follows:

Lft(Θ, Dloc, Dctx) ::=

− E(q,r)∼Dloc∪Dctx

[len(q)+len(r)∑
i=1

logP (xi|x<i; Θ)
]
,

(6)

where Θ denotes the weights of the fine-tuned model; x de-
notes the sequence obtained by concatenating the tokens in the
query (q) and the tokens in the response (r); xi denotes the i-th
token in x; and x<i the token sequence before the i-th token.
Our fine-tuning stage calculates the CLM loss for tokens in
both the query and the response to help the model understand
the distribution of the decompiled code in the query.

C. Symbol Preference Optimization

In the natural language domain, preference denotes that a
natural language sentence output by a generative model is
preferred over another. Preference optimization is a method
to align the behavior of a pre-trained LLM to human prefer-
ence [49]. It takes as input pairwise data samples, and asks a
model to predict a higher probability for the preferred response
and a lower probability for the less preferred response. Since
our technique is based on generative models, in order to
counter biases, we design a SymPO method for our task. The
SymPO dataset contains pairwise data samples. Each sample
consists of a query function, a less preferred name (indicating
the model’s biases), and a preferred name. Both are sampled
from the model’s output. Instead of involving a human evalua-
tor, we use the string similarity to the ground-truth name as the
preference for a given variable name. The SymPO loss is care-
fully designed so that it teaches the model to select preferred
names over the less preferred names while not compromising
the model’s capability on the variable recovery problem.

We first introduce how we construct the pairwise dataset
used for SymPO (i.e., Step 2 in Fig. 6), and then introduce
the SymPO loss (i.e., Step 3 in Fig. 6).
Constructing the SymPO dataset. We construct the dataset
using GENNMCtx to inference a subset of the training data,
and sampling the top 20 predictions from the model for each
query. We collect cases where GENNMCtx makes mistakes but
has at least another response in the top 20 predictions that is
significantly better. Intuitively, the model has the knowledge
of better names for those cases, yet it makes mistakes due to
the biases. The SymPO process thus has the chance to fix the
biases without changing the model significantly.

An alternative design is to use the ground-truth as the
preferred names. However, the results in Section VI-G show
that using ground-truth names underperforms compared to
using the best predictions of GENNMCtx as the preferred
names. That is because GENNMCtx may not learn how to
generate the ground-truth names for certain programs. Cases
where the ground-truth diverge too much from GENNMCtx’s
learned distribution negatively affect the model’s performance.

We formally present the SymPO dataset as follows. First,
we use D̂ to denote the inferenced training subset.

D̂ ::=
{
(query : q, preds : r̂, gt : r)

∣∣(q, r) ∈ Dloc ∪ Dctx

∧ r̂ = GENNMctx(q, top20)
}
,

(7)

7

int64 foo(int a1, char *a2){
 gee(/*...*/)
}...

int64 bar1(char *a1, char *a2){
 foo(0, a1)
}...

int64 bar2(char *a1, char *a2){
 foo(a1, a2)
}...

int64 gee(FILE *a1){
 fflush(a1)
}...

{a1: err_msg, foo: log, ...}

{a1: fd, a2: buf, foo: fwrite}

{a1: fp, gee: fflush}<CallSites>
 <0> log(0, err_msg) </0>
 <1> fwrite(fd, buf) </1>
</CallSites>
<Callees>
 gee: fflush(FILE *fp)
</Callees>

Call Graph Edges

Local Predictions

Propagated Ctx

Fig. 8: Example of propagating global contextual information along the call graph. Initially, GENNM reasons each function
independently and obtains the results shown in the pink boxes. After that, GENNM propagates names along the call graph. The
green box under foo() shows the propagated contextual information. For example, in bar1(), the model predicts the names
err msg and log for a1 and foo, respectively. Therefore, in the context of foo() in the middle column, the algorithm
renames the call statement to foo() with the predicted names and propagates it as the 0-th entry of the callsites. Similarly,
it renames the signature of the callee function gee() with the predicted names, and propagates the renamed signature to the
analyzed function. We can see that the names from caller functions hint the model that the purpose of foo() might be writing
messages to a file, and the names from the callee function hint the model that foo() flushes the output buffer.

where GENNMctx(q, top20) denotes the top 20 responses
returned by GENNMCtx given a query q.

The SymPO dataset, noted as Dprf , is defined as follows:

Dprf ::=
{
(query : q, better : rb, worse : rw)∣∣(q, r̂, r) ∈ D̂ ∧ rw = sample(r̂)
∧ rb = best(r̂, r) ∧ rb ≻r rw

}
,

(8)

where best(r̂, r) denotes the name in r̂ that is most similar
to the given ground-truth name r, sample(r̂) denotes a name
that is randomly sampled from r̂, and rb ≻r rw denotes that
the name rb is significantly more similar to the given ground-
truth name r than rw. We use token-level precision and recall
to measure the similarity between a predicted name and the
ground-truth name.

Moreover, to reduce the noise in the SymPO dataset and
improve the training efficiency, we use lightweight static code
features as heuristics to filter out low-quality data. Empirically,
our static heuristics reduce the dataset size by 60%, and
results in Section VI-G show that the performance achieved
by training on the reduced dataset is even slightly better than
training on all the data samples. In particular, we remove
a function if more than two-thirds of its callee functions do
not have meaningful names. Optimizing model’s preference
on those data samples introduces only noises because the local
information may not be enough for the model to predict good
names. In addition, we remove functions with less than 5
statements and meanwhile do not have branches. Note that
we only remove functions for constructing the SymPO training
dataset. We do not remove any functions from the test dataset.

Loss function of SymPO. The loss function of SymPO
is adapted from the loss function proposed in direct pref-
erence optimization [49], which is used to align human
preference with fine-tuned LLMs. The loss function has two
sub-goals: (1) guiding the model to generate better names
with higher probabilities (than the probabilities for generating
worse names), and (2) preventing the model from diverging
too much from its original distribution. The loss function is

formally presented as follows:

LSymPO(Θ,Θctx) ::=

−E(q,b,w)∼Dprf

[
log σ

(
βlog

P(b|q; Θ)

P(b|q; Θctx)
−βlog

P(w|q; Θ)

P(w|q; Θctx)

)] (9)

where Θ and ΘCtx denote the weights of GENNMSymPO and
the weights of GENNMCtx, respectively. β is a hyper-parameter
that controls the sensitivity of the loss to the margin between
the probability for better names and the probability for worse
names. The loss is optimized w.r.t. Θ only. In other words, the
weights of GENNMCtx are frozen during SymPO.

An intuitive explanation for the loss function is visualized
in Fig. 9. Two models are involved in SymPO. The first model
is GENNMSymPO, which is optimized by the loss function. It
is initialized with the weights of GENNMCtx. The other model
is a frozen GENNMCtx, which will not be updated during
training. It is used as a “reference” model so that the diver-
gence of GENNMSymPO is constrained. A detailed discussion
for the loss function is in Appendix A. Assume a data sample
consisting of the query function (q), a better name (b), and a
worse name (w). The blue parts in Fig. 9 depict the first loss
term in Equation 9 (i.e., log P(b|q;Θ)

P(b|q;Θctx)
). It uses both models

to calculate the probabilities of generating the better name
b and guides GENNMSymPO to produce a larger probability
for b than GENNMCtx. Similarly, the red parts (corresponding
to the second loss term) require GENNMSymPO to generate a
significantly smaller probability compared to the GENNMCtx.

D. Context Augmentation at the Inference Stage

At the inference stage, we iteratively run GENNM because
the input contexts provided to the models are updated based
on the latest round of predictions. In each iteration, the
newly generated names along with the names generated in
the previous rounds are considered candidate names for the
variable. We propagate names along the program call graph
to provide contextual information. The algorithm (Step 5 in
Fig. 7) is discussed in previous sections.

To select the final name prediction across different it-
erations, GENNM leverages program analysis to aggregate

8

wq

b
GenNm SymPO

GenNm Ctx

<latexit sha1_base64="NXi7vi6ittBE7y5Jm0IUzQBoPLU=">AAACMnicbZDLSgMxFIYzXmu9VV26CVah3ZQZKSq4KbjRXYXeoFNKJs20oZmLyRmxjPNMbnwSwYUuFHHrQ5i2s9C2PwR+vnMOOed3QsEVmOabsbS8srq2ntnIbm5t7+zm9vYbKogkZXUaiEC2HKKY4D6rAwfBWqFkxHMEazrDq3G9ec+k4oFfg1HIOh7p+9zllIBG3dyNLYI+tl1JaGx7BAaOG1eTgvN4d2nXBgxIMVnMu1MsvZjCQ5IUk24ub5bMifC8sVKTR6mq3dyL3Qto5DEfqCBKtS0zhE5MJHAqWJK1I8VCQoekz9ra+sRjqhNPTk7wiSY97AZSPx/whP6diImn1MhzdOd4TTVbG8NFtXYE7kUn5n4YAfPp9CM3EhgCPM4P97hkFMRIG0Il17tiOiA6PtApZ3UI1uzJ86ZxWrLOSuXbcr5ynMaRQYfoCBWQhc5RBV2jKqojip7QK/pAn8az8W58Gd/T1iUjnTlA/2T8/AKQcqwf</latexit>

log
P(b|q; ⇥)

P(b|q; ⇥ctx)

<latexit sha1_base64="dteyeZfrYcgLz0fKN5lLjexHh7E=">AAACMnicbZDLSgMxFIYz9VbrrerSTbAK7abMSFHBTcGN7ir0Bp1SMmmmDc1cTM6oZZxncuOTCC50oYhbH8L0stC2PwR+vnMOOed3QsEVmOabkVpaXlldS69nNja3tneyu3t1FUSSshoNRCCbDlFMcJ/VgINgzVAy4jmCNZzB5ajeuGNS8cCvwjBkbY/0fO5ySkCjTvbaFkEP264kNLY9An3HjStJ/v7x9sKu9hmQQrKYdyZYejGFhyQpJJ1sziyaY+F5Y01NDk1V6WRf7G5AI4/5QAVRqmWZIbRjIoFTwZKMHSkWEjogPdbS1iceU+14fHKCjzXpYjeQ+vmAx/TvREw8pYaeoztHa6rZ2gguqrUicM/bMffDCJhPJx+5kcAQ4FF+uMsloyCG2hAqud4V0z7R8YFOOaNDsGZPnjf1k6J1WizdlHLlo2kcaXSADlEeWegMldEVqqAaougJvaIP9Gk8G+/Gl/E9aU0Z05l99E/Gzy/WVqxJ</latexit>

log
P(w|q; ⇥)

P(w|q; ⇥ctx)
>

q

wq

bq

!❄q Query b Better names w Worse names

Fig. 9: Loss for SymPO. The weights of GENNMCtx are frozen.
The weights of GENNMSymPO are optimized guided by the
SymPO loss. Preferred (better) names and the corresponding
probabilities are in blue; less preferred (worse) ones are in red.

the names predicted in different iterations, and selects the
candidate name with the maximum level of consistency. The
analysis in GENNM is a general data-flow analysis customized
to the domain of variable names, and the consistency check
is achieved by majority voting. The implementation details of
both techniques are in Appendix D of an extended version of
this paper [66]. Note that there is existing work [62] exploring
the combination of program analysis and LLM at the inference
stage. Therefore, although our analysis is customized to the
variable name domain and is different with existing work [62],
we do not claim conceptual novelty for the analysis and voting
algorithm.

V. EXPERIMENTAL SETUP

A. Dataset

We evaluate GENNM on two commonly used [45], [35],
[15] datasets. The first one is built following the same pro-
cess as DIRTY [15] (noted as the DIRTY dataset) and the
other is derived from the released VarCorpus dataset used by
VarBERT [45] (noted as the VarCorpus dataset). The DIRTY
dataset is built from popular GitHub projects, and the VarCor-
pus dataset is built (by the VarBERT authors) from a Linux
package manager, Gentoo [21]. We rebuild the DIRTY dataset
because the original DIRTY dataset contains binary programs
that are not fully stripped [45]. Additionally, the dataset
provided by DIRTY’s authors contains only preprocessed data
without raw binaries. Our technique requires call graphs of
programs and thus cannot directly use the provided DIRTY
dataset. For the VarCorpus dataset, thanks to the help of Var-
BERT’s authors, we obtain the corresponding binary programs
in VarCorpus and thus can reuse the processed VarCorpus
dataset with the call graphs extracted from the binary pro-
grams. For both datasets, the ground-truth variable names are
obtained from the debug information in binary programs. For
the DIRTY dataset, we reuse the code provided by DIRTY’s
authors to collect the ground-truth. For the VarCorpus dataset,
we directly reuse the ground-truth provided in the dataset.
Data quality. To prevent the data duplication problem as
observed by the previous work [45], we ensure the high
quality of both datasets with strict deduplication rules, only
including a binary program if at least 70% of its functions
are not seen. In the deduplication process, we conservatively

consider two functions as the same functions if they have the
same name. We discuss the rationale in Appendix B. As a
result, our processed datasets are more diversified than the
existing datasets. For example, only 46% of functions in the
original VarCorpus dataset have unique names, indicating that
the other 54% of functions may have similar semantics (an
example is in Fig. 15 in the Appendix). On the other hand,
81.3% and 89.4% of functions in our processed VarCorpus
and DIRTY datasets have unique names, respectively. Our
processed DIRTY and VarCorpus datasets have 348k and 895k
functions, respectively. Please see Appendix B for detailed
statistics.
Preventing data leakage. Moreover, we use string similarity-
based rules to filter out the overlap between training and test
data, preventing potential data leakage. Previous works [45],
[15] use exact string match as the criterion for checking data
leakage. However, as shown in Fig. 15 and Table VI in the
Appendix, there might be potential data leakage even if the
strings of two functions are not exactly the same (e.g., two
functions may differ in only one number). To better measure
the generalizability of models, we conservatively filter out
those potential leakage by filtering out a test sample if its
string similarity score to a training sample (from 0 to 100) is
higher than 90.
Data availability. We submitted our artifact to the artifact
evaluation track. We will publish our data splits, model check-
points, and implementations upon publication.

B. Splits

For most experiments in the evaluation, we split both
datasets with a ratio of 9:1 by binaries (not by functions)
for training and test. We randomly sample 5% functions
from the training datasets as the validation sets. We split
our training and test datasets by binary programs (instead
of by binary functions). That is because splitting data by
functions may cause data leakage. Decompilers typically use
the address of a global variable or a function to construct a
placeholder name for it. For example, assume two functions
from a binary program, and both of them use a global variable
qword 409abc. One of the functions is in the training
dataset, and hence the training process exposes the ground-
truth name, e.g., message, to the model. During test, the
model can easily predict qword 409abc as message since
the placeholder name is already seen in the training data.
To fairly compare the improvements achieved by GENNM
with the baseline techniques, we additionally conduct experi-
ments with the split-by-function setup following the previous
work [45] in Section VI-A .

C. Models

Due to limited resources, we train GENNM from
CodeGemma-2B [58] for most of the experiments. To study
how different sizes of models may affect the performance, we
additionally train two GENNM models from CodeLlama-7B
and CodeLlama-34B [50] on the DIRTY dataset. The detailed
hyperparameters of our model are listed in Table IX of an

9

extended version of this paper [66]. We use VarBERT [45]
and ReSym [62] as the baseline techniques. VarBERT [45] is
a representative classification based method that demonstrates
better performance than previous state-of-the-art models [35],
[15]. ReSym [62] is a recent technique based on LLM. It also
demonstrates better performance than previous state-of-the-art
models [35], [15]. We train all models until they converge (i.e.,
the validation loss no longer decreases). We select models that
achieve the best validation loss.

D. Metrics

We use two sets of metrics to evaluate model performance.
Token-based semantics match. Previous works use ex-
act string match to evaluate the performance of a variable
name recovery technique. However, exact string match cannot
faithfully reflect the capability of a tool. As discussed in
SymLM [33], a previous work focusing on recovering function
names, even when two variables have the same meaning, the
names specified by developers may vary due to many reasons,
e.g., use of abbreviations and concatenation of names. We thus
adapt the same metrics used in SymLM to measure the quality
of generated names. Intuitively, given a ground-truth name n
and a predicted name n̂, the metric tokenizes both names into
sets of tokens, noted as W and Ŵ . Then it uses set comparison
to calculate precision and recall. Formally,

Precision(W, Ŵ) =

∣∣∣∣{ŵ|ŵ ∈ Ŵ ∧ ∃w ∈ W, ŵ ≃ w}
∣∣∣∣∣∣∣∣Ŵ ∣∣∣∣ (10)

Recall(W, Ŵ) =

∣∣∣∣{ŵ|ŵ ∈ Ŵ ∧ ∃w ∈ W, ŵ ≃ w}
∣∣∣∣∣∣∣∣W ∣∣∣∣ (11)

In Equations 10 and 11, ≃ denotes whether two tokens have
similar semantics. SymLM [33] built a semantics word cluster
trained on CodeSearchNet [30] and derived edit-distance-
based rules to measure the semantic similarity between tokens.
We reuse their word cluster and rules.
GPT4Evaluator. Token-based metrics may not accurately
reflect whether a name matches the program context or de-
velopers’ intention. For example, the names wait sec and
timeout have no token overlap but denote similar semantics.
On the other hand, existing work [56] on decompiled code
summarization demonstrates that using GPT4 as an evaluator
aligns better with human judgments than automatic metrics.
Therefore, we adapt their method, further using GPT4 as an
evaluator to measure the quality of generated names.

Specifically, we follow [56] and measure the quality of
a name from context relevance and semantics accuracy. We
query GPT4 per binary function. Each query consists of a
decompiled function with the ground-truth variable names, and
a name map from ground-truth names to predicted names. We
ask GPT4 to first summarize the decompiled function, and
evaluate each predicted name by answering two questions in
scores from 1 (worst) to 5 (best): (1) Whether the predicted
name is consistent with the program context? (2) Whether
the predicted name accurately depicts the semantics of the
variable? The prompt used and examples for each score are

shown in Fig. 17 and Fig. 19 of an extended version of this
paper [66].

VI. EVALUATION

A. Performance in terms of Semantics Match

Overall. We show the performance of GENNM compared
with the baseline techniques in Table I. We can see that
overall, GENNM outperforms both VarBERT and ReSym
on all datasets/splits. On the DIRTY dataset, GENNM
outperforms VarBERT by 8.5 percentage points in terms
of both precision and recall; it outperforms ReSym by 5.6
and 4.6 percentage points in terms of precision and recall,
respectively. On the VarCorpus dataset, GENNM outperforms
VarBERT by 11.4 and 11.0 percentage points in terms of
precision and recall, respectively; it outperforms ReSym
by 9.5 and 6.2 percentage points in terms of precision and
recall, respectively. Note that the performance for VarBERT
reproduced in Table I is lower than the reported statistics in
the VarBERT paper. That is expected because we preclude
potential overlaps between training and test sets with a stricter
setup. Appendix B shows that both GENNM and VarBERT
achieve significantly higher performance on the subset of
samples that have a high similarity to the training dataset
(e.g., VarBERT and GENNM achieve a precision of 50.8%
and 72.3% on the DIRTY dataset, respectively).
Project-in-train/project-not-in-train. Moreover, we observe
that complex projects typically contain more than one binary.
Different binaries in a project likely share similar coding
styles or naming preferences. Therefore, a model may be
able to predict better names if the corresponding project
of a test program has been seen in the training dataset.
Therefore, we further categorize the test programs by whether
the corresponding projects are seen during training or not,
noted as project-in-train and project-not-in-train. Note that
this categorization is different from the in-train and not-
in-train setup in DIRTY [15]. As pointed out by previous
work [45], there are better solutions for renaming variables
in functions that overlap with the training dataset (i.e., the
“in-train” samples in DIRTY’s setup). On the other hand, in
our setup, project-in-train mimics a realistic scenario that the
naming style of an author group (e.g., an APT group [22])
is already learned beforehand, and a technique is used to
analyze programs from the same author group. Both project-
in-train and project-not-in-train samples do not overlap with
the training data samples.

We can see that all techniques perform better on samples
whose projects have been seen during training. On those
samples, GENNM outperforms VarBERT by more than 10
percentage points (on both datasets) in terms of both precision
and recall, and it outperforms ReSym by more than 5 and 7
percentage points on the DIRTY dataset and the VarCorpus
dataset, respectively. For the more challenging project-not-in-
train samples, GENNM consistently outperforms both baseline
techniques by 3.9–8.6 percentage points, demonstrating better
generalizability.

10

TABLE I: Performance of GENNM compared with VarBERT and ReSym. Proj. NIT (Project Not-In-Train) denotes test programs
whose corresponding projects are not seen in the training dataset. Proj. IT (Project In-Train) denotes test programs whose
projects are seen in the training dataset. Both Proj. NIT and Proj. IT samples do not overlap with training data samples.

Dataset Model
Proj. NIT Proj. IT Overall

Precision Recall Precision Recall Precision Recall

DIRTY
VarBERT 23.6 21.7 31.4 29.6 27.2 25.5
ReSym 25.3 24.9 35.6 34.3 30.2 29.3
GENNM 30.5 28.8 41.7 39.6 35.8 33.9

VarCorpus
VarBERT 20.9 19.3 32.5 31.0 29.8 28.3
ReSym 23.5 24.1 34.2 35.8 31.7 33.1
GENNM 29.5 27.4 44.7 42.8 41.2 39.3

VarCorpus
Split by
Function

VarBERT - - - - 50.0 49.2
ReSym - - - - 51.2 52.2
GENNM - - - - 62.4 62.8

TABLE II: Performance w.r.t. different sizes of base models.

Base Model
Proj. NIT Proj. IT Overall

PR RC PR RC PR RC

CodeGemma-2B 29.7 28.0 38.5 36.7 33.7 32.0
CodeLlama-7B 29.9 28.8 36.7 35.5 33.1 31.9

CodeLlama-34B* 35.9 33.4 39.5 37.4 37.1 35.3

*We fine-tune CodeLlama-34B with LoRA.

Split by function. Moreover, following previous work [45],
we further run all techniques on the VarCorpus dataset with
the split-by-function setup. Split-by-function denotes the setup
where some functions in a binary are in the training dataset
while other functions are in the test dataset. We randomly
sample 15% binaries from VarCorpus due to limited resources,
following the practice of previous work [45], [15]. All tech-
niques perform significantly better with the split-by-function
setup. Especially, we can see that GENNM outperforms both
baseline techniques by more than 10 percentage points. That is
because the training paradigm and inference stage of GENNM
enables it to leverage contextual information. In the split-by-
function setup, the caller and callee functions of an analyzed
function may already be seen during training. They provide
higher quality contextual information than the caller/callee
functions in the split-by-binary setup. Therefore, the perfor-
mance of GENNM improves significantly. It demonstrates
the effectiveness of leveraging calling contexts in the name
recovery problem.
Significance of improvements. Note that the scale of
improvement introduced by GENNM over the baselines is
comparable to that in existing work. In the most challenging
setup (split by binary, without overlap with training dataset),
GENNM outperforms the baseline techniques by 4.6–11.4
percentage points. DIRTY [15] improves over its baseline
by 5.1 percentage points (on the DIRTY dataset), and
VarBERT [45] improves over its baseline by 4.5 percentage
points (on the VarCorpus dataset). In the split-by-function
setup, GENNM improves over the baseline techniques by
10.6–13.6 percentage points. VarBERT [45] improves over
its baseline by 12.7 and 14.8 percentage points.

B. Performance w.r.t. Different Sizes of Base Models

GENNM fine-tunes pre-trained code language models. To
study how base models with different sizes affect the per-
formance, we additionally train GENNM with CodeLlama-
7B and CodeLlama-34B [50]. Note that our resource cannot
support a fully fine-tuning for the 34B model. Therefore,
we use LoRA [28] to fine-tune the 34B model. We evaluate
all models on a subset of the DIRTY dataset. The results
are shown in Table II. We can see that GENNM fine-tuned
from CodeLlama-34B achieves significantly better results than
GENNM on CodeGemma-2B and CodeLlama-7B. Especially,
for the most challenging setup where the project of a binary
is not seen in the training dataset, the 34B version of GENNM
outperforms the other versions by around 5 percentage points
in both precision and recall. That demonstrates the training
paradigm of GENNM can generalize to larger models.

C. Generalization to Different Compiler Optimizations

To evaluate the generalization of GENNM to other compiler
optimization levels, we compare GENNM with both baseline
techniques on programs compiled with different optimization
levels from -O0 to -O3. The results are shown in Fig. 10.
We can see that GENNM outperforms both baselines across
all optimization levels. It demonstrates that GENNM can gen-
eralize to optimized programs. The improvements of GENNM
on programs compiled with less aggressive optimizations (i.e.,
-O0 and -O1) are more significant than the improvements on
programs compiled with -O2 and -O3. That is because pro-
grams compiled with aggressive optimizations are significantly
longer and diverge further from the distribution of source code.
Therefore, it is more challenging for models to understand
them, affecting the model’s performance. We leave it as future
work to further improve the model’s capability of understand-
ing programs compiled with aggressive optimization flags.

D. Generalization to Rare Names

We show GENNM generalizes better to rare names in
Fig. 11. Observe that all techniques achieve better perfor-
mance on names that appear more frequently in the training
dataset, and GENNM consistently outperforms both baseline
techniques on names with all name frequencies. Moreover,

11

In-PR
In-RC

Not-PR
Not-R

C

0.2

0.3

0.4

Pe
rf

or
m

an
ce

O0

In-PR
In-RC

Not-PR
Not-R

C

O1

In-PR
In-RC

Not-PR
Not-R

C

O2

In-PR
In-RC

Not-PR
Not-R

C

O3
VarBERT ReSym GenNM

Fig. 10: Generalizability to other optimization levels. In-PR, In-RC, Not-PR, and Not-RC denote the average precision and
recall on samples whose project is seen or not seen in the train data, respectively.

0 1-10 10-100 100-1000 >1000
Name Frequency

0.0

0.1

0.2

0.3

0.4

Pr
ec

is
io

n

GenNm ReSym VARBERT

Fig. 11: Performance by name frequency on VarCorpus. The
x-axis denotes the frequency of the ground-truth name for a
variable in the training dataset of VarCorpus, and the y-axis
the average precision achieved on the corresponding variables.

Context Semantics

1 2 3 4 5
0.25

0.50

0.75

1.00

SF

GenNM VarBERT

1 2 3 4 5

Fig. 12: Performance evaluated by the GPT4Evaluator. The
two sub-figures show the scores for context relevance (Con-
text) and semantics accuracy (Semantics), respectively. SF de-
notes the survival function. It indicates the number of samples
achieving at least the corresponding score. The transparent
bars reflect the distribution for each score.

GENNM is more robust when the frequencies of names de-
crease. For names that are never seen in the training dataset,
both GENNM and ReSym outperform VarBERT. Especially,
GENNM achieves a precision of over 20%, which is close to
2 times the performance of VarBERT on those variables. It
supports that the generative model generalizes better than a
classification model on unseen names.

The performance of GENNM on rare variables (i.e., vari-
ables with a name frequency from 1 to 10) is 27.1%, while the
performance of VarBERT and ReSym are 13.5% and 20.4%,
respectively. That indicates GENNM mitigates the biases of
frequent names in the training dataset. Moreover, we show that
95% of the rare names are composed of frequently appeared
tokens. Details are in Fig. 18 of an extended version of this
paper [66].

TABLE III: Performance compared to blackbox LLMs.
Model Prompt Precision Recall

GPT-3.5 zero-shot 26.2 27.7
3-shot 29.7 28.9

GPT-4 zero-shot 30.3 33.3
3-shot 31.4 32.6

CodeLlama-70B zero-shot - -
3-shot 27.4 26.9

GENNM - 42.7 39.7

E. Performance Evaluated by GPT4Evaluator

We further use GPT4Evaluator to evaluate the performance
of both models. Due to the limited budget, we randomly
sample 500 functions (corresponding to 1632 variable names)
from the DIRTY dataset. The results are shown in Fig. 12. We
can see that in terms of both context relevance and seman-
tics accuracy, GENNM achieves better scores than VarBERT.
Especially, observe that for more than 50% of variables, the
names generated by GENNM are given scores of 4 or better
for both measurements, indicating that GENNM can effectively
recover high-level semantics information from decompiled
code. Fig. 19 in the Appendix shows examples for names
with different scores. It is also worth noting that GENNM
performs better in terms of context relevance than semantics
accuracy. It indicates that GENNM can predict names within
the correct program context most of the time, yet it is more
challenging to generate names that accurately reflect the
semantics of ground-truth names. That is because compared to
predicting names that are consistent with the program context,
predicting the precise semantics of a variable entails a more
accurate understanding of the semantics of the program, which
is a challenging problem when the program does not have
meaningful symbols [57]. We leave as future work to further
improve the model’s understanding of decompiled code.

F. Performance Compared to Blackbox LLMs

We compare the performance of GENNM with LLMs used
as black-boxes. We randomly sample 1000 functions from
the DIRTY dataset and query two state-of-the-art black-box
LLMs (i.e., GPT-3.5 and GPT-4) and one large code LLM
(i.e., CodeLlama-70B), with both the zero-shot and 3-shot
setups. The prompts used are shown in Appendix H of an
extended version of this paper [66]. The results are shown in
Table III. Observe that GPT-4 achieves better performance than

12

Ctx-Ft

62.2%

Ctx-Prop.

18.9%

Name-Val.
SymPO

13.5%

5.4%

Ctx-Ft
Ctx-Prop.

Name-Val.
SymPO

Fig. 13: Attribution of the improvements over ReSym to
different components. Ctx-Ft and SymPO denote using the
context-aware fine-tuning paradigm and the SymPO objective
at the training stage, respectively. Ctx-Prop. and Name-Val.
denote using the context propagation algorithm and the name
validation algorithm at the inference stage, respectively.

GPT-3.5, and both LLMs achieve better performance in the 3-
shot setup. However, due to the distribution gap between de-
compiled functions and the pre-training knowledge of LLMs,
both models underperform GENNM. GENNM outperforms the
best results achieved by black-box LLMs by 11.3 and 6.4
percentage points in terms of precision and recall, respectively.
For the code LLM, we observe most of its outputs have
format errors in the zero-shot setup. We thus only calculate its
performance on the 3-shot experiment. Note that it achieves
results close to GPT-3.5 but inferior to GPT-4. We speculate
that it is because the training data of GPT-3.5 and GPT-4
also contain significant amount of code. Therefore, the LLM
specially trained on code may not have advantage given that
its size is much smaller than GPT-4. It is worth noting that all
LLMs are likely to be significantly larger in size (i.e., 10x–
100x) than the base model used in GENNM. It demonstrates
the necessity and effectiveness of fine-tuning a pre-trained
code language model on this task.

G. Ablation Study

We conduct ablation studies to analyze how each compo-
nent contributes to the effectiveness of GENNM. Moreover,
we study the effectiveness of different design decisions in
constructing the symbol preference dataset.

We run GENNM with different setups to study the effects
of individual components. Recall that GENNM outperforms
ReSym by 5.6% on the DIRTY dataset in terms of precision. In
this study, we attribute the improvement to different underlying
techniques. The results are in Fig 13. We can see that all
components contribute to the improvements. Specifically, the
context-aware fine-tuning paradigm (during training) and the
context propagation algorithm (during inference) contribute
most to the improvement, indicating the importance of leverag-
ing contextual information. Moreover, we study how different
degrees of contexts sensitivity in context propagation affect
the performance of GENNM. The results show that a 5-
degree context sensitivity empirically works well. Please see
Appendix G of an extended version of this paper [66].

We further study how each design decision in constructing
the symbol preference dataset affects the performance. The
results are shown in Table IV. The default setup (shown in the
row SymPO) uses the best names predicted by the model as
preferred names and uses static feature based heuristics to re-
duce the size and noise of the dataset. The second row (SymPO
w/o Data Filtering) shows the dataset constructed without
the static feature based heuristics. The third row (SymPO w/
ground-truth Names) shows the dataset that uses the ground-
truth names as the preferred names. We can see that the static
feature based heuristics reduce the dataset size by around 60%.
And it demonstrates slightly better overall performance than
training a model on the whole dataset. On the other hand,
observe that the dataset constructed from ground-truth names
results in significantly worse performance than the default
setup.

VII. CASE STUDIES

Examples of GENNM’s prediction. To intuitively demonstrate
the effectiveness of GENNM, we show examples of GENNM’s
prediction that receive each score in the GPT4Evaluator in
Fig. 19 of an extended version of this paper [66].
Malware reverse engineering. We use a real-world malware
sample [39] to illustrate how GENNM helps a security an-
alyst reverse engineer a malware sample. Fig. 14 shows a
code snippet from the studied real-world malware sample. It
connects to a command-and-control (C&C) server, parses the
command, and dispatches the commands from the server. In
Fig. 14a we show the decompiled code generated by IDA [31].
In Fig. 14b we show the corresponding code with variables
renamed by GENNM. At lines 1–2, the malware receives
commands from the server. Lines 3–15 parse the commands,
and lines 17–24 dispatch and execute the commands. We
can see that the names predicted by GENNM make the code
snippets easier to understand. For example, i defined at line 3
is renamed to tok. It indicates that the variable stores a token
of the command. At line 14, the variable v57 is renamed to
i len 1. It indicates that the variable stores the length of
a sub-component of the variable i (now renamed to tok).
Therefore, it is easier to understand that lines 4–14 split a
command into two parts and store them in dest and tok,
respectively (line 15). More importantly, GENNM renames j at
line 17 and v73 at line 18 to cmd ptr and matched cmd,
respectively. It reflects that lines 17–24 are dispatching and
executing commands from the server. This would reveal the
suspicious intention of this code snippet.
Binary summarization. We further study how GENNM helps
the binary summarization task. We use GENNM to recover
names in a decompiled function. Then we feed the function
to ChatGPT and ask ChatGPT to summarize the decompiled
function. The study shows that with the predicted variable
names, ChatGPT captures more accurate information from the
decompiled code. Details are in Appendix I of an extended
version of this paper [66].

13

v48 = recv(fd, v76, 0x1000, 0);
 v76[v48] = 0;
 for (i = strtok(v76, "\n");
 i && *i; i = strtok(0, "\n")) {
 //...`v52`:the last non-empty char in `i`
 if (*i == ':') {
 v53 = i;
 // parse the first part of the command
 while (1) {
 v54 = v53 - i;
 if (v52 <= v53 - i) break;
 v55 = *v53; v56 = v53++;
 if (v55 == 32) goto LABEL_98;
 }
 v56 = v53;
LABEL_98:
 *v56 = 0; v57 = v54;
 // stores the first part to `dest`
 strcpy(&dest, i + 1); strcpy(i, &i[v57 + 1]);
 }
 // find and execute the related command
 for (j = (const char **)&unk_60A500;
 *j; j = v66 + 2) {
 v73 = j;
 v65 = strcasecmp(*j, &s2);
 v66 = v73;
 if (!v65) {
 ((void(*)(int64, char *, char *))v73[1])
 (fd, &dest, i);
}}}

1
2
3

4
5

6
7
8
9
10
11
12
13
14

15
16

17

18
19
20
21
22
23
24

(a)Decompiled code (b)Decompiled code with renamed
variables (highlighted in orange)

nbytes = recv(fd, buf, 0x1000, 0);
 buf[nbytes] = 0;
 for (tok = strtok(buf, "\n");
 tok && *tok; tok = strtok(0, "\n")) {
 //...`lastidx`:the last non-empty char in `tok`
 if (*tok == ':') {
 p1 = tok;
 // parse the first part of the command
 while (1) {
 i_len_0 = p1 - tok;
 if (lastidx <= p1 - tok)break;
 c = *p1; lastchar_0 = p1++;
 if (c == 32) goto LABEL_98;
 }
 lastchar_0 = p1;
LABEL_98:
 *lastchar_0 = 0; i_len_1 = i_len_0;
 // stores the first part to `dest`
 strcpy(&dest,tok+1);strcpy(tok,&tok[i_len_1 + 1]);
 }
 // find and execute the related command
 for (cmd_ptr = (const char **)&unk_60A500;
 *cmd_ptr; cmd_ptr = cmd_tmp + 2) {
 matched_cmd = cmd_ptr;
 cmp = strcasecmp(*cmd_ptr, &cmd);
 cmd_tmp = matched_cmd;
 if (!cmp) {
 ((void(*)(int64, char *, char *))
 matched_cmd[1])(fd, &dest, tok);
}}}

1
2
3

4
5

6
7
8
9
10
11
12
13
14

15
16

17

18
19
20
21
22
23
24

The example shows a code snippet decompiled from
a real-world malware sample.

It receives commands from a server, decodes the
commands, and dispatches the commands to
corresponding functions.

The command format is:
”:first_part opcode”

I let my tool to generate 10 names for each variable,
and manually pick the best one. (For most variables,
the picked name is within top 5.)

(a) Decompiled code output by IDA

v48 = recv(fd, v76, 0x1000, 0);
 v76[v48] = 0;
 for (i = strtok(v76, "\n");
 i && *i; i = strtok(0, "\n")) {
 //...`v52`:the last non-empty char in `i`
 if (*i == ':') {
 v53 = i;
 // parse the first part of the command
 while (1) {
 v54 = v53 - i;
 if (v52 <= v53 - i) break;
 v55 = *v53; v56 = v53++;
 if (v55 == 32) goto LABEL_98;
 }
 v56 = v53;
LABEL_98:
 *v56 = 0; v57 = v54;
 // stores the first part to `dest`
 strcpy(&dest, i + 1); strcpy(i, &i[v57 + 1]);
 }
 // find and execute the related command
 for (j = (const char **)&unk_60A500;
 *j; j = v66 + 2) {
 v73 = j;
 v65 = strcasecmp(*j, &s2);
 v66 = v73;
 if (!v65) {
 ((void(*)(int64, char *, char *))v73[1])
 (fd, &dest, i);
}}}

1
2
3

4
5

6
7
8
9
10
11
12
13
14

15
16

17

18
19
20
21
22
23
24

(a)Decompiled code (b)Decompiled code with renamed
variables (highlighted in orange)

nbytes = recv(fd, buf, 0x1000, 0);
 buf[nbytes] = 0;
 for (tok = strtok(buf, "\n");
 tok && *tok; tok = strtok(0, "\n")) {
 //...`lastidx`:the last non-empty char in `tok`
 if (*tok == ':') {
 p1 = tok;
 // parse the first part of the command
 while (1) {
 i_len_0 = p1 - tok;
 if (lastidx <= p1 - tok)break;
 c = *p1; lastchar_0 = p1++;
 if (c == 32) goto LABEL_98;
 }
 lastchar_0 = p1;
LABEL_98:
 *lastchar_0 = 0; i_len_1 = i_len_0;
 // stores the first part to `dest`
 strcpy(&dest,tok+1);strcpy(tok,&tok[i_len_1 + 1]);
 }
 // find and execute the related command
 for (cmd_ptr = (const char **)&unk_60A500;
 *cmd_ptr; cmd_ptr = cmd_tmp + 2) {
 matched_cmd = cmd_ptr;
 cmp = strcasecmp(*cmd_ptr, &cmd);
 cmd_tmp = matched_cmd;
 if (!cmp) {
 ((void(*)(int64, char *, char *))
 matched_cmd[1])(fd, &dest, tok);
}}}

1
2
3

4
5

6
7
8
9
10
11
12
13
14

15
16

17

18
19
20
21
22
23
24

The example shows a code snippet decompiled from
a real-world malware sample.

It receives commands from a server, decodes the
commands, and dispatches the commands to
corresponding functions.

The command format is:
”:first_part opcode”

I let my tool to generate 10 names for each variable,
and manually pick the best one. (For most variables,
the picked name is within top 5.)

(b) Renamed code (generated names highlighted in orange)
Fig. 14: How GENNM helps security analyst understand a malware sample

TABLE IV: Effectiveness of design decisions in SymPO

Dataset #Pairs Proj. not in train Proj. in train Overall

Precision Recall Precision Recall Precision Recall

SymPO 94.3k 32.4 30.8 42.3 40.6 36.2 34.6

SymPO w/o Data Filtering 232k 32.9(+0.5) 31.1(+0.4) 40.3(-1.9) 38.6(-2.0) 35.8(-0.5) 34.0(-0.5)
SymPO w/ ground-truth Names 93.1k 31.0(-1.5) 29.5(-1.3) 40.5(-1.8) 39.0(-1.6) 34.7(-1.6) 33.2(-1.4)

VIII. RELATED WORK

Classification-based techniques for recovering symbol
names. There are existing efforts on reconstructing variable
names in stripped binary programs [15], [35], [45], [26], [62].
DEBIN [26] works on BAP-IR [9] that is more similar to
the disassemble code than the decompiled code. It encodes
facts in an IR program with probabilistic graph models(PGM)
and predicts variable names based on the PGM. DIRTY [15]
works on the decompiled code. It leverages a transformer
model that interleaves predictions for variable names and
variable types. State-of-the-art technique VarBERT [45] also
leverages a transformer model working on the decompiled
code. Different from DIRTY, which trains the model from
scratch on the decompiled code, VarBERT first pre-trains the
model on a large corpus of source code and then fine-tunes
on the decompiled code. All three techniques formulate the
problem as a classification task and thus can hardly predict
names unseen in the training dataset. On the other hand,
GENNM formulates it as a generative task. It can predict names
that rarely appear in the training dataset.
Generative techniques for recovering symbol names.
DIRE [35] is an early work leveraging a generative model (i.e.,
RNN) to solve the renaming problem. Yet it trains the RNN
from scratch on a relatively small set of decompiled code

and thus underperforms state-of-the-art techniques [45], [62]
that can benefit from pre-training efforts on source code.
ReSym [62] aims to recover names, types, and data structures.
It shares a common goal with GENNM on name recov-
ery. It fine-tunes an LLM for renaming variables, and uses
program analysis as a post-processing step. In particular, it
directly fine-tunes on individual decompiled functions using
the ground truth type and name information. It further uses
data-flow analysis to propagate type information and data
structure fields, and leverages voting to resolve inconsistencies.
GENNM goes beyond ReSym by proposing two unique train-
ing paradigms (i.e., Context-aware fine-tuning and SymPO)
that more effectively train LLMs on the variable renaming
problem. Although the program analysis components in both
ReSym and GENNM are adapted from the standard data-flow
analysis, they are different in both design and implementation.
Specifically, the analysis in ReSym focuses on type inference
and type checking, whereas the analysis in GENNM focuses
on name propagation, which has a different nature.

Besides recovering variable names, another stream of
work focuses on recovering function names in decompiled
code [33], [34]. Their efforts are complementary to ours.
Reverse engineering. Existing efforts [67], [73], [64], [32],
[57], [65] reverse engineer binary programs to analyze

14

malware [55], [5], harden programs [19] and facilitate
fuzzing [20], [16], [51]. Their efforts are complementary
with ours, and the results of GENNM can benefit the reverse
engineering tasks, as shown in Section VII.
Foundational binary program analysis. GENNM relies
on existing foundational binary analysis techniques [3],
[7], [38], [10] to process binary programs, such as
disassembly [42], [72], type recovery [53], [36], [54],
[71], [73], and decompilation [69]. State-of-the-art achieves
good performance in most cases [47], [6], [70].

IX. CONCLUSION

We propose a novel technique that leverages the strengths
of generative models to recover meaningful variable names
from the decompiled code of fully stripped binary programs.
We design context-aware fine-tuning to teach the model how
to leverage contextual information, and design symbol prefer-
ence optimization to mitigate models’ biases. Our prototype
GENNM demonstrates significant improvements on SOTA in
challenging setups.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valu-
able comments and suggestions. We are grateful to the
Center for AI Safety for providing computational re-
sources. This research was supported in part by DARPA
VSPELLS - HR001120S0058, IARPA TrojAI W911NF-19-
S-0012, NSF 1901242 and 1910300, ONR N000141712045,
N000141410468 and N000141712947. Any opinions, findings,
and conclusions in this paper are those of the authors only and
do not necessarily reflect the views of our sponsors.

REFERENCES

[1] A. Al-Kaswan, T. Ahmed, M. Izadi, A. A. Sawant, P. Devanbu, and
A. van Deursen, “Extending source code pre-trained language models to
summarise decompiled binarie,” in 2023 IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE,
2023, pp. 260–271.

[2] A. Altinay, J. Nash, T. Kroes, P. Rajasekaran, D. Zhou, A. Dabrowski,
D. Gens, Y. Na, S. Volckaert, C. Giuffrida et al., “Binrec: dynamic binary
lifting and recompilation,” in Proceedings of the Fifteenth European
Conference on Computer Systems, 2020, pp. 1–16.

[3] J. Alves-Foss and J. Song, “Function boundary detection in stripped
binaries,” in Proceedings of the 35th Annual Computer Security Appli-
cations Conference, 2019, pp. 84–96.

[4] I. Angelakopoulos, G. Stringhini, and M. Egele, “FirmSolo:
Enabling dynamic analysis of binary linux-based IoT kernel
modules,” in 32nd USENIX Security Symposium (USENIX Security
23). Anaheim, CA: USENIX Association, Aug. 2023, pp.
5021–5038. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity23/presentation/angelakopoulos

[5] S. Aonzo, Y. Han, A. Mantovani, and D. Balzarotti, “Humans vs.
machines in malware classification,” in Proceedings of the 32nd USENIX
Conference on Security Symposium, ser. SEC ’23. USA: USENIX
Association, 2023.

[6] Z. L. Basque, A. P. Bajaj, W. Gibbs, J. O’Kain, D. Miao, T. Bao,
A. Doupé, Y. Shoshitaishvili, and R. Wang, “Ahoy sailr! there is no
need to dream of c: A compiler-aware structuring algorithm for binary
decompilation.”

[7] E. Bauman, Z. Lin, K. W. Hamlen et al., “Superset disassembly:
Statically rewriting x86 binaries without heuristics.” in NDSS, 2018.

[8] E. Bogomolov, A. Eliseeva, T. Galimzyanov, E. Glukhov, A. Shapkin,
M. Tigina, Y. Golubev, A. Kovrigin, A. van Deursen, M. Izadi et al.,
“Long code arena: a set of benchmarks for long-context code models,”
arXiv preprint arXiv:2406.11612, 2024.

[9] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “Bap: A binary
analysis platform,” in Computer Aided Verification: 23rd International
Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceed-
ings 23. Springer, 2011, pp. 463–469.

[10] D. Brumley, J. Lee, E. J. Schwartz, and M. Woo, “Native x86 decompila-
tion using semantics-preserving structural analysis and iterative control-
flow structuring,” in 22nd USENIX Security Symposium (USENIX Secu-
rity 13), 2013, pp. 353–368.

[11] K. Burk, F. Pagani, C. Kruegel, and G. Vigna, “Decomperson: How
humans decompile and what we can learn from it,” in 31st USENIX
Security Symposium (USENIX Security 22), 2022, pp. 2765–2782.

[12] M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, and X. Jiang, “Mapping
kernel objects to enable systematic integrity checking,” in Proceedings
of the 16th ACM conference on Computer and communications security,
2009, pp. 555–565.

[13] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R.
Gross, “Control-Flow bending: On the effectiveness of Control-
Flow integrity,” in 24th USENIX Security Symposium (USENIX
Security 15). Washington, D.C.: USENIX Association, Aug. 2015,
pp. 161–176. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/carlini

[14] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. D. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

[15] Q. Chen, J. Lacomis, E. J. Schwartz, C. Le Goues, G. Neubig, and
B. Vasilescu, “Augmenting decompiler output with learned variable
names and types,” in 31st USENIX Security Symposium (USENIX
Security 22), 2022, pp. 4327–4343.

[16] J. Choi, K. Kim, D. Lee, and S. K. Cha, “Ntfuzz: Enabling type-aware
kernel fuzzing on windows with static binary analysis,” in 2021 IEEE
Symposium on Security and Privacy (SP), 2021, pp. 677–693.

[17] (2024) Cve-2018-4407. https://github.com/github/securitylab/tree/main/
SecurityExploits/apple/darwin-xnu/icmp error CVE-2018-4407.

[18] Y. Ding, Z. Wang, W. Ahmad, H. Ding, M. Tan, N. Jain, M. K.
Ramanathan, R. Nallapati, P. Bhatia, D. Roth et al., “Crosscodeeval:
A diverse and multilingual benchmark for cross-file code completion,”
Advances in Neural Information Processing Systems, vol. 36, 2024.

[19] G. J. Duck, Y. Zhang, and R. H. C. Yap, “Hardening binaries against
more memory errors,” in Proceedings of the Seventeenth European
Conference on Computer Systems, ser. EuroSys ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 117–131.
[Online]. Available: https://doi.org/10.1145/3492321.3519580

[20] A. Fioraldi, D. C. D’Elia, and E. Coppa, “Weizz: Automatic grey-box
fuzzing for structured binary formats,” in Proceedings of the 29th ACM
SIGSOFT international symposium on software testing and analysis,
2020, pp. 1–13.

[21] (2024) Gentoo packages. https://packages.gentoo.org/.
[22] (2024) Groups mitre att&ck. https://attack.mitre.org/groups/.
[23] D. Guo, Q. Zhu, D. Yang, Z. Xie, K. Dong, W. Zhang, G. Chen,

X. Bi, Y. Wu, Y. Li et al., “Deepseek-coder: When the large language
model meets programming–the rise of code intelligence,” arXiv preprint
arXiv:2401.14196, 2024.

[24] E. Gustafson, P. Grosen, N. Redini, S. Jha, A. Continella, R. Wang,
K. Fu, S. Rampazzi, C. Kruegel, and G. Vigna, “Shimware: Toward
practical security retrofitting for monolithic firmware images,” in Pro-
ceedings of the 26th International Symposium on Research in Attacks,
Intrusions and Defenses, 2023, pp. 32–45.

[25] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE
Transactions on knowledge and data engineering, vol. 21, no. 9, pp.
1263–1284, 2009.

[26] J. He, P. Ivanov, P. Tsankov, V. Raychev, and M. Vechev, “Debin:
Predicting debug information in stripped binaries,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security, 2018, pp. 1667–1680.

[27] C.-P. Hsieh, S. Sun, S. Kriman, S. Acharya, D. Rekesh, F. Jia, and
B. Ginsburg, “Ruler: What’s the real context size of your long-context
language models?” arXiv preprint arXiv:2404.06654, 2024.

15

https://www.usenix.org/conference/usenixsecurity23/presentation/angelakopoulos
https://www.usenix.org/conference/usenixsecurity23/presentation/angelakopoulos
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/carlini
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/carlini
https://github.com/github/securitylab/tree/main/SecurityExploits/apple/darwin-xnu/icmp_error_CVE-2018-4407
https://github.com/github/securitylab/tree/main/SecurityExploits/apple/darwin-xnu/icmp_error_CVE-2018-4407
https://doi.org/10.1145/3492321.3519580
https://packages.gentoo.org/
https://attack.mitre.org/groups/

[28] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang,
and W. Chen, “Lora: Low-rank adaptation of large language models,”
arXiv preprint arXiv:2106.09685, 2021.

[29] C. Huang, Y. Li, C. C. Loy, and X. Tang, “Learning deep representation
for imbalanced classification,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 5375–5384.

[30] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt,
“CodeSearchNet challenge: Evaluating the state of semantic code
search,” arXiv preprint arXiv:1909.09436, 2019.

[31] (2023) A powerful disassembler and a versatile debugger. https://
hex-rays.com/ida-pro/.

[32] X. Jin, J. Larson, W. Yang, and Z. Lin, “Binary code summarization:
Benchmarking chatgpt/gpt-4 and other large language models,” arXiv
preprint arXiv:2312.09601, 2023.

[33] X. Jin, K. Pei, J. Y. Won, and Z. Lin, “Symlm: Predicting function
names in stripped binaries via context-sensitive execution-aware code
embeddings,” in Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, 2022, pp. 1631–1645.

[34] H. Kim, J. Bak, K. Cho, and H. Koo, “A transformer-based function
symbol name inference model from an assembly language for binary
reversing,” in Proceedings of the 2023 ACM Asia Conference on
Computer and Communications Security, 2023, pp. 951–965.

[35] J. Lacomis, P. Yin, E. Schwartz, M. Allamanis, C. Le Goues, G. Neubig,
and B. Vasilescu, “Dire: A neural approach to decompiled identifier nam-
ing,” in 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2019, pp. 628–639.

[36] J. Lee, T. Avgerinos, and D. Brumley, “Tie: Principled reverse engineer-
ing of types in binary programs,” 2011.

[37] Y. Li, W. Xu, Y. Tang, X. Mi, and B. Wang, “Semhunt: Identifying
vulnerability type with double validation in binary code.” in SEKE, 2017,
pp. 491–494.

[38] Z. Lin, X. Zhang, and D. Xu, “Automatic reverse engineering of data
structures from binary execution,” in Proceedings of the 11th Annual
Information Security Symposium, ser. CERIAS ’10. West Lafayette,
IN: CERIAS - Purdue University, 2010.

[39] (2024) Virustotal. https://www.virustotal.com/gui/file/
03cfe768a8b4ffbe0bb0fdef986389dc.

[40] A. Mantovani, S. Aonzo, Y. Fratantonio, and D. Balzarotti, “Re-mind:
a first look inside the mind of a reverse engineer,” in 31st USENIX
Security Symposium (USENIX Security 22), 2022, pp. 2727–2745.

[41] J.-P. Martin, M. Hicks, M. Costa, P. Akritidis, and M. Castro, “Dynami-
cally checking ownership policies in concurrent c/c++ programs,” ACM
Sigplan Notices, vol. 45, no. 1, pp. 457–470, 2010.

[42] K. Miller, Y. Kwon, Y. Sun, Z. Zhang, X. Zhang, and Z. Lin, “Proba-
bilistic disassembly,” in 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE). IEEE, 2019, pp. 1187–1198.

[43] OpenAI, “Gpt-4 technical report,” 2023.
[44] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin,

C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton,
F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. F. Christiano,
J. Leike, and R. Lowe, “Training language models to follow instructions
with human feedback,” in Advances in Neural Information Processing
Systems, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh, Eds., vol. 35. Curran Associates, Inc., 2022, pp. 27 730–27 744.
[Online]. Available: https://proceedings.neurips.cc/paper files/paper/
2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf

[45] K. K. Pal, A. P. Bajaj, P. Banerjee, A. Dutcher, M. Nakamura, Z. L.
Basque, H. Gupta, S. A. Sawant, U. Anantheswaran, Y. Shoshitaishvili
et al., ““len or index or count, anything but v1”: Predicting variable
names in decompilation output with transfer learning,” in 2024 IEEE
Symposium on Security and Privacy (SP). IEEE Computer Society,
2024, pp. 152–152.

[46] K. Pei, J. Guan, M. Broughton, Z. Chen, S. Yao, D. Williams-King,
V. Ummadisetty, J. Yang, B. Ray, and S. Jana, “Stateformer: Fine-
grained type recovery from binaries using generative state modeling,”
in Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2021, pp. 690–702.

[47] K. Pei, J. Guan, D. Williams-King, J. Yang, and S. Jana, “Xda: Accurate,
robust disassembly with transfer learning.”

[48] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever et al., “Improving
language understanding by generative pre-training,” 2018.

[49] R. Rafailov, A. Sharma, E. Mitchell, C. D. Manning, S. Ermon, and
C. Finn, “Direct preference optimization: Your language model is

secretly a reward model,” Advances in Neural Information Processing
Systems, vol. 36, 2024.

[50] B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi,
J. Liu, T. Remez, J. Rapin et al., “Code llama: Open foundation models
for code,” arXiv preprint arXiv:2308.12950, 2023.

[51] T. Scharnowski, N. Bars, M. Schloegel, E. Gustafson, M. Muench,
G. Vigna, C. Kruegel, T. Holz, and A. Abbasi, “Fuzzware: Using precise
mmio modeling for effective firmware fuzzing,” in 31st USENIX Security
Symposium (USENIX Security 22), 2022, pp. 1239–1256.

[52] E. J. Schwartz, C. F. Cohen, M. Duggan, J. Gennari, J. S. Havrilla,
and C. Hines, “Using logic programming to recover c++ classes and
methods from compiled executables,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, 2018,
pp. 426–441.

[53] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“SoK: (State of) The Art of War: Offensive Techniques in Binary
Analysis,” in IEEE Symposium on Security and Privacy, 2016.

[54] A. Slowinska, T. Stancescu, and H. Bos, “Howard: A dynamic excavator
for reverse engineering data structures.” in NDSS, 2011.

[55] C. Spensky, H. Hu, and K. Leach, “LO-PHI: Low-Observable Physical
Host Instrumentation for Malware Analysis,” February 2016.

[56] Z. Su, X. Xu, Z. Huang, K. Zhang, and X. Zhang, “Source code
foundation models are transferable binary analysis knowledge bases,”
arXiv preprint arXiv:2405.19581, 2024.

[57] Z. Su, X. Xu, Z. Huang, Z. Zhang, Y. Ye, J. Huang, and X. Zhang,
“Codeart: Better code models by attention regularization when symbols
are lacking,” arXiv preprint arXiv:2402.11842, 2024.

[58] C. Team, “Codegemma: Open code models based on gemma,” arXiv
preprint arXiv:2406.11409, 2024.

[59] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[60] Y. Wang, X. Xu, P. Wilke, and Z. Shao, “Compcertelf: verified separate
compilation of c programs into elf object files,” vol. 4, no. OOPSLA,
nov 2020. [Online]. Available: https://doi.org/10.1145/3428265

[61] H. Wen and Z. Lin, “Egg hunt in tesla infotainment: A first
look at reverse engineering of qt binaries,” in 32nd USENIX
Security Symposium (USENIX Security 23). Anaheim, CA: USENIX
Association, Aug. 2023, pp. 3997–4014. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity23/presentation/wen

[62] D. Xie, Z. Zhang, N. Jiang, X. Xu, L. Tan, and X. Zhang, “Resym:
Harnessing llms to recover variable and data structure symbols from
stripped binaries,” in 2024 ACM SIGSAC Conference on Computer and
Communications Security.

[63] X. Xu, S. Feng, Y. Ye, G. Shen, Z. Su, S. Cheng, G. Tao, Q. Shi,
Z. Zhang, and X. Zhang, “Improving binary code similarity transformer
models by semantics-driven instruction deemphasis,” in Proceedings of
the 32nd ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2023, pp. 1106–1118.

[64] X. Xu, Z. Xuan, S. Feng, S. Cheng, Y. Ye, Q. Shi, G. Tao, L. Yu,
Z. Zhang, and X. Zhang, “Pem: Representing binary program semantics
for similarity analysis via a probabilistic execution model,” in Proceed-
ings of the 31st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2023, pp.
401–412.

[65] X. Xu, Z. Zhang, S. Feng, Y. Ye, Z. Su, N. Jiang, S. Cheng, L. Tan,
and X. Zhang, “Lmpa: Improving decompilation by synergy of large
language model and program analysis,” 2023.

[66] X. Xu, Z. Zhang, Z. Su, Z. Huang, S. Feng, Y. Ye, N. Jiang, D. Xie,
S. Cheng, L. Tan, and X. Zhang, “Symbol preference aware generative
models for recovering variable names from stripped binary,” 2024.
[Online]. Available: https://arxiv.org/abs/2306.02546

[67] Z. Xu, A. Nappa, R. Baykov, G. Yang, J. Caballero, and G. Gu,
“Autoprobe: Towards automatic active malicious server probing using
dynamic binary analysis,” in Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, 2014, pp. 179–
190.

[68] Z. Xu, B. Chen, M. Chandramohan, Y. Liu, and F. Song, “Spain:
security patch analysis for binaries towards understanding the pain and
pills,” in 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE). IEEE, 2017, pp. 462–472.

16

https://hex-rays.com/ida-pro/
https://hex-rays.com/ida-pro/
https://www.virustotal.com/gui/file/03cfe768a8b4ffbe0bb0fdef986389dc
https://www.virustotal.com/gui/file/03cfe768a8b4ffbe0bb0fdef986389dc
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://doi.org/10.1145/3428265
https://www.usenix.org/conference/usenixsecurity23/presentation/wen
https://www.usenix.org/conference/usenixsecurity23/presentation/wen
https://arxiv.org/abs/2306.02546

[69] K. Yakdan, S. Eschweiler, E. Gerhards-Padilla, and M. Smith, “No more
gotos: Decompilation using pattern-independent control-flow structuring
and semantic-preserving transformations.” in NDSS. Citeseer, 2015.

[70] Y. Ye, Z. Zhang, Q. Shi, Y. Aafer, and X. Zhang, “D-arm: Disassembling
arm binaries by lightweight superset instruction interpretation and graph
modeling,” in 2023 IEEE Symposium on Security and Privacy (SP).
IEEE, 2023, pp. 2391–2408.

[71] Z. Zhang, Y. Ye, W. You, G. Tao, W.-c. Lee, Y. Kwon, Y. Aafer,
and X. Zhang, “Osprey: Recovery of variable and data structure via
probabilistic analysis for stripped binary,” in 2021 IEEE Symposium on
Security and Privacy (SP), 2021, pp. 813–832.

[72] Z. Zhang, W. You, G. Tao, Y. Aafer, X. Liu, and X. Zhang, “Stochfuzz:
Sound and cost-effective fuzzing of stripped binaries by incremental and
stochastic rewriting,” in 2021 IEEE Symposium on Security and Privacy
(SP). IEEE, 2021, pp. 659–676.

[73] Z. Zhang, W. You, G. Tao, G. Wei, Y. Kwon, and X. Zhang, “Bda:
practical dependence analysis for binary executables by unbiased whole-
program path sampling and per-path abstract interpretation,” Proceed-
ings of the ACM on Programming Languages, vol. 3, no. OOPSLA, pp.
1–31, 2019.

APPENDIX

A. How a Reference Model Prevents the SymPO Model from
Diverging too much

We show the gradient of the SymPO loss in Equations 12–
14. As shown in Equation 12, the gradient is the multiplication
of two terms. The second term in the bracket is not affected
by the reference model and is straightforward: it enlarges the
probability for better names while decreasing the probability
for worse names.

On the other hand, the first term constrains the magnitude
of the gradient for a given data sample. It can be equally
transformed to Equation 14. Observe that if the model being
optimized already shows significant preference towards the
better names compared with the reference model, this term
will be close to zero. The updates (to the model weights) intro-
duced by the corresponding data sample will thus be smaller.
Therefore, the reference model reduces further optimization
on the already learned preference, minimizing the divergence
from the reference model.

B. Dataset Preprocessing and Statistics

Preprocessing following the DIRTY dataset. We use GHCC
to compile C/C++ projects on GitHub created in 2012-2022.
Different from DIRTY, (1) we additionally filter out projects
with less than 20 stars for quality consideration. (2) We only
include executable binary programs in our dataset, precluding
intermediate relocatable binary files since the semantics of a
relocatable file rely on its symbol table [60], which may be
stripped away.
Rationale of deduplicating binaries by function names.
In our preprocessing pipeline, we conservatively deduplicate
binaries by including a binary program only if more than 70%
of its function names are not in the dataset yet. It is common
that a project puts the main logic in the shared object (.so)
file and keeps other binaries as simple wrapper programs.
Take the tool Bibutils 3 as an example. The (corresponding
source code files of) two binary programs xml2ris 4 and

3https://github.com/biodranik/bibutils
4https://github.com/biodranik/bibutils/blob/master/bin/xml2ris.c

xml2end 5 are simply two wrapper programs for a shared
object libbibutils.so. All three binary programs are in
the original VarCorpus dataset. However, after including the
shared object in the dataset, it is not beneficial to include the
two wrapper programs. As a result, as shown in Table V,
both our processed datasets are smaller than the original
VarCorpus dataset, while their diversity is better than the
original VarCorpus dataset.
Checking data leakage with string similarity. We propose
to use string similarity, instead of exact string matching, to
identify data leakage in the test dataset (i.e., test functions
that are present in the training dataset). Previous work [45],
[15], [35] considers two functions as the same only when
their normalized strings are exactly the same. However, it may
overestimate the performance of a tested model.

For example, we observe that there are 15,363 functions
named allocate in the deduplicated VarCorpus dataset. We
show three of them in Fig. 15 to illustrate the problem. All
three versions try to allocate some memory and terminate the
execution on failure. Versions (a) and (b) are only different in
the size of allocation. They are almost the same function, but
cannot be captured by exact string match. Suppose that ver-
sion (a) is in the training dataset. The performance of a model
on version (b) may not reflect the generalizability of the model.
On the other hand, the third function has semantic differences
in that it explicitly sets the allocated memory to zero. There-
fore, simply considering all functions with the same name as
potential data leakage may introduce significant false positives.

We propose to use string similarity 6 as the metric to con-
servatively check potential data leakage. The string similarity
is based on string edit distance, ranging from 0 (indicating
two strings have no overlap) to 100 (indicating two strings
are an exact match). Empirically, we consider a test sample as
overlapped with a training data sample if their string similarity
is larger than 90.

Table VI shows the performance of GENNM and VarBERT
on data samples whose highest string similarity to a training
data sample is larger than 90. We can see that the performance
of all models is substantially better than the performance
shown in Table I. The performance, unfortunately, cannot
faithfully reflect the capability of the models on the variable
recovery problem.

C. Correlation between memset and buffer

We observe that a model is more likely to predict a
variable name as buffer if the variable is used as the first
parameter of memset. To quantify our observation, we use
Chi-2 test 7 to test the correlation between “a variable is the
first parameter of memset” and “a variable is predicted the
name buffer”. The null hypothesis is that the distribution
of the two random variables are independent. As shown in
Table VIII, the results of Chi-2 test reject the null hypothesis

5https://github.com/biodranik/bibutils/blob/master/bin/xml2end.c
6https://anhaidgroup.github.io/py stringmatching/v0.3.x/Ratio.html
7https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chisquare.

html

17

https://github.com/biodranik/bibutils
https://github.com/biodranik/bibutils/blob/master/bin/xml2ris.c
https://github.com/biodranik/bibutils/blob/master/bin/xml2end.c
https://anhaidgroup.github.io/py_stringmatching/v0.3.x/Ratio.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chisquare.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chisquare.html

∇ΘLSymPO(Θ,Θctx) ::=− βE(q,b,w)∼Dprf

[
δ(q, b, w,Θ,Θctx)

[
∇Θ logP(b|q; Θ)︸ ︷︷ ︸

increase preference

towards better symbols

− ∇Θ logP(w|q; Θ)︸ ︷︷ ︸
decrease preference

towards worse symbols

]]
(12)

δ(q, b, w,Θ,Θctx) ::=σ
(
β log

P(w|q; Θ)

P(w|q; Θctx)
− β log

P(b|q; Θ)

P(b|q; Θctx)

)
(13)

=σ

(
β
(
log

P(w|q; Θ)

P(b|q; Θ)
− log

P(w|q; Θctx)

P(b|q; Θctx)

))
(14)

TABLE V: Dataset statistics. Each column denotes a dataset. #Func denotes the total number functions in the dataset. Unique
Funcs denotes the ratio of functions with unique function names. Unique Name List denotes the ratio of functions with unique
name lists of variables. #Vars denotes the total number of variables, and Unique Names denotes the ratio of variables with
unique variable names.

VarCorpus-Ori VarCorpus-Our DIRTY-Our

#Func 1,995,847 895,004 348,213
Unique Funcs (by name) (%) 46.8 81.3 89.4

Unique Name List (%) 29.6 52.7 40.4

#Vars 6,126,592 3,363,688 1,156,214
Unique Names (%) 6.5 9.8 12.2

void *__fastcall allocate(unsigned int n)
{
 void *v1;

 v1 = 0LL;
 if (n)
 {
 v1 = calloc(1uLL, n);
 if (!v1)
 no_space();
 }
 return v1;
}

(a) A version of allocate

void *__fastcall allocate(int n)
{
 void *v1;

 v1 = 0LL;
 if (n)
 {
 v1 = calloc(1uLL, (n + 10));
 if (!v1)
 no_space();
 }
 return v1;
}

(b) A version almost the same with (a)

void *__fastcall allocate(size_t n)
{
 void *p;

 p = malloc(n);
 if (!n)
 error_exit(“Memory allocation failure");
 memset(n, 0, n);
 return n;
}

(c) A version different from (a)
Fig. 15: Three versions of allocate. They demonstrates why checking data leakage with exact string match may still
overestimate models’ performance. Versions (a) and (b) are almost the same. The difference is highlighted. Version (c) is
different from both (a) and (b) because it has different semantics, e.g., setting the allocated memory to zeros. On the other
hand, string-similarity can capture the similarity between (a) and (b) while distinguish them with (c). The string similarity
scores between (a) and (b), (a) and (c), (b) and (c) are 95, 58, and 58, respectively.

TABLE VI: Performance of models on functions whose high-
est string similarity score in the training dataset is larger than
90.

Dataset Model PR RC

DIRTY
VarBERT 50.8 50.6

GENNM Gemma2B 59.7 58.6
GENNM CLM7B 72.3 71.8

VarCorpus VarBERT 44.4 43.7
GENNM Gemma2B 56.1 55.1

with a p-value significantly smaller than 1e-5 (i.e., 1.6e-63),
indicating that the two random variables are indeed correlated
with a statistical significance. In other words, “a variable is
the first parameter of memset” is indeed correlated with “a
variable is predicted the name buffer”. In comparison, we
also run the same test with memset and another randomly

TABLE VII: Correlation between the model’s predictions and
the corresponding function names. The first column denotes
whether a variable is the first parameter of memset, columns
2–3 and 4–5 whether a variable is named as buffer or
file, respectively. The last row shows the Chi-2 p-values for
memset and buffer, and memset and file, respectively.
A smaller value denotes higher correlation.

memset
buffer file

T F T F

T 19 700 2 717
F 292 206504 165 206631

χ2 1.6e-63 0.22

picked name file. The Chi-2 test yields a p-value of 0.22,
not supporting the correlation between memset and file.

18

	Introduction
	Motivation and Overview
	Motivating Example
	Challenges and Limitations of State-of-the-Art
	Our Method

	Problem Definition
	Method
	Overview
	Fine-tuning Generative Model
	Symbol Preference Optimization
	blackContext Augmentation at the Inference Stage

	Experimental Setup
	Dataset
	Splits
	Models
	Metrics

	Evaluation
	Performance in terms of Semantics Match
	blackPerformance w.r.t. Different Sizes of Base Models
	blackGeneralization to Different Compiler Optimizations
	blackGeneralization to Rare Names
	Performance Evaluated by GPT4Evaluator
	Performance Compared to Blackbox LLMs
	Ablation Study

	Case Studies
	Related Work
	Conclusion
	References
	Appendix
	How a Reference Model Prevents the SymPO Model from Diverging too much
	Dataset Preprocessing and Statistics
	blackCorrelation between memset and buffer
	blackProgram Analysis and Semantics Voting at the Inference Stage
	blackAssumptions about Semantics Consistency and Copied Variables
	blackReasoning Long Context Remains Challenging for Code Models
	blackEffects of Contexts Sensitivity
	Prompts Input to ChatGPT
	Case Study: Binary Summarization
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration

	Major Claims
	Evaluation
	Experiment (E1) [10 human-minutes + 10 compute-minutes]
	Experiment (E2) [5 human-minutes + 10 compute-minutes]
	Experiment (E3) [5 human-minutes + 5 compute-minutes]
	Experiment (E4) [5 human-minutes + 10 compute-minutes]
	Experiment (E5) [5 human-minutes + 10 compute-minutes]
	Experiment (E6) [5 human-minutes + 240 compute-minutes]

