
Passive Inference Attacks on Split Learning
via Adversarial Regularization

Xiaochen Zhu∗†, Xinjian Luo∗‡, Yuncheng Wu§⋄1, Yangfan Jiang∗, Xiaokui Xiao∗, and Beng Chin Ooi∗
∗National University of Singapore, †Massachusetts Institute of Technology,

‡Mohamed bin Zayed University of Artificial Intelligence, §Renmin University of China
xczhu@mit.edu, xinjian.luo@mbzuai.ac.ae, wuyuncheng@ruc.edu.cn,

yangfan.jiang@comp.nus.edu.sg, xkxiao@nus.edu.sg, ooibc@comp.nus.edu.sg

Abstract—Split Learning (SL) has emerged as a practical
and efficient alternative to traditional federated learning. While
previous attempts to attack SL have often relied on overly strong
assumptions or targeted easily exploitable models, we seek to
develop more capable attacks. We introduce SDAR, a novel attack
framework against SL with an honest-but-curious server. SDAR
leverages auxiliary data and adversarial regularization to learn
a decodable simulator of the client’s private model, which can
effectively infer the client’s private features under the vanilla
SL, and both features and labels under the U-shaped SL. We
perform extensive experiments in both configurations to validate
the effectiveness of our proposed attacks. Notably, in challenging
scenarios where existing passive attacks struggle to reconstruct
the client’s private data effectively, SDAR consistently achieves
significantly superior attack performance, even comparable to
active attacks. On CIFAR-10, at the deep split level of 7, SDAR
achieves private feature reconstruction with less than 0.025 mean
squared error in both the vanilla and the U-shaped SL, and
attains a label inference accuracy of over 98% in the U-shaped
setting, while existing attacks fail to produce non-trivial results.

I. INTRODUCTION

To bridge the isolated data repositories across different data
owners, federated learning (FL) [3], [26], [32], [55], [56] has
been proposed as a solution to privacy-preserving collaborative
learning. However, participants engaged in FL often suffer
from low communication efficiency and heavy computational
overhead. This is often imposed by the iterative process of
local model training and the frequent exchange of model
parameters, especially for deep neural network (NN) models.
Naturally, as a simple adaption with enhanced communication
and computation efficiency of FL, split learning (SL) [19],
[39], [43], [48], [50], [51], [60] has drawn increasing attention
in various applications, such as healthcare [20], [39], [50] and
open source packages [21], [37]. The general idea of SL is to
split an NN model into smaller partial models, with simpler
models being allocated to clients, and more intricate ones
hosted on a computationally capable server. During training,
clients first send the intermediate representations produced by
their partial models to the server. Subsequently, the server

⋄This work was done at National University of Singapore.
1Corresponding author.

performs a forward pass on its own partial model and back-
propagates the gradients back to the clients for model updates.
In this way, SL enables privacy-preserving collaborative learn-
ing by sharing only the intermediate representations without
revealing the original private data from the clients. Compared
to FL, SL adopts a more computationally efficient approach,
yielding improved communication efficiency and scalability
without compromising model utility [14], [43], [60]. Nonethe-
less, privacy concerns still exist within the SL framework.
Given that clients share model intermediate representations
with the server, one may naturally wonder if it is possible
for the server to infer private data of clients from the shared
intermediate representations.

Related work. To address this question, several inference
attacks [9], [13], [23], [38], [40], [61] have been devised to
investigate the privacy risks of SL. However, these attacks
typically consider overly strong threat models and target non-
standard settings favorable for the adversary. For example,
Pasquini et al. [38] assume a malicious server that actively
tampers the back-propagated gradients. This deviates from the
original training protocol of SL and can be easily detected
as an agreement violation [8], [12]. In addition, Erdoğan et
al. [9], Qiu et al. [40] and Gao and Zhang [13] propose passive
inference attacks, in which the server honestly follows the SL
training protocol but attempts to infer clients’ private data by
analyzing the shared intermediate outputs. Although these at-
tacks are more stealthy, they often target non-standard and eas-
ily exploitable models, as did in [38]. Specifically, the targeted
models on the client side are typically non-standard models
that are overly wide for their input dimensions. This results in
higher dimensional intermediate representations that encode
more information about the private input, thus making the
attacks more effective. Additionally, existing attacks are often
evaluated on split configurations where the clients’ models are
shallow, which are commonly believed to be more vulnerable
to attacks [13], [38], [52]. Correspondingly, as we later show
in the paper, these attacks can be mitigated by considering
models with adequate width and allocating more layers to
the clients’ partial models. Furthermore, the visual features
of reconstructed images produced by existing passive attacks
are hardly comparable to that of the active attack proposed by
Pasquini et al. [38]. Therefore, it is still underexplored whether
passive inference attacks can achieve reasonable effectiveness
comparable to their active counterparts with less exploitable
model structures.

In this paper, we address this gap by developing passive

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.230030
www.ndss-symposium.org

feature and label inference attacks on more challenging SL
settings where existing attacks [9], [13], [38] fail to work,
i.e., we target standard models with adequate width at deeper
split levels. By considering passive attacks, we can ensure the
stealthiness of our attacks, making them hardly susceptible to
detection by active defense mechanisms [8], [12]. By consid-
ering the more challenging settings, we can reveal the privacy
vulnerabilities of SL that may exist in real-world applications
but have not been explored. Nonetheless, before devising the
proposed attacks, several challenges must be addressed.

Challenges. First, the main challenge in server-side at-
tacks on SL is the absence of access (including the black-
box access) to the client’s partial model. Namely, the server
cannot feed specific input to the client’s model and observe
the corresponding output. Such lack of access renders the
traditional approach of model inversion [10], [11], [49], [58],
[63] inapplicable. Second, in a passive setting where the server
cannot manipulate the client’s model, the only information
available to the server is the shared intermediate representa-
tions during training. As the complexity of the client’s partial
model increases, e.g., with deeper split levels, the information
encoded in these representations diminishes. This would make
it more challenging to decode the private data solely from the
received representations. Third, during SL training, the client’s
model undergoes continuous updates in each iteration. This
dynamic nature results in entirely different representations over
iterations, further complicating inference attacks, compared to
attacks on finalized models [23], [61].

Aside from the typical SL setting, we also consider a
more intricate SL configuration, known as U-shaped SL. In
this setting, the last few layers of the model are also kept
privately by the clients, and the server’s responsibility is
limited to training the intermediate layers of a neural network.
This introduces two new challenges. First, the absence of
access to training examples’ labels poses the need for the
server to simultaneously recover private features and labels to
achieve a reasonable attack. Second, established practices and
theoretical insights of transfer learning indicate that the last
few layers of a network are crucial to learn domain-specific
representations [62]. The lack of these layers makes it harder
for the server to recover private training samples.

Contributions. To address these challenges, we propose a
novel class of passive attacks on SL, namely, Simulator Decod-
ing with Adversarial Regularization (SDAR). The foundation
of SDAR is to let the server train a simulator that emulates
the client’s private model while simultaneously training a
decoder tailored to the trained simulator, on auxiliary data
disjoint from the private target data. Ideally, a well-trained
decoder should also be capable of decoding the client’s private
model. However, due to the intrinsic differences in distribution
between the client’s private data and the server’s auxiliary data,
the simulator trained by the server tends to overfit the auxiliary
data. Consequently, the simulator cannot faithfully replicate
the behaviors of the client’s model. This renders the decoder
incapable of reconstructing the client’s data albeit proficient at
reconstructing the auxiliary data.

To solve this issue, we draw inspiration from genera-
tive adversarial networks (GANs) [16], [17] and innovatively
propose to regularize the simulator and decoder through an
adversarial loss, encouraging them to learn more generalized

representations that are transferable to the client’s private data.
For vanilla SL where the server has access to the labels of
training records, SDAR utilizes the label information in the
style of conditional GAN [33]. In the more challenging U-
shaped SL setting, where the client privately retains the last few
layers of the model along with the record labels, SDAR trains
an additional simulator to mimic the behavior of these last few
layers. To mitigate overfitting of this supplementary simulator,
we introduce label random flipping, which encourages this
simulator to learn the general representations rather than mere
memorization of the server’s data. Furthermore, we utilize the
predictions of this simulator on private samples to achieve label
inference attacks in the context of the U-shaped setting.

We conduct extensive experiments on various real-world
datasets and widely-used model architectures in both SL
configurations to demonstrate the effectiveness of the proposed
attacks. The results show that under challenging settings where
existing passive attacks fail to effectively reconstruct clients’
private data, SDAR achieves consistent and distinctive attack
performance, and is even able to almost match the performance
of active hijacking attacks. This is the first time that passive
attacks have been shown to be comparably effective as their
active counterparts. Also, SDAR remains effective when the
server has limited access to auxiliary dataset or possesses no
knowledge of the client’s model architecture. Additionally, our
results reveal that inference attacks become more challenging
with the increase of split level or the decrease of the client’s
model width. While the former effect has been investigated
in the literature [9], [13], [38], [40], we are the first to
demonstrate that wider models, due to their higher dimen-
sional intermediate representations, are also more vulnerable
to inference attacks. This is a critical insight for practitioners
to consider when deploying SL in real-world applications.
Finally, we evaluate potential countermeasures and show the
robustness of our attacks against such defenses.

II. PRELIMINARIES

Split learning. We consider training an NN model H on
dataset D = {(xt, yt) : t = 1, . . . , N}. H consists of n
layers H = Ln ◦ Ln−1 . . . ◦ L1. The key idea of SL [19],
[39], [50] is to split the execution of H by a split layer
(namely, Ls) and assign the first half f = Ls ◦ . . . ◦ L1 to
the client and the second half g = Ln ◦ . . . ◦ Ls+1 to the
server. Then, H = g ◦ f . In the vanilla SL setting, the server
also holds the labels of training examples. For a batch of
examples X , we define the representations returned by layer Li

as Zi. Then, on the forward pass, the client sends intermediate
representations Zs = f(X) (also known as smashed data) to
the server such that the latter can complete the forward pass
via Zn = g(Zs). Since the server has access to the record
labels Y , it can evaluate the loss ℓ(Zn, Y) where ℓ(·, Y) is the
loss function given ground truth labels Y . In backpropogation,
for parameters θi of Li, chain rule gives

∇θi =
∂ℓ(Zn, Y)

∂Zn

∂Ln(Zn−1)

∂θn
· · · ∂Li(Zi−1)

∂θi

= ∇θi+1
∂Li(Zi−1)

∂θi
.

(1)

By (1), one only needs the gradients of the next layer and the
representations returned by the previous layer to differentiate

2

Client

Server

(a) Vanilla SL

Client

Server

(b) U-shaped SL

Fig. 1. Vanilla and U-shaped configurations of SL.

layer Li. Thus, the server can update parameters θg of its
model g after receiving Zs from the client, while the client can
update f after receiving ∇θs+1 from the server (see Fig. 1a
for an example).

U-shaped SL. If the client’s record labels are considered
private and not shared with the server, SL can be configured
as a U-shaped structure [19], as illustrated in Fig. 1b. Under
U-shaped SL, the NN model is partitioned into three parts, i.e.,
H = h◦g◦f , where f = Ls◦ . . .◦L1, g = Lt◦ . . .◦Ls+1, and
h = Ln ◦ . . .◦Lt+1. The client owns f and h while the server
only hosts g. During the training on samples X , the client
sends Zs to the server, which computes Zt and sends it back
to the client. The client then computes the final prediction
Zn = h(Zt). In the backpropogation phase, the client first
updates its model h and sends ∇θt+1 to the server. Then, the
server updates g and sends ∇θs+1 to the client for updating
the partial model f on the client side.

SL with multiple clients. Due to its simplicity, the SL frame-
work can be easily scaled to support multiple clients on ei-
ther horizontally-partitioned data [50] or vertically-partitioned
data [4]. Note that in the multi-client SL scenarios, each client
still needs to communicate with the server via the above-
described protocol, i.e., sharing intermediate representations
with the server.

III. PROBLEM STATEMENT

System model. For ease of presentation, we introduce the
proposed attacks in the SL setting where a client and a server
collaboratively train a deep model H in either the vanilla or
the U-shaped configuration. Our attacks can be seamlessly ex-
tended to the multi-client SL scenario for inferring the private
data from different clients without further modifications, given
that the shared information between clients and the server in
the multi-client scenario is the same as that in the single-client
scenario. Note that image datasets are typically used to train
deep models under various SL settings [19].

Threat model. We investigate the privacy risks of SL
under the honest-but-curious threat model [31]. Namely, we
consider a server that honestly adheres to the SL protocol
and does not tamper with the training process. Meanwhile,

the server tries to infer the client’s private information from
the received messages. In addition, we assume that the server
has background knowledge of an auxiliary public dataset
D′ = {(x′

t, y
′
t) : t = 1, . . . ,m} such that D ∩ D′ = ∅,

where D denotes the client’s private dataset and shares a
similar distribution with D′. This is a common and reasonable
assumption in related studies [13], [38] because the task types
and data domain should be negotiated between the client
and the server before initiating an SL training. This is a
necessary step for the participating parties to determine the
appropriate network structure and split level before training,
for eliminating possible overfitting or underfitting issues [13],
[38]. Consequently, the server can collect a public dataset from
the same data domain for attack implementation [13], [38].
Note that we assume no access to any example in the client’s
private dataset D for the server, which is more stringent than
[13] where D′ can be a subset of D. In addition, the server
and the client should agree on the model architecture of H and
the split configuration beforehand for information exchange
and model convergence [9]. That is, we start by assuming that
the server knows the architecture of f . We later relax this,
assuming that the server does not have any knowledge of the
architecture of f , but only the input and output dimensions of
the model. During model training, the server has neither black-
box nor white-box access to the client’s models, and can only
receive intermediate representations from the client based on
the SL protocol.

In vanilla SL, the client hosts model f while the server
hosts model g and has access to the record labels. For a batch
of training records (X,Y), the server aims to reconstruct the
private features X given the received intermediate representa-
tions Zs, i.e., X̂ = A(Y, Zs, θg, D

′), where X̂ is the inferred
features, θg represents the parameters of g, and A denotes
the attack algorithm. In U-shaped SL, the client hosts partial
models f and h while the server hosts model g. For a batch of
training records (X,Y), the server aims to reconstruct both the
private features X and the labels Y given the received Zs and
the gradient vector ∇θt+1, i.e., X̂, Ŷ = A(Zs, θg,∇θt+1, D

′).

In Section VII, we discuss the threat models of existing
attacks in greater details and compare them with ours. We also
provide a taxonomy of inference attacks on SL in Table XII.

IV. PASSIVE ATTACKS AGAINST SL

In this section, we introduce SDAR, a novel framework
for an honest-but-curious server to infer the client’s private
data in SL. The core idea of SDAR is to train a simulator
model that learns similar representations as the client model in
a way that their outputs are indistinguishable from each other.
This is achieved by introducing an adversarial discriminator
that regularizes the training of the simulator model. After
that, a corresponding decoder is trained on D′ for decoding
the intermediate representations output by the simulator. By
regularizing this decoder via an additional adversarial discrim-
inator, this decoder can be generalized to effectively decode
the client’s intermediate representations despite D ∩ D′ = ∅.
SDAR is capable of inferring private features in the vanilla SL
and both private features and labels in the U-shaped SL.

3

(a) Private X (upper) vs X̂ (lower) reconstructed by the naı̈ve SDA

0.0 0.5 1.0 1.5 2.0
Iteration 1e4

0.0

0.5

1.0

1.5

Lo
ss

g f

g f

(b) Training loss of g ◦ f vs g ◦ f̃

0.0 0.5 1.0 1.5 2.0
Iteration 1e4

0.025

0.050

0.075

0.100

D
ec

od
in

g
M

SE

X ′ X

(c) Decoding MSE on X′ vs X

Fig. 2. Failure of naı̈ve SDA on CIFAR-10 with ResNet-20 at split level
7. Solid lines are mean values over 5 runs, and values between min/max
boundaries are shaded. All later figures follow the same convention.

A. Feature inference attacks in vanilla SL

We start with a simple attack prototype, denoted as naı̈ve
simulator decoding attack (naı̈ve SDA). As the server has
access to an auxiliary dataset D′, it can first initialize a
simulator f̃ on its own and then train the model g ◦ f̃ on
D′. Depending on particular settings, this simulator f̃ may
or may not share the same architecture as f . For now, we
assume they share the same architecture but f̃ is initialized
independently and randomly as the server has no access to
the weights of f . Specifically, for each batch of training
examples (X,Y), after the parameters of f, g are updated via
the training loss ℓ(g(f(X)), Y), the server samples another
batch of examples (X ′, Y ′) from D′ and trains f̃ to minimize
loss ℓ(g(f̃(X ′)), Y ′) with the model g frozen. The reason to fix
g in this step is mainly twofold. First, as an honest-but-curious
party, the server should ensure that the parameters of g are only
updated based on D as specified in the SL protocol. Second,
fixing g while training f̃ forces f̃ to learn representations that
are compatible with g. As g is trained collaboratively with the
client’s model f on D, it is expected to memorize information
of D [42] which may be implicitly leaked to f̃ while training
g ◦ f̃ . In this way, the encoder f̃ trained by the server is
expected to mimic the behaviors of f . In the meantime, the
server trains a decoder f̃−1 with the transposed architecture
of f̃ to decode Z ′

s = f̃(X ′), i.e., the decoder parameters
θf̃−1 are updated via the loss ℓMSE(X

′, f̃−1(Z ′
s)). One may

expect the decoder f̃−1 can not only decode the output of the
simulator f̃ but also effectively decode the output Zs of f ,
i.e., f̃−1(Zs) ≈ X for private features X .

Unfortunately, the naı̈ve SDA fails to achieve this objective
as illustrated in Fig. 2a. The main reason behind such failure
is that although the training loss of g ◦ f̃ on X ′ converges to
a similar minimum as that of g ◦ f on X (see Fig. 2b), f̃ fails
to learn the same representations as f . This generalization gap
is rooted in the distributional discrepancy between the disjoint
datasets D and D′, and the fact that f̃ is trained solely on
D′ makes it prone to overfitting to D′. As a result, even if
the decoder f̃−1 can precisely decode the simulator f̃ with

Client Server

Original task

Training of decoder

Training of simulator

Adversarial regularization for simulator

Adversarial regularization for decoder

Fig. 3. Overview of SDAR in the vanilla SL setting.

very low reconstruction error, its reconstruction error on Zs,
the output of the client’s private model f on unseen features
X , does not converge (see Fig. 2c).

In response, we propose to enhance naı̈ve SDA with
adversarial regularization, to encourage the simulator and the
decoder to learn more general representations transferable to
the client’s private data X .

Adversarial regularization for f̃ . To regularize the sim-
ulator f̃ such that it behaves more similarly to the client’s
private model f , we introduce a server-side discriminator d1
that is trained to distinguish Z ′

s = f̃(X ′) (the fake data) against
Zs = f(X) (the real data). In each iteration, d1 is updated to
minimize the loss

Ld1
= ℓBCE(d1(Z

′
s), 0) + ℓBCE(d1(Zs), 1) (2)

to correctly classify Z ′
s against Zs, where ℓBCE is the binary

cross-entropy loss. In the meantime, the simulator is updated
in an adversarial way that maximizes the likelihood of being
misclassified by the discriminator, i.e., to minimize the loss
ℓBCE(d1(f̃(X

′)), 1). We introduce this adversarial loss as a
regularization term with penalty parameter λ1, i.e., the simu-
lator f̃ is updated to minimize the loss

Lf̃ = ℓ(g(f̃(X ′)), Y ′) + λ1 · ℓBCE(d1(f̃(X
′)), 1). (3)

Thus, with the training loss on D′ as the main objective and
the adversarial loss as the regularization term, the simulator is
expected to output representations indistinguishable from the
output of f , thus better simulating f ’s behaviors on the private
data X .

Adversarial regularization for f̃−1. As shown in Fig. 2c
and 2a, the decoder f̃−1 can accurately decode the output
of f̃ since f̃−1 is trained in a supervised manner on Z ′

s.
However, this reconstruction capability can not be generalized
to decode Zs. Specifically, we observe from Fig 2a that the
reconstructed samples X̂ exhibit obfuscated visual features and
can be easily distinguished from real images by a well-trained
discriminator. Motivated by this observation, we introduce
another discriminator d2 to distinguish f̃−1(Zs) (the fake data)

4

against X ′ (the real data) owned by the server. Similar to
Eq. (2), d2 is trained by minimizing

Ld2 = ℓBCE(d2(f̃
−1(Zs)), 0) + ℓBCE(d2(X

′), 1). (4)

Meanwhile, the decoder f̃−1 needs to be trained in an adver-
sarial manner to maximize the likelihood of being misclassified
by the discriminator. Similar to Eq. (3), we introduce a
regularization term with penalty parameter λ2, and the decoder
is trained to minimize

Lf̃−1 = ℓMSE(X
′, f̃−1(Z ′

s))+λ2 · ℓBCE(d2(f̃
−1(Zs)), 1). (5)

In this way, the decoder is trained to reconstruct private images
from Zs with plausible visual features as real images.

Use of labels. In the vanilla SL, the server holds labels of all
private training images, indicating that the server has access
to the labels of both the private data X and the auxiliary data
X ′. This enables the server to adopt the decoder f̃−1 and the
discriminators d1, d2 in a conditional manner similar to the
conditional GANs [33]. Take the decoder f̃−1 as an example.
Instead of only taking the intermediate representations Zs, Z

′
s

as the input, a conditional f̃−1 can additionally take the
corresponding labels Y, Y ′ as the input. These labels can
be first transformed into a high-dimensional embedding and
then concatenated with the intermediate representations. A
similar modification can be applied to the discriminators. This
adaptation enables the decoder to more effectively decode the
intermediate representations, and enhances the discriminators’
capability to distinguish between real and synthetic examples.

With the integration of the aforementioned enhancements,
we denote the refined simulator decoding attack as Simulator
Decoding with Adversarial Regularization (SDAR). We de-
scribe the complete attack in Fig. 3 and provide pseudocode
of our attack in Fig. 19 of Appendix A.

B. Feature & label inference attacks in U-shaped SL

In the U-shaped SL, the model H is split into three parts
H = h ◦ g ◦ f such that only the intermediate partial model
g is kept by the server, and the other two are trained by
the client. An intuitive approach to adapt SDAR to the U-
shaped SL is that the server trains an additional simulator
h̃ to mimic the behaviors of h, which can be updated by
minimizing the training loss of h̃◦g◦f̃ on D′ when freezing g.
If the simulator h̃ is well-trained on D′ such that it is able to
generalize well to classify unseen private examples in D, the
server can effectively reconstruct private labels Ŷ = h̃(g(Zs))
in addition to private features. However, the last few layers
(i.e., h) of the model has a strong expressive capacity of the
private information suggested by the practice and theory of
transfer learning [62]. Consequently, h̃ can easily overfit to D′

such that the training loss on D′ converges to a local minimum
yet h̃ and f̃ fail to learn the similar behaviors of h and f . In
this case, the decoder f̃−1 will not be able to reconstruct the
private input X from Zs effectively when trained along with
the overfitted f̃ . Thus, it is crucial to ensure that the simulator h̃
learns the general and transferable data representations, instead
of overfitting to D′.

To this end, we introduce random label flipping in the
training of h̃ ◦ g ◦ f̃ . Specifically, for an incoming batch

of auxiliary examples (X ′, Y ′) sampled from D′, we first
independently flip each label Y ′

i to a random label Y ′
i with

a probability of p. Namely, for each Y ′
i ∈ Y ′, we have

Y ′
i =

{
Y ′
i w.p. 1− p

Uniform(Y) w.p. p
,

where Y is the set of all possible labels. This way, the server
generates a new noisy label set Ỹ ′ and trains h̃ ◦ g ◦ f̃ based
on the new training batch (X ′, Ỹ ′). These randomly flipped
labels can help regularize the training of h̃, encourage h̃ not
to overly fit the auxiliary data, but to produce more general
representations that are compatible with the output of g and
meanwhile transferable to the private data D. Other compo-
nents of SDAR except for the use of labels in Section IV-A
are directly applicable to the U-shaped SL setting, including
the adversarial regularization on f̃ and f̃−1. We describe the
complete attack in Fig. 20 of Appendix A.

C. Computational complexity

Let b be the batch size, i.e., the number of examples
used for SL training in each iteration. For each iteration, if
there’s no attack, the SL protocol requires the client and the
server to update the model g ◦ f via a forward pass and
backpropagation. Let Ff and Fg denote the number of floating-
point operations (FLOPs) required by a single forward pass
on models f and g, respectively. The total computation cost
of the SL protocol is O(b · (Ff +Fg)) FLOPs, as the forward
pass costs b(Ff + Fg) FLOPs and the backpropagation costs
approximately twice as many FLOPs [15]. If the server is
to reconstruct the private b training images via naı̈ve SDA,
it will then also train g ◦ f̃ and f̃−1 using a batch of b
auxiliary images, before decoding Zs via f̃−1. This introduces
additional O(b(Fg + Ff̃ + Ff̃−1)) FLOPs. Hence, the SL
training and server’s inference attack via naı̈ve SDA require
O(b(Ff +Fg+Ff̃ +Ff̃−1)) FLOPs per iteration. Furthermore,
if the server adopts full SDAR and introduce discriminators
d1, d2, additional cost of O(bFd1 + bFd2) FLOPs will be
introduced. Therefore, in total, SL training and SDAR will
require O(b(Ff + Fg + Ff̃ + Ff̃−1 + Fd1 + Fd2)) FLOPs of
computation, which is asymptotically as efficient as SL training
itself if model complexity is considered as a constant. We later
compare the computational complexity of SDAR with other
state-of-the-art attacks in Section V.

D. Technical novelty

First, SDAR identifies an underexplored vulnerability of
SL, i.e., the risks of information leakage from the parameters
of the server’s model g. Since g is trained together with f on
the private examples (X,Y), it unintentionally memorizes in-
formation about the private data [42], and a carefully designed
simulator trained with g and (X ′, Y ′) can accurately simulate
the behaviors of f . On the contrary, most existing attacks [9],
[38] focus on only exploiting the privacy risks of the client’s
intermediate representations Zs, which is often insufficient to
reconstruct private data under practical settings.

Second, SDAR utilizes a novel adversarial regularization
method to considerably improve the generalization perfor-
mance of the simulator and decoder on the client’s private data,
which can achieve consistent and robust attack performance on

5

less vulnerable models where existing attacks [9], [13], [38]
cannot work. To the best of our knowledge, this is the first
time that adversarial regularization is utilized in the design of
inference attacks on FL or SL.

One parallel study, PCAT [13], adopts a similar attack
framework coinciding with our naı̈ve SDA discussed in Sec-
tion IV-A, with some minor improvements. However, as
demonstrated in Fig. 2 and our comparative experiments
in Section V, PCAT fails to reconstruct reasonable images
in challenging settings. Compared to naı̈ve SDA or PCAT,
SDAR’s main advantage is our novel adversarial regularization
framework, boosting the attack performance by improving the
simulator and decoder’s generalization.

V. EXPERIMENTS

A. Experimental settings

Datasets. We experiment with four popular benchmark-
ing datasets: CIFAR-10 [28], CIFAR-100 [28], Tiny Ima-
geNet [45], and STL-10 [5]. CIFAR-10 and CIFAR-100 consist
of 60,000 32× 32× 3 colored images in 10 and 100 classes,
respectively. To demonstrate the scalability of our attacks
to larger images, we experiment with image datasets with
higher resolutions: Tiny ImageNet is a subset of the ImageNet
dataset [6] consisting of 120,000 colored images of size
64 × 64 × 3 of 200 classes, while STL-10 is another subset
of the ImageNet dataset with 13,000 colored images of size
96 × 96 × 3 in 10 classes. Due to limited space, we report
results on CIFAR-10 and CIFAR-100 in the main text, and
defer full results to the full version of this paper [64]. We
normalize all images to [0, 1] beforehand to match the input
configuration of the convolutional models and partition each
dataset into two disjoint subsets D,D′ where D belongs to the
client, and D′ belongs to the server. We start with |D| = |D′|
where the server acquires auxiliary data of the same size as the
client’s private dataset. Then, we experiment with |D′| ≪ |D|
to discuss the effectiveness of our attacks with much less data.

Models. We experiment SDAR and other baseline attacks
on ResNet-20 and PlainNet-20 [22] as model H . Both models
have standard architectures specifically designed to classify
32 × 32 × 3 datasets. We chose these models because they
are widely adopted in real-world applications, and are rec-
ognized to be hard to invert [2]. For both architectures, the
complete model H consists of 20 layers (19 convolutional
layers of 16/32/64 filters and one additional fully-connected
output layer) with batch normalization. Particularly, ResNet-
20 is equipped with 9 residual blocks, while PlainNet-20 is a
VGG-style CNN model with 9 convolutional building blocks
without residual connections. We experiment with different
split levels denoted by s ∈ {4, 5, 6, 7} on both models,
characterized by the number of building blocks in the client’s
model f . The deepest client’s model that we consider has 7
building blocks as adding any more blocks will render the
client to host more parameters than the server, invalidating
SL’s purpose of enabling a powerful server to relieve the client
from heavy computation. In the vanilla SL, all the remaining
layers are assigned to the server as shown in Table I. In the
U-shaped SL, the last few layers, namely, the average pooling
and the fully connected output layer, are also assigned to
the client, while the server only hosts the layers in between.

TABLE I. MODEL STATISTICS ON VARIOUS SPLIT LEVELS OF 4–7 IN
VANILLA SPLIT LEARNING

Level Client’s f Server’s g

No. of layers No. of parameters No. of layers No. of parameters

4 9 29,424 11 244,618
5 11 48,112 9 225,930
6 13 66,800 7 207,242
7 15 124,912 5 149,130

It is worth noting that we experiment with ResNet-20 and
PlainNet-20 on larger images in Tiny ImageNet and STL-
10, instead of wider models with more filters, because the
former is more challenging for inference attacks due to the
lower dimensionality of the intermediate representations. By
considering the standard convolutional models with 16/32/64
filters and deep split levels up to 7, we target more challenging
settings where the client’s private model is less exploitable to
existing attacks. Our experiments later demonstrate that the
wider and shallower models considered by existing attacks [9],
[13], [38] are more vulnerable to inference attacks.

For the simulator f̃ (and h̃ if in U-shaped SL) of SDAR,
we start with the case where the server uses the same model
architecture as that of the client’s f (and h if in U-shaped
SL). We later show that our attacks are still effective even
without such information where the simulator has a different
architecture. The server uses the decoder f̃−1 with a structure
transposed to f̃ ending with a sigmoid function to produce
tensors within [0, 1]. The discriminators d1 that distinguishes
Z ′
s from Zs, and d2 that distinguishes X̂ from X ′, are

deep convolutional networks. Architecture details of the attack
models are described in Appendix B-C.

Baselines. We compare SDAR with existing attacks, in-
cluding UnSplit [9], PCAT [13] and FSHA [38]. UnSplit
[9] is a passive attack which reconstructs private features by
minimizing ℓMSE(f̃(X̂), Zs) via alternating optimization on
f̃ and X̂ . PCAT [13] is also a passive attack that adopts
a similar attack framework as our naı̈ve SDA discussed in
Section IV-A. FSHA [38], on the other hand, is an active attack
framework, where the server actively hijacks the gradients
transmitted to the client such that the client’s model f is
induced to behave similarly to the server’s own encoder. To
ensure the fairness of comparison, we use the same model
architectures and auxiliary datasets for all attackers unless
specified otherwise. Implementation details of the baselines
are described in Appendix B-D.

B. Experiments on vanilla SL attacks

Attack effectiveness. We report the results of SDAR and
other passive feature inference attacks on CIFAR-10 with
ResNet-20 and PlainNet-20 at split levels 4–7 in Fig. 4, and
give concrete examples of private data reconstruction in Fig. 5.
Fig. 4 shows that both SDAR and PCAT perform better at
shallower split levels, and the performance degrades as the
split level increases. This is expected as the intermediate
representations Zs become more abstract and less informative
about the private features X at deeper layers, hence rendering
it harder to reconstruct X from Zs. We also notice that attacks
are slightly more effective with the ResNet-20 than PlainNet-
20, which is likely due to the former’s residual connections

6

SDAR PCAT UnSplit

4 5 6 7
Split level

0.00

0.02

0.04

0.06

0.08

Fe
at

ur
e

in
fe

re
nc

e
M

SE

(a) ResNet-20

4 5 6 7
Split level

0.00

0.02

0.04

0.06

0.08

Fe
at

ur
e

in
fe

re
nc

e
M

SE
(b) PlainNet-20

Fig. 4. Mean feature inference MSE on CIFAR-10 with ResNet-20 and
PlainNet-20 at the split levels of 4–7 on CIFAR-10 in vanilla SL.

4

5

6

7

SDAR PCAT [13]
(a) ResNet-20

4

5

6

7

SDAR PCAT [13]
(b) PlainNet-20

Fig. 5. Examples of feature inference attack results with ResNet-20 and
PlainNet-20 on CIFAR-10 in vanilla SL. The first row shows the original
private images while the following rows show the reconstructed images by
SDAR and PCAT at various split levels 4–7. Reconstructions of the best quality
among 5 trials are shown.

that facilitate the flow of information through the network.

Among the passive feature inference attacks, Fig. 4 demon-
strates that the proposed attack, SDAR, surpasses existing ones
[9], [13] in terms of reconstruction errors at all configurations
by a significant margin. We note that SDAR achieves nearly
perfect reconstruction at shallower split cuts, and is still able
to achieve exceptional reconstruction quality even at deep
split levels up to 7 (see Fig. 5). PCAT [13] is only able to
recover private features at shallower split levels and of much
lower quality than SDAR. In particular, the reconstruction
quality of PCAT in the most trivial case (at level 4) is just
on par with SDAR at the deepest level of 7. Moreover, the
effectiveness of PCAT degenerates dramatically at deeper split
levels, resulting in even larger performance gaps compared to

X ′ X

0.0 0.5 1.0 1.5 2.0
Iteration 1e4

0.00

0.02

0.04

0.06

0.08

D
ec

od
in

g
M

SE

(a) SDAR

0.0 0.5 1.0 1.5 2.0
Iteration 1e4

0.00

0.02

0.04

0.06

0.08

D
ec

od
in

g
M

SE

(b) PCAT

Fig. 6. SDAR and PCAT’s decoding MSE on auxiliary data X′ versus private
data X with ResNet-20 at split level of 7 on CIFAR-10 in vanilla SL.

Level 4 Level 5 Level 6 Level 7

0.0 0.5 1.0 1.5 2.0
Iteration 1e4

0.00

0.02

0.04

0.06

0.08

Fe
at

ur
e

in
fe

re
nc

e
M

SE

(a) ResNet-20

0.0 0.5 1.0 1.5 2.0
Iteration 1e4

0.00

0.02

0.04

0.06

0.08

Fe
at

ur
e

in
fe

re
nc

e
M

SE

(b) PlainNet-20

Fig. 7. Feature inference MSE over training iterations with ResNet-20 and
PlainNet-20 at the split levels of 4–7 on CIFAR-10 in vanilla SL.

SDAR. This is demonstrated in Fig. 5 where PCAT struggles
to produce reasonable reconstruction at split levels 6–7, while
SDAR is still able to reconstruct images of visibly good
quality. In particular, at the deepest and most challenging
split level of seven, SDAR reduces the reconstruction MSE
by a significant margin of 63% on CIFAR-10 with ResNet-
20. We attribute the superior performance of SDAR to the
introduction of the adversarial regularization. It ensures the
simulator f̃ to generate realistic private features Z ′

s that are
indistinguishable from the real ones. This leads to its decoder’s
improved reconstruction quality of unseen private data X . As
shown in Fig. 6, while both decoders of SDAR and PCAT can
successfully reconstruct auxiliary data X ′ (as they are trained
to do so in a supervised manner), only SDAR’s decoder is
able to generalize well to the unseen client’s private data X .
PCAT’s decoder suffers from severe overfitting to the auxiliary
dataset, as evidenced by the vast discrepancy between its
reconstruction MSE on X and X ′. At last, we note that the
images reconstructed by UnSplit [9] are indistinguishable at
all split levels and are thus omitted here. This is expected as
f̃(X̂) ≈ f(X) does not necessarily lead to X̂ ≈ X .

To further investigate the dynamics of the proposed SDAR
attack, we present its attack MSE over training iterations in
Fig. 7. We observe that the attack performance of SDAR
converges quickly within the first few epochs, and it quickly
surpasses the final attack performance of the baseline attacks.
With more training iterations, the server observes more incom-
ing intermediate representations, and the attack performance
improves. It is worth noting that the attack performance of

7

FSHA SDAR

0.0 0.5 1.0 1.5 2.0
Iteration 1e4

0.00

0.02

0.04

0.06

0.08

Fe
at

ur
e

in
fe

re
nc

e
M

SE

(a) Feature reconstruction MSE

0.0 0.5 1.0 1.5 2.0
Iteration 1e4

0.0

0.5

1.0

1.5

2.0

g
f t

ra
in

in
g

lo
ss

(b) Training loss of g ◦ f

Fig. 8. Attack MSE and training losses on the original task of SDAR vs
FSHA on CIFAR-10 with ResNet-20 at split level 7 in vanilla SL.

Original

FSHA

SDAR

PCAT

Fig. 9. Examples of feature inference attack results of FSHA, SDAR, and
PCAT on CIFAR-10 with ResNet-20 at split level 7 in vanilla SL.

SDAR consistently improves over time at all levels without any
signs of overfitting, indicating its robustness and effectiveness.

Comparison to active attacks. We also compare SDAR
with the SOTA active feature inference attack, FSHA [38],
and report the attack MSE curve over training iterations at
split level 7 on CIFAR-10 in Fig 8a. Note that as an active
attack where the server actively hijacks the client’s gradients
to manipulate the training of f , FSHA is expected to exhibit
substantially better attack performance than passive attacks.
Yet, we observe that our attack, despite being passive, still can
achieve comparable attack performance as FSHA. As shown
in Fig. 9, the visual quality of the images reconstructed by
SDAR is only slightly worse than FSHA, and is significantly
better than PCAT. This indicates the strong capability of our
proposed attack, which is unprecedented in existing passive
attacks. The reason that SDAR can achieve comparable per-
formance to FSHA while being passive may be attributed to
the adversarial regularization that enables f̃ to better simulate
the client’s model f without manipulating the training of f .
A particular advantage of SDAR is the preservation of the
original training task as the server does not tamper with the
SL training protocol. This is demonstrated in Fig. 8b where
SDAR’s training loss of g◦f on X converges much faster than
FHSA. Consequently, SDAR poses a greater risk to real-world
applications compared to FSHA, as the original training task
is preserved and the server can perform the attack of robust
quality without being detected by the client [8], [12].

Effects of target model width. We have shown that deeper
target model f is less vulnerable to inference attacks, and we
discuss the effects of model width (number of filters) on the
attack performance of SDAR in Fig. 10. Since ResNet-20 and
PlainNet-20 use convolutional layers of 16/32/64 filters, we

32/64/128
(wider)

16/32/64
(standard)

8/16/32
(narrower)

0.0 0.5 1.0 1.5 2.0
Iteration 1e4

0.00

0.02

0.04

0.06

0.08

Fe
at

ur
e

in
fe

re
nc

e
M

SE

(a) ResNet-20

0.0 0.5 1.0 1.5 2.0
Iteration 1e4

0.00

0.02

0.04

0.06

0.08

Fe
at

ur
e

in
fe

re
nc

e
M

SE

(b) PlainNet-20

Fig. 10. Effects of target model widths on SDAR performed on CIFAR-100
with ResNet-20 and PlainNet-20 at split level 7 in vanilla SL.

TABLE II. EFFECTS OF AUXILIARY DATA SIZE ON SDAR
PERFORMED ON CIFAR-10 AT SPLIT LEVEL 7 IN VANILLA SL

|D′|/|D| 1.0 0.5 0.2 0.1 0.05

Attack MSE 0.0212 0.0225 0.0232 0.0248 0.0297
w/ ResNet-20 (0.0019) (0.0014) (0.0027) (0.0024) (0.0011)

Attack MSE 0.0350 0.0353 0.0365 0.0363 0.0435
w/ PlainNet-20 (0.0014) (0.0025) (0.0011) (0.0014) (0.0025)

Original

|D′|
|D| = 1.0

|D′|
|D| = 0.05

Fig. 11. Examples of feature inference attack results of SDAR performed on
CIFAR-10 with ResNet-20 at split level 7 with auxiliary datasets of different
sizes in vanilla SL.

experiment with wider and narrower models by doubling and
halving filters in each layer. Despite the common belief that
wider models are more robust to attacks due to their higher
model complexity, Fig. 10 shows that attack performance
improves with model width instead. This is because wider
models output Zs of significantly larger dimensions, encoding
more information about the private training data. It is worth
noting that existing attacks [9], [13], [38] are often evaluated
on overly wide models at shallower split levels, which, as
discussed, are much easier to attack. For example, Gao and
Zhang [13] evaluate PCAT on a CNN model with up to 512
filters for 32× 32× 3 images in CIFAR-10, with the deepest
split level of merely four convolutional layers allocated to the
client. Our experiments with the standard model structures
demonstrate that SDAR is able to attack much less vulnerable
models with significantly better performance.

Effects of auxiliary data. Naturally, one is curious to ask if
the proposed attacks are still effective when the server cannot
curate a large auxiliary dataset that shares the same distri-
bution as the client’s dataset. We hereby discuss the effects
of the size and distribution of D′ on SDAR. We report the
attack performance of SDAR with different sizes of auxiliary
dataset D′ in Table II. We observe only a limited effect of
the shrinkage of the auxiliary dataset on the performance of
SDAR, as the attack MSE only slightly increases when D′

8

TABLE III. EFFECTS OF THE REMOVAL OF CLASSES FROM D′ ON
SDAR PERFORMED ON CIFAR-100 WITH RESNET-20 AND PLAINNET-20

AT SPLIT LEVEL 7 IN VANILLA SL

No. of classes removed 0 1 5 10

Attack MSE 0.0220 0.0241 0.0231 0.0329
w/ ResNet-20 (0.0014) (0.0015) (0.0008) (0.0070)

Attack MSE 0.0301 0.0305 0.0338 0.0423
w/ PlainNet-20 (0.0014) (0.0029) (0.0012) (0.0037)

Original

w/o 0 class

w/o 10 classes

Fig. 12. Examples of feature inference attack results of SDAR performed
on CIFAR-100 with ResNet-20 at split level of 7 with classes removed from
the auxiliary datasets in vanilla SL.

TABLE IV. FEATURE INFERENCE MSE ON CIFAR-10 IN VANILLA SL
WITH OR WITHOUT ACCESS TO THE ARCHITECTURE OF f

lv. Same architecture Different architecture

SDAR PCAT [13] SDAR PCAT [13]

4 0.0084 (0.0002) 0.0237 (0.0021) 0.0103 (0.0017) 0.0257 (0.0034)
5 0.0118 (0.0008) 0.0337 (0.0048) 0.0143 (0.0005) 0.0289 (0.0038)
6 0.0140 (0.0009) 0.0382 (0.0062) 0.0165 (0.0010) 0.0433 (0.0114)
7 0.0212 (0.0019) 0.0568 (0.0062) 0.0258 (0.0031) 0.0545 (0.0039)

shrinks. Fig. 11 also demonstrates precise reconstructions even
with auxiliary data of size 5% of the client’s dataset. As for
the effects of distributional discrepancies between D′ and D,
we experiment with SDAR on CIFAR-100 while removing
examples of up to ten classes (out of 100 classes) from the
auxiliary dataset in Table III. With the removal of more classes
in D′, the attack performance degrades, but to a limited extent.
Fig. 12 demonstrates that SDAR can still reconstruct images
of visibly good quality even when 10 out of 100 classes are
missing in the auxiliary dataset.

Intuitively, with D′ of smaller size or with many classes
missing, one would expect the simulator/decoder trained on
D′ to be more prone to overfitting and thus to learn less
useful information about client’s private data. However, the
core idea of SDAR is to reduce such overfitting by adversarial
regularization. The positive results presented in this section
demonstrate the effectiveness of adversarial regularization and
show that SDAR can still work effectively even with a limited
size of additional data, or with a substantial distributional
discrepancy between D′ and D. At last, it is worth noting
that SDAR requires the auxiliary dataset’s classes to be a
subset of the target dataset’s classes for simulator training,
therefore we cannot evaluate the attack performance when
the auxiliary dataset contains classes not present in the target
dataset, for example, using CIFAR-100 to attack CIFAR-10.
The same limitation also applies to PCAT [13]. However, as
discussed previously, it is reasonable to assume that the server
has knowledge of the client’s data domain and can curate an
auxiliary dataset from various sources, such as public datasets
or even synthetic data.

Effects of simulator architecture. We have assumed that the

TABLE V. COMPUTATIONAL COMPLEXITY OF SPLIT LEARNING WITH
VARIOUS INFERENCE ATTACKS

Method FLOPs per iteration

SL w/o attack O(b(Ff + Fg))
SL w/ PCAT O(b(Ff + Fg + Ff̃ + Ff̃−1))

SL w/ SDAR O(b(Ff + Fg + Ff̃ + Ff̃−1 + Fd1
+ Fd2

))

SL w/ UnSplit O(b(Ff + Fg + mFf̃))

TABLE VI. AVERAGE RUNTIME PER ITERATION (S) OF SPLIT
LEARNING WITH VARIOUS INFERENCE ATTACKS ON CIFAR-10 WITH

RESNET-20 AT DIFFERENT SPLIT LEVELS IN VANILLA SL

Split level 4 5 6 7

SL w/ PCAT 0.113 (0.000) 0.120 (0.000) 0.124 (0.009) 0.132 (0.008)
SL w/ SDAR 0.164 (0.001) 0.164 (0.004) 0.169 (0.001) 0.174 (0.002)
SL w/ UnSplit 4212.754 5019.434 5718.145 6929.952

server knows the architecture of the client’s partial model f and
can initialize a simulator with identical architecture. Although
this is a realistic assumption in practice, it is interesting to
investigate whether SDAR still has superior attack performance
when the server does not know the architecture of f . To
this end, we conduct additional experiments with SDAR and
PCAT [13] in vanilla SL, where the server only knows the
input and output dimensions of f . In particular, we use the
standard ResNet-20 model for f and g, but we use plain
convolutional layers for the server’s simulator f̃ as the server
does not know the architecture of the client’s model but only its
input and output dimensions. We report the attack performance
of SDAR and PCAT in Table IV. We observe no significant
loss in both attacks’ performance compared to the scenario
where the server’s simulator shares an identical architecture
as the client, and SDAR is still effective in reconstructing
high-quality training examples and outperforms PCAT by a
large margin. This demonstrates that although the additional
knowledge of the client’s model architecture can sometimes
benefit the adversary of our proposed attack, such knowledge
has limited effects on attack performance and SDAR does not
require the server to know the architecture of f to be effective.

Computational complexity. As analyzed in Section IV-C,
SL training with SDAR is asymptotically as computational
efficient as the standard SL training process, when fixing
model complexity. We present the FLOPs required by SL
with PCAT, SDAR, and UnSplit attacks in Table V. The
computational complexity of SDAR and PCAT follows the
analysis in Section IV-C, while in UnSplit, the server needs
to perform an inner loop of iterative optimization process
to attack each batch of private examples for every iteration.
Let the number of optimization steps be m, then the UnSplit
requires a total of O(b(Ff +Fg +mFf̃)) FLOPs per iteration
for SL training and private feature reconstruction, significantly
more computationally expensive than SDAR and PCAT. We
also present the runtime of SL with different inference attacks
in a controlled environment with one half of an A100 80GB
GPU (as a virtual MIG device) in Table VI. We observe
that SDAR is only slightly slower than PCAT, and both
are significantly faster than UnSplit. The difference between
SDAR and PCAT, albeit limited, indicates the additional costs
of adversarial regularization. This shows that, compared to
PCAT, SDAR achieves high-quality attack performance with a
reasonable trade-off in computational cost.

9

TABLE VII. ABLATION STUDIES ON CIFAR-10 WITH RESNET-20 AT
SPLIT LEVEL 7 IN THE VANILLA SPLIT LEARNING SETTING

d1 (for f̃) d2 (for f̃−1) Conditional Attack MSE

1 ✓ ✓ ✓ 0.0212 (0.0019)
2 ✗ ✓ ✓ 0.0579 (0.0053)
3 ✓ ✗ ✓ 0.0234 (0.0015)
4 ✗ ✗ ✓ 0.0607 (0.0093)
5 ✓ ✓ ✗ 0.0229 (0.0021)

Ablation studies. To conclude this section, we conduct
ablation studies in Table VII to evaluate the effectiveness of
each component in SDAR. We observe that all components
are crucial, as removing any of them results in worse attack
performance. In particular, attack performance degenerates the
most when the server does not use adversarial regularization
(case 4), showing its effectiveness to reduce overfitting and
improve the generalization of the simulator/decoder. Between
the two adversarial regularizers for f̃ and f̃−1, SDAR is
more sensitive to the former (case 2 vs 3). This is because
the successful generalization of the decoder heavily relies on
the quality of the simulator. At last, we notice a marginal
performance gain by utilizing labels of the private examples in
the style of CGANs [33] (case 1 vs 5), when the discriminators
and decoders are fed with additional information.

C. Experiments on U-shaped SL attacks

Attack effectiveness. Under U-shaped split learning, we
report the feature reconstruction MSE and the label inference
accuracy of SDAR in Fig. 13, and present examples of private
feature reconstructions in Fig. 14. Note that we no longer
present results of UnSplit [9] here due to limited space and its
inability to produce distinguishable results even in the vanilla
SL setting. Similar to feature inference attacks in vanilla SL,
SDAR can reconstruct private features of high quality across
various split levels, and there is no significant performance
drop compared to vanilla SL. The reason is that although the
server no longer has access to the last part of the model,
i.e., h, it manages to train a simulator h̃ that learns the
same representations, as supported by the high label inference
accuracy which consistently reaches around 98% on CIFAR-
10 across all split levels. As the server trains h̃ ◦ g ◦ f̃ solely
on D′ (while g is trained on D), its high test accuracy on
unseen examples in D demonstrates that information about
D is indeed leaked to the server via the trained parameters
of g. In contrast, PCAT [13] achieves visibly worse feature
reconstruction performance than in vanilla SL, since PCAT is
unable to train an effective simulator to h, as supported by
its poor label inference accuracy. With deeper split levels and
fewer parameters in the server’s g, less information about D is
leaked via g, and hence the label inference accuracy of PCAT
dramatically degenerates to the level of random guessing when
the split level increases to 7.

Effects of random label flipping. Many of the properties of
SDAR in vanilla SL discussed in Section V-B, e.g. the effects
of target model width, auxiliary data, simulator architecture
and the components of adversarial regularizers, directly apply
to the U-shaped SL, and here we focus on the effects of random
label flipping on the training of h̃. Fig. 15 shows that after
removing random label flipping, the label inference accuracy
of SDAR drops significantly, and in the worst case, the label

SDAR PCAT

4 5 6 7
Split level

0.00

0.02

0.04

0.06

0.08

0.10

Fe
at

ur
e

in
fe

re
nc

e
M

SE

4 5 6 7
Split level

0.0

0.2

0.4

0.6

0.8

1.0

La
be

l a
cc

ur
ac

y

Fig. 13. Mean feature inference MSE (left) and label inference accuracy
(right) with ResNet-20 at split levels of 4–7 on CIFAR-10 in U-shaped SL.

4

5

6

7

SDAR PCAT [13]

Fig. 14. Examples of feature inference attack results with ResNet-20 on
CIFAR-10 in U-shaped SL. See Fig. 5 for detailed descriptions.

SDAR w/o label flipping SDAR w/ label flipping

0.0 0.5 1.0 1.5 2.0
Iteration 1e4

0.02

0.04

0.06

0.08

0.10

Fe
at

ur
e

in
fe

re
nc

e
M

SE

0.0 0.5 1.0 1.5 2.0
Iteration 1e4

0.0

0.2

0.4

0.6

0.8

1.0

La
be

l i
nf

er
en

ce
 A

C
C

Fig. 15. Effects of random label flipping on SDAR performed on CIFAR-10
with ResNet-20 at split level 7 in U-shaped SL.

inference accuracy quickly vanishes to near-zero, even worse
than random guessing. Thus, without label flipping, server’s
model h̃ will quickly overfit to its own dataset D′ without
simulating the behavior of h on D. As a result, the simulator f̃
trained together with h̃ will not learn the same representations
as f and hence the decoder can no longer generalize to decode
the client’s f , leading to poor feature inference performance
as well. With random label flipping, the server’s model h̃ is
forced to learn the general representations over time instead
of overfitting to D′.

D. Non-i.i.d. multi-client scenarios

So far, our experiments focus on the setting where all
batches of private training data are independently and identi-
cally distributed. This is naturally true for a single-client sce-
nario and remains so for multiple homogeneous clients. In real-
world practice, the server often serves multiple clients, who

10

TABLE VIII. EFFECTS OF CLIENT HETEROGENEITY ON SDAR
PERFORMED ON TINY IMAGENET WITH RESNET-20 AT SPLIT LEVEL 7 IN

VANILLA SL

No. of hetero. clients 1 2 5 10

Attack MSE 0.0300 0.0383 0.0395 0.0419
(0.0016) (0.0012) (0.0023) (0.0025)

Original

I.i.d. data

5 non-i.i.d. clients

10 non-i.i.d. clients

Fig. 16. Examples of feature inference results of SDAR performed in single-
client (equivalently i.i.d. multi-client) vs heterogeneous multi-client settings
on Tiny ImageNet with ResNet-20 at split level 7 in the vanilla SL setting.

possess heterogeneous data distributions. To investigate the
effects of data heterogeneity on SDAR, we conduct additional
evaluations under a heterogeneous k-client setting, where
k ∈ {2, 5, 10} clients possess different data distributions. In
this setting, each client holds 200/k classes of Tiny ImageNet,
and they take turns to interact with the server. We report
SDAR’s feature inference performance in Table VIII and pro-
vide examples of reconstruction results in Fig. 16. We observe
that the attack performance slightly degrades as the number of
heterogeneous clients increases, but the visual quality of the
reconstructed features remains acceptable. This suggests that
SDAR can still be effective in the multi-client setting, even
when clients possess heterogeneous data distributions. The
performance degradation could be attributed to the fact that in
the non-i.i.d. setting, the updates from different clients are not
homogeneous, which may result in issues with the convergence
of partial models, thus a worse simulator on the server side.
Nevertheless, although the incoming batches of representations
are not homogeneous, the server knows which client the batch
is coming from and can curate a specific auxiliary dataset
for each client to ensure f̃ to faithfully simulate the client’s
model. Therefore, we observe limited performance drop in the
heterogeneous multi-client setting.

VI. POTENTIAL COUNTERMEASURES

Change of model architectures. We have demonstrated
the effectiveness of SDAR on ResNet-20 and PlainNet-20 (in
Fig. 4 and Fig. 13) and their narrower variants (in Fig. 10) at
the deep split level of seven. Since narrower models at deeper
split levels are relatively more robust to inference attacks, a
natural defense against SDAR is to assign more layers to the
client’s model. We evaluate SDAR at split levels up to nine
and present its attack performance in Fig. 17. Note that at split
level 9, the client hosts all convolutional layers, and the server
has merely 650 parameters. This is an extreme case that is not
practical in real-world deployments, as this invalidates SL’s
purpose of relieving the client’s computational burden with
a capable server. From Fig. 17, we see that even at level 9,
SDAR’s attack MSE continues to decrease over time without
saturation. Therefore, we conclude that SDAR is robust against

0 1 2 3 4
Iteration 1e4

0.00

0.02

0.04

0.06

0.08

Fe
at

ur
e

in
fe

re
nc

e
M

SE level 7
level 8
level 9

Fig. 17. Attack MSE of SDAR on CIFAR-10 with ResNet-20 at deeper split
levels of 7–9 in the vanilla SL configuration.

TABLE IX. SDAR ATTACK MSE AND SL TRAINING ACCURACY ON
CIFAR-100 WITH RESNET-20 AT SPLIT LEVEL 7 IN VANILLA SL AT

VARIOUS DROPOUT RATES

Dropout rate 0.0 0.1 0.2 0.4 0.8

Attack MSE 0.0220 0.0212 0.0226 0.0237 0.0250
(0.0013) (0.0001) (0.0001) (0.0019) (0.0026)

Train ACC (%) 96.32 93.03 91.43 86.07 40.19
(0.49) (0.40) (0.20) (0.34) (0.61)

TABLE X. SDAR ATTACK MSE ON CIFAR-10 WITH RESNET-20 AT
SPLIT LEVEL 7 IN VANILLA SL WITH ℓ1/ℓ2 REGULARIZATION

Regularization factor 0.0 0.001 0.01 0.1

Attack MSE on SL
with ℓ1 regularization

0.0212 0.0.0208 0.0228 0.0221
(0.0019) (0.0012) (0.0017) (0.0017)

Attack MSE on SL
with ℓ2 regularization

0.0212 0.0231 0.0209 0.0220
(0.0019) (0.0020) (0.0008) (0.0019)

different split levels, and changing the model architecture is not
a viable defense against our attacks.

Regularization. Overfitting is a key concern in inference
attacks on ML models [34], [42], as ML models may overfit
to and unintentionally memorize private training data. Dropout
[44] and ℓ1/ℓ2 regularization [35] are straightforward yet
effective techniques to prevent overfitting, and recent studies
[25], [31], [41], [42] have shown that they can also mitigate
inference attacks on ML models. Therefore, we consider these
two methods as a potential defense and evaluate SDAR against
them. As shown in Table IX and Table X, the introduction
of dropout or ℓ1/ℓ2 regularization with a higher rate or
factor slightly degrades the attack performance of SDAR,
but the attack MSE remains at a low level, indicating the
attack effectiveness against dropout. Table IX also shows that
large dropout rates can lead to significant degradation in the
training accuracy of SL. The reason that our attacks are robust
against regularization defense is due to the fact that the same
regularization is also applied in the training of the simulator,
so the f̃ can simulate the regularized behavior of the client’s
f . Therefore, dropout and ℓ1/ℓ2 regularization are not viable
defenses against SDAR.

Decorrelation. A recent method for enhancing the privacy
of SL is to decorrelate the intermediate representations Zs

with the input private features X [52], [53]. This is done by
replacing g ◦ f ’s loss function ℓ(g(f(X)), Y) with

(1− α)ℓ(g(f(X)), Y) + α · dCol(f(X), X)

while training, where α ∈ [0, 1] is the decorrelation parameter

11

TABLE XI. SDAR ATTACK MSE ON CIFAR-100 WITH RESNET-20
AT LEVEL 7 IN VANILLA SL WITH THE DECORRELATION DEFENSE

α 0.0 0.1 0.2 0.4 0.8

Attack MSE 0.0220 0.0257 0.0314 0.0414 0.0433
(0.0013) (0.0012) (0.0023) (0.0017) (0.0024)

Train ACC (%) 96.32 96.31 94.83 94.31 74.57
(0.49) (0.30) (0.21) (0.39) (2.98)

Original

α = 0.0

α = 0.8

Fig. 18. Examples of reconstruction results on CIFAR-100 with ResNet-20
at split level 7 in vanilla SL with decorrelation defense with α ∈ {0, 0.8}.

and dCol(·, ·) is the distance correlation [46]. The decorrelation
term encourages the intermediate representations Zs to be
decorrelated with the input private features X , thus making
it harder for the server to infer private training data from
Zs. Larger α values result in stronger decorrelation and hence
better privacy preservation, but also greater loss in the model
utility of the original task.

To evaluate the effectiveness of SDAR against this decor-
relation defense, we introduce a decorrelation term in Eq. (3)
to decorrelate simulator’s output f̃(X ′) with auxiliary data
X ′ in SDAR, such that the simulator can learn the same
decorrelation behaviors of client’s f . We perform SDAR on
SL with decorrelation with α ∈ {0.1, 0.2, 0.4, 0.8}. As shown
in Table XI and Fig. 18, although decorrelation manages
to degrade the attack quality when α increases, SDAR still
produces visibly effective reconstructions even at α = 0.8.
Also, Table XI shows that the decorrelation defense with larger
α results in a notable loss in accuracy of the original task,
rendering this defense impractical in real-world applications
due to the trade-off between privacy and utility. Therefore,
decorrelation is not a viable defense against SDAR.

Homomorphic encryption. The most straightforward idea to
mitigate privacy issues in SL is to encrypt the intermediate rep-
resentations Zs and send only the ciphertext to the server s.t.
the server cannot use it to infer private features. This usually
requires homomorphic encryption (HE) [47], [54] where the
server can only perform computation on the ciphertext without
decrypting it and return the ciphertext of the result to the client.
In the context of SL, this means that the server must execute
forward pass, loss evaluation, and backward propagation all in
ciphertext, and at last sends the gradients ∇θs+1 in ciphertext
back to the client. However, basic computations in HE schemes
are limited to additions and multiplications [27], and it is
computationally prohibitive to execute the forward pass and
backward propagation in ciphertext, which typically involves
non-linear operations and necessitates the use of approximation
techniques [47]. Therefore, HE can hardly be applicable to SL,
especially for deep NN models.

Secure multi-party computation. Another widely-used
cryptographic technique to protect privacy is secure multi-
party computation (MPC) [3], [27], [55], [59], where multiple

parties jointly compute a function on their private inputs
without revealing their inputs to each other. To the best of our
knowledge, there has been no prior work improving the privacy
of SL using MPC. Even if it is possible to apply MPC such
that the client and the server can train their models without
revealing private data of the client or model parameters of both
parties, such protocol will introduce significant computational
overhead and communication cost, completely defeating the
purpose and promises of split learning of communication and
computation efficiency.

Differential privacy. Currently, the state-of-the-art technique
to quantify and reduce information disclosure about individuals
is differential privacy (DP) [1], [7], [57], which mathemat-
ically bounds the influence of private data on the released
information. In the context of SL, this would mean that the
intermediate representations Zs are differentially private with
regard to the client’s private features X . If we are to achieve
DP in split learning, random noise will be injected by the
client, such that even if the client arbitrarily modifies the
input data X , the intermediate representations Zs will remain
almost unchanged. That is, client’s model f will output similar
representations for any input data, which practically renders the
model trivial. Therefore, DP is not applicable to our problem.

VII. RELATED WORK

Split learning. Split learning (SL) [19], [39], [50], [51]
is a privacy preserving protocol for distributed training and
inference of deep neural networks, and has gain increasing
attention due to its simplicity, efficiency and scalability [26],
[43], [48], [60]. Since its proposal, many works have extended
SL to various configurations, including U-shaped SL that
protects the client’s labels [19], SL with multiple clients with
horizontal [50] or vertical [4] partition. We refer the audience
to Section II and available surveys [26], [43], [48], [60] for
detailed review.

Inference attacks against split learning. The security of
SL has been a focus of the research community since the
proposal of SL. Various privacy attacks have been proposed to
infer clients’ labels or features under different threat models.
We characterize these threat models via three dimensions:
passiveness, the data assumption and the model assumption.
Passiveness refers to whether the adversary fully complies
with the SL protocol without actively manipulating the training
process (by hijacking gradients, for example). A malicious
server that actively manipulates the training process is consid-
ered an active or dishonest adversary, while a server that only
passively observes the training process is considered a passive
adversary, also known as a semi-honest or, interchangeably,
an honest-but-curious adversary. Data assumption refers to
whether the adversary has access to an auxiliary dataset of
a similar distribution as the target private training data. Model
assumption refers to whether the adversary has access to the
architecture or weights of the victim client’s model. Existing
attacks all adopt at least one of the two assumptions. We
summarize them in Table XII and discuss the feasibility of
inference attacks with neither assumptions in Section VIII.

Pasquini et al. [38] propose FSHA, an active feature
inference attack where the server hijacks the gradients sent
back to the client to control its updates such that the client’s

12

TABLE XII. PROPERTIES AND THREAT MODELS OF SERVER-SIDE TRAINING-TIME INFERENCE ATTACKS ON SL∗

Attack Infer feature Infer label Passive Data assumption Model assumption

Auxiliary feature Auxiliary label Model architecture Model weights

FSHA (Pasquini et al. [38]) ✓ ✗ ✗ # G# #
UnSplit (Erdoğan et al. erdougan2022unsplit) ✓ ✓ ✓ # # #
EXACT (Qiu et al. [40]) ✓ ✓ ✓ # #
PCAT (Gao and Zhang [13]) ✓ ✓ ✓ G# #

SDAR (Ours) ✓ ✓ ✓ G# #

∗Symbol indicates that the attack requires the corresponding assumption to be satisfied, while # indicates that the attack does not exploit the corresponding
assumption. Symbol G# indicates that the attack does not require the corresponding assumption but can benefit from it.

model behaves similarly to the decodable encoder trained
by the server as part of an autoencoder. FSHA requires the
adversary to have access to an (unlabelled) auxiliary dataset
similar to the target data to train the autoencoder. Although
FSHA does not require the server to know the architecture
of the client’s model, it benefits from such knowledge when
the encoder shares the same architecture as the client’s model.
Erdoğan et al. [9] design UnSplit, a passive feature and label
inference attack via alternating optimization of a surrogate
model and inferred private inputs. UnSplit achieves passiveness
and requires no knowledge of the client’s data, but requires
the client’s model architecture to be known to the server.
Similarly, Qiu et al. [40] also consider passive feature and
label inference attacks without the data assumption, but with
the extremely strong model assumption that the server knows
the model parameters of the victim clients, thus can utilize
the excessive information on client’s model parameters and
gradients. Concurrently with our work, Gao and Zhang [13]
propose a passive feature and label inference attack against
SL, namely PCAT, which adopts a similar framework as
our naı̈ve SDA discussed in the beginning of Section IV-A,
with additional improvements such as label alignment and
delayed training. SDAR and PCAT share the same threat
model, where an honest-but-curious adversary has access to
a labelled auxiliary dataset similar to the target data, but
has no access to the weights of the client’s model. Both
attacks can function without the knowledge of the client’s
model architecture, but may benefit from such knowledge.
We demonstrate with extensive experiments in Section V that
SDAR consistently outperforms PCAT across various, and in
particular, challenging settings.

On a separate line of research, several works [29], [30]
focus on label inference attacks. This is not our focus as we
aim to develop effective attacks that can infer both the clients’
labels and features. At last, several attacks [23], [61] have been
proposed against split inference, also known as collaborative
inference. However, split inference is more vulnerable as the
intermediate representations are products of a fixed client’s
model, while in training-time SL attacks, the server has to
invert the output of a constantly updated model. Therefore,
attacks against split inference are not our focus in this work.

Privacy-preserving improvements of SL. In response to
the privacy vulnerabilities of split learning, various privacy-
preserving improvements have been proposed. U-shaped SL
[19] enhances privacy by preventing label exposure to the
server. However, our work demonstrates that SDAR can still
infer private labels with high accuracy. Targeting active hijack-
ing attacks such as FSHA [38], Erdoğan et al. [8], Fu et al. [12]

detect and defend against the active manipulation of back-
propagated gradients. Vepakomma et al. [52], [53] propose
to improve the privacy of SL by minimizing the correlation
between the private inputs and the shared representations via
injecting a correlation regularization term to the loss function
of the original SL task, which we investigate in Section VI.

VIII. CONCLUSION

In this paper, we investigate the privacy risks of split
learning under the notion of an honest-but-curious server. We
identify that existing server-side passive attacks often target
impractical and vulnerable settings to gain extra advantage for
the adversary. We present new passive attacks on split learning,
namely, SDAR, by utilizing GAN-inspired adversarial regu-
larization to learn a decodable simulator of client’s private
model that produces representations indistinguishable from the
client’s. Empirically, we show that SDAR is effective in infer-
ring private features of the client in vanilla split learning, and
both private features and labels in the U-shaped split learning,
under challenging settings where existing passive attacks fail
to produce non-trivial results. At last, we propose and evaluate
potential defenses against our attacks and highlight the need
for improving SL to further protect the client’s private data.

Split learning is a promising protocol that enables dis-
tributed training and inference of neural networks on devices
with limited computational resources. There are many open
challenges and potential directions regarding its security. One
limitation of SDAR (and PCAT) is that they require the
adversary to have access to a labelled auxiliary dataset in the
same domain as the target data. While state-of-the-art active
attacks like FSHA do not require the labels of the auxiliary
dataset, it is interesting to investigate whether passive attacks
are feasible only with an unlabelled auxiliary dataset. Also, it
is worth noting that all attacks discussed in Section VII and
listed in Table XII assume at least one of the model and the
data assumptions, and it remains an open question whether it
is possible to attack SL with neither assumptions. Intuitively,
if the server has no knowledge on either the structure/weights
of the client’s model f or the domain/distribution of its data
X , it becomes very challenging, if not impossible, to recover
X merely by observing Z = f(X). It’s interesting to explore
more capable attacks that invert an inaccessible and unknown
function operating on an unknown domain. One may also
study the privacy guarantee of SL from a theoretical lens and
rigorously measure the information leakage of the protocol.
At last, it will be an interesting direction to design privacy-
preserving mechanisms to mitigate our proposed attacks and
improve the privacy of SL.

13

ACKNOWLEDGEMENTS

This research is supported by the National Research Foun-
dation, Singapore under its AI Singapore Programme (AISG
Award No: AISG3-RP-2022-029). Any opinions, findings and
conclusions or recommendations expressed in this material
are those of the author(s) and do not reflect the views of
National Research Foundation, Singapore. Yuncheng Wu’s
work is supported by the Fundamental Research Funds for
the Central Universities, and the Research Funds of Renmin
University of China (24XNKJ08).

REFERENCES

[1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov,
K. Talwar, and L. Zhang, “Deep learning with differential privacy,”
in CCS, 2016, pp. 308–318.

[2] J. Behrmann, W. Grathwohl, R. T. Chen, D. Duvenaud, and J.-H.
Jacobsen, “Invertible residual networks,” in ICML, 2019, pp. 573–582.

[3] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggrega-
tion for privacy-preserving machine learning,” in CCS, 2017, pp. 1175–
1191.

[4] I. Ceballos, V. Sharma, E. Mugica, A. Singh, A. Roman, P. Vepakomma,
and R. Raskar, “SplitNN-driven vertical partitioning,” arXiv preprint
arXiv:2008.04137, 2020.

[5] A. Coates, H. Lee, and A. Y. Ng, “An analysis of single layer networks
in unsupervised feature learning,” in AISTATS, 2011.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in CVPR, 2009.

[7] C. Dwork, A. Roth et al., “The algorithmic foundations of differential
privacy,” Found. Trends Theor. Comput. Sci., vol. 9, no. 3–4, pp. 211–
407, 2014.

[8] E. Erdogan, A. Küpçü, and A. E. Cicek, “Splitguard: Detecting and
mitigating training-hijacking attacks in split learning,” in WPES, 2022,
pp. 125–137.

[9] E. Erdoğan, A. Küpçü, and A. E. Çiçek, “Unsplit: Data-oblivious
model inversion, model stealing, and label inference attacks against
split learning,” in WPES, 2022, pp. 115–124.

[10] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that
exploit confidence information and basic countermeasures,” in CCS,
2015, pp. 1322–1333.

[11] M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart, “Pri-
vacy in pharmacogenetics: An End-to-End case study of personalized
warfarin dosing,” in USENIX Security, 2014, pp. 17–32.

[12] J. Fu, X. Ma, B. B. Zhu, P. Hu, R. Zhao, Y. Jia, P. Xu, H. Jin,
and D. Zhang, “Focusing on pinocchio’s nose: A gradients scrutinizer
to thwart split-learning hijacking attacks using intrinsic attributes,” in
NDSS, 2023.

[13] X. Gao and L. Zhang, “PCAT: Functionality and data stealing from
split learning by pseudo-client attack,” in USENIX Security, 2023, pp.
5271–5288.

[14] Y. Gao, M. Kim, S. Abuadbba, Y. Kim, C. Thapa, K. Kim, S. A.
Camtep, H. Kim, and S. Nepal, “End-to-end evaluation of federated
learning and split learning for internet of things,” in SRDS, 2020, pp.
91–100.

[15] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016.

[16] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
NeurIPS, 2014.

[17] ——, “Generative adversarial networks,” Communications of the ACM,
vol. 63, no. 11, pp. 139–144, 2020.

[18] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved training of wasserstein gans,” in NeurIPS, 2017.

[19] O. Gupta and R. Raskar, “Distributed learning of deep neural network
over multiple agents,” J. Netw. Comput. Appl., vol. 116, pp. 1–8, 2018.

[20] Y. J. Ha, G. Lee, M. Yoo, S. Jung, S. Yoo, and J. Kim, “Feasibility study
of multi-site split learning for privacy-preserving medical systems under
data imbalance constraints in covid-19, x-ray, and cholesterol dataset,”
Scientific Reports, vol. 12, no. 1, pp. 1–11, 2022.

[21] A. J. Hall. (2020) Implementing split neural networks
on pysyft. [Online]. Available: https://blog.openmined.org/
split-neural-networks-on-pysyft/

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016, pp. 770–778.

[23] Z. He, T. Zhang, and R. B. Lee, “Model inversion attacks against
collaborative inference,” in ACSAC, 2019, pp. 148–162.

[24] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
2006.

[25] Y. Jiang, X. Luo, Y. Wu, X. Zhu, X. Xiao, and B. C. Ooi, “On data
distribution leakage in cross-silo federated learning,” TKDE, pp. 1–17,
2024.

[26] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al.,
“Advances and open problems in federated learning,” Foundations and
Trends® in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021.

[27] M. Keller, “MP-SPDZ: A versatile framework for multi-party compu-
tation,” in CCS, 2020, pp. 1575–1590.

[28] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” University of Toronto, Tech. Rep., 2009.

[29] O. Li, J. Sun, X. Yang, W. Gao, H. Zhang, J. Xie, V. Smith, and
C. Wang, “Label leakage and protection in two-party split learning,”
in ICLR, 2022.

[30] J. Liu and X. Lyu, “Clustering label inference attack against practical
split learning,” arXiv preprint arXiv:2203.05222, 2023.

[31] X. Luo, Y. Wu, X. Xiao, and B. C. Ooi, “Feature inference attack on
model predictions in vertical federated learning,” in ICDE, 2021, pp.
181–192.

[32] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in AISTATS, 2017, pp. 1273–1282.

[33] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
arXiv preprint arXiv:1411.1784, 2014.

[34] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy
analysis of deep learning: Passive and active white-box inference attacks
against centralized and federated learning,” in S&P, 2019, pp. 739–753.

[35] A. Y. Ng, “Feature selection, l1 vs. l2 regularization, and rotational
invariance,” in ICML, 2004.

[36] A. Odena, V. Dumoulin, and C. Olah, “Deconvolution and checkerboard
artifacts,” Distill, vol. 1, no. 10, p. e3, 2016.

[37] OpenMinded, “Pysyft,” 2021. [Online]. Available: https://github.com/
OpenMined/PySyft

[38] D. Pasquini, G. Ateniese, and M. Bernaschi, “Unleashing the tiger:
Inference attacks on split learning,” in CCS, 2021, pp. 2113–2129.

[39] M. G. Poirot, P. Vepakomma, K. Chang, J. Kalpathy-Cramer, R. Gupta,
and R. Raskar, “Split learning for collaborative deep learning in
healthcare,” arXiv preprint arXiv:1912.12115, 2019.

[40] X. Qiu, I. Leontiadis, L. Melis, A. Sablayrolles, and P. Stock, “Evaluat-
ing privacy leakage in split learning,” arXiv preprint arXiv:2305.12997,
2023.

[41] A. Salem, Y. Zhang, M. Humbert, P. Berrang, M. Fritz, and M. Backes,
“Ml-leaks: Model and data independent membership inference attacks
and defenses on machine learning models,” in NDSS, 2019.

[42] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in S&P, 2017, pp.
3–18.

[43] A. Singh, P. Vepakomma, O. Gupta, and R. Raskar, “Detailed com-
parison of communication efficiency of split learning and federated
learning,” arXiv preprint arXiv:1909.09145, 2019.

[44] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from over-
fitting,” JMLR, vol. 15, no. 1, pp. 1929–1958, 2014.

14

https://blog.openmined.org/split-neural-networks-on-pysyft/
https://blog.openmined.org/split-neural-networks-on-pysyft/
https://github.com/OpenMined/PySyft
https://github.com/OpenMined/PySyft

[45] “Tiny imagenet,” http://cs231n.stanford.edu/tiny-imagenet-200.zip,
Stanford University, accessed: 2023-12-28.

[46] G. J. Székely, M. L. Rizzo, and N. K. Bakirov, “Measuring and testing
dependence by correlation of distances,” Ann. Stat., vol. 35, no. 6, p.
2769, 2007.

[47] H. Takabi, E. Hesamifard, and M. Ghasemi, “Privacy preserving multi-
party machine learning with homomorphic encryption,” in NeurIPS,
2016.

[48] C. Thapa, M. A. P. Chamikara, and S. A. Camtepe, “Advancements
of federated learning towards privacy preservation: from federated
learning to split learning,” Federated Learning Systems: Towards Next-
Generation AI, pp. 79–109, 2021.

[49] J.-B. Truong, P. Maini, R. J. Walls, and N. Papernot, “Data-free model
extraction,” in CVPR, 2021, pp. 4771–4780.

[50] P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, “Split learning
for health: Distributed deep learning without sharing raw patient data,”
arXiv preprint arXiv:1812.00564, 2018.

[51] P. Vepakomma and R. Raskar, Split Learning: A Resource Efficient
Model and Data Parallel Approach for Distributed Deep Learning.
Springer, 2022, pp. 439–451.

[52] P. Vepakomma, A. Singh, O. Gupta, and R. Raskar, “Nopeek: Informa-
tion leakage reduction to share activations in distributed deep learning,”
in ICDM Workshops, 2020, pp. 933–942.

[53] P. Vepakomma, A. Singh, E. Zhang, O. Gupta, and R. Raskar, “Nopeek-
infer: Preventing face reconstruction attacks in distributed inference
after on-premise training,” in FG, 2021, pp. 1–8.

[54] A. Wood, K. Najarian, and D. Kahrobaei, “Homomorphic encryption
for machine learning in medicine and bioinformatics,” ACM Computing
Surveys, vol. 53, no. 4, pp. 1–35, 2020.

[55] Y. Wu, S. Cai, X. Xiao, G. Chen, and B. C. Ooi, “Privacy preserving
vertical federated learning for tree-based models,” PVLDB, vol. 13,
no. 12, pp. 2090–2103, Jul 2020.

[56] Y. Wu, N. Xing, G. Chen, T. T. A. Dinh, Z. Luo, B. C. Ooi, X. Xiao,
and M. Zhang, “Falcon: A privacy-preserving and interpretable vertical
federated learning system,” PVLDB, vol. 16, no. 10, pp. 2471–2484,
2023.

[57] X. Xiao, G. Wang, and J. Gehrke, “Differential privacy via wavelet
transforms,” IEEE TKDE, vol. 23, no. 8, pp. 1200–1214, 2010.

[58] Z. Yang, J. Zhang, E.-C. Chang, and Z. Liang, “Neural network
inversion in adversarial setting via background knowledge alignment,”
in CCS, 2019, pp. 225–240.

[59] A. C. Yao, “Protocols for secure computations,” in FOCS, 1982, pp.
160–164.

[60] X. Yin, Y. Zhu, and J. Hu, “A comprehensive survey of privacy-
preserving federated learning: A taxonomy, review, and future direc-
tions,” ACM Computing Surveys, vol. 54, no. 6, pp. 1–36, 2021.

[61] Y. Yin, X. Zhang, H. Zhang, F. Li, Y. Yu, X. Cheng, and P. Hu, “Ginver:
Generative model inversion attacks against collaborative inference,” in
WWW, 2023, pp. 2122–2131.

[62] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?” in NeurIPS, 2014.

[63] X. Zhao, W. Zhang, X. Xiao, and B. Lim, “Exploiting explanations for
model inversion attacks,” in ICCV, 2021, pp. 682–692.

[64] X. Zhu, X. Luo, Y. Wu, Y. Jiang, X. Xiao, and B. C. Ooi, “Passive
inference attacks on split learning with adversarial regularization,” arXiv
preprint arXiv:2310.10483, 2024.

APPENDIX A
PSEUDOCODE

We provide the pseudocode of SDAR against vanilla SL in
Fig. 19, and against U-shaped SL in Fig. 20.

1: procedure CLIENT:
2: Initializes model f with parameters θf
3: for i ∈ {1, 2, . . .} do
4: Samples a batch of examples (X,Y) ∈ D
5: Zs ← f(X)
6: Sends (Zs, Y) to the server ▷ Timestamp ti1
7: Receives ∇θs+1 from the server ▷ Timestamp ti2
8: Calculates ∇θf using ∇θs+1

9: θf ← θf − η∇θf ▷ Original SL task
10:
11: procedure SERVER:
12: Initializes model g with parameters θg
13: Initializes models f̃ , f̃−1, d1, d2 w/ θf̃ , θf̃−1 , θd1 , θd2
14: for i ∈ {1, 2, . . .} do
15: Receives (Zs, Y) from the client ▷ Timestamp ti1
16: Ŷ ← g(Zs)
17: L ← ℓ(Ŷ , Y)
18: ∇θg ← ∂L/∂θg
19: Sends ∇θs+1 to the client ▷ Timestamp ti2
20: θg ← θg − η∇θg ▷ Original SL task
21:
22: Samples a batch of examples (X ′, Y ′) ∈ D′

23: Z′
s ← f̃(X ′); Ŷ ′ ← g(Z′

s)
24: X̂ ′ ← f̃−1(Z′

s, Y
′); X̂ ← f̃−1(Zs, Y)

25: Lf̃ ← ℓ(Ŷ ′, Y ′) + λ1ℓBCE(d1(Z
′
s, Y

′), 1)
26: Ld1 ← ℓBCE(d1(Z

′
s, Y

′), 0) + ℓBCE(d1(Zs, Y), 1)
27: Lf̃−1 ← ℓMSE(X

′, X̂ ′) + λ2 · ℓBCE(d2(X̂, Y), 1)

28: Ld2 ← ℓBCE(d2(X̂, 0) + ℓBCE(d2(X
′, Y ′), 1)

29:
30: ∇θf̃ ← ∂Lf̃/∂θf̃ ; θf̃ ← θf̃ − ηf̃∇θf̃
31: ∇θd1 ← ∂Ld1/∂θd1 ; θd1 ← θd1 − ηd1∇θd1
32: ∇θf̃−1 ← ∂Lf̃−1/∂θf̃−1 ; θf̃−1 ← θf̃−1 − ηf̃−1∇θf̃−1

33: ∇θd2 ← ∂Ld2/∂θd2 ; θd2 ← θd2 − ηd2∇θd2
34:
35: X̂ ← f̃−1(Zs, Y) ▷ Reconstructed private features

Fig. 19. SDAR against vanilla split learning. ℓ(·, ·) is the loss function
of the original SL task; s is the split level; η is the learning rate of the
original SL task; ηf̃ , ηf̃−1 , ηd1 , ηd2 are learning rates for the server’s models
f̃ , f̃−1, d1, d2.

APPENDIX B
IMPLEMENTATION DETAILS

A. Experiment setup

The experiments are conducted on machines running
Ubuntu 20.04 LTS, equipped with two Intel® Xeon® Gold 6326
CPUs, 256GB of RAM and an NVIDIA® A100 80GB GPU.
We implement our attack and other baselines in Python and
TensorFlow. Our code base is available at https://github.com/
zhxchd/SDAR SplitNN/ for reproducibility.

B. Split learning setup

We target the same SL setup across all experiments, where
the complete model H is either ResNet-20 or PlainNet-20,
and we experiment with various split configurations of each
model. We show the model architectures of the target models
and their split configurations in Fig. 21. For all experiments,
we use Adam optimizer to optimize H (that is, g ◦f in vanilla
SL and h ◦ g ◦ f in U-shaped SL) with default initial learning
rate η = 0.001. We use 128 examples per batch as per the
original ResNet paper suggests [22] except STL-10, where we
use a batch size of 32 as STL-10 only contains 13,000 images

15

http://cs231n.stanford.edu/tiny-imagenet-200.zip
https://github.com/zhxchd/SDAR_SplitNN/
https://github.com/zhxchd/SDAR_SplitNN/

1: procedure CLIENT:
2: Initializes models f, h with parameters θf , θh
3: for i ∈ {1, 2, . . .} do
4: Samples a batch of examples (X,Y) ∈ D
5: Zs ← f(X)
6: Sends Zs to the server ▷ Timestamp ti1
7: Receives Zt from the server ▷ Timestamp ti2
8: Ŷ ← h(Zt); L ← ℓ(Ŷ , Y)
9: ∇θh ← ∂L/∂θh; θh ← θh − η∇θh ▷ Original SL task

10: Sends ∇θt+1 to the server ▷ Timestamp ti3
11: Receives ∇θs+1 from the server ▷ Timestamp ti4
12: Calculates ∇θf using ∇θs+1

13: θf ← θf − η∇θf ▷ Original SL task
14:
15: procedure SERVER:
16: Initializes g with parameters θg
17: Initializes h̃, f̃ , f̃−1, d1, d2 with param. θh̃, θf̃ , θf̃−1 , θd1 , θd2
18: for i ∈ {1, 2, . . .} do
19: Receives (Zs, Y) from the client ▷ Timestamp ti1
20: Zt = g(Zs)
21: Sends Zt to the client ▷ Timestamp ti2
22: Receives ∇θt+1 from the client ▷ Timestamp ti3
23: Calculates ∇θg using ∇θt+1

24: θg ← θg − η∇θg ▷ Original SL task
25: Sends ∇θs+1 to the client ▷ Timestamp ti4
26:
27: Samples a batch of examples (X ′, Y ′) ∈ D′

28: Z′
s ← f̃(X ′); Z′

t ← g(Z′
s); Ŷ ′ ← h̃(Z′

t)
29: X̂ ′ ← f̃−1(Z′

s); X̂ ← f̃−1(Zs)

30: Ỹ ′
i ←

{
Y ′
i w.p. 1− p

Uniform(Y) w.p. p
▷ Random flipping

31: Lh̃ ← ℓ(Ŷ ′, Ỹ ′)
32: Lf̃ ← ℓ(Ŷ ′, Ỹ ′) + λ1ℓBCE(d1(Z

′
s), 1)

33: Ld1 ← ℓBCE(d1(Z
′
s), 0) + ℓBCE(d1(Zs), 1)

34: Lf̃−1 ← ℓMSE(X
′, X̂ ′) + λ2ℓBCE(d2(X̂), 1)

35: Ld2 ← ℓBCE(d2(X̂), 0) + ℓBCE(d2(X
′), 1)

36:
37: ∇θh̃ ← ∂Lh̃/∂θh̃; θh̃ ← θh̃ − ηh̃∇θh̃
38: ∇θf̃ ← ∂Lf̃/∂θf̃ ; θf̃ ← θf̃ − ηf̃∇θf̃
39: ∇θd1 ← ∂Ld1/∂θd1 ; θd1 ← θd1 − ηd1∇θd1
40: ∇θf̃−1 ← ∂Lf̃−1/∂θf̃−1 ; θf̃−1 ← θf̃−1 − ηf̃−1∇θf̃−1

41: ∇θd2 ← ∂Ld2/∂θd2 ; θd2 ← θd2 − ηd2∇θd2
42:
43: X̂ ← f̃−1(Zs) ▷ Reconstructed private features
44: Ŷ ← h̃(Zt) ▷ Inferred private labels

Fig. 20. SDAR against U-shaped split learning. ℓ(·, ·) is the loss function
of the original SL task; s, t are the split levels; η is the learning rate of the
original SL task; ηh̃, ηf̃ , ηf̃−1 , ηd1 , ηd2 are learning rates for the server’s
models h̃, f̃ , f̃−1, d1, d2 respectively. p is the label flipping probability. Y is
the set of all possible labels.

in total. We train the model H with split learning protocol for
20000 iterations (i.e., batches). For all attacks, on all datasets,
with both models, at all considered split levels, and under both
vanilla and U-shaped settings, we run five trials for statistical
significance.

C. Implementation details of SDAR

Models. Under our firstly considered threat model where
the server knows the model architecture of H = g ◦ f , the
server uses the same model architecture for its simulator f̃
as the client’s model f , but with random initialization. When
experimenting with the relaxed assumption that the server

x 3

Conv2D
3x3, 16

Input

AveragePooling

FullConnected

Reshape

Output

lv. 6

Conv2D
3x3, 16

Conv2D
3x3, 16

Conv2D
1x1, 32, /2

Conv2D
3x3, 32, /2

Conv2D
3x3, 32

x 2

Conv2D
3x3, 32

Conv2D
3x3, 32

lv. 4

Conv2D
1x1, 64, /2

Conv2D
3x3, 64, /2

Conv2D
3x3, 64

x 2

Conv2D
3x3, 64

Conv2D
3x3, 64

lv. 7

(a) ResNet-20

x 2

x 3

Conv2D
3x3, 16

Input

Conv2D
3x3, 16

Conv2D
3x3, 16

Conv2D
3x3, 32, /2

Conv2D
3x3, 32

Conv2D
3x3, 32

Conv2D
3x3, 32

lv. 4

Conv2D
3x3, 64, /2

Conv2D
3x3, 64

lv. 6

x 2
Conv2D
3x3, 32

Conv2D
3x3, 32

lv. 7

AveragePooling

FullConnected

Reshape

Output

(b) PlainNet-20

Fig. 21. Model architectures and split configurations used in the experiments.
Each box marked as ”Conv2D” represents a convolutional layer with the
specified kernel size, number of filters, and stride (1 if absent), followed by
batch normalization and ReLU.

does not know the architecture of the client model (e.g. in
Table IV), we use ResNet-20 for H while making the server
to use a plain convolutional network as a simulator. This model
structure is obtained by removing the skip connections in the
client’s residual network. For all experiments, the server’s
decoder f̃−1 is a deep convolutional network, where each
building block of f̃ corresponds to a deconvolution block
(deconvolutional layer, followed by batch normalization and
ReLU) in reverse order. Note that we replace deconvolutional
layers with strides 2 with a combination of an upsampling layer
and a convolutional layer, to reduce the checkerboard effects
[36]. For the discriminator d1 which distinguishes intermediate
representations, we use a deep convolutional network with
up to 256 filters, where each convolutional layer is followed
by LeakyReLU and batch normalization except the last layer.
The discriminator d2 that distinguishes real and fake images
follows a rather standard architecture, consists of convolutional
layers, batch normalization and LeakyReLU. In the vanilla
setting where labels are used as part of the input to the decoder
and discriminators, we first transform the labels into embed-
dings of 50 units, and then further transform the embeddings
by a learnable fully connected layer, before concatenating with
the input to the decoder and discriminators. Note that we use
the same model structures for the decoder and discriminators
for both cases of the target model (i.e. ResNet-20 and PlainNet-
20). We list the detailed model structures for the attacker’s
models f̃−1, d1, d2 under vanilla SL in Table XIV.

Hyperparameters. As simulators to f and h respectively,
we choose the learning rate of f̃ and h̃ the same as η,
and we always keep the learning rate of the decoder half
of that of the simulator, i.e., 2ηf̃−1 = ηf̃ = ηh̃ = η.
We choose the regularization factors λ1, λ2 in a way that
the regularization term will not dominate the total loss, but
still non-negligible. For the adversarial regularization of f̃ ,
this means that λ1 should be set s.t. the regularization term
λ1ℓBCE(d1(Z

′
s), 1) should not surpass the classification loss

16

TABLE XIII. HYPERPARAMETERS USED IN SDAR

Setting Dataset Model λ1 λ2 p

Vanilla All datasets Both models 0.02 0.00001 NA
U Shaped CIFAR-10 ResNet-20 0.02 0.00001 0.2
U Shaped CIFAR-100 ResNet-20 0.04 0.00001 0.2
U Shaped Tiny ImageNet ResNet-20 0.04 0.00001 0.2
U Shaped STL-10 ResNet-20 0.04 0.00001 0.2
U Shaped CIFAR-10 PlainNet-20 0.04 0.00001 0.1
U Shaped CIFAR-100 PlainNet-20 0.04 0.00001 0.1
U Shaped Tiny ImageNet PlainNet-20 0.04 0.00001 0.4
U Shaped STL-10 PlainNet-20 0.04 0.00001 0.4

ℓ(Ŷ ′, Ỹ ′). We expect that, when the training stabilizes, the
discriminator loss ℓBCE(d1(Z

′
s), 1) should be around the binary

cross entropy loss of random guess, i.e., log(2) ≈ 0.6931,
to ensure that the simulator and the discriminator can be
continually improved via adversarial training. Therefore, to
ensure that the regularization term λ1ℓBCE(d1(Z

′
s), 1) does

not dominate the total loss, λ1 is chosen to at the order of
magnitude of 10−2, such that the regularization term will have
the order of magnitude of 10−3, which does not dominate the
training classification loss while being non-negligible. For the
adversarial regularization of f̃−1, we choose λ2 to be much
smaller, at 10−5, as the reconstruction loss ℓMSE(X

′, X̂ ′) is
expected to be much smaller than the classification loss, and
the discriminator loss ℓBCE(d2(X̂), 1) should be around log(2)
as well. After determining the regularization factors λ1, λ2, the
learning rates for the discriminators are chosen as ηd1

= λ1ηf̃
and ηd2

= λ2ηf̃ , to ensure that the step size to minimize
generator loss (as a regularization term) is on par with that of
the discriminator loss.

Guided by the above considerations, we set λ1 = 0.02 and
λ2 = 10−5 for all experiments in vanilla SL. For U-shaped
SL, the attacks are more sensitive to the choices of λ1 and the
flip probability p, and we test with different configurations for
different datasets and models and choose the best-performing
combination. In particular, we test λ1 ∈ {0.2, 0.4} and
p ∈ {0.1, 0.2, 0.4}. Note that such hyperparameter search is
feasible in practice, as the server can always run the SDAR
attack multiple times on the observed representations with
different configurations and collect all reconstructed images.
The hyperparameters used in the experiments are shown in
Table XIII.

Training instability. Due to the inherent instability of
GANs, we observe, though very rarely, cases where SDAR
fails to converge, resulting in a high reconstruction loss. In
such cases, we reinitialize the attacker’s models and restart the
training process. We only observe such cases in the U-shaped
setting, and the reinitialization process is only needed in very
few (fewer than 5) trials among our extensive experiments.
Note that such process is feasible in practice, as the server can
always run the SDAR attack multiple times on the observed
representations and collect all reconstructed images.

D. Implementation details of baseline methods

PCAT. We implement PCAT [13] with the exact same
model architectures for simulator and decoder as SDAR for
a fair comparison. We also give the server in PCAT the
same auxiliary dataset as SDAR. Compared to naı̈ve SDA,
PCAT uses two unique techniques to improve its performance.
First, in vanilla SL where the server knows the labels of

the private examples, PCAT aligns these labels by sampling
auxiliary examples with the same labels as the received private
examples. Second, in both vanilla and U-shaped SL, PCAT
introduces a delay in attacking, where the server does not train
its simulator and decoder until a certain number of iterations
have been executed, to avoid the noisy early-stage training
process disturbing the attacks. We implement both techniques,
and choose a delay period of 100 iterations, as used in the
original paper [13]. Note that by the time our research was
conducted, the code of PCAT was not publicly available, so
we implement PCAT from scratch based on the description in
the original paper [13].

UnSplit. UnSplit [9] infers the private features X by
minimizing ℓMSE(f̃(X̂), Zs) via alternating optimization of f̃
and X̂ , where f̃ is a surrogate model of the same architecture
as f but randomly initialized, and X̂ is initialized as tensors
filled with 0.5. We follow the implementation of the original
paper [9] and use the same configuration for the alternating
optimization algorithm. We use Adam optimizer with learning
rate of 0.001 for both f̃ and X̂ . The alternating optimization
process consists of 1000 rounds, each having 100 f̃ optimiza-
tion steps and 100 X̂ optimization steps. Following [9], total
variation is used to regularize the optimization of X̂ . In each
training iteration of SL, UnSplit infers the private training
examples X by running the iterative alternating optimization
procedure. However, due to the extremely high computational
cost of the iterative optimization process, we are unable to run
the optimization algorithm for every training iteration, but only
attack the last batch of training examples.

FSHA. We implement FSHA [38] with the same model
architectures for the encoder, decoder and simulator discrim-
inator as SDAR for a fair comparison. As FSHA utilizes
Wassertein GAN loss with gradiant penalty (WGAN-GP) [18]
for training, which is not compatible with batch normalization
layers in the discriminator, we remove such layers in the
discriminator model. In FSHA, the client’s model f is hijacked
by the server to be updated to simulate the behaviors of the
server’s own encoder f̃ . Following the original paper, we use
learning rate 0.00001 for the training of f as a generator and
use learning rate 0.0001 for the discriminators with gradient
penalty coefficient of 500. The encoder and decoder are trained
in an autoencoder fashion [24] with learning rate 0.00001.

APPENDIX C
FULL EXPERIMENTAL RESULTS

In Section V, we only present experimental results on a
limited number of datasets due to limited space. The full results
of our experiments on all four datasets with both models can
be found in the full version of this paper [64]. In addition,
we also report the attack MSE and label inference accuracy
for U-shaped SL of SDAR over training iterations across all
configurations in the full paper [64].

17

TABLE XIV. ATTACKER’S MODEL STRUCTURES FOR f̃−1, d1, d2 IN VANILLA SL∗

Split Level 4 Split Level 5 Split Level 6 Split Level 7

f̃−1 y = Embedding(num classes, 50)(y)
y = Dense(x.shape[0] * x.shape[1])(y)
y = Reshape((x.shape[0], x.shape[1])(y)
x = Concatenate()([x,y])
x = UpSampling2D((2,2))(x)
x = Conv(32, 3, (1,1))(x)
x = ReLU()(BatchNorm()(x))
x = ConvTranspose(16, 3, (1,1))(x)
x = ReLU()(BatchNorm()(x))
x = ConvTranspose(16, 3, (1,1))(x)
x = ReLU()(BatchNorm()(x))
x = ConvTranspose(16, 3, (1,1))(x)
x = ReLU()(BatchNorm()(x))
x = Conv(3, 3, (1, 1))(x)
x = Sigmoid()(x)

y = Embedding(num classes, 50)(y)
y = Dense(x.shape[0] * x.shape[1])(y)
y = Reshape((x.shape[0], x.shape[1])(y)
x = Concatenate()([x,y])
x = ConvTranspose(32, 3, (1,1))(x)
x = ReLU()(BatchNorm()(x))
x = UpSampling2D((2,2))(x)
x = Conv(32, 3, (1,1))(x)
x = ReLU()(BatchNorm()(x))
x = ConvTranspose(16, 3, (1,1))(x)
x = ReLU()(BatchNorm()(x))
x = ConvTranspose(16, 3, (1,1))(x)
x = ReLU()(BatchNorm()(x))
x = ConvTranspose(16, 3, (1,1))(x)
x = ReLU()(BatchNorm()(x))
x = Conv(3, 3, (1, 1))(x)
x = Sigmoid()(x)

y = Embedding(num classes, 50)(y)
y = Dense(x.shape[0] * x.shape[1])(y)
y = Reshape((x.shape[0], x.shape[1])(y)
x = Concatenate()([x,y])
x = ConvTranspose(32, 3, (1,1))(x)
x = ReLU()(BatchNorm()(x))
x = ConvTranspose(32, 3, (1,1))(x)
x = ReLU()(BatchNorm()(x))
x = UpSampling2D((2,2))(x)
x = Conv(32, 3, (1,1))(x)
x = ReLU()(BatchNorm()(x))
x = ConvTranspose(16, 3, (1,1))(x)
x = ReLU()(BatchNorm()(x))
x = ConvTranspose(16, 3, (1,1))(x)
x = ReLU()(BatchNorm()(x))
x = ConvTranspose(16, 3, (1,1))(x)
x = ReLU()(BatchNorm()(x))
x = Conv(3, 3, (1, 1))(x)
x = Sigmoid()(x)

y = Embedding(num classes, 50)(y)
y = Dense(x.shape[0] * x.shape[1])(y)
y = Reshape((x.shape[0], x.shape[1])(y)
x = Concatenate()([x,y])
x = UpSampling2D((2,2))(x)
x = Conv(64, 3, (1,1))(x)
x = ReLU()(BatchNorm()(x))
x = ConvTranspose(32, 3, (1,1))(x)
x = ReLU()(BatchNorm()(x))
x = ConvTranspose(32, 3, (1,1))(x)
x = ReLU()(BatchNorm()(x))
x = UpSampling2D((2,2))(x)
x = Conv(32, 3, (1,1))(x)
x = ReLU()(BatchNorm()(x))
x = ConvTranspose(16, 3, (1,1))(x)
x = ReLU()(BatchNorm()(x))
x = ConvTranspose(16, 3, (1,1))(x)
x = ReLU()(BatchNorm()(x))
x = ConvTranspose(16, 3, (1,1))(x)
x = ReLU()(BatchNorm()(x))
x = Conv(3, 3, (1, 1))(x)
x = Sigmoid()(x)

d1 y = Embedding(num classes, 50)(y)
y = Dense(x.shape[0] * x.shape[1])(y)
y = Reshape((x.shape[0], x.shape[1])(y)
x = Concatenate()([x,y])
x = Conv(64, 3, (1,1))(x)
x = LeakyReLU()(x)
x = Conv(128, 3, (2,2))(x)
x = LeakyReLU()(BatchNorm()(x))
x = Conv(256, 3, (1,1))(x)
x = LeakyReLU()(BatchNorm()(x))
x = Conv(256, 3, (1,1))(x)
x = LeakyReLU()(BatchNorm()(x))
x = Conv(256, 3, (1,1))(x)
x = LeakyReLU()(BatchNorm()(x))
x = Conv(256, 3, (2,2))(x)
x = Flatten()(x)
x = Dropout(0.4)(x)
x = Dense(1)(x)

y = Embedding(num classes, 50)(y)
y = Dense(x.shape[0] * x.shape[1])(y)
y = Reshape((x.shape[0], x.shape[1])(y)
x = Concatenate()([x,y])
x = Conv(64, 3, (1,1))(x)
x = LeakyReLU()(x)
x = Conv(128, 3, (2,2))(x)
x = LeakyReLU()(BatchNorm()(x))
x = Conv(256, 3, (1,1))(x)
x = LeakyReLU()(BatchNorm()(x))
x = Conv(256, 3, (1,1))(x)
x = LeakyReLU()(BatchNorm()(x))
x = Conv(256, 3, (1,1))(x)
x = LeakyReLU()(BatchNorm()(x))
x = Conv(256, 3, (2,2))(x)
x = Flatten()(x)
x = Dropout(0.4)(x)
x = Dense(1)(x)

y = Embedding(num classes, 50)(y)
y = Dense(x.shape[0] * x.shape[1])(y)
y = Reshape((x.shape[0], x.shape[1])(y)
x = Concatenate()([x,y])
x = Conv(64, 3, (1,1))(x)
x = LeakyReLU()(x)
x = Conv(128, 3, (2,2))(x)
x = LeakyReLU()(BatchNorm()(x))
x = Conv(256, 3, (1,1))(x)
x = LeakyReLU()(BatchNorm()(x))
x = Conv(256, 3, (1,1))(x)
x = LeakyReLU()(BatchNorm()(x))
x = Conv(256, 3, (1,1))(x)
x = LeakyReLU()(BatchNorm()(x))
x = Conv(256, 3, (2,2))(x)
x = Flatten()(x)
x = Dropout(0.4)(x)
x = Dense(1)(x)

y = Embedding(num classes, 50)(y)
y = Dense(x.shape[0] * x.shape[1])(y)
y = Reshape((x.shape[0], x.shape[1])(y)
x = Concatenate()([x,y])
x = Conv(128, 3, (1,1))(x)
x = LeakyReLU()(x)
x = Conv(256, 3, (1,1))(x)
x = LeakyReLU()(BatchNorm()(x))
x = Conv(256, 3, (1,1))(x)
x = LeakyReLU()(BatchNorm()(x))
x = Conv(256, 3, (1,1))(x)
x = LeakyReLU()(BatchNorm()(x))
x = Conv(256, 3, (2,2))(x)
x = Flatten()(x)
x = Dropout(0.4)(x)
x = Dense(1)(x)

d2 y = Embedding(num classes, 50)(y)
y = Dense(x.shape[0] * x.shape[1])(y)
y = Reshape((x.shape[0], x.shape[1])(y)
x = Concatenate()([x,y])
x = Conv(64, 3, (1,1))(x)
x = LeakyReLU()(x)
x = Conv(128, 3, (2,2))(x)
x = LeakyReLU()(BatchNorm()(x))
x = Conv(128, 3, (2,2))(x)
x = LeakyReLU()(BatchNorm()(x))
x = Conv(256, 3, (2,2))(x)
x = LeakyReLU()(x)
x = Flatten()(x)
x = Dropout(0.4)(x)
x = Dense(1)(x)

y = Embedding(num classes, 50)(y)
y = Dense(x.shape[0] * x.shape[1])(y)
y = Reshape((x.shape[0], x.shape[1])(y)
x = Concatenate()([x,y])
x = Conv(64, 3, (1,1))(x)
x = LeakyReLU()(x)
x = Conv(128, 3, (2,2))(x)
x = LeakyReLU()(BatchNorm()(x))
x = Conv(128, 3, (2,2))(x)
x = LeakyReLU()(BatchNorm()(x))
x = Conv(256, 3, (2,2))(x)
x = LeakyReLU()(x)
x = Flatten()(x)
x = Dropout(0.4)(x)
x = Dense(1)(x)

y = Embedding(num classes, 50)(y)
y = Dense(x.shape[0] * x.shape[1])(y)
y = Reshape((x.shape[0], x.shape[1])(y)
x = Concatenate()([x,y])
x = Conv(64, 3, (1,1))(x)
x = LeakyReLU()(x)
x = Conv(128, 3, (2,2))(x)
x = LeakyReLU()(BatchNorm()(x))
x = Conv(128, 3, (2,2))(x)
x = LeakyReLU()(BatchNorm()(x))
x = Conv(256, 3, (2,2))(x)
x = LeakyReLU()(x)
x = Flatten()(x)
x = Dropout(0.4)(x)
x = Dense(1)(x)

y = Embedding(num classes, 50)(y)
y = Dense(x.shape[0] * x.shape[1])(y)
y = Reshape((x.shape[0], x.shape[1])(y)
x = Concatenate()([x,y])
x = Conv(64, 3, (1,1))(x)
x = LeakyReLU()(x)
x = Conv(128, 3, (2,2))(x)
x = LeakyReLU()(BatchNorm()(x))
x = Conv(128, 3, (2,2))(x)
x = LeakyReLU()(BatchNorm()(x))
x = Conv(256, 3, (2,2))(x)
x = LeakyReLU()(x)
x = Flatten()(x)
x = Dropout(0.4)(x)
x = Dense(1)(x)

∗Under U-shaped SL where the server no longer knows the labels of the private data, the model structures follow this table after the removal of label
embeddings and their concatenation with the input.

18

	Introduction
	Preliminaries
	Problem Statement
	Passive attacks against SL
	Feature inference attacks in vanilla SL
	Feature & label inference attacks in U-shaped SL
	Computational complexity
	Technical novelty

	Experiments
	Experimental settings
	Experiments on vanilla SL attacks
	Experiments on U-shaped SL attacks
	Non-i.i.d. multi-client scenarios

	Potential Countermeasures
	Related work
	Conclusion
	References
	Appendix A: Pseudocode
	Appendix B: Implementation details
	Experiment setup
	Split learning setup
	Implementation details of SDAR
	Implementation details of baseline methods

	Appendix C: Full Experimental Results

