
Recurrent Private Set Intersection for Unbalanced
Databases with Cuckoo Hashing and Leveled FHE

Eduardo Chielle
Center for Cyber Security

New York University Abu Dhabi, UAE

Michail Maniatakos
Center for Cyber Security

New York University Abu Dhabi, UAE

Abstract—A Private Set Intersection (PSI) protocol is a
cryptographic method allowing two parties, each with a private
set, to determine the intersection of their sets without revealing
any information about their entries except for the intersection
itself. While extensive research has focused on PSI protocols, most
studies have centered on scenarios where two parties possess sets
of similar sizes, assuming a semi-honest threat model. However,
when the sizes of the parties’ sets differ significantly, a generalized
solution tends to underperform compared to a specialized one, as
recent research has demonstrated. Additionally, conventional PSI
protocols are typically designed for a single execution, requiring
the entire protocol to be re-executed for each set intersection. This
approach is suboptimal for applications such as URL denylisting
and email filtering, which may involve multiple set intersections of
small sets against a large set (e.g., one for each email received).
In this study, we propose a novel PSI protocol optimized for
the recurrent setting where parties have unbalanced set sizes.
We implement our protocol using Levelled Fully Homomorphic
Encryption and Cuckoo hashing, and introduce several optimiza-
tions to ensure real-time performance. By utilizing the Microsoft
SEAL library, we demonstrate that our protocol can perform
private set intersections in 20 ms and 240 ms on 10 Gbps and 100
Mbps networks, respectively. Compared to existing solutions, our
protocol offers significant improvements, reducing set intersection
times by one order of magnitude on slower networks and by two
orders of magnitude on faster networks.

I. INTRODUCTION

A. Private Set Intersection

Private Set Intersection (PSI) is the ability to compute the
intersection of two or more sets held by different parties in
a way that reveals the intersection to one or all parties, and
nothing more. In other words, it enables parties to determine
the common entries in their sets while preserving the privacy of
the non-common entries. PSI has applications in data analysis,
collaborative filtering, recommendation and personalization
systems, market research, and customer profiling. For example,
in the context of market research and customer profiling, online
advertising can use PSI protocols to privately measure ad
conversion rates [42]. In data analysis, companies routinely
share and mine shared information, many times using insecure
methods of exchanging hashed values [54]. This can be made
secure with the use of PSI protocols [35].

PSI has been actively studied, mainly in the context of two
parties with sets of similar sizes [22], [45], [42], [35], [44],
[46], [43], [41]. Nevertheless, when there is significant asym-
metry in the set sizes, a general solution may underperform
a specialized solution in practice, even if it has lower overall
complexity. This has been shown in works considering one
party with a small set and another with a large set [8], [7],
[10], [15], [16], [52], [30]. PSI protocols for unbalanced sets
have practical uses in private contact discovery, where a client
may want to find which of its contacts also utilize a particular
platform (e.g. chat applications) [8]. In this case, the client
has a small set (its contact list), while the service provider has
a large set (the userbase). Under these circumstances, a PSI
protocol optimized for unbalanced sets is preferred.

Existing PSI protocols focus on a single instance of the
protocol. For instance, if we want to compute the set inter-
section X ∩ Y and later X ∩ Y ′, where X , Y , and Y ′ are
sets, we have to execute the entire protocol twice, even if one
of the sets does not change. Yet, there are scenarios where a
party would like to recurrently intersect different small sets
with the same large set. Common use cases include fraud
detection, supply chain verification, targeted marketing, and
URL denylisting. The latter is a security measure employed
by organizations to restrict access to specific websites or web
pages deemed harmful, inappropriate, or otherwise undesirable
[55]. Email security solutions compare URLs in incoming
emails against a denylist of known malicious websites to
protect users against phishing attacks, thus preventing sensitive
information, such as login credentials and financial data, from
being compromised by cybercriminals [47]. However, while
URL denylisting serves a security purpose, it can also raise
privacy concerns, since it typically involves sending the list of
URLs to a third party for comparison against its denylist [50].

PSI protocols provide a means to implement these applica-
tions while safeguarding the privacy of both the organization’s
and the service provider’s confidential data. In this setting, we
anticipate a disparity between the organization’s and service
provider’s set sizes; the former being likely small, and the latter
likely large [4]. In URL denylisting, organizations with several
users or employees expect a high frequency of incoming
emails, while the denylist has relatively seldom updates. This
asymmetry makes the re-execution of the entire PSI protocol
inefficient as the communication of each instance of the pro-
tocol relies on both sets [8]. Our proposal addresses this issue
by optimizing redundant computations and communications,
thus making the communication on the large set a one-time
cost while having a recurrent linear cost on the smaller set.

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.240365
www.ndss-symposium.org

B. Related Work

Extensive research has been conducted on PSI protocols
over the course of many years, most of which focus on two
parties in the semi-honest threat model. We follow related
work’s terminology by denoting the two parties as sender
and receiver, where the receiver is the one that learns the
intersection. PSI protocols fall into two main categories: those
that are adaptable or readily adjustable to tackle similar tasks
that are functions of the intersection f(X∩Y) (such as the PSI
cardinality protocol [43]), termed as Circuit-based PSI proto-
cols, and those specifically crafted for private set intersections,
necessitating substantial modifications for addressing analo-
gous issues (e.g. Labelled PSI [7], [15]), which we refer as
Exclusive PSI protocols. We can further categorize Exclusive
PSI protocols into two types: those intended for resolving set
intersections in a general context, without presumptions about
sets sizes, network speed, etc, labeled as Complexity-based
PSI protocols, and those tailored for particular scenarios (e.g.,
unbalanced set sizes, low communication bandwidth), referred
to as Specialized PSI protocols. It is evident that while broader
PSI protocols offer greater versatility by addressing a wider
range of problems, specialized PSI protocols are more efficient
for the specific scenarios they target.

Circuit-based PSI protocols are commonly built using
boolean primitives such as Yao’s garbled circuits [53], [3],
[28]. HEK [32], [31] demonstrated that their Circuit-based PSI
protocol crafted using garbled circuits outperforms the blind-
RSA protocol of CT [17]. PSZ improved on HEK’s protocol
by employing features of random Oblivious Transfer (OT) to
optimize the performance of multiplexer gates, which comprise
the majority of the circuit design [45], [42]. Further advance-
ments were made by PSTY [43] through the incorporation of
Oblivious Programmable Pseudo-Random Functions (OPPRF)
introduced by KMPRT [36]. PSWW [44] proposes a variant
of Cuckoo hashing, where each party contains four tables
organized into a 2× 2 grid. The receiver maps its entries into
a single column of the grid, while the sender maps its entries
into a single row of the grid. This approach reduces the number
of comparisons per element during set intersection.

Complexity-based PSI protocols prioritize minimizing the
computation and communication complexity of computing set
intersections. Consequently, such protocols typically demon-
strate robust scalability across varying settings. FNP [22]
proposed a PSI protocol where the receiver encodes its set
as roots of a polynomial, which are evaluated by the sender
using an additive homomorphic encryption scheme (Paillier).
More recent works typically rely on OT extensions [33] for
their construction. DCW [19] combined OT extensions with
Bloom filters [5] to obtain an efficient PSI protocol. PSZ [45]
improved on that protocol by replacing the Bloom filter with
a 2-way Cuckoo hashing with stash, increasing bin utilization
and, therefore, reducing communication cost. This work has
been significantly improved by PSSZ [42], which is considered
the most efficient Complexity-based PSI protocol to date. In
their work, the authors used a new 1-out-of-N OT protocol
instead of the previously used 1-out-of-2 OT protocol. In ad-
dition, they replaced the 2-way Cuckoo hashing with stash by
a 3-way Cuckoo hashing with stash, increasing bin utilization
further. Moreover, they proposed the use permutation-based
hashing to reduce the bit size of data stored in the hash table.

Specialized PSI protocols are tailored for specific scenar-
ios. Common settings are unbalanced set sizes, fast or slow
networks, low processing power, or large entry sizes. KKRT
[35] proposed an Oblivious Pseudo-Random Function (OPRF)
based on the groundbreaking work on Oblivious Transfers of
IKNP [33], and applied it to the Private Set Intersection prob-
lem in the semi-honest threat model. The proposal removes the
dependency on the bit size of set entries, making it relatively
faster for large bit sizes (> 128 bits). PRTY [41] presented a
protocol tailored for slow networks (10 Mbps). In their paper,
they proposed a new variant of oblivious transfer extension
called sparse OT extension that relies on manipulating high-
degree polynomials over large finite fields. In the context of
unbalanced sets, CLR [8] proposed an approach using Fully
Homomorphic Encryption (FHE) and Cuckoo hashing without
stash, optimized for the setting where the receiver’s set is much
smaller than the sender’s set. They showed that their work
computes the set intersection faster than PSSZ [42] and KKRT
[35] for the targeted scenario.

C. Contributions

Our work addresses a critical gap in the context of Pri-
vate Set Intersection protocols by introducing the first secure
and practical solution tailored for the recurrent intersection
of unbalanced sets. While existing work requires parties to
recompute the entire PSI protocol for each subsequent set inter-
section, leading to inefficiencies, our method leverages leveled
fully homomorphic encryption to enable efficient computation
and communication for the recurring setting. Specifically, our
protocol achieves communication linear to the smaller set
size for subsequent intersections, which is comparable to the
naive, yet insecure solution. Additionally, we propose several
optimizations to mitigate computation and communication
overheads. In summary, we:

• Develop a PSI protocol based on Leveled FHE, opti-
mized for the recurrent set intersection scenario;

• Propose and integrate various optimizations to signif-
icantly reduce computation and communication costs;

• Conduct thorough analysis to determine optimal pa-
rameters and avoid resource-intensive FHE operations;

• Demonstrate real-time performance for targeted ap-
plication, showcasing one to two orders of magnitude
faster set intersections compared to prior work;

• Open-source our C++ implementation, built using the
Microsoft SEAL library and BFV encryption scheme.

By addressing these challenges, our work contributes a
practical solution for efficient and secure PSI in the recur-
rent setting, with implications for various privacy-preserving
applications. We compare our work with CLR [8], the fastest
PSI protocol for unbalanced sets, KKRT [35], a fast protocol
for large entries in fast networks, and PSSZ [42], the most
efficient PSI protocol in the general case.

Paper Roadmap: §II introduces the necessary notations,
background information on Leveled FHE, alongside the threat
model. In §III, we present a basic PSI protocol compatible with
FHE. We propose several optimizations in §IV to significantly
improve the basic PSI protocol and make it compatible with
Leveled FHE. §V reveals the full protocol, which we evaluate
and compare to related work in §VI.

2

II. PRELIMINARIES

A. Notations

For the remainder of this paper, and unless explicitly stated
otherwise, we adhere to the following notations:

• S denotes sender and R denotes receiver;

• σ represents the set entry size in bits;

• |◦| is the size function. It returns the number of entries
in a set or the bit size of an entry;

• X and Y refer to S’s set of size |X| and R’s set of
size |Y |, respectively;

• n, q, t are terms related to fully homomorphic en-
cryption that represent the degree of the polynomial
modulus, ciphertext modulus, and plaintext modulus;

• ◦ denotes the encryption function under S’s key. It
can encrypt an entry or variable x, or an entire set X;

• ◦̂ designates the encryption function under R’s key. It
can encrypt an entry or variable ŷ or set Ŷ ;

• κ and λ represent the computational and statistical
security parameters, respectively;

• h and k refer to the number of hash functions, and
the number of hash tables in Cuckoo hashing;

• ηs and ηr represent S’s and R’s partitioning parame-
ters, respectively.

B. Threat Model

In this work, we design a two-party PSI protocol using
Leveled Fully Homomorphic Encryption and prove it to be
secure in the semi-honest threat model, wherein parties adhere
to the protocol but might attempt to learn information about
each other’s sets. Following most of the existing PSI protocols,
we assume public knowledge of set sizes |X| and |Y |, along
with the entries’ bit size σ. Nevertheless, the entries’ values are
deemed private. Additionally, R learns the intersection, while
S learns no information.

C. Leveled Fully Homomorphic Encryption

Homomorphic Encryption (HE) is a special type of en-
cryption that enables meaningful computation to be performed
directly in the encrypted domain [2], [13]. The term ho-
momorphism refers to a function between two groups that
preserves the group structure in each group [20]. With re-
spect to HE, the groups refer to elements in the plaintext
space P and elements in the ciphertext space C. Suppose we
have an operation on plaintexts ◦ and its homomorphically
equivalent operation on ciphertexts ⊚. As an example, consider
plaintexts ma,mb ∈ P and mc = ma ◦ mb. The encryption
operation defines a function enc(·) : P 7→ C that maps a
plaintext to a ciphertext. Conversely, the decryption function
dec(·) : C 7→ P maps a ciphertext to a plaintext. Therefore,
we have that ma 7→ enc(ma) = ca, mb 7→ enc(mb) = cb,
and mc 7→ enc(mc) = cc. Since mc = ma ◦ mb, we expect
cc = ca⊚ cb. We formally define the homomorphism property
of HE operations as follows:

mc = ma ◦mb =⇒ enc(mc) = enc(ma)⊚ enc(mb)

=⇒ enc(ma ◦mb) = enc(ma)⊚ enc(mb)

=⇒ ma ◦mb = dec(ca ⊚ cb)

While there are several types of homomorphic encryption,
Fully Homomorphic Encryption (FHE) possesses at least two
orthogonal homomorphic operations allowing any number of
arbitrary computations [24], [25]. Without loss of generality,
in this work we employ the BFV encryption scheme [21].

1) Brakerski/Fan-Vercauteren (BFV) Encryption Scheme:
The BFV encryption scheme [21] is an FHE scheme based
on the Ring-Learning With Errors (RLWE) problem [37].
It operates on two polynomial rings, one representing the
plaintext space, characterized by the polynomial ring P =
Zt[x]/(x

n + 1), and the other the ciphertext space, charac-
terized by C = Zq[x]/(x

n + 1), where n denotes the degree
of the polynomial modulus, and t, q, and xn+1 represent the
plaintext, ciphertext, and polynomial moduli, respectively. Let
m ∈ P be a plaintext, kp = (kp1, kp2 ∈ C) be an encryption
key, and c = (c1, c2 ∈ C) be an encryption of m with key kp;
the encryption function enc(kp,m) 7→ c defines a map from
P to C. The ciphertext c, consisting of polynomials c1 and c2,
is computed according to Eqs. 1 and 2, where u is a random
polynomial with coefficients from the set {−1, 0, 1}, e1 and e2
are small random polynomials draw from a discrete Gaussian
distribution, and ∆ = ⌊q/t⌋ serves as a scaling factor.

c1 = kp1 · u+ e1 +∆m (mod q) (1)
c2 = kp2 · u+ e2 (mod q) (2)

2) Leveled Fully Homomorphic Encryption: As observed
in Eqs. 1 and 2, noise is added to ciphertexts for security.
This noise compounds with every homomorphic operation in
RLWE-based FHE schemes [6], [21], [9]. It increases linearly
with ciphertext additions and exponentially with ciphertext
multiplications. Eventually, at a certain computational depth,
the noise becomes substantial enough to corrupt the plaintext
value within the ciphertext. To mitigate this, bootstrapping
can be employed. Bootstrapping is a technique that homomor-
phically decrypts a ciphertext and, thus, resets the ciphertext
noise to a lower level [26]. This technique is necessary for
enabling FHE in RLWE-based encryption schemes. However,
bootstrapping is an extremely costly operation. Therefore, it
is avoided whenever possible. FHE without bootstraping is
called Levelled Fully Homomorphic Encryption (LFHE) [6].
In LFHE, the encryption parameters (n, q, t) are chosen to
provide a desired security level κ and sufficient noise budget
for a predefined arithmetic circuit with known depth δ and
message size σ, as formalized by function setup(·) in Eq. 3.

n, q, t = setup(κ, σ, δ) (3)

This strategy significantly enhances the efficiency of ho-
momorphic computation, especially for circuits with shallow
depth; hence, LFHE is utilized in this work.

3

III. BASIC PROTOCOL

We present a basic PSI protocol in its naive form in
Protocol 1. This protocol is designed for the recurrent setting
with unbalanced set sizes. We emphasize that Protocol 1 is
inefficient and serves only as a blueprint for our actual PSI
protocol (Protocol 2). In Protocol 1, the sender S has a set X
of size |X| and the receiver R has a set Y of size |Y |, where
|Y | ≪ |X|. Both sets contain entries of size σ. In the basic
protocol, we assume sets X and Y , and consequently their
entries, to be private, while set sizes |X| and |Y |, and entry
size σ are considered public. Our goal is to employ FHE to
privately compute the set intersection X ∩ Y and reveal it to
R. At the same time, we disclose nothing to S. Furthermore,
we would like to enable the recurrent computation of set
intersections for different sets Y (1), Y (2), ..., Y (m) that may
arrive at different moments in time. The goal is to perform
this computation without waiting for the last set to arrive, i.e.,
without merging all sets into a single larger set Y = ∪m

i=1Y
(i)

and then performing the set intersection with X . Additionally,
the protocol should avoid rerunning the entire process each
time a new set arrives.

Initially, the parties agree on a Fully Homomorphic Encryp-
tion scheme and encryption parameters (n, q, t). S encrypts
each entry xi of its set X using its encryption key, and sends
the encrypted set X composed of |X| ciphertexts to R. For
each entry yj ∈ Y , R homomorphically subtracts yj from
each encrypted entry xi ∈ X . If yj = xi, then the subtraction
will be zero (encrypted), indicating that yj ∈ X . Thus, the
product of all subtractions in step (3b) will be zero if yj ∈ X
and non-zero otherwise. To prevent S from learning the size
of the intersection, we add a random value rj ∈ Zt sampled
from a uniform distribution to the result of the product.1 R
encrypts rj 7→ r̂j under its own key and sends it to S together
with the result of the computation dj , which is under S’s
key. S decrypts dj 7→ dj and homomorphically computes
r̂j − dj . Again, if the result of the subtraction is zero, this
time encrypted under R’s key, then yj ∈ X . We multiply
the result of the subtraction by a non-zero random plaintext
ρj ∈ Zt\{0} sampled from a uniform distribution to prevent
leaking any information from S’s set X to R in case yj /∈ X .
S sends the resulting ciphertext êj to R, which R decrypts
and compares to zero. If ej = 0, then yj ∈ X .

We present the following informal theorem concerning the
security and correctness of the basic protocol.

Theorem 1 (Basic Protocol). Within the semi-honest threat
model, Protocol 1 correctly and privately computes the inter-
section of sets X and Y , contingent upon the fully homomor-
phic encryption scheme being IND-CPA secure and achieving
circuit privacy.

Proof: We sketch a proof using the parties’ views:

S’s view: S receives ciphertexts (dj , r̂j). Ciphertext r̂j
looks pseudorandom to S since it is under R’s key and the
FHE scheme is IND-CPA secure. S knows the plaintext value
of dj because it is under its own key; therefore, it can decrypt

1We can allow S to learn the size of the intersection while keeping the
protocol secure by replacing the addition of a random number with the
multiplication of a non-zero random number.

Protocol 1 Basic Protocol
Input: S inputs set X and R inputs set Y . Both sets consist
of bit strings of length σ. Sizes |X|, |Y |, and σ are public.
Output: S outputs ⊥; R outputs X ∩ Y .

1) Setup: Parties agree on a Fully Homomorphic En-
cryption scheme and encryption parameters (n, q, t).

2) Set encryption: S encrypts each element xi ∈ X
under its own key, and sends the |X| ciphertexts X =
(x1, ..., x|X|) to R.

3) Computing intersection: For each yj ∈ Y , R:
a) samples a random plaintext rj ∈ Zt from a

uniform distribution;
b) homomorphically computes

dj = rj +

|X|∏
i=1

(xi − yj)

c) encrypts rj 7→ r̂j under its own key;
d) sends dj and r̂j to S.

4) Decryption: For each (dj , r̂j), S:
a) decrypts dj 7→ dj ;
b) samples a non-zero random plaintext value

ρj ∈ Zt\{0} from a uniform distribution;
c) homomorphically computes

êj = (r̂j − dj) · ρj
d) sends êj to R.

5) Result: R decrypts êj 7→ ej and outputs

X ∩ Y = ∪|Y |
j=1{yj : ej = 0}

it (dj 7→ dj). Nevertheless, dj is a uniform random number
in Zt since it contains the addition of the random number rj .
Thus, S learns nothing about Y .

R’s view: R receives X from S. Any ciphertext xi ∈ X
appears random to R since they are encrypted under S’s key
and the FHE scheme is IND-CPA secure. Furthermore, R
learns the decryption of êj as it is under its own key (êj 7→ ej).
Since êj = (r̂j − dj) · ρj , where ρj is a uniform non-zero
random number in Zt\{0}, then ej = 0 ⇐⇒ yj ∈ X (cor-
rectness) and a non-zero random number otherwise. Therefore,
R learns the intersection X ∩ Y and nothing more.

Now let us now consider several sets Y (1), Y (2), ..., Y (m)

arriving at different moments in time. We can see that steps
(1) and (2) in Protocol 1 are a one-time cost as they do not
involve set Y . Avoiding step (2) is particularly relevant since
sending X to R has the largest communication cost because
|Y | ≪ |X|. Therefore, for each set Y (i), we have to repeat
only steps (3) to (5). Yet, step (3) is especially costly as it
requires R to compute O(|X| · |Y |) expensive homomorphic
multiplications. This is compounded by the fact that in FHE,
the multiplicative depth of an arithmetic circuit dictates the
selection of encryption parameters for a desired security level.
Simply put, the larger the multiplicative depth, the larger the
encryption parameters n and q, which makes computation and
communication using FHE ciphertexts less efficient. In the rest
of the paper, we present techniques to transform this inefficient
basic protocol into an efficient PSI protocol.

4

IV. OPTIMIZATIONS

A. Hashing

Hashing is a technique that maps elements into bins of
a table using a deterministic function called hash function.
The use of hash data structures enable search in O(1). This
is particularly interesting for our problem, since in step (3b)
of Protocol 1, we are basically performing a linear search
on an unordered list. Instead, if entries in sets X and Y
had been previously hashed, we would have to compare only
entries within the same bin, greatly reducing the number of
homomorphic operations.

1) Simple Hashing: Let us first understand how Protocol
1 would work with the use of simple hashing. S hashes each
entry x ∈ X with hash function H(·) and inserts x into the
bin at position H(x) of the hash table. Clearly, there will be
unbalance in the number of entries in each bin, which could
leak more information than the intersection to R. To prevent
such leakage, we need to pad the bins with dummy values to
a maximum size. Finding the maximum load when inserting
m elements into n bins is equivalent to a classical problem
in probability theory known as balls into bins problem. It
has been shown that the maximum load for m = n is of
order O(logm

log logm) with high probability [48]. This means that
the number of homomorphic operations per entry y ∈ Y
performed by R reduces from O(m) to O(logm

log logm). On the
other hand, S has to send O(m logm

log logm) ciphertexts to R, which
is a significant increase in communication for a large m.

2) Cuckoo Hashing: Ideally, we would like to get the
computational benefits from hashing without the extra commu-
nication cost. We can do that by combining Cuckoo hashing
with Permutation-based hashing. Cuckoo Hashing [39] is a
method for resolving hashing collisions and build compact
hash tables. It maps each one of the |X| entries x ∈ X
into a bin of the hash table using one of the h ≥ 2 hash
functions H1, ...,Hh. To insert entry x, we select a random
hash function Hi from the set {H1, ...,Hh} and place (x, i)
at location Hi(x). If the bin is occupied, we have a collision
since Hi(x) = Hj(x

′). In such an event, we evict the current
entry x′ in the bin in favor of the new entry x. Then, we re-
hash x′ using a different hash function Hk(x

′) : k ̸= j and
reinsert it at the new location. This process repeats recursively
until there are no more collisions or the algorithm fails. Upon
a successful hashing procedure, each bin of the Cuckoo hash
table will either contain one entry or remain empty. In order to
prevent any leakage, we must pad all empty bins to one entry
using dummy values.

3) Hashing Failures: The Cuckoo hashing algorithm fails
when it detects a loop or the recursion depth surpasses a
predefined threshold. To tackle hashing failures, two solutions
exist: 1) inserting the currently evicted element into a special
data structure known as stash, typically implemented as a list,
or 2) replacing the set of hash functions and restarting the
algorithm. For the first approach, it has been shown that for
h = 2, a hash table with |T | = 2(1 + ϵ)m bins, and a
stash size s ≤ lnm, where m is the number of elements,
the insertion succeeds with high probability for ϵ > 0 [40],
[34]. Essentially, this implies that Cuckoo hashing with stash
achieves approximately 50% bin utilization when h = 2.
Higher utilization is achievable with h > 2 [18]. PSSZ [42]

empirically determined the stash size in which Cuckoo hashing
succeeds with high probability for h = 3. Unfortunately,
the utilization of a stash data structure severely impacts the
efficiency of FHE computation [8], thus it is preferable to avoid
using it.

The second option poses an information leakage risk if
hashing fails. Since only S hashes its set into a Cuckoo
hash table, it can select hash functions autonomously and
share them with R only upon successful hashing. If hashing
fails, S replaces the hash functions and repeats the process
until it succeeds. Consequently, R deduces that S’s set X
originates from the set of sets X(i) for which Cuckoo hashing
succeeds. In essence, R can eliminate sets X(j) that fail
with the selected hash functions. Although this leakage is
likely weak, quantifying it is challenging. Thus, to prevent
any leakage without resorting to a stash, the probability of
hash failure must be overwhelmingly low (≤ 2−λ). CLR [8]
estimated the maximum insertion capacity for small tables of
sizes {8192, 16384} with h = 3. In our setting, with a large
set and, consequently, a large table, we would like to find the
highest load where Cuckoo hashing without stash fails with
negligible probability. We determine the maximum load of a
Cuckoo hash table experimentally in §VI-A.

4) Permutation-based Hashing: ANS [1] proposed a tech-
nique to reduce the memory usage of Cuckoo hashing termed
Permutation-based Hashing. Let |x| denote the size of an item
x, where x = xL|xR is the concatenation of its left (xL) and
right (xR) parts. Additionally, let σL = |xL| = log2|T |, where
|T | is the number of bins in the hash table. We define a random
function f(·) : Z 7→ Z that maps i ∈ Z : 0 ≤ i < 2σR to the
range f(i) ∈ Z : 0 ≤ f(i) < |T |, where σR = |xR|. In the
original Cuckoo hashing, one has to store |x| bits per item,
while with permutation-based hashing, it is necessary to store
only |xR| bits. This reduction is achieved by mapping x to bin
xL⊕f(xR). The structure of the mapping function guarantees
that if two items x and x′ store the same value in the same
bin, then x = x′. This assertion arises from the fact that the
stored items are identical (xR = x′

R), thus f(xR) = f(x′
R).

Moreover, since the items are mapped to the same bin, we
have that xL ⊕ f(xR) = x′

L ⊕ f(x′
R), therefore xL = x′

L,
and ultimately x = x′.

5) Data Compression: When the number of entries in sets
X and Y = ∪m

i=1Y
(i) is much less than the domain size |X|+

|Y | ≪ 2σd , where σd is the number of bits needed to represent
an entry, we can use simple hashing to compress entries and
reduce their bit size.2 As a constraint of the PSI protocol,
we require the probability of collision when hashing to be
P (collision) ≤ 2−λ. This is equivalent to the birthday problem
[38]. Assuming that m = |X| + |Y | ≤ θ, where θ = 2σh is
the hashed domain size, we have:

P (collision) = 1−
m−1∏
i=1

(
1− i

θ

)
≈ 1− e−

m(m−1)
2θ ≤ 2−λ

Solving for θ, we find that for the hashed entries to have
a P (collision) ≤ 2−λ, their bit size σh should be:

2Note that without R doing any statistical analysis of its sets, we must
consider the worst case w.r.t. the combined set size |Y | =

∑m
i=1 |Y (i)|.

5

θ =
−m(m− 1)

2 ln(1− 2−λ)
≈ m2 · 2λ−1 =⇒ σh ≈ 2 log2 m+ λ− 1

(4)

Therefore, the number of bits σ necessary to represent each
entry is given by:

σ = min(σd, σh) (5)

6) Cuckoo Hashing vs Simple Hashing: Both simple hash-
ing and Cuckoo hashing offer fast search times. For each entry
y ∈ Y , R has to perform O(logm

log logm) homomorphic operations
for simple hashing or O(h) homomorphic operations for
Cuckoo hashing, where m represents S’s set size |X| and h
denotes the number of hash functions in Cuckoo hashing. For a
sufficiently large set X , it holds that h < logm

log logm as h is small
(h ≤ 4). Furthermore, Cuckoo hashing exhibits advantages
w.r.t. communication. While simple hashing has a commu-
nication complexity of O(m logm

log logm), Cuckoo hashing shows
O(m) complexity. Additionally, in terms of the total size
of hash table in bits (excluding encryption), simple hashing
scales as O(σhm logm

log logm), while Cuckoo hashing is of the order
O(|xR|·m) due to the utilization of permutation-based hashing.
Unfortunately, simple hashing cannot leverage permutation-
based hashing since it stores more than one element per bin.
Limiting the bin capacity of simple hashing to one element is
also undesirable, as from Eq. 4, one can see it would require
a table of size |X|2 · 2λ−1 for a collision probability ≤ 2−λ.
This would result in an immense communication cost from S
to R since empty bins need to be padded with dummy values
for security. Therefore, Cuckoo hashing emerges as the clear
choice to handle S’s set in our protocol.

B. Quadruple Chinese Remainder Theorem (QCRT)

The Chinese Remainder Theorem (CRT) provides a method
to solve systems of simultaneous congruences, where each
congruence is modulo a different modulus, and the moduli
are coprime. In other words, the system of congruences

x ≡ ai (mod mi) ∀i ∈ Z : 1 ≤ i ≤ k (6)

is solved by

x ≡
k∑

i=1

ai ·Mi ·M−1
i (mod M) (7)

where k is the number of congruences, M =
∏k

i=1 mi, Mi =
M
mi

, and Mi ·M−1
i ≡ 1 (mod mi).

In this work, we apply CRT to four different levels.

1) Level 1 CRT: Residue Number System: In FHE, the
ciphertext modulus q is a large number with hundreds of bits.
This makes computation on encrypted data particularly slow
as the coefficient size is not natively supported by modern
64-bit CPU architectures. The Residue Number System (RNS)
enables us to break the ciphertext modulus q into several
smaller unique prime moduli such that q =

∏l
i=1 qi, where

l is the number of limbs or towers. Thus, we can represent a
large coefficient with several smaller coefficients following Eq.

6. By setting the size of each modulus |qi| < 64 bits, we can
efficiently operate on ciphertexts using the natively supported
data sizes. This comes at a slight increase in the ciphertext
size 2 · n · |q| → 2 · n · W · l since l =

⌈ |q|
W

⌉
and W = 64

for a 64-bit architecture. We refer to LPR [29] for a detailed
explanation of the RNS used in FHE.

2) Level 2 CRT: Polynomial Multiplications via NTT:
Recall that ciphertexts are composed of two large polynomials
in Zq[x]/(x

n + 1). In §IV-B1, we show how RNS breaks the
large modulus q into smaller moduli qi. However, we still
need to operate on large polynomials. Polynomial additions
and subtractions are efficiently computed in O(n) since we
simply have to add coefficients of the same order. At the same
time, naive polynomial multiplications require us to multiply
each coefficient of a polynomial with all coefficients of the
other polynomial. Thus, the operation has a time complexity
of O(n2). By using the Number Theoretic Transform (NTT),
which is a form of CRT on polynomials, we can convert
polynomials from the coefficient form to the so-called evalua-
tion form [14]. We can multiply (add) two polynomials in the
evaluation form in O(n) by multiplying (adding) coefficients
of the same order. This leads to a substantial speed-up of steps
(3b) and (4c) of Protocol 1. Converting a polynomial from
the coefficient form to the evaluation form or vice-versa has
a time complexity of O(n log n). Nevertheless, this cost can
be amortized since we can perform many operations in the
evaluation form. The combination of RNS and NTT is called
Double CRT (DCRT) by the FHE community [27].

3) Level 3 CRT: Batching: According to the plaintext space
Zt[x]/(x

n + 1), a plaintext must be encoded into a (n − 1)-
degree polynomial, where the n coefficients are modulo t.
Encoding a single small plaintext into n coefficients is quite
wasteful. Batching allows us to encode a vector of n plaintexts
into a single (n− 1)-degree polynomial and operate on them
simultaneously in a Single-Instruction Multiple-Data (SIMD)
fashion. From Eq. 7, we know it is possible to encode a tuple
of messages (p1, p2, p3) ∈ Za ×Zb ×Zc into a single value p
(mod a · b · c). Operations on values in Za·b·c are equivalent to
SIMD operations on values in Za, Zb, and Zc simultaneously.
Batching does the same, but on polynomials instead of integers
using the inverse NTT operation. This enables us to perform
SIMD operations on n plaintexts at the same time [11], [12].
See SV [51] for a complete description of the technique.

4) Level 4 CRT: Packing: The plaintext modulus t let us
encode log2 t bits of information into a single plaintext. If the
amount of information we are encoding per batching slot is
significantly less than t, then we are wasting plaintext space.
Following the same idea of batching, we can once again apply
CRT, but this time in Zt, i.e., we can divide the plaintext
coefficient ring space into several smaller spaces with coprime
moduli Zt1 , ...,Ztk such that t =

∏k
i=1 ti. By doing so, we

are able to encode k plaintexts ∈ Zti per batching slot using
Eq. 7. This enables us to pack k ·n plaintexts into a ciphertext
and operate on them in parallel, resulting in a performance
improvement and communication cost reduction of several
orders of magnitude since the product k · n is large (in the
thousands to tens of thousands). Although several packing
techniques for FHE exist, we are unaware of any other work
that uses CRT for packing.

6

Fig. 1: Data encoding.

5) Data Encoding: With respect to our PSI protocol, the
combination of batching and packing allows us to encode n
bins of k Cuckoo hash tables into a single ciphertext, where
each table corresponds to a particular packing slot index. Thus,
all values of a table have the same modulo ti. The reason
for using k tables instead of a single one is to avoid privacy
leakage. We defer the discussion of the privacy implications of
QCRT to §IV-B6. To distribute the load of S’s set X across k
different tables, we define a function g(·) : Z 7→ Z that maps
i ∈ Z : 0 ≤ i < 2σ to the range g(i) ∈ Z : 1 ≤ g(i) ≤ k
uniformly. Each entry x ∈ X is then inserted into a single bin
of the Cuckoo hash table T (g(x)). With X mapped across k
Cuckoo hash tables, we expect the maximum load of a table
to exceed that of using a single table

(
max |X(i)|

|T (i)| ≥ |X|
|T |

)
.

Finding the maximum number of entries associated with a table
is equivalent to the balls into bins problem for the case where
the number of balls m (entries x ∈ X) vastly surpasses the
number of bins n (Cuckoo hash tables), i.e., m ≫ n. When
m > n log n, the maximum load is m

n + O
(√

m logn
n

)
with

high probability [48]. Further details on table sizes for various
set sizes and number of tables are provided in §VI-A.

Fig. 1 illustrates the process of encoding k Cuckoo hash
tables into packing slots, batching slots, and ciphertexts, where
each ciphertext contains n batching slots, and each batching
slot contains k packing slots. Formally, we define an encoding
function γ(·) : Z × Z 7→ Z × Z × Z that maps the table
index i ∈ Z : 1 ≤ i ≤ k and bin index j ∈ Z|T (i)| at table
T (i) to ciphertext index

⌊
j
n

⌋
∈ Z⌈ |T (i)|

n

⌉, batching slot index

j (mod n) ∈ Zn, and packing slot index i − 1 ∈ Zk. The
complete mapping function from the set of Cuckoo hash tables
T (i) to the set of ciphertexts C(·) is given by

T
(i)
j 7→ C

(⌊
j
n

⌋)
j mod n, i−1 (8)

6) Privacy Implications of QCRT: Given that RNS and
NTT manipulate ciphertexts, they do not raise any privacy
concerns for our PSI protocol. However, special attention is
required for batching and packing as they involve plaintext
data encoding. When performing the equivalent of step (3b) of
Protocol 1 on S’s Cuckoo hash table, adding the same random
value rj to all batching slots could enable S to learn which
bins the ciphertext contains, potentially exposing R’s entry y.
This can be mitigated by adding an independent random value
to each batching slot. Therefore, instead of adding the tuple
(rj , ..., rj), we add (rj1, ..., rjn) slot-wise. The same principle

applies to ρj at step (4c). Nevertheless, another privacy concern
arises at step (4c). If y ∈ X , one slot of ciphertext ej will
decrypt to zero. By discerning the position of the zero value,
R could deduce which of the h hash functions S used to
hash item x = y. This can be prevented by homomorphically
rotating ciphertext ej by a random constant ω ∈ Zn before
returning it to R.

Packing encounters the same two privacy issues as batching
since it involves multiple packed plaintexts within a batching
slot. Nevertheless, addressing the first issue of batching also
resolves the corresponding issue for packing, as a random num-
ber modulo t is equivalent to a set of random numbers modulo
ti ∀i ∈ Z : 1 ≤ i ≤ k (Eq. 7). Attention is needed regarding
ρj at step (3b) since none of the set of random numbers should
be zero, implying that the random number modulo t cannot be
a multiple of any modulo ti ∀i ∈ Z : 1 ≤ i ≤ k. With respect
to the second issue however, homomorphic rotation does not
solve it for packing since each packed value remains under
its respective modulo ti. This problem is addressable with the
use of k Cuckoo hash tables, each corresponding to a modulo
ti. This ensures that any value x is consistently mapped under
the same modulo, regardless of the hash function used. Since
each table Ti operates with its unique modulo ti, R cannot
discern which hash function S used to hash entry x = y.

7) Constraints on Parameter Selection: In §IV-B1, we
establish q as a product of primes. To ensure efficient RNS
in 64-bit architectures, we limit the size of each prime qi to
< 64 bits. Furthermore, we constrain the polynomial modulus
degree n to be a power of two for optimal NTT (§IV-B2).
Additionally, we set each qi = 2βn+1 for some β ∈ Z : β > 1
to enable the use of negative wrapped convolution. Moreover,
batching (§IV-B3) requires the plaintext modulus t to be
congruent to t ≡ 1 (mod 2n). Thus, for packing (§IV-B4)
to be compatible with batching, it follows that

∏k
i=1 ti ≡ 1

(mod 2n), and hence ti ≡ 1 (mod 2n) ∀i ∈ Z : 1 ≤ i ≤ k.

C. Other FHE Considerations

1) Partitioning: It is a technique that permits reducing the
number of homomorphic operations and multiplicative depth in
exchange for extra communication. Consider, for instance, the
product in step (3b) of Protocol 1. When employing Cuckoo
hashing, the number of homomorphic multiplications decreases
from O(|X|) to O(h). Without partitioning, one would need
to execute h − 1 homomorphic multiplications and transmit
one ciphertext dj to S. However, with partitioning, it becomes
possible to compute η fewer multiplications at the cost of
sending η additional ciphertexts to S. Partitioning operates
along a spectrum: on one end lies the conventional approach
of performing h−1 homomorphic multiplications and sending
one ciphertext to S, while on the opposite extreme, no ho-
momorphic multiplication is performed, but h ciphertexts are
sent to S. Through the use of partitioning, we can reduce the
number of homomorphic operations and multiplicative depth,
albeit necessitating to transmit more ciphertexts. Nevertheless,
due to the reduced multiplicative depth, it becomes possible to
utilize more efficient encryption parameters, thereby resulting
in smaller ciphertext sizes.

2) Modulus Switching: It is a method used to decrease
the size of ciphertexts, which involves replacing the ciphertext

7

modulus q with a smaller modulus q′ < q [6]. This reduction
in size is beneficial as it lowers the communication overhead.
Nevertheless, modulus switching can only be applied to re-
sponse ciphertexts, i.e., those ciphertexts that will not undergo
further homomorphic operations since it reduces the noise
budget of ciphertexts. In the context of Protocol 1, modulus
switching can optimize the communication cost when R sends
dj to S in step (3d) and when S sends êj to R in step (4c).
We highlight that modulus switching is a public operation and
poses no security issues.

V. FULL PROTOCOL

Protocol 2 presents the full protocol, where we apply the
optimizations proposed in §IV to Protocol 1. Similarly to
Protocol 1, in Protocol 2, S inputs set X of size |X|, while
R inputs set Y of size |Y |, where |Y | ≪ |X|, with each set
comprising entries of size σd. Initially, in step (1), parties agree
on various parameters encompassing security, encryption, data
compression, Cuckoo hashing, and permutation-based hashing.
Subsequently, in step (2), S compresses each entry x ∈ X ,
maps it to a Cuckoo hash table using function g(·), and inserts
the right part of the compressed entry into the designated table
T (g(·)). Then, S encodes and encrypts the k Cuckoo hash
tables in step (3) adhering to the data encoding discussed
in §IV-B5, and sends the ciphertexts C to R. Steps (1-3)
encompass one-time cost operations and, therefore, do not
require re-execution on subsequent set intersections with new
sets Y (i). This is especially relevant to step (3) since it includes
the most costly operations of the protocol.

The recurrent part starts in step (4), where R compresses
each entry y ∈ Y and locates the h potential slots for the
entry. From each potential slot, R subtracts the right part of
the compressed entry from the encrypted table. If y ∈ X , the
slot becomes zero at that location (encrypted). The resulting
ciphertexts S(j) are multiplied in a depth-optimized way,
respecting the partitioning parameter ηs, generating ηs + 1

ciphertexts M
(i) ∀i ∈ Zη+1. This is followed by the addition

of random values R(i) to each slot D
(i)

= M
(i)

+R(i). Finally,
R encrypts the random values R(i) 7→ R̂(i) with its key,
modulus switches D

(i)
, and sends (D

(i)
, R̂(i)) ∀i ∈ Zηs+1

to S. Note that S’s ciphertexts contain ns batching slots,
while R’s encompass nr, where ns ≥ nr. If ns > nr,
R̂(i) comprises > 1 ciphertexts, implying that the rotation
operation also shuffles the ciphertexts. We highlight that having
ns < nr is forbidden because it requires extra mitigation
against leakage, which leads to a false positive rate > 2−λ for
commonly used encryption parameters. In step (5), S decrypts
the ciphertexts D

(i) 7→ D(i) ∀i ∈ Zηs+1 and subtracts it
from R̂(i). The resulting ciphertexts M̂ (i) are multiplied in
a depth-optimized way, respecting the partitioning parameter
ηr, generating ηr + 1 ciphertexts N̂ (j) ∀j ∈ Zηr+1. If y ∈ X ,
then one packing slot of a single ciphertext N̂ (j) contains
the encryption of zero. To prevent any leakage from S’s
set X , S multiplies each batching slot by a random number
non-multiple of any packing modulus, which is equivalent to
multiplying each packing slot by a non-zero random number in
the respective ring. In addition, S rotates the batching slots by a
random amount, following the discussion of §IV-B6. Finally,
S modulus switches and transmits the outcome to R, who

decrypts it Ê(j) 7→ E(j) ∀j ∈ Zηr+1, verifying the presence
of zero. If detected, y ∈ X .

We present the following theorem concerning the security
and correctness of the full protocol.

Theorem 2 (Full Protocol). Within the semi-honest threat
model, Protocol 2 correctly and privately computes the in-
tersection of sets X and Y , contingent upon the (leveled) fully
homomorphic encryption scheme being IND-CPA secure and
achieving circuit privacy.

Proof: We demonstrate the security and correctness of the
protocol using the parties’ views:

S’s view: S receives ciphertexts (D
(i)
, R̂(i)) ∀i ∈ Zηs+1.

S would like to recover the value of M̂ (i) = D(i) − R̂(i) and
find which slots in M (i) are zero. However, ciphertext R̂(i)

looks pseudorandom to S since it is under R’s key and the
FHE scheme is IND-CPA secure. S knows the plaintext values
encoded in D

(i)
because it is under its own key; therefore,

it can decrypt it D
(i) 7→ D(i). Nevertheless, from S’s view,

all entries in D(i) are independent and identically distributed
random values coming from a uniform distribution in Zt. The
fact that D(i) = M (i)+R(i) provides no statistical information
(e.g. looking for smaller values) since each batching slot
in R(i) is random in Zt; thus, values wrap around modulo
t. Therefore, S learns nothing about Y . The extension of
this proof for the recurrent setting is trivial since each new
(D

(i)
, R̂(i)) received by S contains i.i.d. random values from

a uniform distribution, which gives no further information.

R’s view: R receives C and Ê(j) ∀j ∈ Zηr+1 from S. Any
value encoded and encrypted in ciphertext C

(i) ∈ C appears
random to R since they are encrypted under S’s key and the
FHE scheme is IND-CPA secure. Nevertheless, R learns the
decryption of Ê(j) 7→ E(j) as it is under its own key. If and
only if y ∈ X , there is a zero in a single packing slot of a single
batching slot of a single polynomial E(j) ∀j ∈ Zηr . Otherwise,
if y /∈ X , all values are non-zero (correctness). Each entry
ea ∈ E(j) is given by ea = nb·ρb, where nb ∈ N (j), ρb ∈ P (j),
and a and b are slot indices. Due to the rotation operation in
step (5d), it is not possible to infer b from a. Furthermore, the
correlation of several indices a1, a2, . . . , an cannot recover any
index b since each nb is multiplied by a non-zero random value
ρb ∈ Zti\{0} and each modulo ti ∀i ∈ Z : 1 ≤ i ≤ k is a
unique odd prime, meaning that the result of the multiplication
wraps around each ti and the parity of the multiplication is
broken. Therefore, R can infer no information about N (i), and
consequently S’s set X , other than the intersection. Similarly
to S, the extension of R’s proof to the recurrent setting is also
trivial since each value in a new Ê(j) received by R is i.i.d.
and uniformly distributed ∈ Zti\{0} for y /∈ X , which means
that R learns the intersection and nothing more.

With respect to malicious adversaries, our protocol encoun-
ters several challenges. Although R’s set Y is protected against
S, a malicious S could potentially tamper with the intersec-
tion’s accuracy. In other words, it has the ability to make the
intersection falsely appear as any subset of Y without gaining
knowledge of Y itself. Effectively thwarting such attempts
poses significant challenges [8]. In the scenario of a malicious

8

Protocol 2 Full Protocol
Input: S inputs set X of size |X|. R inputs set Y of size |Y |. Both sets consist of bit strings of length σd. |X|, |Y |, and σd

are public.
Output: S outputs ⊥; R outputs X ∩ Y .

1) Setup: In this step, parties select all parameters to be used in the protocol.
a) Security parameters: Parties agree on computational and statistical security parameters (κ and λ, respectively).
b) Data compression: From Eqs. 4 and 5 (§IV-A5), we have that σ = min(σd, σh). Therefore, if σh < σd, parties

agree on a hash function Z(·) : Z2σd 7→ Z2σh for data compression. Otherwise, Z(x) = x.
c) Cuckoo hashing and Permutation-based hashing:

i) Parties agree on the number of hash functions h and insertion depth limit d for Cuckoo hashing.
ii) They select the number of Cuckoo hash tables k (≡ number of packing slots), and a function g(·) that

maps a σ-bit entry x to Cuckoo hash table T (g(x)) (§IV-B5).
iii) Following §IV-A3 and §VI-A, S chooses the Cuckoo hash table size |T (i)| for a failure rate ≤ 2−λ.
iv) By knowing |T (i)|, one can calculate the left σL = ⌊log2 |T (i)|⌋ and right σR = σ − σL sizes for

Permutation-based hashing (§IV-A4).
v) S selects the h different hash functions H : Z2σ 7→ Z|T (i)|, where Hj(zL, zR) = zL ⊕ fj(zR) and

fj(zR) : Z2σR 7→ Z|T (i)| (§IV-A4).
d) Encryption parameters:

i) Parties agree on partitioning parameters ηs and ηr (§IV-C1) and plaintext modulus t =
∏k

i=1 ti : ti ≥
2σR + 2 (§IV-B4 and §IV-B7).

ii) Parties select encryption parameters (ns, qs, t), (nr, qr, t) : ns ≥ nr following Eq. 3 and §IV-B7.
Encryption parameters are public.

iii) Each party generates decryption and encryption keys, which are kept private.
2) Cuckoo hashing: For each entry x ∈ X , S performs z = zL|zR = Z(x) : |zL| = ⌊log2 |T (i)|⌋ and inserts zR at

T
(g(z))
Hj(zL,zR) : 1 ≤ j ≤ h. A dummy value is assigned to empty bins after inserting entries ∈ X into tables T (i) (§IV-A2).

3) Set encryption: S encodes all Cuckoo hash tables and bins into polynomials following Eq. 8 (§IV-B5), encrypts them
into ciphertexts under its own key, and sends the ⌈ |T (i)|

n ⌉ ciphertexts C to R.
4) Computing intersection: For each y ∈ Y , R:

a) Computes z = zL|zR = Z(y) : |zL| = ⌊log2 |T (i)|⌋, and for each Cuckoo hash function Hj(·) ∀j ∈ Z : 1 ≤
j ≤ h, R:
i) Creates a polynomial P ∈ Zt[x]/(x

ns + 1) s.t. Pu,v = zR for (u, v) = (Hj(zL, zR) mod ns, g(z) − 1)
and a dummy value otherwise.

ii) Homomorphically computes the difference S
(j)

= C

(⌊
Hj(zL,zR)

ns

⌋)
− P .

b) Performs h− ηs − 1 : ηs ∈ Zh homomorphic multiplications between S
(j)

: j ∈ Zh+1\{0}, resulting in ηs + 1

ciphertexts M
(i) ∀i ∈ Zηs+1.

c) Samples ηs + 1 tuples of random values (r1, ..., rns ∈ Zt) from a uniform distribution, where each tuple is
encoded as a polynomial R(i) ∈ Zt[x]/(x

ns + 1).
d) Computes D

(i)
= M

(i)
+R(i) ∀i ∈ Zηs+1, modulus switches it, encrypts R(i) 7→ R̂(i) under its key, and sends

the (D
(i)
, R̂(i)) pairs to S. Note that each R̂(i) will be several ciphertexts if ns > nr.

5) Decryption: For all pairs (D
(i)
, R̂(i)) ∀i ∈ Zηs+1, S:

a) Decrypts each D
(i) 7→ D(i), and homomorphically computes M̂ (i) = R̂(i) −D(i) ∀i ∈ Zηs+1.

b) Performs h − ηs − 1 − ηr : ηr ∈ Zηs+1 homomorphic multiplications between M̂ (i) : i ∈ Zηs+1, resulting in
ηr + 1 ciphertexts N̂ (j) ∀j ∈ Zηr+1.

c) Samples ηr + 1 tuples of random values (ρ1, ..., ρnr
∈ Zt\{α · ti} ∀α, i ∈ Z : 1 ≤ i ≤ k) such that no random

value is a multiple of any packing modulus ti, and encode each tuple as a polynomial P (j) ∈ Zt/(x
nr + 1).

d) Homomorphically computes Ê(j) = rotate(N̂ (j) · P (j), ωj) ∀j ∈ Zηr+1, where the function rotate(·), rotates
the batching slots by a random number of positions ωj ∈ Znr

, modulus switches and sends each Ê(j) to R.

6) Result: R decrypts each Ê(j) 7→ E(j) and outputs X ∩ Y = ∪|Y |
j=1{yj ⇐⇒ 0 ∈ ∪ηr

j=0E
(j)}.

9

R, it should feasibly discern with non-negligible probability
the hash function employed by S for an entry y ∈ X , if it
pertains to the intersection. While this leakage might be weak,
it surpasses mere knowledge of the intersection. Nevertheless,
we believe that Protocol 2 offers adequate protection against
malicious parties. It already safeguards R’s set Y from a
malicious S. Additionally, it is highly unlikely for a malicious
R to determine x′ simply by knowing the hash function Hi(·)
used for x = y ∈ X ∩ Y . A more comprehensive analysis of
malicious scenarios and potential countermeasures is reserved
for future investigation.

VI. EXPERIMENTAL RESULTS

A. Analysis of Hashing Failures

We must select parameters for Cuckoo hashing that ensure
a successful hashing procedure with overwhelming probability
for a given set X . There are three parameters we want to
estimate: 1) the recursion depth limit d for entry insertion,
which impacts the maximum load of the hash table; 2) the
maximum load L for a given (|T |, d), so that hashing has
a negligible failure rate (≤ 2−λ); and 3) the maximum load
when using k hash tables. In our experiments, we aim for a set
size of approximately |X| ≈ 220, which is in line with typical
sizes of commercial denylist databases [4].

1) Recursion Depth Limit: Before estimating the maximum
load of a Cuckoo hash table, it is essential to establish a
recursion depth limit for entry insertion since it is a factor
influencing the hashing success rate, and consequently, the
maximum load. To determine this limit, we conduct a screen-
ing experiment comprising 210 runs for each configuration.
Within each setup, we specify the number of hash functions
h, table size |T |, and recursion depth limit d. For every run,
we continuously insert σ = 32-bit unique random values into
the Cuckoo hash table T until insertion fails, documenting
the load L it attains before failure and the runtime. We
report h = {2, 3, 4}, |T | = 2i ∀i ∈ {16, 18, 20, 22, 24}, and
d = 2j ∀j ∈ Z : 0 ≤ j ≤ 16. We constrain d ≤ 216

as the hashing procedure with a large d becomes slow for
large sets. We observe in Fig. 2 that a high load factor is
achieved for h = {3, 4} when d ≥ 29. The maximum load
for h = 2 caps around 50%, which is in accordance with
previous work [45]. Furthermore, we notice that inserting large
sets into large hash tables becomes computationally intensive
when d ≥ 211 without providing much increase in the load
factor. This leaves us with two options d = {29, 210}, of which
we select d = 210 as the slight increase in the hashing time
is more than compensated by the reduction in the number of
ciphertext encryptions since a higher load factor allows us to
use a smaller hash table.

2) Single-Table Analysis: As discussed in §IV-A3, hashing
failures can potentially leak a small amount of information
from S to R beyond the set intersection. Although there are
theoretical results on the failure rates of Cuckoo hashing [23],
[18], determining the hidden constants remains challenging
[8]. Consequently, related work [42], [8] relied on empirical
methods to find the maximum load that a hash table can
support for successful hashing with high probability. Our
study adopts a similar empirical approach to examine the
failure probability of Cuckoo hashing, with some important

differences. PSSZ [42] analyzed the load factor for Cuckoo
hashing with stash and h = 2, while CLR [8] investigated
Cuckoo hashing without stash and h = 3 for small table sizes
of |T | = {213, 214}. In contrast, we focus on estimating the
load factor for Cuckoo hashing without stash with h = {3, 4}
hash functions and larger table sizes.

We start by fixing the Cuckoo hash table size |T | and find
how many items |X| we can insert before failure. Following
related work, we run each data point 230 times. Related work
[42], [8] has shown that λ is linearly related to the ratio |T |

|X| .
Thus, we employ linear regression to estimate the load factor
L = |X|

|T | for λ = 40. We notice that the load factor increases
monotonically with |T | for a fixed (h, d), implying that any
load factor enabling successful hashing with overwhelming
probability for a table of size |T | also does so for any table
of size ≥ |T |. However, this increase becomes small for table
sizes |T | > 216. Hence, we adopt |T | = 216 as the basis
for our comprehensive analysis. Our observations indicate
that for h = 3, the load factor is L ≈ 0.73, while for
h = 4, the load factor increases to L ≈ 0.87, considering
a failure rate ≤ 2−40. Related work [8] found L ≈ 0.68 for
(h, |T |) = (3, 214). We attribute the increase in the load factor
for h = 3 to larger parameters (|T |, d). Table I provides the
number of entries for several table sizes.

3) Multi-Table Analysis: From §IV-B5 and §IV-B6, we
identify the need for a separate Cuckoo hash table for each
packing modulus ti ∀i ∈ Z : 1 ≤ i ≤ k. To distribute
entries x ∈ X evenly across the k hash tables, we introduce
a function g(·) that uniformly maps each entry x to one
of the k hash tables. Thus, we insert a subset of unique
entries X(i) ⊂ X into table T (i), where X = ∪k

i=1X
(i)

and X(i) ∩ X(j) = ∅ : i ̸= j. There may be variations in
the number of entries across the different tables purely by
chance. Consequently, we must account for that when defining
the maximum load of a table to ensure successful Cuckoo
hashing with high probability. Determining the maximum size
of a subset is akin to the balls into bins problem. Hence, we
want the probability of any subset exceeding a given threshold
τ to be negligible:

P (max
i∈{1,...,k}

|X(i)| > τ) ≤ 2−λ (9)

We can model this problem as a multinomial distribution
where all subsets have the same probability of receiving an
entry. Thus, the probability that the highest load exceeds a
threshold τ is given by the sum of all probabilities from
maxi∈{1,...,k} |X(i)| = τ + 1 to maxi∈{1,...,k} |X(i)| = |X|.
Eq. 10 formalizes it, which we employ to determine an
appropriate threshold τ for the maximum size of a subset.
Additionally, as discussed in §VI-A2, the load can be calcu-
lated as L = |X| · |T |−1. Consequently, we need to adjust the
new load to L = |X|2 · (τ ·k2 · |T (i)|)−1. Table I presents the
Cuckoo hash table size for various settings.

P (max
i∈{1,...,k}

|X(i)| > τ) =
1

k|X|−1

|X|∑
i=τ+1

(
|X|
i

)
(k − 1)|X|−i

(10)

10

Fig. 2: Analysis of recursion depth limit for entry insertion into Cuckoo hash tables of different sizes.

|T | h k = 1 k = 2 k = 3 k = 4

216
3 48,094 46,576 45,951 45,476
4 56,981 55,324 54,639 54,120

217
3 96,188 94,020 93,120 92,436
4 113,963 111,600 110,619 109,864

218
3 192,376 189,292 188,001 187,012
4 227,926 224,566 223,158 222,076

219
3 384,752 380,372 378,528 377,112
4 455,852 451,078 449,070 447,524

220
3 769,414 763,288 760,668 758,644
4 911,705 904,934 902,076 899,872

221
3 1,538,828 1,530,198 1,526,472 1,523,596
4 1,823,411 1,813,814 1,809,756 1,806,620

222
3 3,077,657 3,065,540 3,060,255 3,056,164
4 3,646,823 3,633,232 3,627,474 3,623,020

223
3 6,155,314 6,138,370 6,130,875 6,125,076
4 7,293,646 7,274,404 7,266,246 7,259,928

224
3 12,310,629 12,287,074 12,276,450 12,268,236
4 14,587,293 14,560,060 14,548,491 14,381,016

TABLE I: Maximum number of entries for several Cuckoo
hash table sizes |T | =

∑k
i=1 |T (i)|, number of hash functions

h, and number of hash tables k for λ = 40.

B. Performance Evaluation

1) Experimental Setup: We evaluate our PSI protocol with
two configurations, named Fast Setup and Fast Intersection,
designed for fast setup and efficient set intersection, respec-
tively. Our experiments target a S’s set X of size |X| ≈ 220

and R’s set Y with sizes |Y | = {4, 16, 64}. In both configura-
tions, we employ the following parameters: For encryption, we
set the degree of the polynomial modulus to ns = nr = 212

and the ciphertext modulus to log2 q = 109 divided into
four towers of {27, 27, 27, 28} bits. This provides us with a
sufficient noise budget for homomorphic multiplications and
ensures at least 128 bits of computational security (κ ≥ 128).
Following related work [42], [8], we set the statistical security
parameter to λ = 40. Based on the analysis regarding the
maximum load of Cuckoo hashing (VI-A) we opt to use
h = 4 hash functions. All experiments are implemented using
Microsoft SEAL library [49] with the BFV encryption scheme
[21] and conducted using 4 threads of an AMD Ryzen 7 5800h
processor with 16 GB of memory, running Ubuntu 22.04 LTS.

With respect to the Fast Setup configuration, we use the
following parameters: k = 2 Cuckoo hash tables, each with

|T (1)| = |T (2)| = 219 bins, totaling |T | = 220 bins. This
allows the insertion of |X| = 904,934 entries according to
Table I for k = 2. We set the plaintext modulus to t =
40961 · 65537, where t1 = 40961 and t2 = 65537. Moreover,
we choose the partitioning parameters to be ηs = ηr = 1,
as these are the smallest parameters that enable the protocol
to run for the selected encryption parameters (n, q, t). This
means that we double the number of ciphertexts transferred
during the online phase, while reducing computation time.
Note that it is still more efficient to send two ciphertexts with
(n, log2 q) = (212, 109) than increasing n to 213 to provide
more noise budget and compress all results into a single
ciphertext, because for n = 213 we would require log2 q = 218
for a computational security parameter κ ≥ 128, meaning
we would quadruple the ciphertext size. Regarding the Fast
Intersection configuration, we use the following parameters:
k = 1 Cuckoo hash table with |T | = 220 bins, allowing
|X| = 911,705 entries to be inserted following the results
presented in Table I for k = 1. We set the plaintext modulus
to t = 40961 and the partitioning parameters to ηs = ηr = 0,
as with the selected t we have enough noise budget for the
entire multiplicative depth required by our protocol.

2) Discussion: Tables II and III display the computation
time (in seconds) and communication cost (in MiB) for S and
R when executing the PSI protocol described in Protocol 2.
These computations use the parameters discussed in §VI-B1
for fast setup and fast intersection. In addition to presenting our
results, we include the performance of CLR [8], currently the
fastest PSI protocol in related work for unbalanced set sizes,
KKRT [35], a well-known PSI protocol for large entries in fast
networks, and PSSZ [42], the most efficient PSI protocol to-
date in terms of complexity. S’s computation time is divided
into pre-computation and online phases, while R only has
an online phase. The size of S’s set X is determined by
L ·220, as outlined in Table I. Here the load factor takes values
L = {≈0.86,≈0.87, 1.00, 1.00, 1.00} for each configuration,
respectively. It is worth noting that in related work, the load
factor is L = 1.00. This is because, unlike our approach, CLR
and PSSZ employ Cuckoo hashing not in S’s set, but in R’s
set instead. The size of R’s set Y is set to |Y | = {4, 16, 64}.
For each |Y |, we evaluate m = {1, 4, 16, 64} set intersections,
meaning we intersect m sets Y (1), . . . , Y (m) with set X .
We present amortized results based on the number of set
intersections m, as the latency per set intersection is more
relevant than the sum of latencies of several set intersections.

11

|X| |Y | m Fast Setup Fast Intersection CLR [8] KKRT [35] PSSZ [42]
S pre S online R online S pre S online R online S pre S online R online S pre S+R online S pre S+R online

L · 220

4

1 0.09 0.01 0.01 0.30 0.01 0.02 1.21 1.42 0.79 NA 1.62 NA 0.86
4 0.02 0.01 0.01 0.07 0.01 0.02 0.30 1.42 0.79 NA 1.62 NA 0.86

16 <0.01 0.01 0.01 0.02 0.01 0.02 0.08 1.42 0.79 NA 1.62 NA 0.86
64 <0.01 0.01 0.01 <0.01 0.01 0.02 0.02 1.42 0.79 NA 1.62 NA 0.86

16

1 0.09 0.05 0.06 0.30 0.03 0.07 1.21 1.42 0.79 NA 1.62 NA 0.86
4 0.02 0.05 0.06 0.07 0.03 0.07 0.30 1.42 0.79 NA 1.62 NA 0.86

16 <0.01 0.05 0.06 0.02 0.03 0.07 0.08 1.42 0.79 NA 1.62 NA 0.86
64 <0.01 0.05 0.06 <0.01 0.03 0.07 0.02 1.42 0.79 NA 1.62 NA 0.86

64

1 0.09 0.20 0.23 0.30 0.10 0.27 1.21 1.42 0.79 NA 1.62 NA 0.71
4 0.02 0.20 0.23 0.07 0.10 0.27 0.30 1.42 0.79 NA 1.62 NA 0.71

16 <0.01 0.20 0.23 0.02 0.10 0.27 0.08 1.42 0.79 NA 1.62 NA 0.71
64 <0.01 0.20 0.23 <0.01 0.10 0.27 0.02 1.42 0.79 NA 1.62 NA 0.71

TABLE II: Computation time (s) for two configurations of our PSI protocol, Fast Setup and Fast Intersection, and related work,
considering a target S’s set size |X|, several sizes of R’s set |Y |, and various numbers of recurrent set intersections m. KKRT
and PSSZ do not have one-time costs. Moreover, their implementations do not report computation time per party, only total time.

|X| |Y | m
Fast Setup Fast Intersection CLR [8] KKRT [35] PSSZ [42]

S→R R→S S→R R→S S→R R→S S→R R→S S→R R→S

L · 220

4

1 13.16 1.32 25.39 0.53 2.20 3.40 57.15 0.02 24.02 0.03
4 3.69 1.32 6.45 0.53 2.20 3.40 57.15 0.02 24.02 0.03
16 1.32 1.32 1.71 0.53 2.20 3.40 57.15 0.02 24.02 0.03
64 0.73 1.32 0.53 0.53 2.20 3.40 57.15 0.02 24.02 0.03

16

1 14.74 5.27 25.79 2.11 2.20 3.40 57.15 0.02 24.02 0.03
4 5.27 5.27 6.85 2.11 2.20 3.40 57.15 0.02 24.02 0.03
16 2.90 5.27 2.11 2.11 2.20 3.40 57.15 0.02 24.02 0.03
64 2.31 5.27 0.93 2.11 2.20 3.40 57.15 0.02 24.02 0.03

64

1 21.09 21.09 27.40 8.45 2.20 3.40 57.15 0.02 27.02 0.09
4 11.62 21.09 8.46 8.45 2.20 3.40 57.15 0.02 27.02 0.09
16 9.25 21.09 3.72 8.45 2.20 3.40 57.15 0.02 27.02 0.09
64 8.50 21.09 2.54 8.45 2.20 3.40 57.15 0.02 27.02 0.09

|X| |Y | m
Fast Setup Fast Intersection CLR [8] KKRT [35] PSSZ [42]

10 Gbps 100 Mbps 10 Gbps 100 Mbps 10 Gbps 100 Mbps 10 Gbps 100 Mbps 10 Gbps 100 Mbps

L · 220

4

1 0.01 1.32 0.02 2.23 <0.01 0.60 0.05 4.84 0.02 2.08
4 <0.01 0.44 <0.01 0.60 <0.01 0.60 0.05 4.84 0.02 2.08
16 <0.01 0.22 <0.01 0.19 <0.01 0.60 0.05 4.84 0.02 2.08
64 <0.01 0.17 <0.01 0.09 <0.01 0.60 0.05 4.84 0.02 2.08

16

1 0.02 1.76 0.02 2.39 <0.01 0.60 0.05 4.84 0.02 2.08
4 <0.01 0.88 <0.01 0.76 <0.01 0.60 0.05 4.84 0.02 2.08
16 <0.01 0.66 <0.01 0.35 <0.01 0.60 0.05 4.84 0.02 2.08
64 <0.01 0.61 <0.01 0.25 <0.01 0.60 0.05 4.84 0.02 2.08

64

1 0.03 3.53 0.03 3.03 <0.01 0.60 0.05 4.84 0.02 2.34
4 0.03 2.66 0.01 1.39 <0.01 0.60 0.05 4.84 0.02 2.34
16 0.02 2.44 0.01 0.98 <0.01 0.60 0.05 4.84 0.02 2.34
64 0.02 2.38 <0.01 0.88 <0.01 0.60 0.05 4.84 0.02 2.34

TABLE III: Communication cost (MiB) for two configurations of our PSI protocol, Fast Setup and Fast Intersection, and related
work, considering a target S’s set size |X| and several sizes of R’s set |Y |, where we vary the number of recurrent set intersections
m. We assume a Round-Trip Time (RTT) delay of 0.2ms and 80ms for 10 Gbps and 100 Mbps network speeds, respectively.

Table IV presents the total time (in seconds) for performing
the one-time phase and the recurrent phase at two different
network speeds (10 Gbps and 100 Mbps). By comparing our
protocol’s two settings, we observe that the Fast Setup incurs
a one-time communication cost that is half of what the Fast
Intersection requires. Additionally, the computation time is
reduced as the Fast Setup employs two smaller hash tables
instead of a single larger one. As depicted in Fig. 2, insertion
time grows superlinearly with table size. Consequently, for
fast networks (10 Gbps), Fast Setup incurs a one-time cost
of one-third that of Fast Intersection, and for slower networks

(100 Mbps), it is half. However, the scenario changes when
considering recurrent costs. While the computation time re-
mains comparable, the communication cost of Fast Setup is
nearly triple that of Fast Intersection. On fast networks, both
configurations are comparable, but on slower networks, the
Fast Intersection configuration is 37− 114% faster. Moreover,
for small set sizes |Y | and few recurrences m, Fast Setup
is faster, while for larger |Y | and more recurrences m, Fast
Intersection is faster. Ultimately, the choice between these two
configurations depends on the expected set size |Y |, number
of recurrent set intersections per setup, and network speed.

12

|X| = L · 220 |Y |
4 16 64

One-time

Computation

Fast Setup 0.09

Recurrent

Computation

Fast Setup 0.02 0.11 0.43
Fast Intersection 0.30 Fast Intersection 0.03 0.10 0.37

CLR [8] 1.21 CLR [8] 2.21 2.21 2.21
KKRT [35] NA KKRT[35] 1.62 1.62 1.62
PSSZ [42] NA PSSZ [42] 0.86 0.86 0.71

Communication

Fast Setup 12.63

Communication

Fast Setup 1.85 7.39 29.55
Fast Intersection 25.25 Fast Intersection 0.66 2.65 10.59

CLR [8] 0.00 CLR [8] 5.60 5.60 5.60
KKRT [35] NA KKRT [35] 57.17 57.17 57.17
PSSZ [42] NA PSSZ [42] 24.05 24.05 27.11

Total time
(10 Gbps)

Fast Setup 0.10

Total time
(10 Gbps)

Fast Setup 0.02 0.12 0.45
Fast Intersection 0.32 Fast Intersection 0.03 0.10 0.38

CLR [8] 1.21 CLR [8] 2.21 2.21 2.21
KKRT [35] NA KKRT [35] 1.67 1.67 1.67
PSSZ [42] NA PSSZ [42] 0.88 0.88 0.73

Total time
(100 Mbps)

Fast Setup 1.26

Total time
(100 Mbps)

Fast Setup 0.33 0.86 2.95
Fast Intersection 2.48 Fast Intersection 0.24 0.47 1.38

CLR [8] 1.21 CLR [8] 2.81 2.81 2.81
KKRT [35] NA KKRT [35] 6.46 6.46 6.46
PSSZ [42] NA PSSZ [42] 2.94 2.94 3.05

TABLE IV: Total time (in seconds) for two configurations of our PSI protocol, Fast Setup and Fast Intersection, and related
work, considering a target S’s set size |X| = L · 220 and several sizes of R’s set |Y |, where we evaluate the one-time costs
and recurrent costs of performing set intersections. KKRT and PSSZ do not have one-time costs.

3) Comparison to Related Work: Compared to related
work, our proposal demonstrates a substantial improvement in
set intersection latency. In terms of computation, our protocol
outperforms CLR during the setup phase by a factor of
4 − 12×. Notably, KKRT and PSSZ lack a setup phase.3
During the recurrent phase, our protocol provides a speed-up of
approximately two orders of magnitude against all related work
PSI protocols. With respect to communication, the proposed
protocol exhibits varying costs depending on the size |Y | of
R’s set Y , and the number of recurrent set intersections m per
setup. For larger |Y | and smaller m, communication costs are
higher, while smaller |Y | and larger m prove more efficient.
Compared to the state of the art, our protocol reduces the
communication cost during the recurrent phase by as much
as one order of magnitude compared to CLR, and reaching
two orders of magnitude in relation to KKRT and PSSZ, when
the set size |Y | is small. These improvements are particularly
suitable for the URL denylisting application described in §I-A,
as we expect a small number of URLs in incoming emails.
In terms of total time, our protocol’s runtime during setup is
comparable to CLR on slower networks (100 Mbps), while
being around one order of magnitude faster on fast networks
(10 Gbps). With regards to the recurrent phase, which is clearly
more time-sensitive for the target scenario, our protocol is
approximately one order of magnitude faster than related work
on slower networks (100 Mbps) when R’s set Y is small
(|Y | ≤ 16), and up to two orders of magnitude faster than
existing work on fast networks (10 Gbps).

3KKRT splits its execution into offline and online phases. The offline phase,
which computes in 0.18s, is used to obtain an OT extension matrix unrelated
to the sets’ entries using IKNP OT extensions [33]. However, a new extension
matrix is needed for each subsequent set intersection. We could apply the same
offline label to generating and exchanging random values R(i) and P (j), and
ω in our PSI protocol. Regardless, these are recurring costs.

4) Scalability: The proposed PSI protocol is optimized for
R with a small set (|Y | ≪ |X|), making it inefficient when |Y |
is large. The size |X| of S’s set X impacts the setup phase,
as a larger set requires more data to be hashed, encrypted, and
transmitted. However, |X| has no effect on the recurring costs,
indicating that the values reported in Table IV for the recurrent
phase remain constant for different sizes of X . Our protocol
performs well in comparison to related work, especially for
large set sizes |X|, as demonstrated by additional experiments
presented in Appendix A.

VII. CONCLUSIONS

This work presents an optimized Private Set Intersection
(PSI) protocol tailored for the recurrent setting with unbal-
anced sets, where the sender possesses the larger set and
the receiver holds the smaller set. We have proposed several
optimizations, leveraging fully homomorphic encryption and
hashing techniques, and introduced novel encoding techniques
to enhance a basic PSI protocol. Through extensive analysis
of failure probabilities, we have ensured that our protocol
performs reliably with overwhelming probability. Using the
Microsoft SEAL library and the BFV encryption scheme,
we implemented our protocol and demonstrated its real-time
performance with two different instantiations. Our results show
a significant reduction in set intersection times compared to
existing approaches. Specifically, for 100 Mbps networks, our
protocol achieves a one-order-of-magnitude reduction, while
for 10 Gbps networks, the reduction is by two orders of
magnitude. Overall, our optimized PSI protocol offers efficient
real-time performance, making significant advancements in the
field of private set intersection protocols.

RESOURCES

A C++ implementation of our PSI protocol is available at
https://github.com/momalab/psi-ndss2025/.

13

https://github.com/momalab/psi-ndss2025/

REFERENCES

[1] Y. Arbitman, M. Naor, and G. Segev, “Backyard cuckoo hashing:
Constant worst-case operations with a succinct representation,” in 2010
IEEE 51st Annual Symposium on Foundations of Computer Science,
2010, pp. 787–796.

[2] F. Armknecht, C. Boyd, C. Carr, K. Gjøsteen, A. Jäschke, C. A. Reuter,
and M. Strand, “A guide to fully homomorphic encryption,” Cryptology
ePrint Archive, 2015.

[3] D. Beaver, S. Micali, and P. Rogaway, “The round complexity of
secure protocols,” in Proceedings of the Twenty-Second Annual ACM
Symposium on Theory of Computing, ser. STOC ’90. New York,
NY, USA: Association for Computing Machinery, 1990, p. 503–513.
[Online]. Available: https://doi.org/10.1145/100216.100287

[4] S. Bell and P. Komisarczuk, “An analysis of phishing blacklists:
Google safe browsing, openphish, and phishtank,” in Proceedings of
the Australasian Computer Science Week Multiconference, 2020, pp.
1–11.

[5] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[6] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully ho-
momorphic encryption without bootstrapping,” ACM Transactions on
Computation Theory (TOCT), vol. 6, no. 3, pp. 1–36, 2014.

[7] H. Chen, Z. Huang, K. Laine, and P. Rindal, “Labeled psi from fully
homomorphic encryption with malicious security,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’18. New York, NY, USA: Association for
Computing Machinery, 2018, p. 1223–1237. [Online]. Available:
https://doi.org/10.1145/3243734.3243836

[8] H. Chen, K. Laine, and P. Rindal, “Fast private set intersection from
homomorphic encryption,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’17.
New York, NY, USA: Association for Computing Machinery, 2017,
p. 1243–1255. [Online]. Available: https://doi.org/10.1145/3133956.
3134061

[9] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in ASIACRYPT, 2017.

[10] E. Chielle, H. Gamil, and M. Maniatakos, “Real-time private member-
ship test using homomorphic encryption,” in 2021 Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2021, pp. 1282–
1287.

[11] E. Chielle, O. Mazonka, H. Gamil, and M. Maniatakos, “Accelerating
fully homomorphic encryption by bridging modular and bit-level arith-
metic,” in Proceedings of the 41st IEEE/ACM International Conference
on Computer-Aided Design, 2022, pp. 1–9.

[12] ——, “Coupling bit and modular arithmetic for efficient general-
purpose fully homomorphic encryption,” ACM Transactions on Embed-
ded Computing Systems, vol. 23, no. 4, pp. 1–28, 2024.

[13] E. Chielle, O. Mazonka, H. Gamil, N. G. Tsoutsos, and M. Maniatakos,
“E3: A framework for compiling c++ programs with encrypted
operands,” Cryptology ePrint Archive, Paper 2018/1013, 2018.
[Online]. Available: https://eprint.iacr.org/2018/1013

[14] E. Chielle, O. Mazonka, and M. Maniatakos, “Optimizing ciphertext
management for faster fully homomorphic encryption computation,” in
2024 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2024, pp. 1–6.

[15] K. Cong, R. C. Moreno, M. B. da Gama, W. Dai, I. Iliashenko, K. Laine,
and M. Rosenberg, “Labeled psi from homomorphic encryption with
reduced computation and communication,” in Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’21. New York, NY, USA: Association for
Computing Machinery, 2021, p. 1135–1150. [Online]. Available:
https://doi.org/10.1145/3460120.3484760

[16] A. C. Davi Resende and D. de Freitas Aranha, “Faster unbalanced
private set intersection in the semi-honest setting,” Journal of Cryp-
tographic Engineering, vol. 11, no. 1, pp. 21–38, 2021.

[17] E. De Cristofaro and G. Tsudik, “Practical private set intersection proto-
cols with linear complexity,” in International Conference on Financial
Cryptography and Data Security. Springer, 2010, pp. 143–159.

[18] M. Dietzfelbinger, A. Goerdt, M. Mitzenmacher, A. Montanari, R. Pagh,
and M. Rink, “Tight thresholds for cuckoo hashing via xorsat,” in Au-

tomata, Languages and Programming: 37th International Colloquium,
ICALP 2010, Bordeaux, France, July 6-10, 2010, Proceedings, Part I
37. Springer, 2010, pp. 213–225.

[19] C. Dong, L. Chen, and Z. Wen, “When private set intersection meets
big data: an efficient and scalable protocol,” in Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security,
2013, pp. 789–800.

[20] D. S. Dummit and R. M. Foote, Abstract algebra. Wiley Hoboken,
2004, vol. 3.

[21] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” IACR Cryptology ePrint Archive, vol. 2012, p. 144, 2012.

[22] M. J. Freedman, K. Nissim, and B. Pinkas, “Efficient private matching
and set intersection,” in Advances in Cryptology - EUROCRYPT 2004,
C. Cachin and J. L. Camenisch, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 1–19.

[23] A. Frieze, P. Melsted, and M. Mitzenmacher, “An analysis of random-
walk cuckoo hashing,” in International Workshop on Approximation
Algorithms for Combinatorial Optimization. Springer, 2009, pp. 490–
503.

[24] C. Gentry, A fully homomorphic encryption scheme. Stanford Univer-
sity, 2009.

[25] ——, “Fully homomorphic encryption using ideal lattices,” in Proceed-
ings of the forty-first annual ACM symposium on Theory of computing,
2009, pp. 169–178.

[26] C. Gentry, S. Halevi, and N. P. Smart, “Better bootstrapping in fully
homomorphic encryption,” in International Workshop on Public Key
Cryptography. Springer, 2012, pp. 1–16.

[27] ——, “Homomorphic evaluation of the aes circuit,” in Advances in
Cryptology – CRYPTO 2012, R. Safavi-Naini and R. Canetti, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 850–867.

[28] O. Goldreich, “Cryptography and cryptographic protocols,” Distributed
Computing, vol. 16, pp. 177–199, 2003.

[29] S. Halevi, Y. Polyakov, and V. Shoup, “An improved rns variant of the
bfv homomorphic encryption scheme,” in Topics in Cryptology – CT-
RSA 2019, M. Matsui, Ed. Cham: Springer International Publishing,
2019, pp. 83–105.

[30] M. Hao, W. Liu, L. Peng, H. Li, C. Zhang, H. Chen, and T. Zhang,
“Unbalanced {Circuit-PSI} from oblivious {Key-Value} retrieval,” in
33rd USENIX Security Symposium (USENIX Security 24), 2024, pp.
6435–6451.

[31] Y. Huang, D. Evans, and J. Katz, “Private set intersection: Are garbled
circuits better than custom protocols?” in NDSS, 2012.

[32] Y. Huang, D. Evans, J. Katz, and L. Malka, “Faster secure {Two-
Party} computation using garbled circuits,” in 20th USENIX Security
Symposium (USENIX Security 11), 2011.

[33] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank, “Extending oblivious
transfers efficiently,” in Advances in Cryptology - CRYPTO 2003,
D. Boneh, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003,
pp. 145–161.

[34] A. Kirsch, M. Mitzenmacher, and U. Wieder, “More robust hashing:
Cuckoo hashing with a stash,” SIAM Journal on Computing, vol. 39,
no. 4, pp. 1543–1561, 2010.

[35] V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu, “Efficient
batched oblivious prf with applications to private set intersection,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, 2016, pp. 818–829.

[36] V. Kolesnikov, N. Matania, B. Pinkas, M. Rosulek, and N. Trieu,
“Practical multi-party private set intersection from symmetric-key tech-
niques,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, 2017, pp. 1257–1272.

[37] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and
learning with errors over rings,” J. ACM, vol. 60, no. 6, 2013.

[38] F. H. Mathis, “A generalized birthday problem,” SIAM review, vol. 33,
no. 2, pp. 265–270, 1991.

[39] R. Pagh and F. F. Rodler, “Cuckoo hashing,” in European Symposium
on Algorithms. Springer, 2001, pp. 121–133.

[40] ——, “Cuckoo hashing,” Journal of Algorithms, vol. 51, no. 2, pp.
122–144, 2004.

14

https://doi.org/10.1145/100216.100287
https://doi.org/10.1145/3243734.3243836
https://doi.org/10.1145/3133956.3134061
https://doi.org/10.1145/3133956.3134061
https://eprint.iacr.org/2018/1013
https://doi.org/10.1145/3460120.3484760

[41] B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai, “Spot-light: Lightweight
private set intersection from sparse ot extension,” in Advances in
Cryptology – CRYPTO 2019, A. Boldyreva and D. Micciancio, Eds.
Cham: Springer International Publishing, 2019, pp. 401–431.

[42] B. Pinkas, T. Schneider, G. Segev, and M. Zohner, “Phasing:
Private set intersection using permutation-based hashing,” in
24th USENIX Security Symposium (USENIX Security 15).
Washington, D.C.: USENIX Association, Aug. 2015, pp.
515–530. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/pinkas

[43] B. Pinkas, T. Schneider, O. Tkachenko, and A. Yanai, “Efficient circuit-
based psi with linear communication,” in Advances in Cryptology –
EUROCRYPT 2019, Y. Ishai and V. Rijmen, Eds. Cham: Springer
International Publishing, 2019, pp. 122–153.

[44] B. Pinkas, T. Schneider, C. Weinert, and U. Wieder, “Efficient circuit-
based psi via cuckoo hashing,” in Advances in Cryptology – EURO-
CRYPT 2018, J. B. Nielsen and V. Rijmen, Eds. Cham: Springer
International Publishing, 2018, pp. 125–157.

[45] B. Pinkas, T. Schneider, and M. Zohner, “Faster private set intersection
based on OT extension,” in 23rd USENIX Security Symposium
(USENIX Security 14). San Diego, CA: USENIX Association,
Aug. 2014, pp. 797–812. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity14/technical-sessions/presentation/pinkas

[46] ——, “Scalable private set intersection based on ot extension,” ACM
Trans. Priv. Secur., vol. 21, no. 2, jan 2018. [Online]. Available:
https://doi.org/10.1145/3154794

[47] P. Prakash, M. Kumar, R. R. Kompella, and M. Gupta, “Phishnet:
Predictive blacklisting to detect phishing attacks,” in 2010 Proceedings
IEEE INFOCOM, 2010, pp. 1–5.

[48] M. Raab and A. Steger, ““balls into bins” — a simple and tight
analysis,” in Randomization and Approximation Techniques in Com-
puter Science, M. Luby, J. D. P. Rolim, and M. Serna, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1998, pp. 159–170.

[49] “Microsoft SEAL (release 4.1),” https://github.com/Microsoft/SEAL,
Jan. 2023, microsoft Research, Redmond, WA.

[50] I. Shaik, N. Emmadi, H. Tupsamudre, H. Narumanchi, and R. M. A.
Bhattachar, “Privacy preserving machine learning for malicious url
detection,” in Database and Expert Systems Applications-DEXA 2021
Workshops: BIOKDD, IWCFS, MLKgraphs, AI-CARES, ProTime, AISys
2021, Virtual Event, September 27–30, 2021, Proceedings 32. Springer,
2021, pp. 31–41.

[51] N. P. Smart and F. Vercauteren, “Fully homomorphic SIMD operations,”
Des. Codes Cryptogr., vol. 71, no. 1, pp. 57–81, 2014. [Online].
Available: https://doi.org/10.1007/s10623-012-9720-4

[52] Y. Son and J. Jeong, “Psi with computation or circuit-psi for unbalanced
sets from homomorphic encryption,” in Proceedings of the 2023 ACM
Asia Conference on Computer and Communications Security, 2023, pp.
342–356.

[53] A. C.-C. Yao, “How to generate and exchange secrets,” in 27th Annual
Symposium on Foundations of Computer Science (sfcs 1986), 1986, pp.
162–167.

[54] M. Yung, “From mental poker to core business: Why and how to
deploy secure computation protocols?” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’15. New York, NY, USA: Association for Computing Machinery,
2015, p. 1–2.

[55] Z. Zhou, T. Song, and Y. Jia, “A high-performance url lookup engine
for url filtering systems,” in 2010 IEEE International Conference on
Communications, 2010, pp. 1–5.

15

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/pinkas
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/pinkas
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/pinkas
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/pinkas
https://doi.org/10.1145/3154794
https://github.com/Microsoft/SEAL
https://doi.org/10.1007/s10623-012-9720-4

APPENDIX

ADDITIONAL EXPERIMENTAL RESULTS

|X| = L · 216 |Y |
4 16 64

One-time

Computation

Fast Setup <0.01

Recurrent

Computation

Fast Setup 0.02 0.11 0.43
Fast Intersection 0.01 Fast Intersection 0.03 0.10 0.37

CLR [8] 0.19 CLR [8] 0.88 0.88 0.88
KKRT [35] NA KKRT[35] 0.09 0.09 0.09
PSSZ [42] NA PSSZ [42] 0.24 0.24 0.23

Communication

Fast Setup 0.79

Communication

Fast Setup 1.85 7.39 29.55
Fast Intersection 1.58 Fast Intersection 0.66 2.65 10.59

CLR [8] 0.00 CLR [8] 3.50 3.50 3.50
KKRT [35] NA KKRT [35] 3.46 3.46 3.46
PSSZ [42] NA PSSZ [42] 1.55 1.55 1.61

Total time
(10 Gbps)

Fast Setup <0.01

Total time
(10 Gbps)

Fast Setup 0.02 0.12 0.45
Fast Intersection 0.01 Fast Intersection 0.03 0.10 0.38

CLR [8] 0.19 CLR [8] 0.88 0.88 0.88
KKRT [35] NA KKRT [35] 0.09 0.09 0.09
PSSZ [42] NA PSSZ [42] 0.24 0.24 0.23

Total time
(100 Mbps)

Fast Setup 0.15

Total time
(100 Mbps)

Fast Setup 0.33 0.86 2.95
Fast Intersection 0.22 Fast Intersection 0.24 0.47 1.38

CLR [8] 0.19 CLR [8] 1.25 1.25 1.25
KKRT [35] NA KKRT [35] 0.46 0.46 0.46
PSSZ [42] NA PSSZ [42] 0.45 0.45 0.45

TABLE V: Total time (in seconds) for two configurations of our PSI protocol, Fast Setup and Fast Intersection, and related work,
considering a S’s set size |X| = L · 216 and several sizes of R’s set |Y |, where we evaluate the one-time costs and recurrent
costs of performing set intersections. KKRT and PSSZ do not have one-time costs.

|X| = L · 224 |Y |
4 16 64

One-time

Computation

Fast Setup 1.79

Recurrent

Computation

Fast Setup 0.02 0.11 0.43
Fast Intersection 7.74 Fast Intersection 0.03 0.10 0.37

CLR [8] 21.54 CLR [8] 23.22 23.22 23.22
KKRT [35] NA KKRT[35] 30.42 40.42 30.42
PSSZ [42] NA PSSZ [42] 11.11 11.11 8.54

Communication

Fast Setup 202.04

Communication

Fast Setup 1.85 7.39 29.55
Fast Intersection 404.08 Fast Intersection 0.66 2.65 10.59

CLR [8] 0.00 CLR [8] 11.00 11.00 11.00
KKRT [35] NA KKRT [35] 946.75 946.75 946.75
PSSZ [42] NA PSSZ [42] 432.05 432.05 432.11

Total time
(10 Gbps)

Fast Setup 1.96

Total time
(10 Gbps)

Fast Setup 0.02 0.12 0.45
Fast Intersection 8.08 Fast Intersection 0.03 0.10 0.38

CLR [8] 21.54 CLR [8] 23.22 23.22 23.22
KKRT [35] NA KKRT [35] 31.21 31.21 31.21
PSSZ [42] NA PSSZ [42] 11.47 11.47 8.90

Total time
(100 Mbps)

Fast Setup 18.68

Total time
(100 Mbps)

Fast Setup 0.33 0.86 2.95
Fast Intersection 41.44 Fast Intersection 0.24 0.47 1.38

CLR [8] 21.54 CLR [8] 23.59 23.59 23.59
KKRT [35] NA KKRT [35] 109.27 109.27 109.27
PSSZ [42] NA PSSZ [42] 47.14 47.14 44.57

TABLE VI: Total time (in seconds) for two configurations of our PSI protocol, Fast Setup and Fast Intersection, and related
work, considering a S’s set size |X| = L · 224 and several sizes of R’s set |Y |, where we evaluate the one-time costs and
recurrent costs of performing set intersections. KKRT and PSSZ do not have one-time costs.

16

ARTIFACT APPENDIX

A. Description & Requirements

1) How to access: The archival version of the artifact is
hosted on Zenodo at https://doi.org/10.5281/zenodo.14249467,
and the maintained version is available on GitHub at
https://github.com/momalab/psi-ndss2025.

2) Hardware dependencies: A commodity computer.

3) Software dependencies: Linux operating system, Git,
CMake (version 3.13 or higher), GNU C++ compiler (version
7.3 or higher), GMP library, Python 3, TeX Live (texlive,
texlive-latex-base, texlive-latex-extra).

4) Benchmarks: None.

B. Artifact Installation & Configuration
[5 human-minutes + 10 compute-minutes]

To set up the artifact, follow these steps:
1) Install all necessary dependencies;
2) Download and unzip the archived version from Zen-

odo, or clone the repository from GitHub;
3) Install the Microsoft SEAL v4.1 library locally by ex-

ecuting the bash script install_seal.sh located
in the 3p directory;

C. Major Claims

• (C1): Our private set intersection protocol achieves
computation time, communication cost, and round-
trip total set intersection time in accordance with
the results present in Tables II, III, IV, V, and VI.
For example, the total recurrent time for the Fast
Intersection mode with |X| = L · 220 and |Y | = 4 is
0.02 seconds on a 10 Gbps network and 0.24 seconds
on a 100 Mbps network, as shown in Table IV.

D. Evaluation
[12 human-minutes + 7 compute-minutes]

Here, we show how to reproduce the results presented in
Tables II, III, IV, V, and VI for our protocol. We provide a
script that runs all experiments and generates a PDF file with
the five tables from the paper. Navigate to the src/main
directory and execute python3 reproduce.py.

The reproduce.py script:
1) Compiles the protocol;
2) Runs the protocol with a set of parameters;
3) Collects results;
4) Cleans temporary files;
5) Repeats steps 2-4 with a new set of parameters;

The script adjusts the four following parameters:
• Mode: Defines if the protocol will run using the Fast

Setup (0) or Fast Intersection (1) configuration;
• Size of set X: |X| = L · {216, 220, 224};
• Size of set Y : |Y | = {4, 16, 64};
• Number of recurrences m = {1, 4, 16, 64}.

After running the script, there will be a file named
artifact-evaluation.pdf in the src/main direc-
tory. This file includes five tables, Tables II through VI, with
results matching those in the paper. The communication results
should closely align with the paper, while computation results
may vary slightly due to differences in processing capacity.

E. Notes

We do not include the reproduction of Fig. 2 and Table I
in the artifact for two reasons:

1) These results focus on parameter selection and have
minimal impact on protocol execution time;

2) Generating these results is extremely time-
consuming, taking a few months to complete.

Given their limited impact and excessive computational
cost, we decided it was impractical to include them. Nonethe-
less, the experimental methodology is described in the paper
and aligns with related work. To verify the limited impact
of parameter changes on execution time, one can modify
the number of hash functions (src/main/protocol.cpp,
line 72) from 4 to 3, and adjust the load factor (line
76) from load_factor = mode ? 0.86 : 0.87 to
load_factor = mode ? 0.72 : 0.73, then rerun the
reproduce.py script.

This artifact provides steps to replicate our protocol results.
For related work results, refer to their implementations.

17

https://doi.org/10.5281/zenodo.14249467
https://github.com/momalab/psi-ndss2025

	Introduction
	Private Set Intersection
	Related Work
	Contributions

	Preliminaries
	Notations
	Threat Model
	Leveled Fully Homomorphic Encryption
	Brakerski/Fan-Vercauteren (BFV) Encryption Scheme
	Leveled Fully Homomorphic Encryption

	Basic Protocol
	Optimizations
	Hashing
	Simple Hashing
	Cuckoo Hashing
	Hashing Failures
	Permutation-based Hashing
	Data Compression
	Cuckoo Hashing vs Simple Hashing

	Quadruple Chinese Remainder Theorem (QCRT)
	Level 1 CRT: Residue Number System
	Level 2 CRT: Polynomial Multiplications via NTT
	Level 3 CRT: Batching
	Level 4 CRT: Packing
	Data Encoding
	Privacy Implications of QCRT
	Constraints on Parameter Selection

	Other FHE Considerations
	Partitioning
	Modulus Switching

	Full Protocol
	Experimental Results
	Analysis of Hashing Failures
	Recursion Depth Limit
	Single-Table Analysis
	Multi-Table Analysis

	Performance Evaluation
	Experimental Setup
	Discussion
	Comparison to Related Work
	Scalability

	Conclusions
	References
	Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Major Claims
	Evaluation
	Notes

