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Abstract—Video hardware acceleration stacks, which include
multiple complex layers that interact with software and hardware
components, are designed to increase the efficiency and perfor-
mance of demanding tasks such as video decoding, encoding, and
transformation. Their implementation raises security concerns
due to the lack of operational transparency. The complexity
of their multi-layered architecture makes automated testing
difficult, especially due to the lack of observability in post-
silicon testing. In particular, the tests must consider five different
layers, including all interoperation components: the applications,
the drivers supporting the user space, the kernel, the firmware
of the acceleration peripherals, and the hardware itself. The
introspectability and visibility of each layer gradually decrease
deeper along the stack.

In this paper, we introduce our harness design and testing
technique based on differential testing of hardware-accelerated
video decoding stacks through an indirect proxy target. Our key
insight is that we can use a white-box software implementation’s
code coverage as an indirect software proxy to guide the
fuzzing of the unobservable black-box hardware acceleration
stack under test. We develop a differential oracle to compare
software and hardware-accelerated outputs, identifying observable
differences in video decoding to indirectly guide and explore
the hardware-accelerated stack’s black-box components. We
also present a prototypical implementation of our approach
in a tool called TWINFUZZ. Our prototype implementation
focuses on video processing and demonstrates our method’s
effectiveness in identifying implementation discrepancies and
security vulnerabilities across seven bug classes for four different
acceleration frameworks. More specifically, we discovered and
responsibly disclosed two security vulnerabilities in the application
layer and three in the driver layer. We also identified 15
clusters of inputs that trigger observable differences in the
four platforms tested, which could be used for fingerprinting
hardware-accelerated and software stacks from the device or web
browser. On top of that, we identified vulnerabilities in Firefox
and VLC media player, leveraging input replay. Our results
highlight the need for robust testing mechanisms for secure and
correct hardware acceleration implementations and underscore
the importance of better fault localization in differential fuzzing.

I. INTRODUCTION

Hardware accelerators are used for a wide range of ap-
plications, from consumer devices to enterprise servers and
supercomputers, to improve performance and efficiency for
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specific computing tasks or workloads [57]. These specialized
hardware components are designed to run certain types of
algorithms more effectively and efficiently than general-purpose
CPUs by offloading such tasks to an accelerator. Outsourcing
tasks to an accelerator presents an interesting challenge from
a security perspective, as these tasks are executed with very
limited insight into the accelerator’s activities [55], and the
entire stack consists of several layers, each of which may
contain faults. Recent studies and exploits highlight the vulner-
abilities in video encoding and decoding, both in software-only
and hardware-accelerated implementations, which can lead
to information leaks, denial of service attacks, and remote
code execution [20], [51], [52], [72]. Even in the presence
of hardware-enforced memory safety sanitization [4], bugs in
hardware acceleration can allow for unprevented out-of-bounds
writes [46].

In recent years, fuzzing has emerged as a key technique
for identifying faults in various types of systems. Due to its
effectiveness, fuzzing has attracted considerable interest in both
academic research and practical applications, as evidenced by
a large number of methods and tools developed during this
period [6], [10], [17], [22], [36], [41]. Despite the extensive
work on fuzzing software, there is limited research on applying
fuzzing techniques to hardware acceleration stacks. The com-
plexity of fuzz testing for hardware-accelerated systems arises
from their multi-layered architecture. This architecture includes
user-level video applications, libraries that abstract kernel
interactions, kernel drivers managing user data and hardware
interactions, and the hardware components themselves, which
may contain firmware to perform specific tasks. A significant
hurdle for fuzzer effectiveness is that many of these layers are
not introspectable during runtime [14], [25], [37], [60], [79].
This opacity makes it difficult to evaluate the effectiveness of
the fuzzing process, e.g., to determine the extent to which the
fuzzer directly influences the hardware or merely interacts with
the software layers responsible for orchestrating the interactions
in the hardware acceleration stack.

In this paper, we address this problem and present a harness
design and testing technique for differential testing of hardware-
accelerated video decoding stacks. Our approach tests the
different layers of the hardware acceleration stack of a video
decoder in a black-box manner [7], [53]. At its core, our
approach is based on differential fuzzing, a technique typically
used to identify inconsistencies in software programs [42]. This
method often involves running multiple supposedly equivalent



programs to perform comparable tasks with the same inputs and
compare the output or behavior of these programs under similar
conditions. If the results or behavior differ, this could indicate
an incorrectness in the target program, which could be a security
flaw. We propose to use the software-only implementation for
differential testing of the hardware acceleration stack in two
ways. First, we guide an unmodified fuzzer and measure its
effectiveness by inspecting the code coverage of the software-
only implementation of the decoder [50], [75]. Since both
the software-only and hardware-accelerated implementations
perform decoding, we hypothesize that the code coverage of the
software stack and the accelerated stack loosely approximate
the state space of the decoding process itself and, consequently,
they loosely approximate each other. The intuition is that the
software-only implementation can act as an approximation of
the accelerated implementation to guide the testing process.
We use the term proxy to remain consistent with existing
literature regarding guidance approximation by way of a second
implementation [38]. Since fuzzing is ultimately a strategy to
explore the state space of the system under test, coverage
feedback itself already acts as an indirect proxy even when
testing a single system; utilizing the coverage of one design
to explore another can be considered to be a lower-precision
approximation of the state space of the general problem and
thus of both systems under test.

Second, we compare the frame output of the software-only
decoder with that of the accelerated decoder by examining the
dimensions and content of each frame. We implement a so-
called differential oracle [9], [34], [42] to detect inconsistencies
between the two. This method allows the fuzzer to identify
user-observable differences in the video frame data, revealing
both correctness and memory safety errors without requiring
additional instrumentation in the acceleration stacks, which
are difficult to introspect. This approach enables us to detect
potential faults that may indicate memory safety vulnerabilities
undetected by existing sanitization methods. However, this
method is only feasible when a second implementation exists,
meaning that the independent layers of the stack cannot be
differentially tested on their own.

We have implemented a prototype of TWINFUZZ and
evaluated its effectiveness through a series of experiments
and extensive analysis on different platforms and applications.
TwiINFuzz uses FFmpeg, a popular tool consisting of various
libraries and programs for processing video, audio, and other
multimedia files and streams, as a proxy for differential testing.
We use software code coverage as a means to indirectly infer
coverage of the hardware acceleration stack. TWINFUZZ targets
both the hardware-accelerated and the software-only code
path, which enables it to detect bugs in both domains. We
demonstrate the applicability of TWINFUZZ in several case
studies of video decoders in different hardware acceleration
frameworks.

Our results demonstrate how software and hardware-
accelerated implementations can differ, leading to functional
disparities in the decoding process between the unaccelerated
and accelerated components. We consider any bug discovered

within interoperation components of the stack under test to
be a hardware acceleration stack bug. These differences lead
to recognizable differences in the content and size of the
frame on the different platforms. Additionally, we discovered
five security-relevant vulnerabilities in the tested hardware
acceleration stacks. The newly found security vulnerabilities
represent memory corruption, such as buffer overflows on the
stack or heap and wild pointer dereferences. It is important
to note that the layer where the observable differences are
triggered does not directly pinpoint the fault’s root cause; the
actual fault could be located in an unobservable lower layer
and managed by higher layers. On top of that, we uncovered
three additional findings through input replay techniques using
the original fuzzing campaign corpora: an information leak in
Firefox, a VLC issue on Windows related to the interaction with
the video driver, and the rediscovery of potential fingerprinting
when hardware decoding is enabled. We responsibly disclosed
all findings to the affected vendors and received a bug bounty
for our efforts.

In summary, we make the following three key contributions:

« We present a new method for testing video hardware
acceleration stacks. We derive a differential oracle that
may indicate the presence of both correctness and
security-relevant faults by differentially testing software
implementations against the corresponding full hardware
acceleration stack.

o We propose a technique for indirectly guiding an unmodi-
fied fuzzer that abstracts over any acceleration stack that
is otherwise difficult to introspect.

« We implement a prototype of our approach in a tool called
TwINFuUZzz. In the evaluation, we observe seven bug
classes in four different hardware acceleration platforms,
including five security bugs reported to vendors, and we
perform an extensive analysis of input clusters that trigger
observable differences.

To foster further research, we release the source code

and evaluation artifacts of TWINFUZZ at https://github.com/
CISPA-SysSec/twinfuzz.

II. TECHNICAL BACKGROUND

In the following, we present several important testing
concepts and discuss the interaction between software and
hardware acceleration relevant to our work.

A. Differential Testing

Differential testing techniques complement conventional
software testing by effectively uncovering semantic or logic
bugs that may not manifest as explicit errors, such as crashes or
assertion failures [42]. In particular, differential testing aims to
identify system errors or inconsistencies by providing the same
input to multiple implementations and observing discrepancies
in their behavior or output. In other words, differential testing
enables each implementation to be an oracle for the correctness
of the other(s). Significant differences in the results for the same
inputs are analyzed, and deviations are flagged as potential
bugs.
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B. Fuzzing

Fuzzing is a dynamic testing method for examining soft-
ware applications or other systems under test by submitting
unexpected, random, or erroneous data to a system to induce
unusual behavior and uncover hidden faults [6], [10], [11],
[17], [41]. This testing strategy has historically been used to
detect unusual and hard-to-find bugs that, if ignored, could be
exploited by attackers to undermine system integrity and cause
system crashes, data leaks, or unauthorized access [44]. The
mechanics of fuzzing are multifaceted and entail a structured
exploration of the system under test.

In mutational fuzzing [80], we typically guide the fuzzer
through code coverage. This important metric quantifies how
much the fuzzer has explored the program’s codebase and
functionality. It is used to assess the thoroughness of the
testing process and guide the fuzzer to discover new regions
by mutating (i.e., randomly modifying) an existing input.
Comprehensive coverage guidance ensures that the fuzzer
traverses diverse execution paths within the software, thereby
increasing the likelihood of identifying latent vulnerabilities in
less explored parts of the codebase.

1) Differential Fuzzing: Differential testing has been applied
in the fuzzing domain (“differential fuzzing”) with great success
on targets that have multiple alternative implementations, such
as cryptographic algorithms [74], JIT engines [9], deep learning
systems [24], and blockchain nodes [78].

To perform differential fuzzing, we need to create a so-called
fuzzing harness, i.e., a piece of code specifically designed to
interface the fuzzer with the tested system, which performs
the differential testing. To accomplish this, the harness accepts
input and executes two different implementations of the same
program on that input, transforming the input as needed and
storing the output from each. If the outputs are classified to
be inconsistent, the harness emits an error to flag the testcase
to the fuzzer.

2) Hardware Fuzzing: Both academia and industry have
recently shown increased interest in hardware fuzzing. This
emerging field aims to move beyond the well-established
domain of software fuzzing, where tools such as AFL++ [17],
AddressSanitizer [62], LibAFL [18], and KernelAddressSANi-
tizer [68] are crucial for detecting and activating faults. This
is particularly relevant for hardware fuzzing, where the oracles
and feedback metrics inherent in software fuzzing are either
unavailable or need to be tailored to the hardware domain.

Hardware fuzzing can be divided into two categories: pre-
silicon and post-silicon. The former identifies bugs before the
production of hardware components, and the latter identifies
bugs in hardware that has already been distributed to customers.
In pre-silicon research, multiple strategies have been presented
to port software fuzzing directly to hardware by utilizing a
hardware-provided coverage metric [29], [31], [35], [70]. These
strategies often employ differential oracles to detect bugs [29],
[35]. In contrast, post-silicon fuzzing must implement guidance
strategies that work with hardware that was not designed to be
introspectable [38] or avoid depending on guidance strategies
entirely [54].
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Fig. 1. Overview of Intel’s hardware acceleration stack (based on [30]).
Diagram entries are shaded according to their introspectability, from most
introspectable (white) to least (dark gray).

C. Hardware-Accelerated Video Decoding

Due to the increasing demand for efficient high-resolution
video playback and processing, hardware acceleration of video
formats is increasingly adopted by both hardware and software
vendors. Hardware-accelerated video decoding aims to offload
the intensive computational tasks of video decoding from the
CPU to the GPU or other specialized hardware acceleration
units. The exact implementation of these tasks in software and
hardware varies by video format, by hardware manufacturer,
and even between generations of video accelerators.

These specialized hardware components are engineered
to handle video decoding tasks efficiently; they may be
general-purpose parallel computing platforms or tailored to
support various video codecs, such as H.264 [32], H.265
(HEVC) [77], VP9 [76], and more. However, developers depend
on the user- and kernel-level software to use these hardware
components. This software, typically provided by hardware
manufacturers such as NVIDIA, AMD, and Intel, facilitates the
communication between multimedia applications, the operating
system, and the hardware’s video decoding capabilities. These
software intermediaries offer an abstract interface by which a
video decoding library may interact with the hardware.

As an example, Figure 1 provides a high-level overview of
the hardware acceleration stack used by Intel. An application
interacts with the Media SDK library, but there are four
additional software components until the actual hardware is
reached, and all of these six components can potentially contain
and propagate faults along all the stack layers.

Media libraries, such as libavcodec [16], are developed
to wrap both a software-only implementation and the cor-
responding hardware acceleration stack to ensure compatibility
across many systems. Should the hardware decoder not support
a particular codec, the library will fall back on the slower
but semantically equivalent software implementation. Given
this need for support across many systems, these libraries
offer a consistent interface to end-user applications to perform
video decoding. However, this scenario is inherently part of
the hardware acceleration stack. Falling back to software-
only decoding represents a true negative case in our design
since the oracle will not identify any difference in comparing



the software model against itself. This paradigm of optional
hardware acceleration for operations such as video decoding
enables us to perform differential testing between software-only
and hardware-accelerated graphics stacks.

III. DESIGN

We now present the design of TWINFUZzZ, a novel approach
to testing hardware acceleration stacks. Our method is based
on a harness designed to differentially test video hardware
accelerator stacks using an indirect proxy with a white-box
software reference. This means that the software implementa-
tion serves as a reference model (or proxy) for the black-box
hardware acceleration stack. The underlying intuition is that
the software-only implementation behaves similarly to the
hardware-accelerated implementation in terms of processing
inputs and generating outputs, as they accomplish the same task
and thus must perform semantically similar subtasks. Note that
this indirect method does not require a model of the hardware
or, in fact, any knowledge of its internals. There is no need
to collect hardware coverage, which, without access to the
hardware design, is challenging and hardly practical. Next,
we discuss three key challenges related to fuzzing hardware
acceleration stacks and then present the actual design of
TWINFUZzzZ.

A. Challenges

We explore the challenges we identified and present our
strategies to overcome each of them effectively.

1) Fuzzing Oracle Availability: Crafting effective oracles
for systems that cannot be introspected is often challenging
because there is no effective way to determine if unexpected
behavior occurred, as highlighted in other related works [13],
[47]. This is in stark contrast to classical software fuzzing,
where tools like AddressSanitizer [62] and other sanitizers [64]
serve as robust bug oracles. The complexity of developing
oracles that accurately detect behavioral anomalies lies in the
need to define a reliable ground truth against which the test
results can be verified.

Proposed Solution: Our solution involves creating a differ-
ential oracle design [23], [63]. In our design, we propose
comparing decoded frames from two different sources: a
hardware-accelerated stack and a software-based decoding
stack. The consensus between the two stacks serves as an oracle
for validation, as described in Section II-A. Importantly, this
oracle not only identifies situations where one implementation
is merely incorrect but also situations in which an unobserved
memory safety violation occurred that affected the result.
Memory safety violations encountered in unobserved drivers or
unobservable hardware that affect the computation of the result
(e.g., overread of the input buffer, use of uninitialized memory,
overwrites that taint neighboring data, etc.) will manifest as
observable differences. This strategy ensures that we detect
issues incurred by the hardware acceleration stack without
the need for additional introspection (i.e., sanitizers) in the
platform-specific libraries, drivers, and hardware.

2) Black-Box Hardware Acceleration Stack Coverage: For
the same reasons that we cannot easily determine whether
unexpected behavior occurred, exploring the coverage of the
hardware acceleration stack is infeasible in practice. Some
components, such as userspace libraries interacting with the
constituent kernel drivers that manage hardware acceleration,
may be relatively simple to instrument for measuring code
coverage. Conversely, collecting code coverage may be harder
or even infeasible in other components, such as the kernel
driver, the firmware running in the hardware, or the hardware
logic itself. As previous studies suggest, even if we collect
hardware code coverage, these metrics are unlikely to be
suitable for guidance of input generation in post-silicon [65] and
in pre-silicon [28] scenarios. Hence, we need a new coverage
strategy or an alternative to the classical code coverage to
understand how effectively the hardware acceleration stack has
been covered.

Proposed Solution: To overcome this challenge, we propose
measuring code coverage metrics from the white-box software-
only instrumented implementation and using them as indicators
for black-box acceleration stack exploration. Intuitively, the
coverage of the software-only implementation provides an
approximation of the state space of the implemented algorithm.
Transitively, as the hardware-accelerated implementation real-
izes the same algorithm, its coverage must both approximate
the same state space and, therefore, be approximated by
the software-only implementation’s coverage. In the case of
hardware acceleration testing, we abstract away not only the
hardware components but also the entire uninstrumentable
software stack that manages the acceleration.

3) Acceleration Implementation Differences: The testing
process for hardware acceleration stacks is considerably more
obscure and complex than software testing due to the large num-
ber of hardware and driver implementations, which often come
from different vendors and require specific ad-hoc testcases
and tools for such hard-to-test components. The variability
of driver implementations manifests itself in differences in
interfaces, functionality, permissions, and security measures.
This diversity is a significant obstacle to the consistency and
effectiveness of the evaluation process.

Proposed Solution: While implementations of hardware
acceleration stacks are highly diverse, many libraries already
offer APIs that provide an abstraction over software-only and
hardware-accelerated implementations to make hardware ac-
celeration more accessible. Consider widely available libraries
like OpenSSL [69], ALSA [3], and FFmpeg [15], which offer
abstractions over cryptographic routines, audio processing, and
media processing, respectively. We may use the common
interface offered by such programs to test the constituent
acceleration platforms they use. This insight serves as a general
approach to expanding the testing to a broader set of devices
and vendors with little effort and many options for optimization
based on the chosen system under test. Now, enabling and
disabling hardware acceleration is as simple as throwing a
proverbial switch, and comparing the outputs is trivial, as the



program’s interface must be consistent to ensure compatibility
across platforms.

B. High-Level Overview

We hypothesize that there is a correlation between the
execution of code at the software-only level and when hardware
acceleration is used. This assumption is based on the insight
that hardware accelerators are designed to accelerate specific
compute-intensive tasks compared to a software implementation
running on a general-purpose CPU. The underlying goal is the
same, so the computation result must be consistent. We assume
that certain functions, such as parsing and frame extraction, will
directly match between the software- and hardware-accelerated
stack. However, other parts, especially related to decoding
and optimization, may have different implementations in the
two stacks. Based on the intuition that the decoding processes
are deterministic and consistent (i.e., the results should be
the same), we also hypothesize that despite the lack of a
direct feedback guidance mechanism with the hardware, we
can still efficiently explore its state space. This indirect proxy
technique, in turn, allows us to meaningfully test the hardware
acceleration stack and to identify bugs that will occur in practice
by exploring code regions and logic edge-cases that would
otherwise be hard to reach in a pure black-box hardware testing.

Guided by these rationales, our approach is:

« We stimulate the components of the hardware acceleration
stack through their corresponding software libraries and
drivers (see also Figure 2 for a high-level overview). This
process is driven by code coverage metrics derived from
the software-only implementation, which are used to guide
and monitor progress during the testing phase.

o Within this framework, we use differential fuzzing to
systematically compare the hardware-accelerated out-
put with the behavior and output of the software-only
implementation. This comparison helps us to identify
inconsistencies that could indicate unexpected behavior
across the entire hardware acceleration stack. Note that we
do not attempt to discover bugs within hardware alone but
in the entire acceleration stack, including all interoperation
components.

The core function of TWINFUZZ is to enable the creation
of valid video streams by generating and modifying inputs—
either from an empty seed or a predefined input—via a generic
mutational fuzzer. In this position, TWINFUZZ is completely
fuzzer-agnostic and does not optimize for a specific engine [61].
Hence, we do not elaborate on its performance in conjunction
with different fuzzers; instead, we compare it to other input
generation techniques for the same targets. The range of video
formats that TWINFUZZ can handle is not limited to any
specific video codec. It can support all formats supported by
the available hardware acceleration devices. When mutational
fuzzing is used, providing an initial set of valid inputs to the
fuzzer can streamline the exploration of difficult-to-reach code
regions because the fuzzer does not need to produce valid
inputs from thin air. Hence, we use minimized, valid raw video
snippets as seed inputs for our evaluation.
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Fig. 2. High-level overview of the design of TWINFUZZ. The input is processed
with both the software-only and hardware-accelerated stacks, and the output
is compared on a per-frame basis. We use the coverage of the software
implementation as the feedback loop to guide the testing process.

Upon receiving an input video, TWINFUZZ first identifies the
appropriate codec. TWINFUZZ then ensures that the hardware
is correctly configured and supports decoding the respective
codec. The video is then segmented into individual frames
for processing, and each frame is decoded in parallel by both
the white-box instrumented software implementation (@) and
the black-box uninstrumented hardware acceleration stack ().
After decoding, the frames output by the software-only and
hardware-accelerated implementations are analyzed side-by-
side to identify discrepancies in size or content (®). This
comparison is crucial to detect possible differences or anomalies
in the decoding process. Note that this approach enables the
detection of correctness issues and vulnerabilities in APIs,
drivers, the kernel, and possibly the hardware itself through
using oracles defined only in software. However, additional
effort is required to pinpoint the specific cause of an observable
difference.

IV. IMPLEMENTATION

In the following, we explain how the TWINFUZZ strategy
implemented within our harness validates frames and detects
faults via indirect proxy using differential fuzzing. After that,
we discuss several design decisions.

A. Fuzzer Overview

We chose FFmpeg as a software proxy to investigate
differences in the decoding behavior of hardware-based video
accelerators since it is an open-source project, widely used in
practice and integrated into multimedia process applications
such as Chromium [66] and Firefox [49]. While we use an un-
modified libFuzzer [40] for our prototype, the implementation
is easily portable to other fuzzing engines, such as AFL++.

We compile the userspace software stacks (i.e., FFmpeg
and the hardware acceleration libraries, but not the drivers)
with libFuzzer to report the coverage data and to explore the
states of both software and hardware-accelerated decoder, as
described in Section III-A2. Internally, the mutations, input
selection strategy, and other feedback mechanisms used in our
implementation are those of libFuzzer. The harness enables the



Fig. 3. An example of an observable difference present in a testcase generated
by TWINFUZz. Images of the frame as decoded by software (top left), the
frame as decoded by hardware (top right), and the difference of these frames
(bottom).

fuzzer to detect logical bugs in the decoders by comparing the
software and hardware-accelerated decoded outputs frame by
frame, starting from the same input. If the two output frames
provided are the same, then the decoding process for such
input is correct for both implementations. In contrast, if the
two output frames are different (see Figure 3 for an example),
then at least one of the two implementations is incorrect or
incomplete and needs further investigation. Such a scenario will
raise a SIGABRT that we label as an observable difference.

B. Setup and Fuzzing Harness

OSS-Fuzz [22] is a collaborative project spearheaded by
Google and aimed at improving the security of open-source
software through automated and continuous fuzz testing,
including the FFmpeg project. As noted above, FFmpeg is
a free, open-source software project that provides multimedia
tools and libraries for handling multimedia data, including
audio and video. Our harness is based on the FFmpeg harness
provided by the OSS-Fuzz project.

We built this project for multiple devices, as explained in
Section V-A. To this end, we adapted the build script for
FFmpeg provided in OSS-Fuzz, building the specific and
needed dependencies to run the hardware acceleration offered
by each platform. Reusing the build script from OSS-Fuzz
ensures that the software coverage of FFmpeg is collected by
libFuzzer, implementing the coverage guidance mechanism
described in Section III-A2.

We extended the OSS-Fuzz harness to leverage FFmpeg’s
hardware acceleration decoding, retaining as much of the
existing harness as possible to stay as close as possible to
FFmpeg’s provided testing strategy. The harness expects raw
video input in different formats, such as H.264 [32], AV1 [2],
and so on. It first identifies the video format present in the
provided input, discarding the input if it cannot determine
a specific format. Once a format is identified, the harness
checks if hardware acceleration support is available for the

listed format on this platform, discarding the input if it is not.
Next, the video is sent to the respective hardware and software
decoders in parallel. Afterward, a subroutine walks through the
frames of one decoded video stream and compares them to the
frames of the other. Concretely, this entails checking the x and
y dimensions of the two frames, emitting SIGABRT if they
are not equal. Then, the frame’s content is checked pixel by
pixel, emitting SIGABRT if any two pixels are different. For
debugging and illustration purposes, the harness emits both
the software and hardware-accelerated frames to disk, as well
as the pixel difference of their content, allowing for visual
analysis (see Figure 3 as an example). This implements the
differential oracle described in Section III-Al.

V. EVALUATION

We evaluated TWINFUZZ on four hardware platforms in
two main aspects: first, we wanted to understand how effective
our strategy is compared to existing bug-finding approaches.
Second, we examined the bugs found in our cross-platform
evaluation and coarsely clustered them into seven classes. As
outlined above, TWINFUZZ is fully agnostic of the fuzzing
engine chosen; hence, we fixed one fuzzer for this evaluation
and referred to existing work for comparing the effectiveness
of different fuzzers [12], [27], [43].

With regard to effectiveness, we started by running both
the software and the hardware-accelerated side of TWINFUZZ
separately, without our differential oracle, to verify that it
is indeed the combination of both that makes our approach
effective. Additionally, we performed a comparative analysis
of which code regions of the software-only implementation are
covered by TWINFUZz and which are covered by H26Forge
[72], the current state-of-the-art in testing hardware video accel-
erators. This allows us to understand the relationship between
TwINFUZZ and H26Forge with regard to their corresponding
abilities to exercise video decoders. Note that we have to base
this comparison on the software-only implementation because
it is infeasible to get coverage information from the hardware.

For the second aspect, we clustered the correctness bugs
according to the frame difference we observed and the platforms
they were present on. Looking at the resulting bug classes, we
deducted some underlying properties. Afterward, to determine
the bug-finding effectiveness of TWINFUZZ, we performed a
“time-to-bug” experiment for each of the bugs uncovered in our
work. This allowed us to indicate how difficult certain bugs
were to find (i.e., how quickly does such a strategy uncover
bugs?) and to investigate the overall performance of our tool.
Finally, we replayed the corpora generated from our fuzzing
campaign to compare our strategy with that of H26Forge for
targeting the same applications and demonstrate that we can
identify similar bugs.

A. Evaluation Setup

We ran ten trials for each experiment sequentially on a single
CPU core for 24 hours each. For each trial, we used three corpus
entries (initial seeds). Two are regular H.264 video files, and
one is a dummy file consisting of four ASCII characters (AAAR)



to reduce the bias induced by the codec of the two other files.
We executed the trials sequentially to avoid contention between
the CPU and the peripherals responsible for hardware-based
acceleration. We consistently applied this evaluation method
to all experiments described below to ensure a standardized
approach to evaluating the performance and effectiveness of
our fuzzer in different scenarios. The harness described in
Section IV-B is used for each experiment unless otherwise
specified. Where applicable, we followed the guidance by Klees
et al. [36] and Schloegel et al. [61] on how to evaluate fuzzers.
As explained in Section IV-A, we utilized the libFuzzer [40]
runtime. We did not evaluate with other fuzzer runtimes (e.g.,
AFL++ [17]), as we are evaluating the effectiveness of the
general approach, not the specific performance of each runtime
with our approach.

Hardware Specifications: We tested our approach on various
hardware platforms. Based on the hardware specifications, we
compile FFmpeg to support different hardware acceleration
drivers based on the target machines. A summary of the
platforms under test is provided in Table I. We use the platform
labels therein consistently in the following sections and in
Table II.

B. Comparison without Proxy or Differential Testing

In our initial fuzzing campaign and exploration, we ran an
experiment to test the software-only and hardware-acceleration-
only implementations independently. We evaluated this in the
same way as the other experiments: ten libFuzzer trials for 24
hours. We instrumented FFmpeg and its software dependencies
for fuzzer guidance and enabled ASAN. This experiment did
not use a differential oracle, and only invoked one of the
software-only or hardware-acceleration-only implementations.
In the latter, the only coverage feedback was for the decoding
process up until the point at which it was offloaded to the
driver or accelerator.

In both experiments, none of the fuzzing trials trigger any
bug later discovered by TWINFUZZ. Since the bugs that we
discover using TWINFUZZ are either differential issues or
memory violations in the software components of the hardware
acceleration stack, this suggests both that the software-only
parts of FFmpeg are extensively being fuzzed and that a naive
harnessing strategy for the hardware-acceleration components
is not enough.

C. Comparison of Mutation and Generation Approaches

H26Forge [72] is a framework for analyzing, generating,
and manipulating H.264 video files that are valid according to
the specification (but potentially not semantically meaningful).
When used for fuzzing, this framework allows for a deep
exploration of the regions of the acceleration stack that handle
valid input files. Such an approach is inherently limited since it
only generates systematically correct H.264 inputs, which may
not exercise regions where specification-invalid data is accepted
from the target. Unlike the generative fuzzing strategy employed
by H26Forge, mutational fuzzing is aware of coverage and
thus guides itself toward new regions without knowledge of
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Fig. 4. Coverage over time. Both H26Forge and TWINFUZZ are indicated,
with solid lines and dashed lines indicating the median coverage over time of
10 runs considering corpus entries of all codecs and only those of the H.264
codec family, respectively. The shading around each median denotes range.

the input format. However, mutational fuzzing is unaware of
the specification of any video codec. Evaluating the respective
ability of mutational fuzzing and grammar-based generation to
explore the state space of video processing tasks is necessary
to understand their respective strengths and weaknesses.

To understand this relationship, we set up a fuzzer that
solely invoked H26Forge using the same harness as TWINFUZZ.
In this way, we separately exercised the target platform by
traditional mutational fuzzing in the TWINFUZZ trials and by
H26Forge in the H26Forge trials. Note that this evaluation does
not provide insight into the degree to which hardware is tested,
which, as described in Section III-A2, cannot be measured.
Rather, we used software coverage as a proxy for the state
space of the video processing task, which is the standard
mechanism by which fuzzers are compared to evaluate their
ability to explore a program under test [36], [61]. In effect,
this evaluation compares how libFuzzer (the fuzzer runtime
used in our prototype) and H26Forge respectively explore the
state space of the video processing tasks.

Standard fuzzing evaluations consider the aggregate code
coverage and compare the coverage as a single value over
time, which fails to capture details about what code regions are
actually covered. Aggregate measurement can be misleading
in that coverage is not a single value but rather represents
a set of points within the code; for fuzzers of significantly
different design, like TWINFUZZ and H26Forge, aggregate
coverage offers no insight into when one fuzzer can reach
certain code regions that another cannot, or vice versa. We
provide the aggregate coverage over time plots in Figure 4 to
demonstrate the coverage, in keeping with recommendations
from Klees et al. [36]. However, we strongly emphasize that
comparison by aggregate code coverage does not suggest that
one strategy is inherently “better” than the other. To understand
how these strategies actually compare, we define a relative
coverage metric based on the Tversky index' [71], a measure
for asymmetric similarity between two sample sets, that allows

I'Specifically, this corresponds to the Tversky index with a = 0,3 = 1.



TABLE I
SPECIFICATIONS OF THE PLATFORMS UNDER TEST.

Label Platform OS (Kernel) Graphics Card Driver (Version)
a) linux-intel Intel GPU Ubuntu 22.04 (6.8.0-40-generic)  Integrated Intel Iris Xe Intel Media Drivers (24.1.5)
b) linux-nvidia  NVIDIA GPU Ubuntu 22.04 (6.5.0-41-generic)  NVIDIA RTX 3070 Mobile = NVIDIA’s CUDA (535.183.01)

Intel MacBook
M1 Mac Studio

macOS 12.6.8 (Darwin 21.6.0)
macOS 14.1.1 (Darwin 23.1.0)

¢) mac-intel
d) mac-arm

VideoToolBox (OS-bundled)
VideoToolBox (OS-bundled)

Integrated Intel Iris Pro
Integrated Media Engine
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Fig. 5. Relative coverage computed by intersecting each trial with the theoret-
ical “best case” run of the other tool as determined by relcov(cov(t), fother)-
The black bars indicate the theoretical “worst case” relcov(lower(f1), f2) and
“best case” relcov(upper(f1), f2) results.

us to investigate what code regions one fuzzer can reach
compared to another.

We define the fuzzers F, the trials T, and the coverage
points> P. Additionally, we define functions for the coverage
for each trial and the trials conducted for each fuzzer as:

cov:T — P*

1
trials : ' — T M

To compute the relative coverage of a given trial to the
potential of a given fuzzer, we define upper, lower, and relcov:

upper(f) = | cov(t)
lower(f) = ﬂ cov(t)

Vt € trials(f)
Vit € trials(f)

@

relcov(c, f) = Czpl;ifz;gf)

Relcov can be utilized to compute the proportion of coverage
points discovered across all trials of a fuzzer f; that are reached
by a given trial of a second fuzzer fo. By computing relcov for
each trial, we gain insight into how many code points reached
by fi are reached by f and vice versa. The results of the
relcov analysis are provided in Figure 5 and are discussed
below.

3

2This is determined specifically by LLVM’s PC Guard coverage of
edges [67].

To ensure a meaningful comparison, we compare code
coverage results once for all inputs and once only for inputs
that are supposed to represent video data of the H.264 codec
family. Since H26Forge is only designed to generate input files
of the H.264 codec family, this allows us to judge relative
coverage compared to H26Forge’s intended target code surface
as well as code regions that H26Forge was not designed to
explore. Notably, the inputs from the H26Forge trials are either
detected as H.264 codecs for 33.2% of the 9,324 input files
or rejected as unknown streams (66.8%). TWINFUZZ, on the
other hand, is not constrained to any specific codec type. The
final corpora for TWINFUZZ (158,475 files®) consist of 7.8%
H.264-type streams, 25.1% other recognized codecs, and 67.1%
invalid files.

We find that a majority of the regions explored by H26Forge
are also explored by TWINFUZZ, as demonstrated in the
right half of Figure 5. This is true in both cases where we
consider all codecs generated by both fuzzers and in the
case of only FFmpeg-recognized H.264 inputs. Notably, even
in the theoretical worst case formed by lower(TWINFUZZ),
we cover 87.7% of the coverage observed by the theoretical
best case of H26Forge when considering all codecs and
85.2% when considering only H.264 inputs. This indicates
that approximately 10% and 15% of the coverage discovered
by H26Forge is not discovered by TWINFUZZ in a 24-hour
period, respectively. This, in turn, indicates that while most of
the coverage discovered by H26Forge is also discoverable by
TWINFUZZ, there are some regions that may not be reachable
by standard feedback-guided byte mutation alone and require
the specialized grammar-based input generation provided by
H26Forge. Despite this, even when considering only codecs
for which H26Forge was designed, TWINFUZZ still covers the
vast majority of the regions H26Forge is capable of covering.
This indicates that mutational fuzzing is capable of reaching
a majority—but not all—of the code regions reachable by
grammar-based generation.

In the left half of Figure 5, we assess which regions covered
by TWINFUzZ are covered by H26Forge. That is, we identify
an upper bound for TWINFUZZ’s coverage over 24 hours and
determine the intersection of this upper bound with every
H26Forge trial, as well as their intersections and union. We
find that for each of our trials, less than 20% of the coverage

3Since H26Forge generates testcases according to a grammar, it is more
likely to cover many regions with a single testcase, as compared to TWINFUZZ,
which may only make incremental progress. As a result, H26Forge generates
fewer files while covering the set of reachable edges, and the produced files
are generally more representative.



discovered by TWINFUZZ is also discovered by H26Forge.
When filtered only for inputs of the H.264 family of codecs,
H26Forge still only covers around 60% of the code regions
explored by TWINFUZz. This result shows that TWINFUZZ’s
codec-agnostic strategy allows it to cover significantly more of
the FFmpeg implementation compared to specification-tailored
solutions like H26Forge. Indeed, even for the codecs for which
H26Forge was designed, we find that TWINFUZZ uncovers a
considerable portion of edges undiscovered by H26Forge.

Together, these results indicate that neither the strategy
provided by our prototype, TWINFUZZ (coverage-guided
fuzzing with simple mutations), nor the strategy of H26Forge
alone (grammar-based generation) is sufficient to explore the
software-only implementation entirely on their own. We infer
from this that, while we do discover bugs in the hardware
acceleration stack across several codecs, it is likely that there
are additional latent bugs in each codec that were not triggerable
with either our prototype implementation or H26Forge. Simply
put, there are bugs of all categories: some discoverable only
with TWINFUZZ, some discoverable only with H26Forge, some
discoverable with both, and certainly some discoverable with
neither. We discuss the implications of this result further in
Section VI-C.

D. Bug Analysis

Next, we provide an overview of several security vulnerabil-
ities that were uncovered by our approach (see also Table II).
These vulnerabilities, identified during the fuzzing campaigns
described above, highlight the effectiveness of our technique in
detecting security and correctness bugs. In several case studies,
we briefly describe the nature of each flaw, its potential impact,
and the context in which it was found.

1) Bug 1.x: Observable differences in frame content:
The first and most prominent issue we observed during the
fuzzing campaigns was observable differences in frame data.
These occurred when the software implementation produced a
different frame than the hardware-accelerated implementation.
In line with the recommendation of Klees et al. [36], we define
this issue as a single “bug” for ground truth evaluation, as it
has a single, common point of program termination indicated
by the emitted SIGABRT when a difference is detected.
This makes each “bug” distinguishable for the purposes of
our evaluation. Unfortunately, while differential fuzzing is
effective in discovering inconsistencies, it differs from the
conventional implied oracles offered by sanitizers [64] in
terms of pinpointing the exact location of a bug. While
sanitizers induce a crash the moment a fault occurs, differential
oracles only provide us with an indication of failure after the
entire subroutine has returned (e.g., “frames are different”),
and multiple factors may contribute to a single observable
difference.

To estimate a more precise lower bound of how many unique
actual bugs were identified that could cause an observable
difference, we re-executed testcases discovered during the
experiment described in Section V-A from each platform on
every platform. This approach allows us to cluster testcases
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Fig. 6. Distribution of testcases that trigger observable differences by the
combinations of platforms that they affect. The horizontal bar chart bottom-left
indicates the total number of testcases that triggered observable differences
identified per platform denoted on the right. The vertical bar chart indicates
the total number of these testcases that occurred on the exact combination
of platforms denoted by filled nodes in the diagram below it, categorized by
observed difference.

based on the type of observed output differences and the
specific combination of platforms where each testcase triggers
these differences. Figure 6 summarizes these results in a
categorized UpSet diagram [39]. We discuss the results in
the following. Overall, we find 15 clusters of inputs based
on these measurable constraints. Of particular note is that
of the approximately 12,000 testcases gathered, all exhibited
consistent types of observable differences across the platforms
in which a difference was detected. While we are working
with the respective vendors and developers to resolve these
issues, we do not yet have a ground truth for the accuracy
of these clusters, as we cannot yet attribute root cause(s) to
testcases that trigger them. Among these clusters, we find a
few interesting trends that we discuss next.

Observable differences on only one platform: A stark
majority of the discovered testcases capable of triggering
observable differences were those that only occurred on a single
platform. We interpret this to mean that there are likely several
bugs associated specifically with the hardware acceleration
provided on these platforms. Seven of the clusters identified
are in this category, a majority of which are located on the
linux-nvidia platform.

Observable differences across several platforms: We find no
testcases that are unique to the mac-arm platform; instead, each
of the testcases affecting this platform also affects the mac-
intel platform, which indicates that these bugs are more likely
to be associated with macOS or VideoToolbox than with the
components specific to these platforms. Similarly, of the 12,000
discovered testcases, 800 only occurred on x86 platforms. This
is likely caused by incorrect x86-specific optimizations in
libavcodec or its dependencies. Similar reasoning can be applied
to testcases that only trigger observable differences on the
Linux-based hosts, where several platforms with an obvious
connection between them reproduce the observable differences.

Some of the clusters do not have obvious common com-
ponents, such as the clusters across mac-arm, mac-intel, and
either of the Linux-based platforms. This may indicate that



TABLE II
BUGS DISCOVERED BY TWINFUZZ DURING LONG-TERM (>24HR) FUZZING CAMPAIGNS AND MANUAL INSPECTION.

Bug ID  Platform Description CWE IDs [45] Layer Discovery Method  Status

l.a-d All platforms Observable difference 204, 474 Undetermined Fuzzing Unconfirmed

2 linux-intel Timing-dependent observable difference 204, 362, 474 Undetermined Fuzzing Unconfirmed

3 linux-intel Global buffer overflow 126 Application Fuzzing Patched

4 linux-intel Heap buffer overflow 122, 787 Driver Fuzzing Patched w/ bounty
5 linux-intel Wild pointer dereference 824 Driver Fuzzing Disputed

6 linux-nvidia Invalid pointer free 415 Application Fuzzing Patched before report
7 linux-nvidia Near-null pointer dereference 824 Application/Driver ~ Fuzzing Patched

8 windows-nvidia  Information leak on Firefox 908 Application/Driver  Input replay Confirmed

9 windows-nvidia ~ Windows driver interaction with VLC 476 Application/Driver  Input replay Reported

10 linux-intel Hardware fingerprinting 497 Hardware Input replay Confirmed

the hardware acceleration stacks are consistently incorrectly
handling this testcase across multiple platforms or that the
software-only implementation is incorrect and merely happens
to be incorrect in the same way as the platforms that do not
trigger observable differences. It could also indicate a scenario
where the software implementation was incorrect, and the
hardware acceleration stack fell back to software decoding,
thus leading to no observable difference for the testcase. Finally,
it is possible that a testcase was generated that triggered more
than one root cause of incorrectness across multiple platforms.
Three of the clusters identified are in this category, and only
approximately 100 testcases.

Observable differences across all platforms: Of 12,000
total discovered testcases that produced observable differences
in output on any platform, only 11 do so on all platforms.
We suspect that the software implementation or a hardware
acceleration subroutine present in libavcodec itself likely
exhibits incorrect behavior for this set of inputs.

2) Bug 2: Race condition in iHD driver: Beyond analyz-
ing differential behaviors, we also wanted to gain a better
understanding of the actual root cause of the observable
differences. While inconsistencies between different machines
can stem from numerical instabilities or differing feature
support, decoding on the same platform should always return
the same result. We assume that the existence of inconsistencies
present on a single platform could indicate issues resulting
from the use of uninitialized memory, data races, and similar
error conditions.

We discovered one such testcase on the linux-intel platform,
which exhibited a curious behavior: the decoding results were
inconsistent between two executions on the same software
and hardware setup in the way that some runs returned
two decoded frames, while others returned only one. We
investigated further by inserting an artificial delay before
fetching the decoding results using FFmpeg’s API and identified
the frequency at which each decoding outcome appeared. These
measurements are presented in Figure 7. Given that the number
of frames available differs according to the timing of the
polling for results, we assume that this discrepancy is the
result of an improper synchronization issue within the hardware
acceleration stack.

Two frames

Outcome

One frame

50 100 150 200

Artificial delay (ps)

Fig. 7. Distribution of nondeterministic decoding results leading to bug 2
according to the artificial delay inserted before polling. 10 trials per delay
increment.

3) Bugs 3-7: Various memory-safety violations: In addition
to the testcases that triggered observable differences, we also
uncovered testcases that triggered memory-safety bugs in
the userspace portions of the hardware acceleration stack.
Given that these stacks had not been previously fuzzed,
this was somewhat expected. TWINFUZZ was built with
AddressSanitizer [62] enabled, which allowed us to observe
the crash site and cause. We have reported each of these five,
found during our fuzzing campaign, potential vulnerabilities
to the relevant vendor and we offer a brief description of each
in Table II. However, we received acknowledgment and a bug
bounty from Intel for Bug 4. We offer a detailed analysis of
bugs 3-6 in Appendix A.

Bug 7 is of particular note. This bug was originally reported
to NVIDIA by way of their PSIRT reporting portal and, though
confirming the presence of the bug, they indicated that the
root cause was within FFmpeg but declined to provide further
details. When reported to FFmpeg, the developers noted that the
sample had caused a frame to end without starting it, leading
to a degenerative state in which FFmpeg improperly resets a
pointer for a buffer but not the length. As a result, the NVIDIA
driver attempts to write to the null page due to lacking a null
check. The FFmpeg developers note that, while this was an
issue with FFmpeg improperly resetting the pointer/length pair,
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they believe that there is a deeper issue within FFmpeg that
causes them to signal to the NVIDIA media drivers to end the
frame without starting it. Such an issue could only be detected
within the context of the full stack and thus highlights the need
to test the stack in its entirety, not just individual components.

4) Bugs 8-10: Security violations discovered with input
replay: After our fuzzing campaign, we identified three
additional potential vulnerabilities by replaying our corpus
entries: an information leak in Firefox on the windows-
nvidia platform, a bug in VLC media player when interacting
with Windows video drivers on the windows-nvidia platform,
and a rediscovered hardware fingerprinting issue related to
the hardware-accelerated decoding process on the linux-intel
platform. These vulnerabilities are further detailed in Table II.

5) Kernel, Firmware, and Hardware bugs: In Table II,
we highlight that none of the bugs listed are under kernel
or firmware, and only bug 10 is directly associated with
the hardware. At this time, though we are confident that
correctness and safety bugs in these components were identified
as observable differences, the investigation of these issues in
greater depth is beyond the scope of this paper, and we label
them “Undetermined” in Table II. We further discuss how we
attempted to diagnose and identify root causes for these issues
in Section VI-B.

E. Time-to-Bug Analysis

As discussed in Section V-D (and detailed further in
Appendix A), we encountered multiple bugs during our fuzzing
campaigns. We consider any bug discovered within interopera-
tion, including all components, such as an acceleration stack
bug (i.e., software, libraries, drivers, and firmware interacting
with the hardware). Table II provides a high-level overview
of the identified bugs. We manually triaged and disclosed the
bugs to the vendors in a coordinated way.

In summary, we identified five memory safety violations
in the hardware acceleration stack of different platforms. In
addition, we identified many scenarios in which the hardware
decoder produces visually different results compared to the
software decoder. We have grouped these bugs under bug ID
1.z in Table II, with = denoting the platform on which it was
discovered, as reported in Table I. As a matter of terminology,
we refer to a bug as a single point at which fuzzer execution
is terminated (as per the recommendation of Klees et al. [36])
and a crash as a testcase which triggered a bug, i.e., there are
zero-to-many crashes associated with a single bug. Note that
bugs 1.a-d are each considered a different “bug”, as they occur
on different platforms, which we consider a different location
for the purposes of this evaluation.

To understand how effectively TWINFUZZ uncovers bugs in
a hardware acceleration stack, we ran the 24-hour experiment
described in Section V-A and measured the time until each
bug was first uncovered. The results are shown in Figure 8.
As bug 2 is not observable with this fuzzing configuration, it
is not included in this experiment. Bug 3 was not found by
any trial during a 24-hour period and is thus excluded from
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Fig. 8. Time-to-bug information. Individual points represent a single trial’s
time-to-bug for the bug category listed on the x-axis. The trials that did not
discover a bug within the 24-hour time limit are indicated in red as a point
at the bottom of the chart. The figure is truncated to 24 hours, as we cannot
speak to the distribution of bugs after the end of the trial.

the diagram. Moreover, we excluded bugs 8—10 from the time-
to-bug analysis, as they were discovered through input replay
technique and not found during our original fuzzing campaign.
We observe that the distribution of crashes for bugs 3-7 is
centered towards the end of each trial or that no crashes were
generated that were caused by these bugs. We interpret this to
indicate that inputs that would trigger these bugs were difficult
for the fuzzer to find. As the initial seeds for this experiment
were H.264 files, this is somewhat expected; none of the bugs 3-
7 were associated directly with the processing of H.264 videos.
Conversely, bugs 1.a-d were detected typically early in their
campaigns or not at all, which is particularly evident in bug
1.c. In these cases, we expect that the fuzzer began exploring
H.264 regions, where some of the observable differences were
identified, but quickly began exploring other regions, as new
codecs were synthesized by mutation. As a result, either the
fuzzer identified the bug early when it was prioritizing inputs
of H.264 format, or it had difficulty in discovering it later when
the corpus was saturated with other types of video files. We
expect that, in longer campaigns, the fuzzer would eventually
re-prioritize these inputs and discover the associated observable
differences.

We ran the same experimental setup with H26Forge on the
linux-intel platform, where it could have discovered bugs 1.a,
3, 4, and 5, but it did not discover any of these issues during
a 24-hour period across ten trials. This is somewhat expected,
as bugs 3-5 are not related to the processing of H.264 video
files and bugs 1.a-d are likely a consequence of underspecified,
invalid, or otherwise non-H.264 video format features. We
were unable to run the H26Forge trials on the other platforms
but expect similar results, as the requirements to trigger these
bugs are the same.

F. Comparison with H26Forge Findings

In addition to the relative coverage comparison (see Sec-
tion V-C), we investigated whether TWINFUZZ can rediscover



the same (or a similar set of) bugs that H26Forge [72] found.
To this end, we performed three small experiments similar to
H26Forge, in which we replayed the corpora accumulated from
previous experiments (/2150 000 inputs) and looked for known
bug patterns.

We used VLC media player version 3.0.17 on Windows 10
(64-bit) [73], recording software bugs related to libavcodec in
the same version tested by H26Forge. These inputs caused
the VLC media player to crash on the NVIDIA machine
setup (which we call windows-nvidia in Table II). In addition,
we were able to find a new bug in version 3.0.21 of VLC
media player (the latest release at the time of writing), where
RPC_X_NULL_REF_POINTER errors are reported when VLC
is interacting with Microsoft Direct3D11. We reported it to the
developers but have not yet received a confirmation.

Next, we crafted a new way to store the inputs based on
their entry signature. We inspected mismatching output frames
to check for known hardware-related repetitive patterns, such
as x80 or x00, introduced in the hardware decoding process.
This provides possible fingerprinting based on the specific
input and the actual hardware decoder used, as proposed in
the H26Forge paper. We identified cases in our observable
differences cluster where the hardware decoder showed the
mentioned patterns when the hardware could not successfully
compute the decoding process. At the same time, the software
correctly decoded the frame. Hence, we were able to reproduce
the proposed hardware fingerprinting experiment successfully,
and we consider this as a hardware layer fault in Table II.

Lastly, we converted our corpus entries into MP4 files with
MP4Box and Minimp4. We play these in Firefox version
100 [49], as used in H26Forge, and the more recent release,
131.0.3, on a Windows 10 (64-bit) machine with an NVIDIA
GPU (windows-nvidia). In this experiment, we found an infor-
mation leak using our MP4-converted corpora and discovered
a “reader” file that can read and leak part of the content from
another MP4-converted corpus file played in a loop in another
tab. We reported this information leak to Mozilla, which has
confirmed the finding and is in contact with the developer and
security team. This information leak specifically occurs on the
windows-nvidia platform and is only present when hardware
acceleration is enabled in the browser.

Our approach is orthogonal to the generative one used in
H26Forge, but the findings here indicate that techniques are
complementary. We neither aim to find all possible bugs nor
the same bugs as H26Forge with this work; rather, to be
able to find the same bug categories but different bugs as
discovered in H26Forge. All H26Forge-confirmed bugs would
have been flagged by a differential oracle by detecting changes
in computed output, eliminating the need for the original
technique’s manual inspection. Our strategy sidesteps the need
for complex generation by use of coverage by proxy.

We attempted to experiment on the same device category
used in H26Forge to replicate the Luma Chroma Thief attack.
However, our approach proved ineffective for this category
of embedded devices, such as Dragonboard 410C [1], due
to the limited processing power of the devices and the large
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number of inputs to test. Additionally, successfully crafting
this experiment would require enforcing known patterns on
our inputs and creating custom, grammar-based inputs, as was
done in H26Forge. Though compatibility with low-performance
devices is a non-goal for TWINFUZZ, we recognize the need to
test a greater number of inputs as a limitation of its applicability
on these devices.

VI. DISCUSSION

TwINFUzz, as described in Section IV and evaluated in
Section V, serves as an initial prototype that exemplifies the
methodology proposed in this paper. We now discuss potential
improvements, alternative applications, and future research
directions.

A. Integration of TWINFUZZ Harness with Other Fuzzers

The harness described in Section IV-B uses the libFuzzer
fuzzing engine [40], though it is certainly not restricted
to libFuzzer. One could just as easily apply AFL++ [17],
LibAFL [18], honggfuzz [21], and others. In particular, we
note that fuzzers augmented with mutational grammar fuzzing
capabilities, such as Nautilus [5], could be highly effective if
a grammar is available for the targeted application. Mutational
fuzzers that use non-domain-specific mutations are inherently
limited to the inputs that may be generated by such mutations
and may not effectively explore code paths with complex
constraints, as seen in Section V-C. We chose not to evaluate
other advanced fuzzers for our project because they will not
significantly affect our design and approach.

B. Identification of Observable Differences

As described in Section V-D, identifying the root cause
of observable differences is extremely difficult in practice
and an open problem, specifically in the hardware domain.
Existing solutions that cluster crashes based on the location
of the crash [59] or on the coverage points incurred during
execution [33] struggle to identify root causes of observable
differences. While our strategy can identify when a memory
safety-affecting bug occurred by means of an observable
difference in output, we struggle to identify the root cause of
these observable differences, hindering our ability to identify
otherwise unobservable memory safety issues. Difficulties
associated with fault localization in the presence of differential
testing is a standing unsolved issue in differential testing [56],
especially in the hardware domain. While we make a first step
in this direction in Section V-D1 by clustering the differences
by their characteristics, more work is needed to identify the
root cause of these issues.

1) Existing fault localization utilities: We attempted to
use several existing strategies to identify the root cause of
observable differences and encountered the following problems:

a) Dependence on crash location: We were able to utilize
the casr-libfuzzer program offered in CASR [59] to
cluster crashes discovered during fuzz campaigns, though it
was only able to cluster based on the AddressSanitizer [62]
output. Consequently, it could only cluster crashes caused by



observable memory safety violations but not those triggering
observable differences. Moreover, CASR does not indicate root
cause locations. For that reason, we were unable to use it to
investigate observable differences further.

b) Assumptions regarding root cause: We tried to use
IGOR [33] to perform root cause clustering on the observable
differences but were unable to configure the tool to do so. We
note, however, that it is unlikely that IGOR would successfully
cluster observable differences due to a unique feature of
observable differences: since a differential oracle is only
queried after execution is complete, there may be multiple
bugs triggered in a single testcase, or the observable execution
trace might not include the relevant behavior (e.g., because
bugs are triggered in code parts that cannot be instrumented). In
this sense, root-cause clustering would need to be expressed as
a hierarchy, whereas IGOR assumes that all testcases exhibiting
the same bug necessarily reduce to the same minimal path.
This has the implicit effect of removing paths that exercise
one bug but retain the other and may prevent the discovery of
some bugs.

2) Collaboration with developers: We reached out to the
FFmpeg developers to determine the root causes of inconsis-
tencies in frame data between various applications. Although
the FFmpeg team has responded, they have not yet attempted
to analyze or remediate the issues associated with the testcases
submitted. In their initial response, they indicated that they
believed that the vast majority of consistency issues would
be induced by the components of the hardware acceleration
stacks provided by third parties — consistent with our analysis
in Section V-D — and that, in previous attempts to implement
hardware compatibility, they have found many issues with
both device firmware and the hardware itself. Moreover, they
note that these components effectively undergo no automated
testing in the context of FFmpeg and are known to contain bugs
but with limited effort to resolve them, further motivating our
work. However, since we are unable to automatically identify
the components responsible for these issues, it is difficult
for the FFmpeg developers to investigate further, as they are
unable to inspect these third-party components. Future work on
detecting root causes for non-implied oracles would simplify
the remediation of such issues, make them more approachable
for developers, and allow researchers to identify the responsible
software component. We will continue to work with the FFmpeg
team to resolve these remaining identified testcases.

C. Limitations of Coverage Evaluation

In Section V-C, we identified the code regions discoverable
by both H26Forge and TWINFUZZ. We compared them to gain
a better insight into their relative ability to explore the software-
only implementation since collecting the hardware coverage is
infeasible for a video decoder. The results are mixed; H26Forge
does not cover a majority of the regions that TWINFUzZ does
during a 24-hour period, as it is restricted to the generation
of H.264 video files. Conversely, TWINFUZZ is unable to
reach a non-negligible subset of the code regions discovered
by H26Forge, as mutation alone is insufficient to generate
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some higher-complexity H.264 inputs. This phenomenon is
well-known [8]: if the system under test implements a superset
of the grammar used by an input generator, then the input
generator will only cover code regions associated with a subset
of the grammar accepted by the system under test. Likewise, the
constraints imposed by grammars may prevent a fuzzer utilizing
a simple mutator from producing an input that successfully
satisfies the constraints of certain grammar features, preventing
the corresponding code regions from being reachable [19].

Beyond these results, we must also emphasize that a region
covered by a fuzzer does not necessarily imply that this code
region is bug-free. While code coverage is a prerequisite for
bug discovery, recent work suggests that different fuzzers have
different but consistent relationships with the discovery of
coverage and the discovery of bugs [12]. As a result, we
must emphasize that the coverage experiments here merely
provide insight into each fuzzer’s ability to generate inputs
that exercise code regions. These fuzzers are not necessarily
capable of discovering all bugs in the associated code regions.
Moreover, recent vulnerabilities in image codecs suggest that
even well-fuzzed code regions may have latent vulnerabilities
that cannot be found easily via fuzzing [26]. For this reason,
discovering latent bugs in some video codecs may require even
more specialized testing than mutational or grammar-based
fuzzing alone.

D. Discussion on False Positive Visual Differences

In the context of our work, we define observable differences
as differences in the number of frames, a frame’s dimensions, or
its content. While the first two are certainly incorrect behavior,
it could be argued that a very small difference in the frame’s
pixel content would not be visible to humans and could be the
result of a conscious trade-off made by the hardware designers.
Without deep knowledge of the respective designs, this is
impossible to tell. However, the vast majority of testcases
actually produce exactly matching frames, which indicates that
the effects we see are more probably corner cases unnoticed by
manufacturers’ testing. Moreover, our indirect proxy fuzzing
approach uncovers memory security vulnerabilities that could
not be found with a “traditional” fuzzing setup targeting the
hardware acceleration stack (cf. Section V-B). Consequently,
the manufacturers have probably not tested their stacks as
deeply as TWINFUZZ does. We interpret this as an additional
hint that the bug reports we get from our oracle are indeed
unexpected and not false positives.

E. Indirect Proxy between Software and Hardware Coverage

As mentioned in Section III, collecting hardware coverage,
especially on proprietary hardware designs, is infeasible in
practice. Our approach does not require it. Instead, we treat
the system as a black box, making the presented technique
more generalizable. Recall that the CFG edge coverage used
in modern greybox fuzzers is already a heuristic used to
approximate coverage of the problem’s input space and, thus,
a program’s state space. Given a second program that fulfills
the same task and takes the same input format, we can



reasonably expect that its state space is similarly structured
to the first program’s, even if there is no strict one-to-one
mapping because of slight implementation differences. Using
this knowledge, we can test the second program by indirect
proxy: Inputs that generate meaningful coverage in the “white-
box” program will most probably also generate coverage in
the “black-box” program, exercising it without direct coverage.
This approximation works well, as we show in Section V-B:
a hardware-decoding harness with the same resources, but
without indirect proxy guidance, finds none of the bugs that
TwINFUzz found. As a result, we may infer that we do indeed
discover greater coverage even in hardware, as bug discovery
is a strong indicator of fuzzer coverage [12].

Bug localization in differential testing, i.e., telling where
in the code the output difference originates, is an unsolved
problem outside the scope of this work. Assuming such a
localization oracle for the software side, the proxy coverage
would likely provide meaningful insight into the relevant (black-
box) acceleration procedure because of the similarly structured
state space.

FE. Impact of Differential Bugs in Real-World Scenarios

As introduced in Section V-F on fingerprinting, we extended
the discussion to demonstrate the real-world impact of the
differential bugs found with TWINFUZZ by developing a web
fingerprinting demo using open-source JavaScript libraries and
browser APIs [48], [58]. This demo processes multiple H.26x
files and decodes them using the browser-provided, hardware-
accelerated HTMLS5 media APIs. We selected a subset of
inputs that trigger observable differences (see Section V-D)
discovered in the fuzzing campaign. By reproducing these in
the web demo on our test machines, we could identify which
clusters a machine belongs to, as identified in Figure 6. Using
this building block, one could construct an automatic device
fingerprinting system, and we are communicating with browser
vendors on how to address this problem.

VII. RELATED WORK

Closest to our work, Vasquez et al. presented H26FORGE, a
framework for analyzing, generating, and manipulating H.264
encoded videos, particularly those syntactically correct but
semantically non-compliant with the specification [72]. To this
end, the authors have manually implemented a large part of
the H.264 video standard [32]. The tool successfully identified
multiple memory corruption vulnerabilities in several video
decoders. These included kernel-level vulnerabilities in iOS,
memory corruption bugs in the Firefox and VLC media players
on Windows, and kernel memory bugs affecting both the
video accelerator and the application processor in a number
of Android devices. Beyond H26FORGE, discovering vulner-
abilities in hardware acceleration stacks demands significant
manual effort and a deep understanding of codec design and
implementation. As it is the only existing academic work that
is explicitly designed to test hardware-accelerated encoding
and decoding that we know of, we use it as a comparative
metric for evaluation in Section V-C.

14

Another related work is SiliFuzz [38], where the authors
use a similar coverage-by-proxy technique to compare the
behavior of a CPU emulator with a post-silicon CPU to
discover inconsistencies. SiliFuzz offers a perfect example of
direct coverage-by-proxy. Instead of providing direct proxy and
domain-specific inputs, we build an abstraction over the entire
hardware acceleration stack, sidestepping the complexities of
platform-specific differences. Following this direction, we do
not use a direct proxy technique to test a specific platform
like SiliFuzz. Instead, we use an indirect proxy technique
to test that an arbitrary platform performs some higher-level
task implemented by the local software-only implementation.
This approach allows us to inspect and find bugs across
many implementations of a common task, regardless of their
introspectability. Like SiliFuzz, when applying our strategy,
it tends to be difficult to identify an exact root cause of
testcases that cause different outputs to be emitted by the
system under test, as explained in Section V. This issue could
potentially affect our strategy even more, as the input domain
over which we are testing is even further abstracted from the
actual components under test.

Distantly related is “Fuzzing Hardware like Software” by
Trippel et al. [70], who propose fuzzing hardware models
by converting them to software models and measuring the
corresponding software metrics. We considered evaluating
the correlation between the coverage of the software-only
implementation and the coverage of the hardware used by
the acceleration stack. We discussed this problem with the
Intel Video and Graphics teams. The suggestion was likened
to measuring the coverage of an interpreter to measure the
coverage of a script; since the hardware merely executes
firmware that implements the video decoding algorithm, the
hardware’s coverage would likely be very distantly related
to the actual test. Moreover, they indicated that pre-silicon
simulation of such complex models tends to take several days
and would simply not scale for the purposes of performing an
evaluation. Since firmware coverage cannot be captured and
hardware coverage is infeasible and impractical to capture, our
strategy is the only realistic way currently available to test
these stacks in their entirety.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented a technique that enables fuzzers
to exercise and discover bugs in uninstrumentable hardware
acceleration stacks. We implemented a prototype of this
strategy to test a wide variety of video hardware acceleration
implementations. Using FFmpeg as a common interface, our
implementation allows us to provide complex but valid inputs
to a hardware acceleration stack. Moreover, we propose and
implement an analysis technique that can more precisely
identify the root cause of unexpected behavior discovered by
differential oracles in the presence of many implementations.
With these combined, we were able to determine 15 clusters of
testcases that represent one or more root causes of the measured
differences in output and offer vendors more clarity in their
investigation of these issues. With the same experimental setup,



we identified five memory safety bugs and responsibly disclosed
them to vendors. Moreover, we apply fingerprinting techniques
to web browsers and applications, which can identify the
device playing the inputs from our clustered data or cause the
application to crash. We compared our approach with state-of-
the-art tools, comparing and exploring the capacity of our tool
to application findings. During our comparison with H26Forge,
we successfully replicated the same bug classes identified in
VLC, specifically those related to hardware acceleration com-
ponents on Windows and the libavcodec library. Additionally,
we discovered an information leak in Firefox and successfully
reproduced hardware-decoder fingerprinting using our setup.
Moreover, we performed experiments that indicate the relative
effectiveness of simple mutational and grammar-based fuzzing,
highlighting the need for a diverse testing strategy for highly
complex video decoding implementations.

In future work, we would like to see this strategy extended
to new domains where the observability of the system under
test is low. This extends far beyond hardware acceleration
stacks alone and may be applicable to testing closed-source,
obscured, or unobservable systems. Our analysis technique
for clustering testcases identified by a differential oracle will
similarly have applications beyond this strategy and may prove
helpful in other testing pipelines where a root cause is not
easily determined, but many comparable systems are under test.
For video hardware acceleration specifically, we highlighted the
need for more than just simple mutational and grammar-based
fuzzing. We clarified that both (or potentially something more
powerful) would be needed to test these stacks in depth. We
hope this result inspires further research into testing this highly
complex and widely depended-upon domain.
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APPENDIX A
EXTENDED SECURITY BUG DESCRIPTIONS

A. Bug 3: Global buffer overflow in linux-intel

This bug was originally reported to FFmpeg. It is lo-
cated in avcodec/avldec and was caused by an inte-
ger underflow that led to an out-of-bounds read. As reme-
diation, the developer simply adjusted the bounds check
on the parameter that could lead to an integer underflow.
Patched here: https://patchwork.ffmpeg.org/project/ffmpeg/
patch/20231130122853.26758-1-michael @niedermayer.cc/

B. Bug 4: Heap buffer overflow in linux-intel

This bug was originally reported to Intel PSIRT via the
Integriti Bug Bounty platform. The bug is a classical heap-
overflow vulnerability in the Intel media-driver, which may
lead to code execution. The bug was assigned to CVE-2024-
23919. In the context of a browser, for example, this may lead
to remote code execution via a video loaded on a webpage.

C. Bug 5: Wild pointer dereference in linux-intel

This bug was originally reported to Intel PSIRT via the
Integriti Bug Bounty platform. We found this bug in our fuzzing
environment, but Intel PSIRT indicated that they were unable
to reproduce the behavior.

This bug is a wild pointer dereference, generally caused by
an overflow inside one buffer into a region containing a buffer
or by use-after-free, which leads to undefined behavior and data
corruption. We have not investigated the impact further, but we
suspect this may be used to perform arbitrary out-of-bounds
reading and writing in certain scenarios. At this time, we are
at least aware of an impact on availability (i.e., it causes a
crash).

D. Bug 6: Invalid pointer free in linux-nvidia

We discovered bug 6 while fuzzing, but it was fixed by
FFmpeg upstream before we were able to submit a report. This
bug is located in avcodec/nvdec. In particular, it is an
attempt to free NVDECContext—bitstream improperly.

As we did not publicly participate in the remediation of this
bug, we provide the full analysis from the developers below:
Using a field for both an ownership pointer and
as a pure data pointer is bad and confusing. IMO
there should be different pointers for this; or rather:
bitstream is always set and used as data pointer
and the another pointer for ownership which may
alias bitstream. In fact, it looks like this is exactly
what bitstream_internal is, it is just not used by
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H.264 and HEVC in this manner (they use bitstream
for allocated stuff). With the approach outlined
above, ff_nvdec_simple_end_frame() might become
obsolete.

Originally patched here: https://patchwork.ffmpeg.org/
project/ffmpeg/patch/20240206212640.9193-1-jamrial @
gmail.com

APPENDIX B
ARTIFACT APPENDIX

This appendix provides an overview of the artifact presented
in our paper, along with instructions for running the artifact
locally. Reproducing all of our results in full is a challenge,
as access to all hardware platforms shown in Table I would
be required.

The focus of the artifact is on the crash experiment described
in Section V-A with a specific hardware/software configuration.
If access to other platforms listed in Table I is available, the
artifact can also be used on these platforms. To facilitate
artifact evaluation, we have included a Dockerfile containing all
necessary files to build our prototype, as described in Section III,
for a linux-intel machine.

A. Description & Requirements

This section provides all the details required to set up the
experimental environment needed to run our artifact. To run the
Dockerfile locally, your machine must support video hardware
acceleration, have Intel VAAPI drivers, and an Intel x86-64
CPU.

1) Access Instructions: The artifact is publicly available via
a Zenodo link*. The repository includes a Dockerfile for
an linux-intel setup.

Hardware Requirements: To reproduce our experiments,
your machine must have video hardware acceleration,
Intel VAAPI drivers, and an Intel x86-64 CPU.
Software Requirements: The software required is the same
as that needed to build and run FFmpeg with hardware
acceleration enabled.

4) Benchmarks: No specific benchmarks are needed.

2)

3)

B. Major Claim

e (C1): We propose a technique for indirectly guiding an
unmodified fuzzer to abstract over a hardware acceleration
stack that is otherwise difficult to introspect.

(C2): We propose a technique for indirectly guiding an
unmodified fuzzer that abstracts over any acceleration
stack that is otherwise difficult to introspect.

(C3): We implement a prototype of our approach in a tool
called TWINFUZZ capable of fuzzing a specific hardware
acceleration stack, providing an observable difference and
potentially triggering memory safety bugs using memory
sanitizers.

“https://doi.org/10.5281/zenodo.14261195
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C. Artifact Local Installation

This subsection refers to the folder 1ocal_setup in the
repository. To build and install our prototype locally using the
Dockerfile, we have created a script to simplify the process.
Run the following command:

./run_docker.sh

This script builds and runs the Docker image as follows.
To build the docker container, use the following command:

docker build -t twinframe-linux-intel

To run the Docker container, use the following command:

docker run —--rm --device=/dev/dri -e
LIBVA_DRIVER_NAME="iHD" —-it twinframe-
linux—-intel /bin/bash

D. Experiment Workflow

We provide a script to simplify the evaluation and to demon-
strate the functionality of our prototype. This script performs
differential fuzzing guided by the software implementation
mentioned in C1, generating both software and hardware frames.
It compares their outputs to detect observable differences as
mentioned in C2 (e.g., they differ in content or size, or a crash
occurs). These two contributions led to this prototype, which
is our C3 contribution.

To run the evaluation with the corpus used in our experimen-
tal prototype (comprising 10 trials of 24 hours each), navigate
to the /out directory within the container and run:

root:/out# ./evaluation_script.sh

You can customize the script by modifying parameters
directly in the bash script, such as the number of trials and
the duration of a single fuzzing campaign.

E. Results Reproduction

After running the default evaluation, you will find
ten folders (each corresponding to a trial) named
ffmpeg_AV_CODEC_H264_fuzzer_trial_X (Where
X represents an integer from 1 to 10). Each folder
contains a corpus folder and a potential list of discovered
crashes. Additionally, you may find hw_frame.pgm and
sw_frame.pgm files if TWINFUzZzZ found observable

differences.
To reproduce a crash, run the
ffmpeg_AV_CODEC_H264_fuzzer binary from the

/out directory and provide the input file corresponding to
the crash:
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root:/out# ./ffmpeg AV_CODEC_H264 fuzzer
trial 2/crash—-artifact-2-crash-
c21al135d3b3e925269f52437ff4c38503017a40e

After executing the crash input, the frame decoding process
will continue until a frame mismatch is detected, after which
AddressSanitizer will raise an abort signal. You should see an
output similar to the following:

root:/out/
ffmpeg AV_CODEC_ID_H264_fuzzer_trial_ 2#
../ffmpeg AV _CODEC_ID_H264 fuzzer
crash-artifact-2-crash-
c21al35d3b3e925269f52437ff4c38503017a40e

../ffmpeg_AV_CODEC_ID_H264_fuzzer:
1 inputs 1 time(s) each.
Running: crash-artifact-2-crash-
c21al35d3b3e925269£52437££f4c38503017a40e

Running

Decoding
Decoding
Decoding
Decoding
Decoding
Decoding
Decoding
Decoding
Decoding
Decoding
Decoding
Decoding
Decoding

completed
completed
completed
completed
completed
completed
completed
completed
completed
completed
completed
completed
completed
Decoding completed
——> Decoding completed correctly
differed on data line 0 (640, 640)

HW/SW buffer contents differ; see {hw,sw}

_frame.pgm

==2776== ERROR: libFuzzer:
SUMMARY: libFuzzer:

correctly
correctly
correctly
correctly
correctly
correctly
correctly
correctly
correctly
correctly
correctly
correctly
correctly
correctly

deadly signal
deadly signal

These steps offer a straightforward way to evaluate the
availability and functionality of the code base from our project
described in the paper.
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