
A Multifaceted Study on the Use of TLS and
Auto-detect in Email Ecosystems

Ka Fun Tang, Che Wei Tu, Sui Ling Angela Mak, Sze Yiu Chau
Department of Information Engineering, The Chinese University of Hong Kong
{doriatang, tonytu1999, angelalamak}@link.cuhk.edu.hk, sychau@ie.cuhk.edu.hk

Abstract—Various email protocols, including IMAP, POP3,
and SMTP, were originally designed as “plaintext” protocols
without inbuilt confidentiality and integrity guarantees. To pro-
tect the communication traffic, TLS can either be used implicitly
before the start of those email protocols, or introduced as an
opportunistic upgrade in a post-hoc fashion. In order to improve
user experience, many email clients nowadays provide a so-called
“auto-detect” feature to automatically determine a functional
set of configuration parameters for the users. In this paper, we
present a multifaceted study on the security of the use of TLS
and auto-detect in email clients. First, to evaluate the design and
implementation of client-side TLS and auto-detect, we tested 49
email clients and uncovered various flaws that can lead to covert
security downgrade and exposure of user credentials to attackers.
Second, to understand whether current deployment practices
adequately avoid the security traps introduced by opportunistic
TLS and auto-detect, we collected and analyzed 1102 email setup
guides from academic institutes across the world, and observed
problems that can drive users to adopt insecure email settings.
Finally, with the server addresses obtained from the setup guides,
we evaluate the sever-side support for implicit and opportunistic
TLS, as well as the characteristics of their certificates. Our
results suggest that many users suffer from an inadvertent loss
of security due to careless handling of TLS and auto-detect, and
organizations in general are better off prescribing concrete and
detailed manual configuration to their users.

I. INTRODUCTION

Despite the proliferation of instant messaging apps in the
last decade, emails continue to be heavily used in work and
school settings. According to a recent market research, the
number of global email users has almost reached 4 billion
in 2023 [7]. Historically, various email protocols, such as the
Internet Message Access Protocol (IMAP), the Post Office Pro-
tocol (POP), and the Simple Mail Transfer Protocol (SMTP)
were designed as “plaintext” protocols that do not provide any
inherent confidentiality and integrity guarantees. In order to
protect the communication between an email server and an
email client, including the exchange of user credentials and
potentially sensitive messages, Transport Layer Security (TLS)
is often used to introduce a secure communication channel for
the email protocols.

There are two typical approaches of which TLS can be
used with the email protocols. One approach expects the client

and server to directly start with the TLS handshake first, and
only after a TLS session is succesfully negotiated, then the
email protocols begin and communicate inside the already
established TLS channel. This approach is commonly known
as “implicit TLS”, because from the perspective of email
protcols, they did not have to explicitly negotiate whether
TLS can be used. A contrasting approach, which is sometimes
known as “explicit TLS” or “opportunistic TLS”, lets the
plaintext email protocols start communicating first, and then
attempt to negotiate a security upgrade to use TLS, the success
of which depends on the capability of the client and server.
Depending on the security policies being enforced, the email
protocols could stay unencrypted even when opportunistic TLS
is attempted, due to an active man-in-the-middle (MITM)
downgrade attack [14].

To improve user experience and help users arrive at a func-
tional configuration with respect to the potential uses of TLS
as well as various server port numbers and user authentication
methods, many email clients these days provide a so-called
“auto-detect” feature, where the email client probes the server
to determine an operative set of configuration parameters.
Intuitively, design and implementation flaws in the auto-detect
mechanism could covertly downgrade the security outcomes
for its users, and depending on whether such intricacies are
known to the users, might even lead to a false sense of
security. Although the possibility of command injection in
opportunistic TLS due to confusions in buffer management
has been explored before [42], to the best of our knowledge,
no prior work has evaluated the security implications of auto-
detect mechanisms in email clients. Thus, in this paper, we
present a multifaceted security evaluation of email clients and
their deployments, with a focus on TLS and auto-detect.

In this study, we consider three perspectives of the email
ecosystem in tandem. First, we evaluate the designs and
implementations of client applications (apps). This allows us to
identify flaws in the clients that can lead to inadvertent security
downgrades, which could in turn nullify the protections of
TLS and leak sensitive messages and user credentials. Second,
with the potential security traps due to auto-detect and other
design weaknesses already identified, we evaluate email setup
guides that are prescribed by IT admins of academic institutes
around the world, to see if they adequately instruct users on
how to avoid the traps, and adequately protect the sensitive
traffic of the email protocols. This allows us to observe and
better understand the current deployment practices embraced
by real-world production setups. Finally, using the server
addresses identified from the setup guides, we evaluate the
server-side support for implicit and opportunistic TLS, as well

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.240532
www.ndss-symposium.org

as characteristics of the certificate chains used by institutional
email servers. This enables us to gain insights on whether the
email clients can in fact adopt stricter configuration settings,
and whether their auto-detect features are actually helping or
hindering users from achieving that.

Summary of findings. We found that out of the 49 email
clients tested, 30 support some forms of auto-detect for the
various email protocols, 4 of which force the use of auto-detect
during the first-time configuration. When manual configuration
is used, only 8 out of 49 clients allow opportunistic TLS and
can be downgraded by an active MITM if the user chooses
opportunistic TLS. However, when auto-detect is used, 14 out
of the 30 that support it exhibit noticeable security downgrade.
6 can be downgraded by an active MITM, while the other 8
can leak credentials to even a weaker passive attacker. This is
particularly worrisome as users might trust the auto-detect fea-
tures without fully understanding their security implications.
Additionally, even when TLS is used, we found 19 clients that
accept certificate chains that should not be accepted, which can
also jeopardize the communication security. On the email setup
guide front, we found that many setup guides indeed instruct
their users to unnecessarily use auto-detect, thus opening doors
to various security downgrades even when the client and server
both are capable of the more secure implicit TLS. Moreover,
many setup guides do not advise users on what to do when
being asked about invalid certificates, and some blatantly ask
users to blindly accept any certificates when being prompted.
All these suggest that the current use of TLS in email clients
might not be providing an adequate level of protection for
various email protocols, and the auto-detect feature can in
some cases be surprisingly harmful to users.

Contributions. This paper makes the following contributions:

1) We design experiments to evaluate 49 email clients,
uncovering previously unknown vulnerabilities re-
lated to auto-detect and certificate validation when
TLS is enabled.

2) We present an evaluation of the email ecosystem used
by academic institutes by collecting and evaluating
1102 setup guides. Problems that can drive users to
insecure outcomes are identified and discussed.

3) We collected and analyzed 798 certificate chains from
email servers identified from setup guides. This anal-
ysis reveals some unsatisfactory practices in terms of
certificate issuance and management.

4) With a focus on client-side problems, we discuss dif-
ferent possibilities that can make the email ecosystem
more secure for its users.

II. BACKGROUND

In this section, we discuss the relevant technical back-
ground for our work. We first give an overview of the three
most common email protocols, with respect to their roles in
email submission and retrieval. Then we compare implicit
TLS (hereafter I-TLS) and opportunistic TLS in the context
of email protocols, and explain potential problems in the
auto-detect feature of email clients. Although the three email
protocols differ slightly in their negotiation messages, they
share effectively the same idea of opportunistic TLS.

7

Alice
7

Bob


MUA


MUA

Sending
server

Receiving
serverSMTP

#

SMTP IMAP
POP3

Fig. 1. Example of an email being sent from Alice to Bob. The connections
to and from MUAs, highlighted in blue, are the main focus of this study.

A. Adversary Model

We consider two types of on-path MITM attackers: A type
➊ attacker that is passive, also known as “honest-but-curious”,
who merely monitors the network traffic; a type ➋ attacker
that is active, who in addition to the capabilities of a type
➊ attacker, can also block or tamper with the traffic. A type
➊ attacker is generally more covert than a type ➋ attacker,
as the latter might trigger error alerts from the email clients.
Also note that any Internet Service Providers (ISPs), including
admins of shared Wi-Fi networks, are naturally positioned to
be type ➊ and ➋ attackers.

B. Common Email Protocols

Here we discuss the email protocols relevant to our study.
An overview of the roles they play in the delivery of an email
from Alice to Bob can be found in Figure 1. The connections
marked in blue are the primary focus of our study.

SMTP allows electronic mail transmission from Mail User
Agent (MUA) to mail provider’s Mail Transfer Agent
(MTA) [27]. As shown in Figure 1, when Alice sends email to
Bob, the email is first handled by the MUA and then sent to the
sender’s email provider using SMTP. The sending server then
passes the email via SMTP to the receiver’s email provider,
known as the receiving server, which in turn delivers the email
to Bob’s MUA using IMAP or POP3.

When an SMTP session is initiated, the client first sends
EHLO command to the SMTP server. The server then responds
with a list of supported SMTP extensions. If the server supports
opportunistic TLS, then it must include the STARTTLS capabil-
ity in its response to show that it is capable of negotiating
and using TLS. According to RFC3207 [23], after the client
sends out the STARTTLS command to begin TLS negotiation,
the server responds in one of the three reply codes listed below:

1) 220 Ready to start TLS
2) 501 Syntax error (no parameters allowed)
3) 454 TLS not available due to temporary reason

Normally, if server responds with 1), the client then pro-
ceeds to the typical TLS handshake, and eventually transits to
the TLS secure channel if the handshake is successful. The
server responds with 2) when invalid arguments exist in the
client’s command. However if the server responds with 3),
client needs to decide whether to continue with the SMTP
session. As suggested by RFC3207 [23], with a server response
of 3), the client can try to continue with the session if the
server allows no authentication, or wait and try again later,
or give up with the connection. If the client attempts to login
without TLS, an SMTP servers can reply with a 530 Must
issue a STARTTLS command first to force the client into
first establishing a TLS channel and prevent transmitting user
credentials over an insecure network.

2

IMAP allows clients to access messages on their receiving
servers and perform various actions to their mailboxes. The
client typically initiates an IMAP session by sending the
CAPABILITY command to get the server extensions. Similar
to SMTP, if the server supports opportunistic TLS, then it
includes STARTTLS in its response, and the client can then
use the STARTTLS command to attempt an upgrade to TLS.
If the IMAP server is willing to upgrade, then it will send a
response tagged with OK; if not, it will send a response tagged
with NO or BAD. Just like in SMTP, an IMAP server can also
try to force the client into using TLS, by indicating the special
LOGINDISABLED capability when a TLS session is not in place.

According to RFC9051 [34], when it comes to the use
of TLS, IMAP clients must implement both I-TLS and
STARTTLS to maintain backward compatibility. Additionally,
it also suggests that, unless overridden by user configurations,
the IMAP client should try both I-TLS on port 993 and
STARTTLS on port 143 concurrently, following the so-called
Happy Eyeballs algorithm [47], which might reduce the latency
perceived by the user. Interestingly, this suggestion is only
mentioned for IMAP but not the other email protocols.

POP3 has the CAPA command for the client to obtain the exten-
sions supported by the server. A Post Office Protocol (POP3)
server announces its STARTTLS capability by including STLS
in its response. When the client sees this, it can then send a
STLS command to propose an upgrade to TLS. If the server
agrees to the proposal, it should then send a response of +OK
Begin TLS negotiation. It might send a -ERR response when
an upgrade to TLS is not possible or a secure channel is
already active. Unlike SMTP and IMAP, POP3 does not have
a mechanism to force the client to use TLS.

User authentication. The Simple Authentication and Secu-
rity Layer (SASL) framework is frequently used in email
protocols [35] for authenticating the user. As an extensible
authentication framework, SASL supports a collection of au-
thentication mechanisms, among which the PLAIN mecha-
nism is the most frequently supported by email servers [24].
RFC4616 [56] states that the PLAIN mechanism should only
be used when adequate data security protection is present.
In the context of email protocols, such security protection
is typically provided by TLS. Due to the plaintext nature of
SMTP, IMAP, and POP3 without (START)TLS, when PLAIN
is used, even a type ➊ (passive) MITM can trivially observe
and obtain user credentials.

Server authentication and TLS. Additionally, SMTP, IMAP,
and POP3 with SASL PLAIN also lack guarantees on server
authenticity. With TLS (implicit or opportunistic), this problem
is typically solved by having the client verify the certificate
chain sent by the server during handshake. At a minimum, the
client has to perform: (1) certificate chain validation as outlined
in RFC5280 [9], which includes verifying digital signatures
and expiration dates; and (2) server name verification to make
sure that the server certificate has a correct server name.
If any of these checks failed, the client should terminate
the connection. The TLS handshake continues if the client
decides to accept the server’s certificate chain. Using a key
exchange algorithm negotiated during handshake, the client
and server can establish a shared secret, from which secret
keys can be derived. The two sides can then use symmetric-

key cryptography to protect the confidentiality and integrity of
their communication.

C. Use of TLS under different occasions

Now we discuss the various options of using TLS in email
protocols and their security guarantees under the threat model
defined in Section II-A. Concerning the implementation of
STARTTLS, there are actually two possible variants. One is
the conventional opportunistic TLS (O-TLS), which implicitly
also supports falling back to no-TLS. Another variant we
refer to as opportunistic and only TLS (OO-TLS), which
does not fall back to no-TLS when a TLS session fails to
establish. Both O-TLS and OO-TLS can defend against the
covert eavesdropping of a type ➊ attacker. However, only
OO-TLS can defend against a type ➋ attacker, as O-TLS is
vulnerable to an active MITM downgrade [14]. Thus, in the
face of a type ➊ attacker, the relative security of these TLS
usage options can be ordered as follows (> means better):
I-TLS = OO-TLS = O-TLS > no-TLS. Alternatively, if one
considers a type ➋ attacker, the relative security can be ordered
as: I-TLS = OO-TLS > O-TLS = no-TLS. A possible under-
specification in the standards is whether an implementation
of STARTTLS should be O-TLS or OO-TLS. Such ambiguity
presents an interesting engineering decision to email clients,
and can lead to noticeably different security outcomes.

D. Problems with configuration auto-detect

Some email clients attempt to auto-detect a functional set
of connection parameters. This can be achieved by trying out
combinations of conventional port numbers and options of
using TLS with the server. Some clients might also attempt to
retrieve configuration information through the Autoconfig [6]
and Exchange AutoDiscover [37] protocols, as well as DNS
SRV [11], [37], [39]. While auto-detect might improve us-
ability, there are a few potential security problems related to
it. First, it introduces another security downgrade opportunity
that might be exploitable by a type ➋ (active) MITM, which
bears some resemblance to the classic TLS version downgrade
problem. Although it is possible to signal a version downgrade
via ciphersuite [38] and server random [44] in TLS, there
is no equivalent solution for determining whether and how
TLS should be used in email protocols. Currently it is up
to individual vendors to decide how to implement the auto-
detect feature of their clients, and they might not always follow
the order of relative security discussed above. In fact, as we
will show later, some clients perform unnecessary downgrades
even when better options are possible. Consequently, users who
are not aware of such subtle intricacies might suffer from an
inadvertent loss of security.

III. METHODOLOGY

To thoroughly and accurately evaluate the email ecosystem
with respect to the problems in the use of TLS and auto-detect,
we consider three perspectives in this study. First, we test the
design and implementation of email clients using purposely
designed test cases1. This helps us to identify flaws in their
auto-detect and certificate verification. Second, we evaluate

1Our security downgrade test cases are publicly available at https://github.
com/tls-downgrade/email-security.git

3

https://github.com/tls-downgrade/email-security.git
https://github.com/tls-downgrade/email-security.git

email setup guides from educational institutes to see if they
provide adequate guidance to drive users to secure outcomes on
their email clients. Finally, with the server addresses identified
from email setup guides, we collect and evaluate their support
for implicit and opportunistic TLS, as well as characteristics
of their certificate chains.

A. Email Client Testing

Applications considered. We select email clients from 4 major
operating systems according to popularity. For Android apps,
we use an open source tool Kplaysearch [41] and search for
apps that mention the keywords of “email client” and “mail”,
sorted by installation count on 27th Dec, 2023. We then select
the top-10 email clients from this sorted list. For iOS apps,
since Apple only allows developers to see the installation count
of their own applications [26], we manually select email clients
listed in top free “Productivity” and “Business” apps of the
US and CN regions2. We prioritize selecting iOS email client
apps that we also select for Android. Similarly for macOS and
Windows, we also select cross-platform email client apps that
are available on Android and iOS. We further populate the list
of apps to be tested, by gathering email clients used in previous
papers [8], [42] as well as in setup guides from different
universities (see Section III-B for details). Since some setup
guides have not been updated for many years, several email
clients mentioned are either superseded by newer versions,
or deprecated entirely. If an email client is superseded with
a newer version available to us (such as Microsoft Outlook
2013 getting replaced by Microsoft 365), we will consider the
latest version of the client app; if an email client is deprecated
without a clear successor, then it will not be considered in
our study. Eventually, 49 email clients are selected for testing.
A detailed list of the selected client apps, their origins and
version numbers can be found in Table XII in Appendix E.

Security Downgrade Test Cases. To evaluate the robustness
of email client apps with respect to their opportunistic TLS and
auto-detect features, we take the role of a type ➋ attacker, and
designed 4 test cases based on the relevant RFCs, all of which
are applicable to both manual configuration and auto-detect,
as well as all three of the email protocols:

T1: The classic STARTTLS stripping attack where an active
MITM removes the STARTTLS capability offered by
the server, as shown in Fig. 2. This tests whether
the client will fallback to no-TLS when opportunistic
TLS is not advertised by the server.

T2: The active MITM replaces ServerHello with a cleart-
ext message indicating TLS is not available after the
client sent a ClientHello for TLS negotiation, as
shown in Fig. 3. This tests how a client would respond
to an unexpected message at the TLS level.

T3: Keep the STARTTLS capability offered by the server,
but when the client agrees to start TLS negotiation
in cleartext stage (after client’s STARTTLS but before
its ClientHello), we send a cleartext message in-
dicating TLS is not available, as shown in Fig. 4.
Following RFC3207 [23], a client needs to decide
whether to proceed with the SMTP session when TLS

2Apps like Protonmail are tied to their own mail services and thus excluded.

upgrade is not possible, and this test determines the
client’s decision on that. Although the idea of this test
originates from the SMTP RFC, it can be adopted
to test IMAP and POP3 as well, by sending the
appropriate error response to STARTTLS as discussed
in Section II-B (i.e., 454 TLS not available for
SMTP, BAD for IMAP, and -ERR for POP3).

T4: When the client and server agree to use STARTTLS
to opportunistically upgrade to TLS, disrupt the TLS
session by sending arbitrary messages (e.g., NOOP) to
see how the client responds, as shown in Fig. 5. This
tests whether the client can handle disruption after a
successful handshake.

For auto-detect, our tests focus on the case where the
client heuristically guesses the connection parameters, without
relying on Autoconfig, Exchange AutoDiscover and DNS SRV.
This is because those 3 mechanisms are not always available,
and a type ➋ attacker can force the client to use heuristic
guessing by blocking the corresponding DNS queries (type SRV
for DNS SRV, and type A/AAAA for Autoconfig/AutoDiscover
subdomains). In our experiments, we observed that only a
small number of clients attempt DNS SRV or Autoconfig.

Client ServerMitM

CAPA / EHLO

AUTH PLAIN
STARTTLSAUTH PLAIN

Fig. 2. Classic STARTTLS stripping (test case T1)

Client ServerMitM

CAPA / EHLO

AUTH PLAIN
STARTTLS

STARTTLS

OK Begin TLS negotiation

ClientHello

ServerHelloTLS not available

Fig. 3. Replace ServerHello with a plaintext indicating TLS not available
(test case T2)

Client ServerMitM

CAPA / EHLO

AUTH PLAIN
STARTTLS

STARTTLS

OK Begin TLSTLS not available

Fig. 4. Return TLS not available in cleartext (test case T3)

4

Client ServerMitM

STARTTLS

OK Begin TLS negotiation

TLS handshake

Application DataNOOP

Fig. 5. Disrupt an ongoing TLS handshake (test case T4)

Certificate Validation Test Cases. To test the certificate
validation behavior in both implicit TLS and opportunistic
TLS, we prepared 4 (+1) certificate chains: a self-signed server
certificate (test case C1); an expired server certificate that
has been expired for at least one month before testing (test
case C2); a server certificate with invalid signature, but the
root of its chain is a commercial CA (test case C3); and a
valid server certificate with the prefix of its domain name
matching that of the server (test case C4). C1 and C2 can
cover the basic validation of certificates, while C3 covers the
scenario where the chain of trust is broken. We designed C4
because previous studies found that server name verification
is sometimes implemented incorrectly with a loose substring
matching logic [25], [55], for which an attacker can exploit
by creating a matching subdomain on a domain under control
(e.g., imap.victim.com.attacker.com), and then purchasing
a certificate for it from a trusted commercial CA. In order to
test whether the client is matching with subdomain or simply
does not validate whether the domain matches the ones on
server certificate, we prepared C4

§, which is a valid certificate
but from a totally different domain. These test cases cover the
most common issues in certificate validation considered by
previous work [43].

Attack setup. To apply the test cases, we modified the open-
source tool mitmproxy [10] to intercept network traffic. To
mimic real-world situations, we purchased a domain from
GoDaddy and set up mail servers on an AWS EC2 instance.
We deploy the open-source dovecot [2] as the Internet Message
Access Protocol (IMAP) and POP3 server, while for SMTP, we
deploy the open-source tool postfix [51] as the SMTP server.
For certificate test cases, since we have full control over the
mail server, we only need to replace the server certificate with
our test certificates in the mail server configurations. We opt
not to use the toolkit from a previous work [42], in part due
to our familiarity with mitmproxy, which allows us to easily
implement test cases T1–T4. Additionally, in order to obtain
C3 and C4 from commercial CAs, we already need to have
functional domain and server setups, so it is easy to reuse them
for the actual testing. We believe our test setup is practical and
closely resembles production setups, as many of them follow
a similar architecture in their deployments [1], [3].

Client configurations. We tested the clients against their
implicit TLS, opportunistic TLS, and auto-detect settings. For
implicit TLS, we set port 993 for IMAP, port 995 for POP3 and
port 465 for SMTP. For testing the behavior of opportunistic
TLS, we configure the clients to use port 143 for IMAP, port
110 for POP3, and port 587 and port 25 for SMTP as their
respective STARTTLS ports. For testing certificates, if the

client offers options related to the verification of certificates,
such as ”only allow valid certificate”, we will enable such
options to make the client perform certificate validation.

Client-side support of partial countermeasures. As dis-
cussed in Section II-B, in both SMTP and IMAP, the mail
servers can hint to the client that a TLS session should be
established prior to user login. This could offer protections to
sensitive credentials and messages against type ➊ attackers.
However, we refer to this as partial countermeasures because
they are not effective against a type ➋ attackers. We also test
the behavior of mail clients and see whether they aggressively
attempt user logins without considering the servers’ hints.

B. Setup Guide Evaluation

Data Collection. We focus on the setup guides from uni-
versities due to their general availability. From existing lit-
erature [25], [54], we compiled a list of universities3, which
includes 7045 universities across 53 regions. We deployed
Google Custom Search JSON API [21] on 29th Sept, 2023
to get the top 10 search results from the following search
keywords: e-mail site:<domain>, <domain> AND (SMTP
OR IMAP OR POP3 OR STARTTLS) site:<domain>. We
have conducted a preliminary screening of the results that
are irrelevant by filtering out webpages which do not contain
the keywords “SMTP”, “IMAP”, “POP3”. Then we further
inspect the search results manually to locate suitable email
setup guides. We consider a search result to have an email
setup guide if it contains information on teaching users how
to configure an email client, including but not limited to names
of email clients, screenshots of configuration steps, mail server
addresses and ports. One academic institute may have multiple
email setup guides, because different academic departments
might operate their own email services for their staff and
students. Since we collect setup guides across the globe, some
non-English speaking regions (e.g., China, Japan, Germany)
often prepare setup guides in their respective languages. To
ensure comprehensive interpretations and representation of
multilingual setup guides, we use Google Translate to help
us understand wordings of languages that we do not speak.
Among the setup guides we successfully collected, we only
evaluate the ones that teach users to connect to a custom mail
server, and exclude the ones about using Microsoft 365 and
Google Workspace, as they are often copies of the setup guides
from the service providers [22], [49]. For each setup guide, we
manually identify the recommened client, protocols supported,
server addresses and ports, along with intructions on the use
of auto-detect, TLS, and certificate validation settings, and and
whether guidance is given to users on what to do with unex-
pected prompts and warnings. To ensure consistency, we used
a Google Form for data entry, and the data analysis was done
on the resulting spreadsheet. The data evaluation process was
conducted from November 2023 to March 2024. To improve
the stability of our results and resolve potential conflicts or
ambiguities, two authors of this paper further inspected and
discussed the collected data to eliminate erroneous entries.

Reachable custom mail servers. Eventually, we collected
1899 email setup guides, 1102 of which are about setting up
connections with custom mail servers. Given that the server

3https://gist.github.com/hugohue/66a45b16bd444f73e757b65eba858113

5

domains mentioned in some setup guides might have become
inactive, we only consider setup guides that provide addresses
of servers that are still reachable. For this, we probed mail
servers according to the addresses and port numbers mentioned
in the setup guides. In the end, we have 810 email setup guides
that have reachable servers, 639 of which mention IMAP
configurations, 244 mention POP3 configurations, and 729
mention SMTP configurations3. These reachable servers also
serve as the basis for measuring the server-side characteristics
described below.

C. Server-side Characteristics

Certificate collection. We collected certificate chains sent by
the reachable mail servers using OpenSSL s client, and
then analyze the quality of certificates. The potential security
impacts of certificates that do not follow the best practices
are two-fold. On the one hand, certificates that cannot be
easily verified by programs might incentivize users to skip
the critical verification. On the other hand, certificates with
weak parameters might also threaten the overall authenticity
of the TLS sessions. For our experiments, we used OpenSSL
version 1.0.2g, as it supports lower TLS versions and shorter
key sizes. In the end, we collected a total of 798 certificate
chains from IMAP, POP3 and SMTP mail servers using both
I-TLS and STARTTLS. There are 414 unique leaf certificates
and 75 unique (1515 total) CA certificates. To test the chains,
we use the pyOpenSSL library, and the default CA bundle on
Ubuntu 22.04 as the trust anchor. Since our focus is on whether
the chains can easily verify, this setup suffices4.

Server-side partial countermeasures. Finally, we also mea-
sure whether mail servers have deployed the mechanisms for
hinting to the clients that they should use TLS (i.e., 530
Must issue a STARTTLS command first for SMTP and the
LOGINDISABLED capability for IMAP). These mechanisms can
be seen as partial countermeasures, because email clients that
honor these hints will not transmit sensitive user credentials
and messages in plaintext channels.

IV. FINDINGS ON EMAIL CLIENTS

A. Security Downgrade Test Cases

Table I shows the security downgrade behaviors of different
email clients, considering both manual configuration and auto-
detect. Out of the 49 email clients tested, we found that 19
clients may inadvertently downgrade the security of the email
protocols to no-TLS without notifying the user, which in some
cases can lead to a false sense of security and expose user
credentials to an attacker.

O-TLS versus OO-TLS. As discussed in Section II-C, one
potential cause of inadvertent security downgrade is the con-
tention between O-TLS and OO-TLS. Through our tests, we
have observed that 9 clients indeed adopt O-TLS instead of
OO-TLS (T1–T4 in manual configuration columns of Table I),
and would continue with PLAIN authentication without TLS.
Because of this, even if user specifies the use of opportunistic

3One setup guide can mention settings for one or more protocols, so the
numbers of the three protocols do not always add up to the total.

4Those who are interested in fine-grained validation error reasons can use
the setup proposed in [5] instead.

TLS in the client-side configuration, so long as a type ➋
attacker can determine the specific tricks that can induce a
downgrade to no-TLS, it is possible to steal the user credentials
without the users knowing. In some cases, although the tricks
cannot induce a downgrade, the client gets stuck in an infinite
loop5 due to unexpected messages or events (T2

∞–T4
∞ in

Table I). Client apps are not considered vulnerable if their
opportunistic TLS follows the OO-TLS approach (✓ in manual
configuration columns of Table I). We note however that some
apps prompt their users to decide whether to continue with
the downgrade to no-TLS. Following the terminology used in
the literature [4], [54], we refer to this as User Insecure (✓–in
Table I). We will discuss whether this creates security issues
in real-world deployments in Section V.

No support for STARTTLS. According to RFC9051 [34],
both client and server implementations must implement
STARTTLS on cleartext ports. However, we found that some
clients do not support STARTTLS when IMAP is used. For
instance, myMail on Android only offers the options of implicit
TLS and no-TLS for both IMAP and SMTP configurations.
Therefore, for a server that uses STARTTLS as the only
security mechanism, this client could end up not establishing
a secure TLS channel, causing the subsequent communication,
including the user credentials, to be sent in cleartext.

Although in RFC8314 [39] the use of I-TLS is more
recommended than that of STARTTLS, from the perspective
of implementing a client, this does not mean that STARTTLS
should not be used, especially when the client is willing to
go as low as no-TLS. Email clients should leverage the best
security options available to protect the users.

Security downgrade due to auto-detect. In Section II-D, we
discussed the potential problems with auto-detect. Through our
experiments, we observed two variants of inadvertent security
downgrade due to auto-detect. The first variant concerns the
order of preference in the different uses of TLS. As discussed
in Section II-C, no-TLS is always the worst in terms of security
outcome. However, we found that the auto-detect feature of
TypeApp Mail and BlueMail prefers no-TLS regardless of the
server-side capabilities, instead of first testing whether implicit
TLS and STARTTLS can be used (P in the auto-detect columns
of Table I). It is not clear to us why these clients automatically
opt for the least secure option, which ultimately transmits user
credentials over the network in cleartext.

On the other hand, some clients directly jump from I-
TLS to no-TLS without showing any warning to the users.
For instance, Edison Mail on iOS only offers “Auto”, “SSL”
and “None” options for IMAP. We tested the “Auto” option,
and found that it ignores the STARTTLS capability offered by
server and supports neither O-TLS nor OO-TLS. When I-TLS
does not work, it proceeds with no-TLS and performs PLAIN
authentication without prompting the user.

Apple Mail on iOS takes a similar strategy as Edison Mail on
iOS, and ignores the STARTTLS capability offered by server.
When configuring IMAP or POP3, if I-TLS does not work,
Apple Mail will prompt the user that the connection is not
secure, and allows the user to decide whether to proceed (✓–

in Table I). If the user agrees to proceed, no-TLS will be used.

5Continuously shows a loading screen and attempts to reconnect.

6

TABLE I. RESULTS OF SECURITY DOWNGRADE TEST CASES ON POPULAR EMAIL CLIENTS

manual configuration auto-detect
Client SMTP IMAP POP3 SMTP IMAP POP3
Android
Blue Mail - Email & Calendar T1,T3 ✓ ✓ ✓ ✓ –
Boxer - Workspace ONE ✓ ✓ ✓ – – –
Email Aqua Mail - Fast,Secure ✓ ✓ ✓ T1 P –
Email - Fast & Secure Mail ✓ ✓ – P P –
Gmail† ✓ ✓ ✓ ✓ ✓ ✓
K-9 Mail ✓ ✓ ✓ – – –
mail.ru – – – T1,T2,T3 ✓ –
Microsoft Outlook ✓ ✓ ∞ ✓ ✓ –
myMail: for Outlook & Yahoo ✓⋆ ✓⋆ – – – –
Samsung Email ✓ ✓ ✓ – – –
Spark Mail ✓ ✓ – ✓ ✓ –
Type App mail - email app T1,T3 ✓ ∞ ✓ ✓ –
iOS
Apple Mail† – – – T4 ✓–⋆ ✓–⋆

Blue Mail - Email & Calendar ✓ ✓ ✓ P P –
Boxer - Workspace ONE T1,T2

∞,T3
∞,T4

∞ T1,T4
∞ – ✓≈ ✓≈ –

Email Aqua Mail-Fast, Secure ✓ ✓ ✓ – – –
Email - Edison Mail ✓ ✓⋆ – P≈ ✓ –
Gmail ✓ ✓ – ✓ ✓ –
mail.ru – – – T1,T2,T3 ✓ –
Mail Master by Netease ✓ ✓ ✓ ✓ ✓ –
Microsoft Outlook ✓ ✓ – – – –
Spark Mail ✓ ✓ – ✓ ✓ –
Type App mail - email app ✓ ✓ ✓ P P –

manual configuration auto-detect
Client SMTP IMAP POP3 SMTP IMAP POP3
macOS
Apple Mail† – – – ✓– ✓– –
Blue Mail - Email | Calendar ✓ ✓ ∞ P P –
Edison Mail ✓ ✓ – – – –
eM Client T1 T1 ✓ T1 T1 ✓
Foxmail T3 – ✓⋆ – – –
Mail Master by Netease ✓ ✓ ✓ – – –
Microsoft Outlook ✓ ✓ ✓ ✓ ✓ –
SeaMonkey (formerly Netscape) ✓ ✓ ✓ – – –
Spark Classic - Email App ✓ ✓ – ✓ ✓ –
Spark Desktop ✓ ✓ – ✓ ✓ –
Sylpheed ✓ ✓ ✓ – – –
Thunderbird ✓ ✓ ✓ ✓– ✓–≈ –
TypeApp ✓ ✓ ∞ P P –
Windows 11
Becky! ✓ ✓ ✓ – – –
Blue Mail - Email & Calendar ✓ ✓ ∞ P P –
Claws Mail ✓ ✓ ✓ – – –
eM Client T1 T1 ✓ T1 T1 ✓
Foxmail T1 ✓⋆ ✓⋆ – – –
Microsoft Outlook ✓ ✓ ✓ – – –
nPOP T1,T4

∞ – T4
∞ – – –

SeaMonkey (formerly Netscape) ✓ ✓ ✓ – – –
Spark Email for Windows ✓ ✓ – ✓ ✓ –
Sylpheed ✓ ✓ ✓ – – –
Thunderbird ✓ ✓ ✓ ✓– ✓–≈ –
TypeApp for Windows ✓ ✓ ✓ P P –
Windows Mail & Calendar ✓ ✓ ✓ – – –Note: exploitable findings are highlighted in red.

†: Mandatory auto-detect, can manually modify settings afterwards
–: Unsupported ✓: Not vulnerable (no downgrade to no-TLS) ✓–: User Insecure (prompts user when downgrade to no-TLS)
T1: Strip STARTTLS T2: Reject ClientHello T3: Reject STARTTLS T4: Disrupt ApplicationData ∞: Infinite loop
≈: Concurrent traffic P: Use plaintext authentication only ⋆: Only implicit TLS and plaintext authentication are supported for these protocols

Concurrent behavior. As discussed before in Section II-B,
RFC9051 [34] suggests IMAP clients to try both ports 993
and 143 concurrently by default, unless overridden by user
configuration or DNS SRV records. RFC9051 cited the Happy
Eyeballs algorithm [47] as a good example to implement
this concurrency, which was originally designed to reduce
perceptible network delays on dual-stack (IPv4 and IPv6)
hosts, by making the client send out DNS queries for both IPv4
and IPv6 (A and AAAA records) concurrently. In the context
of IMAP, however, this leads to two streams of traffic that will
flow to port 993 and port 143 at the same time. Interestingly,
in our tests of auto-detect features, we have indeed observed
such concurrency features being implemented in some email
clients (≈ in Table I). In addition to IMAP, some apps (Edison
Mail and Boxer on iOS) even implemented this concurrency for
SMTP, starting three streams of traffic to the port 587, port 465
and port 25 concurrently. This can be seen as a special case
of the auto-detect feature.

The deciding factor of whether such concurrent behavior
might open up a vulnerability is the same as that of the
conventional auto-detect that tries different uses of TLS in a
sequential manner. That is, the possibility of a practical attack
depends on whether the client is willing to automatically use
no-TLS. Based on our testing, the concurrent feature of Thun-
derbird on both macOS and Windows is only User Insecure
(✓–≈ in Table I), as it prompts the user before proceeding with
no-TLS. The concurrent auto-detect of Boxer on iOS is not
deemed vulnerable, because it refuses to automatically use no-
TLS (and would revert to manual configuration if both implicit
TLS and STARTTLS failed during auto-detect). However, in

our experiments, we observed that the SMTP concurrent auto-
detect of Edison Mail on iOS initiates 3 separate connections
with ports 587, 465 and 25, but in the end chooses to use no-
TLS on port 25 (P≈ in Table I) and sends the username and
password in cleartext traffic. This is yet another example of
inadvertent security downgrade due to auto-detect.

In general, if concurrent auto-detect is to be used, care must
be given by the client in deciding which use of TLS is allowed
and preferred. In the original Happy Eyeballs algorithm [47],
although there are no obvious security concerns between IPv4
and IPv6, preference is given to AAAA records. The order
of preferences with respect to the different uses of TLS in a
concurrent auto-detect is not specified in RFC9051. If a client
is willing to use no-TLS, then a type ➋ attacker can simply
block the other concurrent connection attempts and drive the
client into using no-TLS. Even under a more limited type
➊ attacker, if the client favors whichever port that responds
the fastest, this might create a risk of inadvertent security
downgrade due to nondeterminism in network delay.

Confusing terminology. Another cause of concern observed
in our experiments stems from the fact that the same key-
word might have a different semantic meaning on different
products. For example, myMail on Android, Boxer on iOS, and
Windows Mail all provide the option to use “SSL” connection
or not; while macOS Foxmail allows user to choose “Secure
Connection”. However, these options have ambiguous meaning
in different clients. Table II shows different interpretations on
the SSL switch in various clients. On Windows Mail, if the
“SSL” option is checked, it will use OO-TLS (but not I-TLS);
otherwise, it will use O-TLS. Meanwhile, if the “SSL” option

7

is checked, Boxer on iOS, myMail on Android, and Foxmail on
macOS will all treat the port as having I-TLS (even for port
numbers that typically used for STARTTLS, such as 587), and
directly send ClientHello to the port. Unchecking the “SSL”
option will cause myMail on Android and Foxmail on macOS
to use no-TLS, while Boxer on iOS will then use STARTTLS.
This kind of subtle but critical semantic differences of the
same keyword are difficult for users to comprehend, and might
potentially lead to misconfiguration due to confusions.

TABLE II. DIFFERENT OUTCOMES OF THE “SSL” SWITCHES

Clients (OS) Wordings Switched on Switched off
Windows Mail (W11) “Require SSL” OO-TLS no-TLS
Boxer Mail (iOS) “Use SSL” I-TLS O-TLS
myMail (Android) “SSL” I-TLS no-TLS
Foxmail (macOS) “Secure Connection” I-TLS no-TLS

In our experiments, we observed some Windows clients
offering options related to old versions of TLS. For the sake
of brevity, we give a detailed account of this in Appendix A.

Proxy-based email clients. The mail.ru clients use an HTTPS
proxy for communicating with the mail servers. Thus, we
moved the experiment setup to the server-side to test the
connection between their proxy server and our mail server. We
found that the proxy only attempts I-TLS for IMAP. However,
for SMTP, the proxy server of mail.ru is vulnerable to T1–T3,
as shown in Table I. Under T1–T3, when a TLS session cannot
be established, the mail.ru proxy will retry the connection using
no-TLS, and then sends the user credentials in cleartext. A type
➋ attacker that is on-path between the proxy and the actual
mail server (e.g., an ISP in those jurisdictions) will thus be
able to exploit this for credential theft.

Lessons learned: Email clients vary noticeably in their
implementation of TLS options and thus deliver mixed
security outcomes. On some clients, users are better off
without relying on auto-detect.

B. Certificate Validation Test Cases

Table III shows the findings of our certificate test cases.
Additionally, we also tested the clients on revocation checks.
Only 12 clients properly validated the revocation status. We
provide a detailed analysis in Appendix B.

Overview of the results. We found that out of the 49 email
clients tested, 19 of them accept at least one of our supplied
certificate. If a client accepts any of C1–C4

§, its certificate
validation is missing some critical checks under specific use
of TLS in some of the email protocols.

Loose checking of the certificate domain names. As shown
in Table III, we found that 18 clients do not perform proper
checks to match the sever domain name with the domain names
on the certificate (C4 and C4

§ in Table III). All but one clients
that accept C4 also accept C4

§. For the email clients that do not
exhibit general leniency towards certificates (e.g., Blue Mail on
iOS, with ✓ for C1–3), their acceptance of C4

§ suggests that
they might not be performing any name checking at all (despite
checking the validity of the certificate chain).

Proxy-based email clients. Under this setting, the proxy is in
charge of validating the server certificate. We found that the

mail.ru proxy only supports implicit TLS with IMAP (G) and
STARTTLS with SMTP (H), and both accept all of our test
certificates. Similar vulnerabilities have been observed in other
proxy-based appliances by previous work [12], [13], [52].

Discrepancy between protocols and use of TLS. From
Table III, we can see that several apps exhibit discrepancies
across the three email protocols. For example, Outlook on
macOS accepts an expired certificate in POP3 (in C2) but
not in other protocols. Similarly, apps like Spark, Aqua Mail
on iOS and Edison Mail on macOS have certificate validation
issues in IMAP but not in SMTP.

Furthermore, from Table III, we can see that for IMAP,
there are generally more certificate validation issues with
STARTTLS than I-TLS (H#). This is in contrast to the results
of a previous work [42], which reports that the certificate
validation issues in I-TLS and STARTTLS are similar. This can
be attributed to the fact that many of the clients contributing
to this discrepancy here were not tested before. For instance,
Spark alone contributed many instances of certificate validation
issues in STARTTLS but not in I-TLS on different operating
systems. Likewise, Aqua Mail on iOS and Edison Mail on
macOS also exhibit similar discrepancies.

Interestingly, Email - Fast & Secure on Android seems to
be performing certificate chain validation but not the name
verification for IMAP with I-TLS (H# in C1–3 but in C4
and C4

§), whereas for IMAP with STARTTLS it accepts all
certificate test cases. Boxer on iOS accepts C1–4 but not C4

§

for IMAP, which suggests that no certificate chain validation
is in place, but it performs a prefix match of the server name.

Fallback to no-TLS over bad certificates. We found that
Apple Mail on iOS prompts the user to fall back to no-TLS
when the server certificate chain cannot be accepted. This is
a worrisome design, because users might choose to continue
without understanding the implications. A better alternative
would be to prompt the user to accept the certificate and
continue with the TLS session, which can at least protect
against a type ➊ attacker, especially if the genuine mail server
indeed uses a bad certificate chain.

Lessons learned: Some email clients continue to miss
the mark on certificate validation. Additionally, some have
inconsistent implementations of certificate validation within
the same app, and thus users do not always get a coherent
level of security across products, protocols, and setups.

C. Client-side support for partial countermeasures

When manual configuration is used, 29 clients allow the
choice of no-TLS. We found that only 9 of them honor
the LOGINDISABLED capability sent by IMAP servers. Three of
them will automatically switch to use STARTTLS, and the
remaining 6 do not allow users to proceed and terminate the
connection. The other 20 clients do not honor LOGINDISABLED
and continue to login with credentials sent in cleartext. The
full result can be found in Table IV. For SMTP, 11 out of the
29 clients will aggressively include user credentials in their
login attempts. Because of this, before the server gets to send
530 Must issue a STARTTLS command first, passwords will
already be transmitted in cleartext.

8

TABLE III. RESULTS OF CERTIFICATE TEST CASES ON POPULAR EMAIL CLIENTS

C1 C2 C3 C4 C4
§

Client SMTP IMAP POP3 SMTP IMAP POP3 SMTP IMAP POP3 SMTP IMAP POP3 SMTP IMAP POP3
Android
Blue Mail - Email & Calendar ✓ ✓ ∞ ✓ ✓ ∞ ✓ ✓ ∞ ✓ ✓ ∞ ✓ ✓ ∞
Boxer - Workspace ONE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Email Aqua Mail - Fast,Secure ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Email - Fast & Secure Mail ✓– H# – ✓– H# – ✓– H# – – –
Gmail ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓–

K-9 Mail ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓–

mail.ru H G – H G – H G – H G – H G –
Microsoft Outlook ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓–

myMail: for Outlook & Yahoo ✓TLS ✓TLS – ✓TLS ✓TLS – ✓TLS ✓TLS – ✓TLS ✓TLS – ✓TLS ✓TLS
Samsung Email ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓–

Spark Mail ✓– H# – ✓– H# – ✓– H# – – –
Type App mail - email app ✓ ✓ ∞ ✓ ✓ ∞ ✓ ✓ ∞ ✓ ✓ ∞ ✓ ✓ ∞
iOS
Apple Mail⋆ ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓–

Blue Mail - Email & Calendar ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Boxer - Workspace ONE G#∞ – G#∞ – G#∞ – G#∞ – ✓–∞ H# ✓–

Email Aqua Mail-Fast, Secure ✓ H# ✓ ✓ H# ✓ ✓ H# ✓ ✓ H# ✓ ✓ H# ✓
Email - Edison Mail ✓– ✓– – ✓– ✓– – ✓– ✓– – ✓– G – ✓– G –
Gmail ✓ ✓ – ✓ ✓ – ✓ ✓ – ✓ ✓ – ✓ ✓ –
mail.ru H G – H G – H G – H G – H G –
Mail Master by Netease
Microsoft Outlook ✓– ✓– – ✓– ✓– – ✓– ✓– – ✓– ✓– – ✓– ✓– –
Spark Mail ✓– H# – ✓– H# – ✓– H# – ✓– H# – ✓– H# –
Type App mail - email app ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ G# G#
macOS
Apple Mail ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓–

Blue Mail - Email | Calendar ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓–

Edison Mail ✓– H# – ✓– H# – ✓– H# – ✓– H# – ✓– H# –
eM Client ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓–

Foxmail – G – G – G – G – G
Mail Master by Netease
Microsoft Outlook ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓–

SeaMonkey (formerly Netscape) ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓–

Spark Classic - Email App ✓– H# – ✓– H# – ✓– H# – ✓– H# – ✓– H# –
Spark Desktop ✓– H# – ✓– H# – ✓– H# – ✓– H# – ✓– H# –
Sylpheed ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓–

Thunderbird ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓–

TypeApp ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓–

Windows 11
Becky! ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Blue Mail - Email & Calendar ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓–

Claws Mail ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓–

eM Client ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓–

Foxmail G G G G G G G G G G
Microsoft Outlook ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓–

nPOP ✓ – ✓ ✓ – ✓ ✓ – ✓ ✓ – ✓ ✓ – ✓
SeaMonkey (formerly Netscape) ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓–

Spark Email for Windows ✓– H# – ✓– H# – ✓– H# – – –
Sylpheed ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓–

Thunderbird ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓–

TypeApp for Windows ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓–
Windows Mail & Calendar ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓– ✓–

⋆: Downgrade to no TLS if user chooses to continue when prompted TLS: Only implicit TLS is available
✓: Not vulnerable ✓–: User Insecure –: Unsupported protocol ∞: Infinite loop C1: Self-signed certificate
C2: Expired certificate C3: Invalid signature certificate C4: Mismatch prefix certificate C4

§: Mismatch subject certificate
H#: Vulnerable in STARTTLS G#: Vulnerable in I-TLS : Vulnerable in both I-TLS and STARTTLS
H: Vulnerable in STARTTLS (no support for I-TLS) G: Vulnerable in I-TLS (no support for STARTTLS)

There are 8 clients that have P in the auto-detect columns
of Table I. We found that only Aqua Mail and Edison Mail
on Android do not honor the LOGINDISABLED capability of an
IMAP server, and the remaining 6 all terminate the connection.
Concerning SMTP, only Edison Mail in Android will aggres-
sively include user credentials in its login attempt.

Lessons learned: Nearly half of the tested clients aggres-
sively sends user credentials, which is not the best strategy
for protecting its users. The partial countermeasures have
their merits and should be better supported by more clients.

V. FINDINGS ON REAL-WORLD DEPLOYMENTS

A. Setup guides

Overall statistics. Based on the server and protocol infor-
mation extracted from the 810 setup guides with reachable
servers, we classified them into 4 categories. The results are
listed in Table V. A majority of setup guides have clearly
defined information about the security mechanisms to use, and
around one-fifth of setup guides instruct users to use auto-
detect. Some setup guides only specify the server port number
and abstractly mention the use of TLS (ambiguous), and
some only mention the server port number without specifying

9

TABLE IV. CLIENTS THAT SUPPORTS PARTIAL COUNTERMEASURES

Clients IMAP
LOGINDISABLED

SMTP
must issue STARTTLS

Android
Blue Mail - Email & Calendar ✗ ✗△

Email Aqua mail - Fast, Secure ✗ ✗△

Email - Fast & Secure Mail ✗ ✓
Gmail ✗ ✓
K-9 Mail ✓ ✓
Microsoft Outlook ✗ ✓
Samsung Mail ✗ ✓
Type App mail - email app ✗ ✗△

iOS
BlueMail - Email & Calendar ✗ ✗
Email Aqua mail - Fast, Secure ✗ ✗
Email - Edison Mail ✗ ✓
Mail Master by Netease ✗ ✓
Microsoft Outlook ✗ ✓
Type App mail - email app ✗ ✗
macOS
Blue Mail - Email & Calendar ✗ ✗△

Edison Mail ✗ ✓
Mail Master by Netease ✗ ✗△

Microsoft Outlook ✗ ✓
SeaMonkey (formerly Netscape) ✓† ✓
Sylpheed ✓ ✓
Thunderbird ✓ ✓†

TypeApp ✗ ✗△

Windows 11
BlueMail - Email & Calendar ✗ ✗

Claws Mail ✓† ✓†

Microsoft Outlook ✓ ✓
SeaMonkey (formerly Netscape) ✓ ✓
Sylpheed ✓† ✓
Thunderbird ✓ ✓†

TypeApp for Windows ✗ ✗

✓: Honor LOGINDISABLED or Must issue STARTTLS first
✗: Do not honor LOGINDISABLED or Must issue STARTTLS first
†: Switch to STARTTLS connection automatically
△: Send user credentials aggressively if AUTH PLAIN is selected

whether TLS should be used or not (unknown). We note
that setup guides with ambiguous TLS information are not
necessarily problematic, so long as their recommended client
has a well-defined SSL/TLS option in its user interface (UI).

We then further separate the 810 setup guides into generic
setup guides and specific setup guides. Generic setup guides
are not tied to a specific client app. They typically only provide
general information regarding the mail server address, port, and
the use of TLS. Users will have to adapt the given information
to suit the client app they choose to use. On the other hand,
a specific setup guide is tied to a particular client app on an
operating system, and usually provides detailed steps and/or
screenshots that teach users how to configure the client app.
Out of the 810 setup guides, we found that 310 (38.27%)
are generic, and 500 (61.73%) are specific. As can be seen
in Table V, many specific setup guides have clearly defined
information about what security mechanisms to use.

To see how the tested email clients are used in actual
deployments, we classified them into three categories: (1)
Secure, (2) User Insecure and (3) Insecure, for three different
aspects, which are, Downgrade, Certificate validation, and
Configuration UI. The first 2 aspects correspond to the findings
discussed in Sections IV-A and IV-B. The Configuration UI
aspect concerns whether there are UI options for users to turn
off certain security-critical mechanisms.

A breakdown of email apps prescribed in the 500 specific
setup guides can be found in Table VI. A client is considered

Secure for the Downgrade and Certificate validation columns,
if all the tests in Table I and III are secure. If any of those tests
are User Insecure (or respectively, Insecure), then the client
will be marked as such in Table VI. For the Configuration
UI column, a client is considered User Insecure if it contains
options for users to disable the use of TLS or certificate checks
(e.g., a checkbox to “accept all certificates”).

Leave security up to interpretation. The first interesting
observation is that many email setup guides leave users to
interpret and figure out what settings to use. In our data set,
this observation manifests in two scenarios. The first one is
that there is a noticeable portion (38.27%) of setup guides
that are deemed generic. Users who are given these generic
setup guides are not prescribed a recommended client app nor
detailed steps on how to configure their clients. Given that
users are free to choose their preferred clients, and we have
shown that many email clients are User Insecure, generic setup
guides might not be able to help users to arrive at the best
configuration in terms of security. For instance, among the
310 generic setup guides, 13 (7 for POP3 and 6 for SMTP)
only abstractly mention “SSL” or “TLS”, without explaining
whether the client should be using implicit TLS or STARTTLS.
Additionally, we found 24 generic setup guides (9 for IMAP, 2
for POP3, and 13 for SMTP) only mention the server port that
users should connect to, without specifying how and whether
TLS should be used.

Another scenario that depends on users’ interpretation
concerns the 42 specific setup guides that recommend the use
of a special client called “Android System Client”. We note
that the exact client app for this varies on devices and typically
depends on the device vendors. For example, Google devices
usually default to Gmail, while Samsung devices default to
Samsung Email. Other vendors can also ship their own email
app as the system client. Together with the fact that clients
might differ in their behaviors and UI options, users given a
specific setup guide based on one system client might end up
not achieving the best possible configuration outcome when
using a different system client.

Some certificate validation disabled from UI. Among the
recommended email clients shown in Table VI, 5 of them offer
the UI option of “accept all certificates”, which effectively
disables certificate validation even when TLS is used. We
pulled their corresponding setup guides to see if users are told
to choose this option. While a majority of these specific setup
guides leave that option unchecked by default, 6 setup guides
(2 for Becky! and 4 from non-Gmail Android System Clients,
e.g., Samsung Mail) instruct users to enable the “accept all
certificates” option. Only 1 setup guide explicitly advises its
user to make sure that option is unchecked.

Poor exception handling in certificate validation. As dis-
cussed before, when it comes to certificate validation, many
email clients are User Insecure. However, we found that a
vast majority of setup guides do not instruct users what to do
if they see a warning prompt during certificate validation. In
fact, we found that 14 setup guides (9 for IMAP, 4 for POP3,
13 for SMTP) ask the users to directly continue whenever they
are prompted. We crawled 26 certificate chains from those
mail servers, and found that 22 of them can successfully pass
through the chain validation and hostname verification using

10

TABLE V. SECURITY MECHANISMS MENTIONED BY SETUP GUIDES

IMAP
(total = 639)

POP3
(total = 244)

SMTP
(total = 729)

Security
Mechanisms Count Perc. Specific Generic Count Perc. Specific Generic Count Perc. Specific Generic

Clearly defined 484 75.74% 223 261 173 70.90% 84 89 518 71.06% 302 216
Auto-detect 132 20.66% 104 28 55 22.54% 28 27 130 17.83% 95 35
Port+TLS unknown 19 2.97% 10 9 9 3.69% 6 3 29 3.98% 16 13
Port+TLS ambiguous 4 0.63% 1 3 7 2.87% 0 7 52 7.13% 30 22

TABLE VI. OCCURRENCE OF EMAIL CLIENTS IN SETUP GUIDES

Clients Count Percent Down-
grade

Cert.
Validaton

Config.
UI

Android Total = 61
Android System Client† 42 68.85% – – –

Gmail – – ✓ ✓– ✓–

Samsung Email – – ✓ ✓– ✓–

Gmail 10 16.39% ✓ ✓– ✓–

K-9 Mail 4 6.56% ✓ ✓– ✓–

Microsoft Outlook 2 3.28% ✓ ✓– ✓
Boxer - Workspace ONE 1 1.64% ✓ ✓ ✓–

iOS Total = 73
Apple Mail 68 93.15% ✗ ✓– ✓
Microsoft Outlook 3 4.11% ✓ ✓ ✓
Thunderbird 2 2.74% ✓– ✓– ✓
macOS Total = 100
Apple Mail 74 74.00% ✓ ✓– ✓
Thunderbird 11 11.00% ✓– ✓– ✓
Microsoft Outlook 11 11.00% ✓ ✗ ✓
Foxmail 2 2.00% ✗ ✗ ✓
Windows Total = 266
Microsoft Outlook 130 48.87% ✓ ✓– ✓
Thunderbird 95 35.71% ✓ ✓– ✓
Windows Mail & Calendar 20 7.52% ✓ ✓– ✓
Becky! 6 2.26% ✓ ✓ ✓–

Foxmail 6 2.26% ✗ ✗ ✓
SeaMonkey 2 0.75% ✓ ✓– ✓

Note: 11 discontinued clients are excluded from this list.
†: Android System Client depends on the device’s make and model.

✓: Secure ✓–: User-Insecure ✗: Insecure

the setup discussed in Section III-C. As such, there is actually
no legitimate reasons for the corresponding setup guides to ask
their users to accept any arbitrary certificates.

Overall, we found only 2 setup guides that gave some use-
ful information on handling warning prompts. Unfortunately,
they only mention the name of the certificate issuer, and do not
explicitly tell the user what actions to take. We also note that
so long as the chain validity is not checked, the issuer name
is an unauthenticated input that can be arbitrarily chosen by
a type ➋ attacker, and thus even if a user tries to match the
issuer name, server impersonation can still succeed.

Auto-detect is common but can be tricky. For generic setup
guides, we found 90 (28 for IMAP, 27 for POP3, and 35 for
SMTP) that abstractly state auto-detect can be used by the
user for configuration. For specific setup guides, we found
227 (104 for IMAP, 28 for POP3, 95 for SMTP) that instruct
users to use auto-detect on the recommended clients. These
numbers suggest that auto-detect is commonly used by users
in real-world deployments. However, we also observed none
of these setup guides discuss what the user should do if
there is a warning prompt during auto-detect. As discussed
in Section IV-A, a number of clients are User Insecure, that

is, before they downgrade to using no-TLS, they show a
prompt and let the user decide whether to continue or not.
Consequently, not instructing users on what to do when they
see the prompt leaves open the possibility for an unexpected
downgrade to cleartext communication.

Additionally, we also observed that the 3 clients marked
as Insecure for Downgrade in Table VI are indeed being used
in practice. We also note that the design of Apple Mail on iOS
could be worsening the overall security. Out of the 68 setup
guides that recommend it, 43 instruct users to complete the
configuration using its auto-detect feature, and the remaining
25 provide detailed information on security settings for manual
configuration. However, since Apple Mail makes it mandatory
to use auto-detect when creating a new configuration, by the
time that the user gets to manually adjust the security settings,
the client would have already performed at least one login
attempt, possibly in cleartext.

Prescribing the use of no-TLS and STARTTLS. We found
that 12 setup guides (3 for IMAP, 3 for POP3, 6 for SMTP)
instruct users to use no-TLS. This is far from ideal, as users
who follow these setup guides are directly exposed to the threat
of credential theft. Additionally, we found that 52 setup guides
(12 for IMAP, 4 for POP3, 36 for SMTP) only instruct users
to use STARTTLS.

In order to evaluate whether these setup guides could have
prescribed a more secure option, we used Python and OpenSSL
to probe all the reachable mail servers to determine the use
of TLS that they support. We try to connect to the mail
servers with implicit TLS, STARTTLS and no TLS, using the
addresses and port numbers extracted from the setup guides,
as well as the conventional port numbers for implicit TLS
and STARTTLS. The overall statistics of what the 810 servers
support can be found in Table VII. Encouragingly, a significant
portion of SMTP servers and an overwhelming majority of
IMAP and POP3 servers support implicit TLS, although a lot
more SMTP servers support STARTTLS than implicit TLS.
In fact, quite some IMAP and POP3 servers only support
implicit TLS. Nevertheless, a noticeable portion of mail servers
continue to support no-TLS.

With these results, we can then revisit the no-TLS and
STARTTLS setup guides. Interestingly, for the 12 setup guides
that instruct users to use no-TLS, all of their mail servers
actually support STARTTLS. This means that the setup guides
should have prescribed STARTTLS instead, which can at least
defend against type ➊ attacks.

Furthermore, for the 52 setup guides that instruct users
to use STARTTLS, we found that their servers all support
implicit TLS. With the majority of email clients capable of
using implicit TLS, the setup guides could have prescribed

11

TABLE VII. SECURITY MECHANISMS DEPLOYED BY SERVERS

IMAP servers
(total = 280)

POP3 servers
(total = 129)

SMTP servers
(total = 321)

Supported use
of TLS Count Perc. Count Perc. Count Perc.

Implicit TLS 274 97.86% 126 97.67% 197 61.37%
Implicit TLS only 111 39.64% 54 41.86% 18 5.61%
STARTTLS 160 57.14% 64 49.61% 290 90.34%
STARTTLS only 2 0.71% 0 0.00% 67 20.87%
no TLS 70 25.00% 49 37.98% 134 41.74%
no TLS only 0 0.00% 4 3.10% 7 2.18%

that instead, and mitigate possibilities of inadvertent security
downgrades under type ➋ attacks.

Use of unconventional ports. We noticed that some mail
servers use unconventional ports for different mail protocols. 3
servers use port 993 for POP3 with implicit TLS, instead of the
typical port 995; 3 servers use port 587 for SMTP with implicit
TLS, instead of the typical port 465; 6 servers use port 465
as STARTTLS port, and 4 servers use no-TLS in port 465. We
found that all of their corresponding setup guides offer detailed
information for users to configure manually. Nevertheless,
these non-standard ports might cripple auto-detect on some
email clients, and if the server happens to provide services
at a worse security level on conventional ports (e.g., SMTP
with no TLS on port 25), then the auto-detect mechanism on
client-side might fail to detect the existence of better security
options, and end up downgrading to the worse ones.

Lessons learned: Many setup guides are not explicit on
how the users can better protect themselves, especially re-
garding the use of security mechanisms and their exception
handling. Instead of focusing on making clients work, setup
guides should elaborate on how to make clients safe.

B. Characteristics of server certificates

Chain validation. We attempt to verify the 798 certificate
chains collected from mail servers using the setup mentioned
in Section III-C. We found that only 21 of them failed in
chain verification. While 3 of them are self-signed certificates,
4 are expired, and 6 are missing some issuer certificates.
8 of 21 chains failed validation due to not including the
subjectKeyIdentifier in the root certificate, which can be
seen as non-compliant to RFC5280 [9], as it states that the
subjectKeyIdentifier extension must appear in all con-
forming CA certificates. We then investigate the remaining 2
failed certificate chains, and found that both of them have a
root of trust that is not trusted by our root CA bundle.

Hostname verification. We also performed hostname valida-
tion on leaf certificates. Only 13 of them failed the hostname
verification. 11 (2.66%) of them failed to match with the
hostname in both Common Name and subjectAltName. 2 of
them do not include subjectAltName extension in their leaf
certificates. In this case, according to RFC6125 [45], if a
certificate does not include a DNS-ID, SRV-ID, URI-ID or any
other application-specific identifiers types, then the Common
Name field may be used as the last resort to perform DNS
domain name checking. While one of the 2 has a Common
Name “Unknown” and thus ultimately failed the hostname

verification, we found that the other has a Common Name
field that can match with the server domain name, which is
acceptable according to RFC6125. However, we note that at
the time of writing, RFC6125 is obsoleted by RFC9525, which
states that the Common Name field should no longer be used
for hostname verification, and so this certificate might get
rejected by email clients that implement the new standard.

TABLE VIII. CERTIFICATE ANALYSIS

Leaf cert.=414 CA cert.=89
Parameter Count Perc. Count Perc.
Public Key Type
RSA Public Key 399 96.37% 83 93.26%
EC Public Key 15 3.62% 6 6.74%
Key Size in bits (algorithm)
< 2048 (RSA) 1 0.24% 0 0.00%
≥ 2048 (RSA) 398 96.14% 83 93.26%
384 (EC) 5 1.21% 3 3.37%
256 (EC) 10 2.42% 3 3.37%
Signature Algorithm
SHA1-RSA 1 0.24% 10 11.23%
SHA256-RSA 236 57.00% 52 58.43%
SHA384-RSA 164 39.61% 21 23.60%
SHA512-RSA 0 0.00% 1 1.12%
SHA256-ECDSA 12 2.90% 0 0.00%
SHA384-ECDSA 1 0.24% 5 5.62%

Public keys and signature algorithms. To get a sense of
the general security posture of the certificates used by mail
servers, we tried to extract the public key information, key
size and signature algorithm used in the certificates. The results
are generally promising, and can be seen Table VIII. Only 1
leaf certificate has an RSA key shorter than 2048 bits (the
modulus is 1024-bit long), and only 1 leaf certificate has the
relatively weak SHA1-RSA signature, which may be suscep-
tible to collision attacks [31]. An overwhelming majority of
leaf certificates have decent key sizes and signatures. A similar
trend can be seen in the CA certificates that form the chain of
trust, although there are slightly more CA certificates signed
with SHA1-RSA.

Lifespan. We also analysed the lifespan of the certificates
collected. For leaf certificates, 10.14% of them have lifespan
less than 90 days, 88.89% of them are within the normative
period (of not more than 5 years). Only 2 leaf certificates
have a lifespan of 10 years and 1 has a lifespan of 16 years.
For CA certificates, 6.74% have a lifespan of less than 5
years, 75.28% have typical lifespans (between 5 to 20 years),
and 17.98% have a lifespan more than 20 years. The longest
lifespan observed on the CA certificates is 30 years.

Lessons learned: Obtaining and deploying trustworthy
certificates on the server-side is not a major pain point. As
such, the overall security can be improved by making setup
guides more stringent on instructing users how to handle
the configuration UIs and exceptions regarding certificates.

C. Server-side partial countermeasures

Deployments on mail servers. Finally, we also measure how
many mail servers support the partial countermeasures that can
explicitly hint to the client that TLS needs to be established
before login. For IMAP, this refers to the LOGINDISABLED special

12

capability, and for SMTP, this refers to the 530 Must issue a
STARTTLS command first message.

Our measurements show that about two-third of the tested
servers support the aforementioned partial countermeasures,
see Table IX for details. Interestingly, for IMAP servers,
we also found that 16 of them take a different approach at
hinting to clients. That is, instead of stating the LOGINDISABLED
capability, they will hide all the authentication methods from
the list of capability, and leave STARTTLS as the only option
for the client. Only around 10% of IMAP servers adopts this
approach.

For SMTP, the semantics are slightly different. Since
message 530 is a reactive signal in response to a client’s
AUTH LOGIN message, in order to prevent aggressive clients (cf.
Section IV-C) from directly attempting login (and transmitting
username and password in one go), typically the servers
should also hide the other extensions except for STARTTLS when
responding to client’s EHLO. Out of the 202 SMTP servers that
will send message 530, we found that only 179 also hide their
non-STARTTLS capabilities. Because of this, if an aggressive
client is used with the remaining 23 SMTP servers, a type ➊
attacker might still be able to obtain the user credentials.

Finally, we also observed that some SMTP servers enforce
different policies on different ports. Perhaps unsurprisingly,
there are 17 servers that force client to use STARTTLS before
allowing login on port 587, but clients are allowed to login
with no TLS on port 25.

TABLE IX. DEPLOYMENTS OF PARTIAL COUNTERMEASURES

IMAP
(total = 160)

SMTP
(total = 290)

Partial countermeasures Count Perc. Count Perc.
Explicit hints to clients 100 62.50% 202 69.66%
Hiding capabilities 16 10.00% 179† 61.72%
Does not deploy countermeasures 44 27.5% 105 36.21%

†: Those that hide capabilities also send message 530.

Lessons learned: Many mail servers already deployed par-
tial countermeasures that can prevent cleartext transmission
of user credentials. This suggests that the onus is indeed
on the email clients to honour these countermeasures and
avoid aggressively sending user credentials.

VI. DISCUSSION

Responsible disclosure. The findings in Tables I and III are
already shared with the corresponding vendors. At the time
of writing, eM Client has replied to us, stating that when
auto-detect is used, it only queries the STARTTLS capability
during the first connection attempt, and that it assumes the
initial configuration is done on a safe network. We replied
back to remind them that the safe network assumption is quite
strong, and that the STARTTLS stripping attack should be
addressed irrespective of auto-detect. Apple has confirmed our
findings on iOS Apple Mail, and a fix has been planned for late
2024. We are waiting for the other vendors to respond. We
have also responsibly notified the institutions who prescribed
problematic setup guides. We received positive feedback from
two universities. They thanked us for our reports and promised
to reevaluate their setup guides.

Ethical considerations. The testing of email clients are con-
ducted in a controlled environment, with our own server setups.
The tests do not involve any sensitive information concerning
real-world personal identity. For the server-side measurements,
we only probed the servers to observe their capabilities,
without sending or obtaining any sensitive information. We
never sent any malformed messages to the servers, and the
amount of traffic is negligible. Thus, our measurements should
not affect the normal functionalities of the mail servers.

Limitations. Concerning email clients, the so-called “Android
System Client” can vary across vendors (see Section V), and
our options are limited by the variety of Android devices
available to us. We thus limit our analysis to Gmail and
Samsung Email. For setup guides (and server-side deployment
practices), due to the nature of our collected data, our analysis
and findings are heavily influenced by deployments at educa-
tional institutes. Even with a focus on universities, some email
setup guides are hidden in their intranet and have evaded our
analysis. It is also possible that some of the collected setup
guides are not the latest versions available. These also explain
why some of the tested email clients are not observed in the
collected setup guides. Part of our analysis involved the use
of Google Translate, and we assume its translations preserve
the semantic meanings of setup instructions. Despite these
limitations, we believe our study still helps to shed light on the
common but unsatisfactory practices embraced by vendors and
universities, which likely also apply to other organizations.

A. Possible mitigation for IT admins

Avoid using auto-detect. As observed in Section V, the auto-
detect feature is indeed popular. Although auto-detect appears
to be convenient, when considering the fact that there are
many subtle security downgrades (both Insecure and User
Insecure), it makes us question whether auto-detect should be
avoided in favor of the more traditional manual configuration.
One successful and secure email configuration can last for a
relatively long period time, and given this long-term benefit,
the amortized effort of manually specifying the port number
and use of TLS during configuration seems rather insignificant.
We argue that the risks of auto-detect outweigh its benefits.

Avoid “happy path” setup guides. Analogous to happy path
testing, “happy path” setup guides only focus on helping users
to connect successfully, with no regards on possible attacks.
Unfortunately, security is often achieved only with proper
exception handling. Because of this, IT admins are strongly
encouraged to explicitly educate their users on how to protect
themselves when they encounter unexpected warning prompts
from email clients. This is especially important given the
myriad of clients that exhibit User Insecure behaviors in their
auto-detect and certificate validation.

B. Possible mitigation for vendors and standardization bodies

Prohibit no-TLS and upgrade O-TLS to OO-TLS. Although
RFC8314 [39] has deprecated the use of cleartext access to
mail servers, our results show that many clients still retain
support of no-TLS and are willing to use it for transmitting
sensitive credentials and messages, either in an Insecure or
User Insecure manner. There are no good reasons to keep

13

supporting no-TLS, especially when an overwhelming majority
of mail servers also support STARTTLS and I-TLS (Table VII).
Several clients, such as Gmail in iOS, already ceased to
support no-TLS. We recommend other vendors to follow suit.
An added bonus of prohibiting no-TLS is that the use of
STARTTLS will no longer be vulnerable to the stripping-style
attacks (effectively upgrading O-TLS to OO-TLS).

Avoid ambiguity in concurrent connections. Based on our
results and investigation, a possible source of ambiguity ap-
pears to be the handling of concurrent connections. It might
help to clarify the order of preferences concerning no-TLS, O-
TLS, OO-TLS, and I-TLS. Although RFC9051 [34] suggests
clients should connect to both implicit port and STARTTLS
port concurrently, it was not very up front on which one is
more preferred. Likewise, RFC8314 [39] states that implicit
TLS is an alternative security mechanism to STARTTLS,
without explaining that one might be better than the other. Our
recommendation is that RFC9051 could clarify on which use of
TLS is more preferred, and together with the aforementioned
prohibition of no-TLS, this can potentially avoid the security
downgrade problems caused by concurrent auto-detect.

Do not send credentials aggressively (and honor partial
countermeasures). Furthermore, we recommend vendors to
make sure their clients are not aggressively sending the user
credentials together with the LOGIN command. The time saving
of 1–2 round trips is somewhat insignificant to the user,
and it might be better to instead give the server-side partial
countermeasures a chance to function, which can at least
defend against a type ➊ attacker. Clients should also honor
the hints they received from servers.

VII. RELATED WORK

Numerous research efforts have attempted to measure dif-
ferent aspects of the email ecosystems. An early work [16]
presents a measurement of SMTP extension usage in the wild,
as well as the adoption of STARTTLS on SMTP servers.
Meanwhile, [24] presents an Internet-wide analysis of TLS-
based email protocol deployments as well as their authentica-
tion mechanisms and certificate chain validations. It revealed
that most mail servers do not validate the identity of their peers,
leaving them vulnerable to MITM attacks. Similar findings
have been observed in popular email providers as well [17].
Another Internet-wide scanning of mail servers, with a focus
on TLS session parameters including TLS versions, cipher-
suites, key sizes and certificate chains, is presented in [32].
Researchers have also studied the problem of managing DNS-
based Authentication of Named Entities (DANE) for MTAs,
discovering pervasive misconfigurations [29] and management
pain points [28] through longitudinal measurements. Another
recent study [5] also includes a large-scale Internet measure-
ment and testing email providers. It finds that STARTTLS
is now widely supported by mail servers, but many of their
certificates are still invalid.

Our study can be seen as orthogonal to these studies,
because it mainly considers connections with MUAs, whereas
the Internet-wide measurements also include connections be-
tween other types of email agents. It thus makes sense that
nearly one-third of MTAs in general are found to have bad
certificates [5], but the numbers are much lower when we

focus on a smaller population of MUA-facing mail servers
(Section V-B). The security downgrade problem considered
in this paper bears some resemblance to the problem of TLS
version downgrade studied by recent work [30], [50], albeit
more sophisticated due to the variety of email protocols and
auto-detect features of MUAs. Our analysis of real-world setup
guides was partly inspired by previous work on enterprise Wi-
Fi [4], [25], [48], [53] and academic VPNs [55].

VIII. CONCLUSION

We present a comprehensive study on the email ecosystem,
which considers client-side implementations, setup guides of-
fered by IT admins, and server-side deployments. Our study
has identified a number of critical security flaws that can
lead to credential theft. On the client-side, a number of
MUAs show improper handling of security downgrade and
certificate validation. Additionally, the auto-detect features
and UI designs of some client apps can trick users into an
inadvertent loss of security. Concerning setup guides, many
are not explicit in instructing users on how to tighten the
security of their configurations, and some blatantly prescribe
insecure practices such as accepting all certificates. Finally,
the server-side deployments are generally encouraging, which
suggests that the client apps and setup guides might actually
be the weakest links of the ecosystem. Based on these results,
we give concrete suggestions that can improve the security of
email users.

IX. ACKNOWLEDGMENTS

We thank the anonymous reviewers and shepherd for
helping us improve our paper. This work was supported in
part by a grant from the Research Grants Council (RGC) of
Hong Kong (Project No.: CUHK 24205021), SIEF 3135517,
FITE 3200262, and Direct Grant 4055233 from CUHK, as
well as grants from the CUHK IE department (project code:
GRF/22/SYC and GRF/23/SYC).

REFERENCES

[1] “Open email survey,” 2020. [Online]. Available: https:
//openemailsurvey.org/

[2] “Dovecot the secure imap server,” Sep 2023. [Online]. Available:
https://www.dovecot.org/

[3] “Mail (mx) server survey,” 2024. [Online]. Available: http://www.
securityspace.com/s survey/data/man.202403/mxsurvey.html

[4] A. Bartoli, E. Medvet, and F. Onesti, “Evil twins and wpa2 enterprise:
A coming security disaster?” Computers & Security, vol. 74, pp. 1–11,
2018.

[5] B. Blechschmidt and B. Stock, “Extended hell(o): A comprehensive
Large-Scale study on email confidentiality and integrity mechanisms
in the wild,” in 32nd USENIX Security Symposium (USENIX
Security 23). Anaheim, CA: USENIX Association, Aug. 2023, pp.
4895–4912. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity23/presentation/blechschmidt

[6] B. Bucksch, “Mail Autoconfig,” Internet Engineering Task Force,
Internet-Draft draft-ietf-mailmaint-autoconfig-00, Sep. 2024, work in
Progress. [Online]. Available: https://datatracker.ietf.org/doc/draft-ietf-
mailmaint-autoconfig/00/

[7] L. Ceci, “Number of e-mail users worldwide 2026,” Jan 2024.
[Online]. Available: https://www.statista.com/statistics/255080/number-
of-e-mail-users-worldwide/

14

https://openemailsurvey.org/
https://openemailsurvey.org/
https://www.dovecot.org/
http://www.securityspace.com/s_survey/data/man.202403/mxsurvey.html
http://www.securityspace.com/s_survey/data/man.202403/mxsurvey.html
https://www.usenix.org/conference/usenixsecurity23/presentation/blechschmidt
https://www.usenix.org/conference/usenixsecurity23/presentation/blechschmidt
https://datatracker.ietf.org/doc/draft-ietf-mailmaint-autoconfig/00/
https://datatracker.ietf.org/doc/draft-ietf-mailmaint-autoconfig/00/
https://www.statista.com/statistics/255080/number-of-e-mail-users-worldwide/
https://www.statista.com/statistics/255080/number-of-e-mail-users-worldwide/

[8] J. Chen, V. Paxson, and J. Jiang, “Composition kills: A
case study of email sender authentication,” in 29th USENIX
Security Symposium (USENIX Security 20). USENIX Association,
Aug. 2020. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity20/presentation/chen-jianjun

[9] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk,
“Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile,” RFC 5280 (Proposed Standard), RFC
Editor, Fremont, CA, USA, May 2008, updated by RFCs 6818, 8398,
8399. [Online]. Available: https://www.rfc-editor.org/rfc/rfc5280.txt

[10] A. Cortesi, M. Hils, T. Kriechbaumer, and contributors, “mitmproxy:
A free and open source interactive HTTPS proxy,” 2010–, [Version
9.0]. [Online]. Available: https://mitmproxy.org/

[11] C. Daboo, “Use of SRV Records for Locating Email Submission/Access
Services,” RFC 6186 (Proposed Standard), RFC Editor, Fremont, CA,
USA, Mar. 2011, updated by RFCs 8314, 8553. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc6186.txt

[12] X. d. C. de Carnavalet and M. Mannan, “Killed by proxy: Analyzing
client-end TLS interception software,” in Network and Distributed
System Security Symposium, 2016.

[13] J. Debnath, S. Y. Chau, and O. Chowdhury, “When tls meets proxy
on mobile,” in Applied Cryptography and Network Security: 18th
International Conference, ACNS 2020. Springer, 2020, pp. 387–407.

[14] V. Dukhovni, “Opportunistic Security: Some Protection Most of the
Time,” RFC 7435 (Informational), RFC Editor, Fremont, CA, USA,
Dec. 2014. [Online]. Available: https://www.rfc-editor.org/rfc/rfc7435.
txt

[15] V. Dukhovni and W. Hardaker, “The DNS-Based Authentication of
Named Entities (DANE) Protocol: Updates and Operational Guidance,”
RFC 7671 (Proposed Standard), RFC Editor, Fremont, CA, USA, Oct.
2015. [Online]. Available: https://www.rfc-editor.org/rfc/rfc7671.txt

[16] Z. Durumeric, D. Adrian, A. Mirian, J. Kasten, E. Bursztein,
N. Lidzborski, K. Thomas, V. Eranti, M. Bailey, and J. A. Halderman,
“Neither snow nor rain nor mitm...: An empirical analysis of email
delivery security,” in Proceedings of the 2015 Internet Measurement
Conference, ser. IMC ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 27–39. [Online]. Available:
https://doi.org/10.1145/2815675.2815695

[17] I. D. Foster, J. Larson, M. Masich, A. C. Snoeren, S. Savage, and
K. Levchenko, “Security by any other name: On the effectiveness
of provider based email security,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security,
ser. CCS ’15. New York, NY, USA: Association for Computing
Machinery, 2015, pp. 450–464. [Online]. Available: https://doi.org/10.
1145/2810103.2813607

[18] GoDaddy, “Repository a collection of important certificate documen-
tation.” [Online]. Available: https://certs.godaddy.com/repository

[19] Google, “Add gmail to another email client.” [On-
line]. Available: https://support.google.com/mail/answer/7126229?hl=
en&ref topic=7280141&sjid=17918740399832912769-AP

[20] ——, “Set up gmail with a third-party email client.” [Online].
Available: https://support.google.com/a/answer/9003945?hl=en

[21] ——, “Custom search json api,” 2023. [Online]. Available: https:
//developers.google.com/custom-search/v1/overview

[22] ——, “Oauth 2.0 mechanism,” 2023. [Online]. Available: https:
//developers.google.com/gmail/imap/xoauth2-protocol

[23] P. Hoffman, “SMTP Service Extension for Secure SMTP over
Transport Layer Security,” RFC 3207 (Proposed Standard), RFC
Editor, Fremont, CA, USA, Feb. 2002, updated by RFC 7817.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc3207.txt

[24] R. Holz, J. Amann, O. Mehani, M. Wachs, and M. Kâafar, “Tls
in the wild: an internet-wide analysis of tls-based protocols for
electronic communication,” in NDSS 2016. San Diego, California,
USA: Internet Society, 2016, pp. 1–15, network and Distributed
System Security Symposium 2016, NDSS’16 ; Conference date: 21-
02-2016 Through 24-02-2016. [Online]. Available: http://www.ndss-
symposium.org/ndss2016/

[25] M. H. Hue, J. Debnath, K. M. Leung, L. Li, M. Minaei, M. H. Mazhar,
K. Xian, E. Hoque, O. Chowdhury, and S. Y. Chau, “All your credentials
are belong to us: On insecure wpa2-enterprise configurations,” in

Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security. New York, NY, USA: ACM, 2021, pp.
1100–1117.

[26] A. Inc., “App analytics - app store connect,” 2024. [Online]. Available:
https://developer.apple.com/app-store-connect/analytics/

[27] J. Klensin, “Simple Mail Transfer Protocol,” RFC 5321 (Draft
Standard), RFC Editor, Fremont, CA, USA, Oct. 2008, updated by RFC
7504. [Online]. Available: https://www.rfc-editor.org/rfc/rfc5321.txt

[28] H. Lee, M. I. Ashiq, M. Müller, R. van Rijswijk-Deij, T. T.
Kwon, and T. Chung, “Under the hood of DANE mismanagement
in SMTP,” in 31st USENIX Security Symposium (USENIX Security
22), Boston, MA, 2022, pp. 1–16. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity22/presentation/lee

[29] H. Lee, A. Gireesh, R. van Rijswijk-Deij, T. T. Kwon, and
T. Chung, “A longitudinal and comprehensive study of the
DANE ecosystem in email,” in 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association, Aug. 2020, pp.
613–630. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity20/presentation/lee-hyeonmin

[30] S. Lee, Y. Shin, and J. Hur, “Return of version downgrade
attack in the era of tls 1.3,” in Proceedings of the 16th
International Conference on Emerging Networking EXperiments and
Technologies, ser. CoNEXT ’20. New York, NY, USA: Association
for Computing Machinery, 2020, pp. 157–168. [Online]. Available:
https://doi.org/10.1145/3386367.3431310

[31] G. Leurent and T. Peyrin, “From collisions to chosen-prefix collisions
- application to full sha-1,” pp. pages 527–555, 2019.

[32] W. Mayer, A. Zauner, M. Schmiedecker, and M. Huber, “No need for
black chambers: Testing tls in the e-mail ecosystem at large,” in 2016
11th International Conference on Availability, Reliability and Security
(ARES), 2016, pp. 10–20.

[33] A. Melnikov, “Updated Transport Layer Security (TLS) Server Identity
Check Procedure for Email-Related Protocols,” RFC 7817 (Proposed
Standard), RFC Editor, Fremont, CA, USA, Mar. 2016. [Online].
Available: https://www.rfc-editor.org/rfc/rfc7817.txt

[34] A. Melnikov and B. Leiba, “Internet Message Access Protocol
(IMAP) - Version 4rev2,” RFC 9051, aug 2021. [Online]. Available:
https://www.rfc-editor.org/info/rfc9051

[35] A. Melnikov (Ed.) and K. Zeilenga (Ed.), “Simple Authentication
and Security Layer (SASL),” RFC 4422 (Proposed Standard),
RFC Editor, Fremont, CA, USA, Jun. 2006. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc4422.txt

[36] Microsoft, “Pop, imap, and smtp settings for outlook.com.”
[Online]. Available: https://support.microsoft.com/en-us/office/pop-
imap-and-smtp-settings-for-outlook-com-d088b986-291d-42b8-9564-
9c414e2aa040

[37] Microsoft Learn, “Autodiscover service in Exchange Server —
learn.microsoft.com,” https://learn.microsoft.com/en-us/exchange/
architecture/client-access/autodiscover?view=exchserver-2019,
[Accessed 28-09-2024].

[38] B. Moeller and A. Langley, “TLS Fallback Signaling Cipher Suite
Value (SCSV) for Preventing Protocol Downgrade Attacks,” RFC 7507
(Proposed Standard), RFC Editor, Fremont, CA, USA, Apr. 2015.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc7507.txt

[39] K. Moore and C. Newman, “Cleartext Considered Obsolete: Use of
Transport Layer Security (TLS) for Email Submission and Access,”
RFC 8314 (Proposed Standard), RFC Editor, Fremont, CA, USA, Jan.
2018. [Online]. Available: https://www.rfc-editor.org/rfc/rfc8314.txt

[40] K. Moriarty and S. Farrell, “Deprecating tls 1.0 and tls 1.1,” Mar. 2021.
[41] playsearch.kaki87.net, “Kplaysearch,” 2022. [Online]. Available: https:

//git.kaki87.net/playsearch.kaki87.net/v1
[42] D. Poddebniak, F. Ising, H. Böck, and S. Schinzel, “Why TLS is better

without STARTTLS: A security analysis of STARTTLS in the email
context,” in 30th USENIX Security Symposium (USENIX Security 21).
Vancouver, B.C., Canada: USENIX Association, Aug. 2021, pp. 4365–
4382.

[43] S. Pourali, X. Yu, L. Zhao, M. Mannan, and A. Youssef, “Racing
for TLS certificate validation: A hijacker’s guide to the android
TLS galaxy,” in 33rd USENIX Security Symposium (USENIX
Security 24). Philadelphia, PA: USENIX Association, Aug. 2024,

15

https://www.usenix.org/conference/usenixsecurity20/presentation/chen-jianjun
https://www.usenix.org/conference/usenixsecurity20/presentation/chen-jianjun
https://www.rfc-editor.org/rfc/rfc5280.txt
https://mitmproxy.org/
https://www.rfc-editor.org/rfc/rfc6186.txt
https://www.rfc-editor.org/rfc/rfc7435.txt
https://www.rfc-editor.org/rfc/rfc7435.txt
https://www.rfc-editor.org/rfc/rfc7671.txt
https://doi.org/10.1145/2815675.2815695
https://doi.org/10.1145/2810103.2813607
https://doi.org/10.1145/2810103.2813607
https://certs.godaddy.com/repository
https://support.google.com/mail/answer/7126229?hl=en&ref_topic=7280141&sjid=17918740399832912769-AP
https://support.google.com/mail/answer/7126229?hl=en&ref_topic=7280141&sjid=17918740399832912769-AP
https://support.google.com/a/answer/9003945?hl=en
https://developers.google.com/custom-search/v1/overview
https://developers.google.com/custom-search/v1/overview
https://developers.google.com/gmail/imap/xoauth2-protocol
https://developers.google.com/gmail/imap/xoauth2-protocol
https://www.rfc-editor.org/rfc/rfc3207.txt
http://www.ndss-symposium.org/ndss2016/
http://www.ndss-symposium.org/ndss2016/
https://developer.apple.com/app-store-connect/analytics/
https://www.rfc-editor.org/rfc/rfc5321.txt
https://www.usenix.org/conference/usenixsecurity22/presentation/lee
https://www.usenix.org/conference/usenixsecurity22/presentation/lee
https://www.usenix.org/conference/usenixsecurity20/presentation/lee-hyeonmin
https://www.usenix.org/conference/usenixsecurity20/presentation/lee-hyeonmin
https://doi.org/10.1145/3386367.3431310
https://www.rfc-editor.org/rfc/rfc7817.txt
https://www.rfc-editor.org/info/rfc9051
https://www.rfc-editor.org/rfc/rfc4422.txt
https://support.microsoft.com/en-us/office/pop-imap-and-smtp-settings-for-outlook-com-d088b986-291d-42b8-9564-9c414e2aa040
https://support.microsoft.com/en-us/office/pop-imap-and-smtp-settings-for-outlook-com-d088b986-291d-42b8-9564-9c414e2aa040
https://support.microsoft.com/en-us/office/pop-imap-and-smtp-settings-for-outlook-com-d088b986-291d-42b8-9564-9c414e2aa040
https://learn.microsoft.com/en-us/exchange/architecture/client-access/autodiscover?view=exchserver-2019
https://learn.microsoft.com/en-us/exchange/architecture/client-access/autodiscover?view=exchserver-2019
https://www.rfc-editor.org/rfc/rfc7507.txt
https://www.rfc-editor.org/rfc/rfc8314.txt
https://git.kaki87.net/playsearch.kaki87.net/v1
https://git.kaki87.net/playsearch.kaki87.net/v1

pp. 683–700. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity24/presentation/pourali

[44] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.3,”
RFC 8446 (Proposed Standard), RFC Editor, Fremont, CA, USA, Aug.
2018. [Online]. Available: https://www.rfc-editor.org/rfc/rfc8446.txt

[45] P. Saint-Andre and J. Hodges, “Representation and Verification of
Domain-Based Application Service Identity within Internet Public
Key Infrastructure Using X.509 (PKIX) Certificates in the Context
of Transport Layer Security (TLS),” RFC 6125 (Proposed Standard),
RFC Editor, Fremont, CA, USA, Mar. 2011. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc6125.txt

[46] S. Santesson, M. Myers, R. Ankney, A. Malpani, S. Galperin, and
C. Adams, “X.509 Internet Public Key Infrastructure Online Certificate
Status Protocol - OCSP,” RFC 6960 (Proposed Standard), RFC Editor,
Fremont, CA, USA, Jun. 2013, updated by RFC 8954. [Online].
Available: https://www.rfc-editor.org/rfc/rfc6960.txt

[47] D. Schinazi and T. Pauly, “Happy Eyeballs Version 2: Better
Connectivity Using Concurrency,” RFC 8305 (Proposed Standard),
RFC Editor, Fremont, CA, USA, Dec. 2017. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc8305.txt

[48] L. Song, Q. Wang, S. Jia, J. Lin, L. Lu, and Y. Fu, “You cannot fully
trust your device: An empirical study of client-side certificate validation
in wpa2-enterprise networks,” in 2022 IEEE International Conference
on Trust, Security and Privacy in Computing and Communications
(TrustCom). IEEE, 2022, pp. 266–273.

[49] Svpsiva, “Authenticate an imap, pop or smtp connection using
oauth,” 2023. [Online]. Available: https://learn.microsoft.com/en-
us/exchange/client-developer/legacy-protocols/how-to-authenticate-an-
imap-pop-smtp-application-by-using-oauth

[50] K. F. Tang, K. L. Wu, and S. Y. Chau, “Investigating tls version
downgrade in enterprise software,” in The 14th ACM Conference on
Data and Application Security and Privacy, ser. CODASPY ’24. ACM,
2024.

[51] W. Venema, “The postfix home page,” 2011. [Online]. Available:
http://www.postfix.org

[52] L. Waked, M. Mannan, and A. Youssef, “To intercept or not to intercept:
Analyzing tls interception in network appliances,” in Proceedings of the
2018 on Asia Conference on Computer and Communications Security,
2018, pp. 399–412.

[53] K. Wang, Y. Zheng, Q. Zhang, G. Bai, M. Qin, D. Zhang, and J. S.
Dong, “Assessing certificate validation user interfaces of wpa suppli-
cants,” in Proceedings of the 28th Annual International Conference on
Mobile Computing And Networking, 2022, pp. 501–513.

[54] K. L. Wu, M. H. Hue, N. M. Poon, K. M. Leung, W. Y. Po, K. T.
Wong, S. H. Hui, and S. Y. Chau, “Back to school: On the (in)security
of academic VPNs,” in 32nd USENIX Security Symposium (USENIX
Security 23). Anaheim, CA: USENIX Association, Aug. 2023, pp.
5737–5754.

[55] K. L. Wu, M. H. Hue, K. F. Tang, and S. Y. Chau, “The devil is in the
details: Hidden problems of client-side enterprise wi-fi configurators,”
in Proceedings of the 16th ACM Conference on Security and Privacy
in Wireless and Mobile Networks (WiSec’23). New York, NY: ACM,
2023, (Best Paper Award from ACM WiSec ’23).

[56] K. Zeilenga (Ed.), “The PLAIN Simple Authentication and Security
Layer (SASL) Mechanism,” RFC 4616 (Proposed Standard), RFC
Editor, Fremont, CA, USA, Aug. 2006. [Online]. Available: https:
//www.rfc-editor.org/rfc/rfc4616.txt

[57] ZeroSSL, “What type of ssl certificates
does zerossl provide?” 2020. [Online]. Avail-
able: https://help.zerossl.com/hc/en-us/articles/360060119453-What-
Type-of-SSL-Certificates-Does-ZeroSSL-Provide

APPENDIX

A. Support for outdated TLS versions

During the course of our experiments, we discovered that
some Windows clients claim to support deprecated versions of
TLS in their email connection settings. For instance, nPOP and
Becky! on Windows allow users to choose SSLv2 and SSLv3

for their email connections. We further tested these options
and found that those old TLS versions are actually no longer
supported. Instead, these clients will use TLSv1.0 if either
SSLv2 or SSLv3 is selected. According to RFC8996 [40], both
TLSv1.0 and TLSv1.1 are generally deprecated, in part due to
their dependence on weak cryptographic algorithms and lack of
support for recommended cipher suites. In the context of email
protocols, RFC8314 [39] also recommends TLSv1.2 or newer
should be used. To help users improve the overall security
posture of their email connections, it is advisable for email
clients to remove these configuration options as well as support
for outdated versions of TLS.

TABLE X. TLS VERSIONS DISPLAYED BY CLIENTS

Clients TLS versions displayed Supported? Remarks
W11 nPOP SSL 2.0 ✗ /

SSL 3.0 ✗ /
TLS 1.0 ✓ /
TLS 1.1 ✓ /
TLS 1.2 ✓ /

W11 Becky! SSL 2.0 ✗ /
SSL 3.0 ✗ Prohibited
TLS 1.0 ✓ Not recommended
TLS 1.1 ✓ /
TLS 1.2 ✓ /
TLS 1.3 ✓ /

B. Certificate revocation test cases and findings

As mentioned in RFC7817 [33], all email clients must
check for the understanding of server’s identity against the
identity presented in server’s certificate, which the details
are listed in Section 6 of RFC5280 [9]. Although RFC5280
specified the checking on certificate revocation status, it stated
that one of the method is to obtain the appropriate Certificate
Revocation List (CRL) to retrieve the status information.
However, in reality, some commercial CAs do not support CRL
checking. Instead, they use Online Certificate Status Protocol
(OCSP) [46] to determine the revocation status of a digital
certificate, which the use of OCSP on checking certificate
revocation status is not mentioned in Section 6 of RFC5280.

To further test with this discrepancy, we purchased two
certificates from ZeroSSL and GoDaddy, and revoked them
immediately. We waited for two days for GoDaddy to update
the CRL, so that the revocation status of the certificate will
be update to “revoked”. We denoted the certificate purchased
from ZeroSSL as C5 since ZeroSSL only supports OCSP for
certificate revocation [57], while the certificate purchased from
GoDaddy (C6) supports both CRL and OCSP methods. [18]

The result is listed on Table XI. Among 49 email clients, 35
email clients accepted either C5 or C6, or both of them. None
of the tested Android clients performed certificate revocation
status checking. Only 3 clients in Windows 11 rejected the
revoked certificates. For Windows Outlook, if the configuration
is done on an unstable network, it will accept both of the
certificates. Otherwise, it will reject the certificates directly
under a stable network connection. Therefore, we can only
mark it as inconclusive result. This shows that most mail
servers do not have a strict checking on certificate revocation.

C. Usage of DANE in mail servers

DNS-based Authentication of Named Entities (DANE)
allows a server certificate to be bounded to the domain names

16

https://www.usenix.org/conference/usenixsecurity24/presentation/pourali
https://www.usenix.org/conference/usenixsecurity24/presentation/pourali
https://www.rfc-editor.org/rfc/rfc8446.txt
https://www.rfc-editor.org/rfc/rfc6125.txt
https://www.rfc-editor.org/rfc/rfc6960.txt
https://www.rfc-editor.org/rfc/rfc8305.txt
https://learn.microsoft.com/en-us/exchange/client-developer/legacy-protocols/how-to-authenticate-an-imap-pop-smtp-application-by-using-oauth
https://learn.microsoft.com/en-us/exchange/client-developer/legacy-protocols/how-to-authenticate-an-imap-pop-smtp-application-by-using-oauth
https://learn.microsoft.com/en-us/exchange/client-developer/legacy-protocols/how-to-authenticate-an-imap-pop-smtp-application-by-using-oauth
http://www.postfix.org
https://www.rfc-editor.org/rfc/rfc4616.txt
https://www.rfc-editor.org/rfc/rfc4616.txt
https://help.zerossl.com/hc/en-us/articles/360060119453-What-Type-of-SSL-Certificates-Does-ZeroSSL-Provide
https://help.zerossl.com/hc/en-us/articles/360060119453-What-Type-of-SSL-Certificates-Does-ZeroSSL-Provide

TABLE XI. REVOKED CERTIFICATE CHECKS AGAINST CLIENT APPLICATIONS

Implicit TLS STARTTLS
Client SMTP IMAP POP3 SMTP IMAP POP3
Android
Boxer - Workspace ONE C5-C6 C5-C6 C5-C6 C5-C6 C5-C6 C5-C6
Blue Mail - Email & Calendar C5-C6 C5-C6 C5-C6 C5-C6 C5-C6 C5-C6
Email Aqua Mail - Fast, Secure C5-C6 C5-C6 C5-C6 C5-C6 C5-C6 C5-C6
Edison Email - Fast & Secure Mail C5-C6 C5-C6 – C5-C6 C5-C6 –
Gmail C5-C6 C5-C6 C5-C6 C5-C6 C5-C6 C5-C6
K-9 Mail C5-C6 C5-C6 C5-C6 C5-C6 C5-C6 C5-C6
mail.ru – C5-C6 – C5-C6 – –
Microsoft Outlook C5-C6 C5-C6 C5-C6 C5-C6 C5-C6 C5-C6
myMail: for Outlook & Yahoo C5-C6 C5-C6 – – – –
Samsung Email C5-C6 C5-C6 C5-C6 C5-C6 C5-C6 C5-C6
Spark Mail C5-C6 C5-C6 – C5-C6 C5-C6 –
Type App mail - email app C5-C6 C5-C6 C5-C6 C5-C6 C5-C6 C5-C6

iOS
Apple Mail ✓ ✓ ✓ – – –
Blue Mail - Email & Calendar ✓ ✓ ✓ ✓ ✓ ∞
Boxer - Workspace ONE C5-C6 C5-C6 – C5?, C6 C5-C6 –
Email Aqua Mail - Fast, Secure ✓ ✓ ✓ ✓ C5-C6 ✓
Email - Edison Mail ✓ C5-C6 – ✓ – –
Gmail ✓ ✓ – ✓ ✓ –
Mail Master by Netease C5-C6 C5-C6 C5-C6 C5-C6 C5-C6 C5-C6
mail.ru – C5-C6 – C5-C6 – –
Microsoft Outlook ✓ ✓ – ✓ ✓ –
Spark Mail ✓ ✓ – ✓ C5-C6 –
Type App mail - email app ✓ ✓ ✓ ✓ ✓ ∞

Implicit TLS STARTTLS
Client SMTP IMAP POP3 SMTP IMAP POP3
macOS
Apple Mail ✓ ✓ ✓ – – –
Blue Mail - Email | Calendar C5-C6 C5-C6 C5-C6 C5-C6 C5-C6 C5-C6
Edison Mail ✓ ✓ – ✓ ✓ –
eM Client C5-C6 C5-C6 C5-C6 – – –
Foxmail C5-C6 – C5-C6 C5-C6 – –
Mail Master by Netease C5-C6 C5-C6 C5-C6 C5-C6 C5-C6 C5-C6
Microsoft Outlook ✓ ✓ ✓ ✓ ✓ ✓
SeaMonkey (formerly Netscape) ✓ ✓ ✓ ✓ ✓ ✓
Spark Classic - Email App ✓ ✓ – ✓ C5-C6 –
Spark Desktop ✓ ✓ – ✓ C5-C6 –
Sylpheed C5-C6 C5-C6 C5-C6 C5-C6 C5-C6 C5-C6
Thunderbird ✓ ✓ ✓ ✓ ✓ ✓
TypeApp C5-C6 C5-C6 C5-C6 C5-C6 C5-C6 C5-C6
W11
Becky! C5-C6 C5-C6 C5-C6 C5-C6 C5-C6 C5-C6
Blue Mail - Email & Calendar C5-C6 C5-C6 C5-C6 C5-C6 C5-C6 C5-C6
Claws Mail C5-C6 C5-C6 C5-C6 C5-C6 C5-C6 C5-C6
eM Client C5-C6 C5-C6 C5-C6 C5-C6 C5-C6 C5-C6
Foxmail C5-C6 C5-C6 C5-C6 C5-C6 – –
Microsoft Outlook ? ? ? ? ? –
nPOP C5-C6 – C5-C6 C5-C6 – C5-C6
SeaMonkey (formerly Netscape) ✓ ✓ ✓ ✓ ✓ ✓
Spark Email for Windows C5-C6 C5-C6 – C5-C6 C5-C6 –
Sylpheed C6 C6 C6 C6 C6 C6
Thunderbird ✓ ✓ ✓ ✓ ✓ ✓
TypeApp for Windows C5-C6 C5-C6 C5-C6 C5-C6 C5-C6 C5-C6
Windows Mail ✓ ✓ ✓ ✓ ✓ ✓

✓: Not vulnerable –: Does not support the protocol ?: Inconclusive ∞: Infinite loop C5: ZeroSSL certificate (OSCP only) C6: GoDaddy certificate

using DNSSEC, so that a client can authenticate a particular
server without CA. It is a TLSA resource record published
in DNS and its standard is defined in RFC7671 [15]. To
investigate whether the usage of DANE is common in mail
servers, we wrote a short Python script and queried for the
DNS TLSA records. We found that only 4 universities have
deployed DANE with TLSA records found. This implies the
adoption of DANE is not common in educational providers.

D. Setup guides from email service providers

While this paper focused on custom email servers deployed
by IT admins in the universities, some universities purchase
email service from vendors the mail servers are maintained
by the service providers, such as Office365 and Google
Workspace. Different from the traditional login methods (e.g.,
AUTH PLAIN), those service providers tend to use OAuth2.0
mechanism to login to their own organisation [20], [36]. In
Office365 setup guide, it offered manual server settings to
user and forced users to use OAuth2.0 to access their account.
However, the setup guide does not provide detailed steps on
how user should configure their account on a third-party mail
client. While for Google setup guide [19], it suggested users to
simply look for an option “Sign in with Google”, which will
redirect users to login with their organisation using OAuth2.0.
However, Google also prescribed a detailed setup guide to
IT admins and provided detailed steps on how a user should
look for the aforementioned option. Nevertheless, Google does
not explicitly state the manual server settings, instead it only
includes the information under “Set up Gmail with the older
version of Outlook”. These OAuth-based login instructions
have simplified the manual configuration process of the mail
account setup in third-party client apps, as they assumed that
the security of using OAuth login method is guaranteed.

E. Email clients tested

Table XII shows the names, origins, and version numbers
of the email clients tested in this work.

17

TABLE XII. LIST OF THE TESTED EMAIL CLIENTS

Application OS Version Source
Gmail Android 13 2023.11.26.586591930.release Google Play

iOS 15.7.5 6.0.23.1127 App Store
Samsung Email Android 13 6.1.90.16 Google Play

Email Aqua Mail - Fast, Secure Android 13 1.49.2 Google Play
iOS 15.7.5 1.26.5 App Store

myMail: for Outlook & Yahoo Android 13 14.95.0.52229 Google Play
K-9 Mail Android 13 6.603 Google Play

Spark Mail Android 13 3.7.1 Google Play
iOS 15.7.5 3.7.3 App Store

Spark Classic - Email App macOS 12.4 2.11.37.938 App Store
Spark Desktop macOS 12.4 3.6.5 App Store

Spark Email for Windows W11 3.12.0.63910 https://sparkmailapp.com/windows
Type App mail - email app Android 13 1.9.37 Google Play

iOS 15.7.5 2.0.28 App Store
TypeApp for Windows W11 3.21.208.483 https://typeapp.com/windows/

TypeApp macOS 12.4 3.21.208 App Store
Boxer - Workspace ONE Android 13 23.11.0.5 Google Play

iOS 15.7.5 23.11 App Store
Microsoft Outlook Android 13 4.5352.1 Google Play

iOS 15.7.5 4.2327.0 App Store
W11 16.0.16924.20150 built-in

macOS 12.4 16.8 App Store
Blue Mail - Email & Calendar Android 13 1.9.42 Google Play

iOS 15.7.5 4.25.3 App Store
W11 1.137.3.0 MSFT store

Blue Mail - Email | Calendar macOS 12.4 1.137.3 App Store
Mail Master by Netease iOS 15.7.5 7.18.3 App Store

macOS 12.4 4.17.22 App Store
Email - Fast & Secure Mail Android 13 1.52.0 Google Play

Email - Edison Mail iOS 15.7.5 1.52.01 App Store
macOS 12.4 1.24.6 App Store

myMail: for Outlook & Yahoo Android 13 14.95.0.52229 Google Play
myMail: email app for Gmail iOS 15.7.5 14.64 App Store

Apple Mail iOS 15.7.5 iOS 15.7.5 built-in
macOS 12.4 16.0 (3696.100.31) built-in

Becky! W11 2.8.1.5 https://www.rimarts.co.jp/becky.htm#download
SeaMonkey W11 2.53.18 https://www.seamonkey-project.org/releases/

macOS 12.4 2.53.18 https://www.seamonkey-project.org/releases/
Thunderbird W11 115.2.3 https://www.thunderbird.net/en-US/download/

macOS 12.4 102.14.0 https://www.thunderbird.net/en-US/download/
Windows Mail & Calendar W11 16005.14326.21768.0 built-in

nPOP W11 1.2.6 https://nakka.com/soft/npop/index eng.html
Claws Mail W11 4.2.0 https://www.claws-mail.org/win32/

Sylpheed W11 3.7.0 https://sylpheed.sraoss.jp/en/download.html
macOS 12.4 3.7.0 https://formulae.brew.sh/formula/sylpheed

eM Client W11 9.2.2157.0 https://www.emclient.com
macOS 12.4 9.2.2041 https://www.emclient.com

18

	Introduction
	Background
	Adversary Model
	Common Email Protocols
	Use of TLS under different occasions
	Problems with configuration auto-detect

	Methodology
	Email Client Testing
	Setup Guide Evaluation
	Server-side Characteristics

	Findings on email clients
	Security Downgrade Test Cases
	Certificate Validation Test Cases
	Client-side support for partial countermeasures

	Findings on real-world deployments
	Setup guides
	Characteristics of server certificates
	Server-side partial countermeasures

	Discussion
	Possible mitigation for IT admins
	Possible mitigation for vendors and standardization bodies

	Related Work
	Conclusion
	Acknowledgments
	References
	Appendix
	Support for outdated TLS versions
	Certificate revocation test cases and findings
	Usage of DANE in mail servers
	Setup guides from email service providers
	Email clients tested

