
Scale-MIA: A Scalable Model Inversion
Attack against Secure Federated Learning

via Latent Space Reconstruction
Shanghao Shi∗, Ning Wang†, Yang Xiao‡, Chaoyu Zhang∗, Yi Shi∗, Y. Thomas Hou∗, and Wenjing Lou∗

∗Virginia Tech, †University of South Florida, ‡University of Kentucky
∗{shanghaos, chaoyu, yshi, thou, wjlou}@vt.edu, †ningw@usf.edu, ‡xiaoy@uky.edu

Abstract—Federated learning is known for its capability to
safeguard the participants’ data privacy. However, recently
emerged model inversion attacks (MIAs) have shown that a
malicious parameter server can reconstruct individual users’
local data samples from model updates. The state-of-the-art
attacks either rely on computation-intensive iterative optimization
methods to reconstruct each input batch, making scaling difficult,
or involve the malicious parameter server adding extra modules
before the global model architecture, rendering the attacks too
conspicuous and easily detectable.

To overcome these limitations, we propose Scale-MIA, a novel
MIA capable of efficiently and accurately reconstructing local
training samples from the aggregated model updates, even when
the system is protected by a robust secure aggregation (SA)
protocol. Scale-MIA utilizes the inner architecture of models and
identifies the latent space as the critical layer for breaching privacy.
Scale-MIA decomposes the complex reconstruction task into an
innovative two-step process. The first step is to reconstruct the
latent space representations (LSRs) from the aggregated model
updates using a closed-form inversion mechanism, leveraging
specially crafted linear layers. Then in the second step, the LSRs
are fed into a fine-tuned generative decoder to reconstruct the
whole input batch.

We implemented Scale-MIA on commonly used machine
learning models and conducted comprehensive experiments across
various settings. The results demonstrate that Scale-MIA achieves
excellent performance on different datasets, exhibiting high
reconstruction rates, accuracy, and attack efficiency on a larger
scale compared to state-of-the-art MIAs. Our code is available at
https://github.com/unknown123489/Scale-MIA.

I. INTRODUCTION

Federated learning (FL) is a distributed learning framework
that enables its participants to collaboratively train a machine
learning model without sharing their individual datasets [1].
Within this framework, the training process occurs iteratively
between a central parameter server and a group of clients.
During each training round, the parameter server first broadcasts
a global model with a pre-agreed model architecture to all or a
fraction of clients. The server then collects and aggregates
the model updates (either gradient or parameter updates)

submitted by the clients, which are trained and derived from
their respective local datasets. As no individual training data
samples are exchanged between participants in this process,
FL is widely recognized as a communication-efficient and
privacy-preserving learning paradigm.

A. Privacy Leakage of Federated Learning

Unfortunately, recent research reveals that the privacy of
FL is susceptible to breaches, enabling the attackers to infer
information about the clients’ proprietary datasets [2]. Of
particular concern are the model inversion attacks (MIAs)
[3], [4], [5], [6], [7], [8], [9], in which the adversary tries
to reconstruct the original training samples from the model
updates submitted by the clients. In these attacks, the parameter
server is considered an honest-but-curious attacker whose goal
is to closely approximate the input samples by minimizing
the distance between real gradients uploaded by individual
clients and those generated by approximated dummy samples.
These attacks can successfully reconstruct high-fidelity training
samples when the server gains access to individual model
updates and undergoes sufficient optimization iterations.

To counter these attacks, Bonawitz et al. propose the secure
aggregation (SA) protocol [10] to prevent the server from
gaining knowledge about individual model updates. SA is a
specialized secure multi-party computation (MPC) protocol
that allows the server to compute the summation of model
updates without knowing individual values. SA ensures that
individual model updates are cryptographically masked and the
server cannot distinguish them from random numbers. SA is
considered one of the most robust defense mechanisms against
various inference attacks targeting federated learning systems
[11], and several follow-up works have been proposed to further
reduce the communication and computation overhead of the
original SA protocol [12], [13], [14], [15].

Despite SA’s initial security guarantees, recent privacy
attacks show that the SA protocol is breakable when the
attacker can modify the model parameters or architectures,
which goes beyond the honest-but-curious threat model. Two
distinct attack strategies have been identified to break the SA
protocol. The first strategy involves obtaining individual model
updates from the aggregated results by carefully manipulating
the global model parameters and having the target client’s
model update dominate the aggregated results. This can be

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.240644
www.ndss-symposium.org

achieved by eliminating the model updates of all other clients
except the target [16], or amplifying only the gradients of the
target victim [17]. After obtaining individual model updates,
the attacker can utilize the existing optimization-based MIAs to
reconstruct input samples. However, these attacks still require
costly optimization-based MIAs as part of their attack flows,
limiting their applicability at scale.

The second strategy involves a more direct approach to
reconstructing the input samples just from the aggregated
results. To accomplish this, existing work requires the attacker
to insert either a two-layer linear module [18] or a convolutional
module [19] before the pre-agreed global model architecture,
as well as possessing a representative auxiliary dataset. These
modules are meticulously crafted or trained using the auxiliary
dataset, enabling the attacker to reconstruct the inputs from
the gradients of crafted layers within these modules, using
customized analytical methods. However, modifying the pre-
agreed model architecture is highly conspicuous and is unlikely
to be accepted by the clients.

B. Our Attack

In this paper, we present a novel model inversion attack
named Scale-MIA to break the secure aggregation (SA)
protocol in FL. Scale-MIA is designed to be scalable, stealthy,
efficient, and highly effective, overcoming the deficiencies of
existing attacks. It is capable of accurately reconstructing the
clients’ local data samples from the aggregated results, requires
no modifications to the pre-agreed model architecture, and is
more difficult to detect. Scale-MIA also eliminates the costly
per batch or sample search-based optimization process. This
enables the reconstruction of hundreds of data samples in
parallel and results in significant computational speed-up.

The proposed Scale-MIA involves two distinct phases—
the adversarial model generation phase and the actual input
reconstruction phase. The adversarial model generation can
be done offline by the malicious parameter server once at
the outset. The purpose is to generate an adversarial global
model that follows the same architecture as the pre-agreed
model architecture that will be distributed to the clients during
the FL iterations. More specifically, the attacker first trains
a surrogate autoencoder, with its encoder having the same
architecture to the encoder of the real global model, and a
customized generative decoder capable of reconstructing the
inputs, utilizing a collected auxiliary dataset. Subsequently,
the attacker feeds the auxiliary dataset to the already-trained
encoder, enabling the estimate of essential statistical parameters
for crafting linear layers in the adversarial global model. Finally,
the adversarial global model is assembled by having its encoder
identical to the surrogate autoencoder, and the following linear
layers are crafted with the estimated parameters.

In the second phase, the attacker disseminates the crafted
adversarial global model to clients and awaits local updates
from them. Assuming the presence of the SA protocol, the
attacker only receives the aggregated model updates from these
clients. The proposed input reconstruction phase takes the
aggregated model updates as input and aims to reconstruct

as many local samples as possible. We design a novel model
inversion method, in which we decompose the input reconstruc-
tion phase into two steps, both only involving efficient matrix
computation and feed-forward neural network computations
to reduce its complexity, making it super efficient to conduct.
More specifically, we first disaggregate the received aggregated
model update into batched latent space representations (LSRs)
through a closed-form linear leakage module and then feed
these representations into the pre-trained generative decoder to
reconstruct the original input batch. This phase can be executed
in a single federated learning round and is adaptable for launch
at any desired time, such as during the FL training initialization.
Our attack does not cause significant impacts on the training
performance and can be launched repeatedly in multiple FL
rounds to harvest as many local training samples as possible.

Three factors could significantly impact the performance
of our attack—the reconstruction number is restricted by the
neuron number of the first linear layer in the latent space; the
reconstruction quality is sensitive to the quantity and quality of
the auxiliary dataset; and the reconstruction rate relies on the
availability of a good statistical estimation of the distribution
of LSRs. Fortunately, in practical scenarios, all three factors do
not pose a significant barrier for the attacker. Popular machine-
learning models commonly feature large linear layers; auxiliary
datasets can be easily collected from various online resources
and public datasets; and data representations in latent space
often follow a Gaussian distribution and are easy to estimate,
contributing to better attack performance.

We conducted extensive experiments to evaluate the perfor-
mance of the proposed attack on the Fashion MNIST (FMNIST)
[20], Colorectal Histology MNIST (HMNIST) [21], CIFAR-
10 [22], TinyImageNet [23], CelebA [24], and ImageNette
[23] datasets. A thorough comparison was made between our
attack and existing MIAs and the results show a significant
improvement in terms of attack accuracy, reconstruction fidelity,
and efficiency when using Scale-MIA. We also evaluated Scale-
MIA’s performance under different data settings, including
variations in data amount and whether the data was iid or
non-iid. The results consistently highlighted the success of
Scale-MIA across all these settings. Notably, the results show
that the attacker can successfully carry out a targeted attack
using their collected dataset focused on a specific class.

C. Contributions

This paper makes the following contributions:
1) We identify the latent space of a machine learning model

as the pivotal layer for launching an MIA to breach
user data privacy in federated learning systems. This
insight motivates us to focus on the privacy risks posed
by individual components within the model architecture,
enabling us to devise a more efficient and effective attack
strategy from a white-hat attacker’s perspective.

2) We propose Scale-MIA, a novel MIA launched by a
malicious parameter server. Scale-MIA efficiently and
accurately reconstructs a large batch of user data samples
from the aggregated model updates, given that the

2

federated learning system is under the protection of a
robust secure aggregation protocol.

3) Compared to existing attacks, Scale-MIA demonstrates
significantly improved efficiency and scalability as it
removes the requirement for expensive per-batch search-
based optimization. Moreover, Scale-MIA is stealthier in
its approach, as it does not require any modifications to
the global model architecture and can be accomplished
within one FL training round.

4) We provide a comprehensive analysis and evaluate the
key factors that significantly impact the performance of
Scale-MIA. Alongside our analysis, we present several
practical attack scenarios of Scale-MIA to promote the
need for novel defenses against such advanced attacks.

5) We conducted extensive experiments to evaluate the
performance of Scale-MIA under diverse settings. We
examined Scale-MIA’s performance on popular model
architectures including Alexnet, VGGnet, ResNet, and
ViT, as well as various datasets. The results show the
effectiveness, efficiency, and scalability of our attack.

In Table I, we summarize the definitions and notations used
in our paper.

II. BACKGROUND AND RELATED WORK

A. Federated Learning

Federated learning (FL) allows a set of clients C =
{c1, c2, · · · , cn} to train a global model G = fθ : X → Y
on a global dataset D = ∪n

i=1Di that is distributed along the
users where each client ci holds a local dataset Di without the
need to share these data samples. FL is conducted iteratively in
rounds until the model parameter θ converges. In each round
t, the parameter server S first publishes the global model
parameter θt to a subset of selected clients Ct ⊆ C. Then these
clients compute the gradients with their local batches Dt

i as
gti = 1

|Dt
i |
∇L(θt, Dt

i), where L() refers to the loss function.
The clients send their computed updates back to S and the
latter will aggregate the updates with the FedSGD algorithm
[1]:

θt+1 = θt − η
∑

i:ci∈Ct

αi

|Dt
i |
∇L(θt, Dt

i) (1)

where η is the global learning rate and αi is the weight assigned
to client ci. The summation of all weights {αi}i:ci∈Ct is 1 and
can be adjusted according to the size of local datasets Dt

i

to avoid training bias. The clients can also train the received
global model Gt for Lt

i local rounds before providing the
model updates δti to the server. In this case, the server employs
the FedAVG algorithm to conduct the training process:

θt+1 =
∑

i:ci∈Ct

αiδ
t
i (2)

In the following sections, we will omit the notation t because
our attack is a single-round attack and can be launched in any
FL training round.

TABLE I: Definition and notations.

Symbol Definition

ci Federated learning clients
n Number of federated learning clients
G Global model
θ Global model parameters
t Training round
m Input batch size
Di Local datasets
gi Individual gradients
δi Individual model updates
ui Masked model updates
SA Secure Aggregation
xi Input samples
x̂i Reconstructed samples
L Loss function
W [2] Two-layer linear leakage module
DAdv Auxiliary dataset
GAdv Adversarial model
MLP Multi-layer perception
ˆEnc Surrogate encoder

D̂ec Generative decoder
Ĝ Modified global model
LSR Latent Space Representation
CDF Cumulative Density Function

B. Gradient Inversion

The gradient inversion problem is to find a function that
can reverse the individual gradient gi uploaded by a client ci
back to the local dataset Di under the FL setting, which can
be defined as Di

?
= Reverse(gi, G).

Optimization-based Gradient Inversion: Recent research
shows that a honest-but-curious attacker can solve the gradient
inversion problem by solving the following optimization
problem:

argmin
D̂i

[d(∇D̂i −∇Di) + r(D̂i)] (3)

where D̂i refers to randomly initialized dummy samples, d()
refers to the distance function, and r() refers to the regulation
function. Zhu et al. [3] first identify this problem, and propose
the deep leakage from gradient (DLG) attack which chooses
the second norm as the distance function, and uses the L-BFGS
optimizer [26] to solve the optimization problem. Then Zhao et
al. [4] improve this attack by proposing an analytical method to
recover ground-truth labels from the gradients that help DLG
achieve better performance. Geiping et al. [5] further improve
the optimization tool and achieve better image reconstruction
fidelity, but requires a strong assumption as the labels of the
inputs must be known. Yin et al. [7] focus on reconstructing
batched inputs on the ImageNet dataset and ResNet model
architecture, making the attack more practical. Hatamizadeh
et al. [9] customize the attack for the vision transformer and
achieve better performance than previous attacks. Dimitrov et
al. [25] devise the attack applicable to the FedAVG setting,
making it deployable on real systems.

However, these optimization-based gradient inversion attacks
are computationally costly and need hundreds of optimization

3

TABLE II: A comparison between different federated learning model inversion attacks.

Break Secure Attacker’s Attack Attack Need Auxiliary Model
Attack Aggregation? Capability Overhead Scale Dataset? Agnostic?

DLG [3], iDLG [4] No Weak (Curious) Large Single image No Yes
Inverting Grad [5] No Weak (Curious) Large 8 No Yes
GradInversion [7] No Weak (Curious) Large 48 No No (ResNet)
GradViT [9] No Weak (Curious) Large 8 No No (ViT)
APRIL-Optim [8] No Weak (Curious) Large Single-image No No (ViT)
APRIL-Analytic [8] No Weak (Curious) Small Single-image No No (ViT)
R-GAP [6] No Weak (Curious) Small Single-image No Yes
Leak in FA [25] No Weak (Curious) Small 50 No Yes
Fishing for data [17] Yes Medium (Modify params) Large 256 Yes Yes
Eluding SecureAgg [16] Yes Medium (Modify params) Large 512 Yes Yes
Robbing the fed [18] Yes Strong (Change architect) Small 1024+ Yes Yes
LOKI [19] Yes Strong (Change architect) Small 1024+ Yes Yes

Scale-MIA Yes Medium (Modify params) Small 1024+ Yes Yes

iterations to reconstruct one input batch [11]. Many of them
(e.g., [3], [4], [5], [9], [25]) only perform well for a single or
small batch of images (typically smaller than 16), representing
a scalability challenge.

Closed-form Gradient Inversion: Instead of using the
costly optimization approach, some other works seek to solve
the gradient inversion problem with closed-form derivation.
Aono et al. [27] analyze the privacy leakage of linear models
and show that the inputs to linear layers can be perfectly
reconstructed from its gradients, which is referred to as the
“linear leakage”. This primitive is later revised and used as a
component of many advanced attacks [18], [17], [19] including
our work. Zhu et al. [6] propose an analytical recursive attack
on privacy (R-GAP) to reconstruct the input layer by layer
back from the output layer, particularly targeting linear and
convolutional neural networks (CNNs). Lu et al. [8] propose
an analytical reconstruction attack specialized for the vision
transformer (ViT) and can reconstruct high-fidelity images.
Unfortunately, all of these analytical attacks are designed for
specific model architectures and cannot be generalized for
others. Furthermore, they are designed for single gradient
inversion and cannot reconstruct large input batches.

C. Secure Aggregation

Previous gradient inversion attacks rely on the assumption
that the attacker (i.e., the parameter server) can obtain the
individual gradients {gi} from clients, especially for cross-
device federated learning. As a countermeasure, Bonawitz et
al. [10] propose the secure aggregation (SA) protocol that
masks the original model updates from clients. Specifically,
SA is a multi-party computation (MPC) protocol that masks
the original model updates δi with random bits from secret
sharing but keeps the summation of masked updates

∑n
i=1 ui

equals to
∑n

i=1 δi. Mathematically, this can be defined as:

fSA(δ1, δ2, · · · , δn) = (u1, u2, · · · , un)

s.t.

n∑
i=1

ui =

n∑
i=1

δi
(4)

where fSA refers to the abstract function of the SA protocol
and the attacker cannot distinguish ui from a random number.
This implies that nothing more than the final aggregated
result is leaked to the attacker. Because the final result
is aggregated from all training samples submitted by all
participants, the previous gradient inversion attacks cannot
reconstruct meaningful information from such large input
batches. The SA protocol is also communication efficiency and
drop-out resilience, making it one of the most robust defense
mechanisms against federated learning privacy inference attacks.
The follow-up works further improve the performance of the
original SA protocol by reducing the communication and
computation overheads [12], [28], [13], [14], enabling verifiable
aggregation [15], and bolstering the robustness of the secure
aggregation against malicious attacks [29], [30], [31], [32].

D. Breaking the SA
However, when assuming the parameter server is malicious

and capable of modifying the global model G ’s parameters,
the SA is breakable. Two general types of attacks have been
identified, including the gradient disaggregation attacks, aiming
to overturn SA’s main function by inferring individual model
updates δi from the aggregated result

∑n
i=1 δi with crafted

model Ĝ, i.e., δi = Infer(
∑n

i=1 δi, Ĝ); and the large batch
reconstruction attack that aims to directly reconstruct the global
batch ∪n

i=1Di from the aggregated results
∑n

i=1 δi with the
help of additional adversarial module Madv placing in front of
global model G and a representative auxiliary dataset Daux,
i.e., ∪n

i=1Di = Reverse(
∑n

i=1 δi, G⊕Madv, Daux).
Gradient Disaggregation Attacks: Wen et al. [17] propose

a “fishing strategy” that magnifies the gradient of a targeted
class to dominate the aggregated result with crafted model
parameters. The attack generates a close enough approximation
of the target gradient out of the final aggregated gradient,
which is enough for the attacker to reconstruct input samples
through existing optimization-based gradient inversion methods.
Pasquini et al. [16] propose a gradient suppression attack that
zeros out all the gradient updates except the target victim’s,
making the final aggregated result identical to the target’s
gradient. The attack achieves this by crafting the parameters

4

of a single linear layer and keeping the outputs of that specific
layer always smaller than zero, which further leads to zero
gradients if the ReLU activation function is used. The key
limitation of this type of attack is they still use the existing
optimization-based gradient inversion methods as their attack
component, resulting in poor scalability performance and large
computation costs.

Large Batch Reconstruction Attacks: Directly reconstruct-
ing the whole input batch from the aggregated result is a
challenging task and the existing attacks [18], [19] usually
have strong assumptions to accomplish it, including allowing
the attacker to modify the pre-agreed model architecture and
possessing an auxiliary dataset that has a similar distribution
as the training dataset. Fowl et al. [18] modify the global
model architecture by attaching an adversarial two-linear-layer
module in the front. The attacker can leverage the “linear
leakage” primitive to perfectly reconstruct the original inputs
with large batch sizes by customizing the parameters of the
adversarial module, which are generated from the statistics
of the auxiliary dataset. Zhao et al. [19] improve this attack
by changing the linear module to a customized convolutional
module. As a result, the attacker can recover large batches
under a more practical FedAVG setting and can help to identify
the belongings of the reconstructed samples. The key drawback
of these attacks is they require the attacker to change the pre-
agreed model architecture, which can be easily detected when
the clients employ some integrity-checking mechanisms.

We summarize the pros and cons of existing attacks in Table
II. We compare the existing MIAs with our proposed attack
concerning the attack assumption, overhead, and performance.
Notably, our proposed Scale-MIA scales significantly better
than the existing optimization-based gradient inversion attacks
[3], [4], [5], [7], [9], [8] along with a small attack overhead,
being model-agnostic, and the ability to launch a targeted attack
against a certain class. Compared to the gradient disaggregation
attacks [17], [16], Scale-MIA does not involve any per-batch
optimization process and thus reduces the attack overhead
(Scale-MIA can be used to replace the costly optimization-
based inversion process after the individual gradient is obtained).
Compared to the existing large-batch reconstruction attacks
[18], [19], Scale-MIA assumes weaker attacker capability and
is more stealthy and harder to detect.

III. THREAT MODEL

In this section, we formalize the attacker’s capability and
goal. We assume the parameter server is malicious and knows
the global model G and its parameters θ of every round. We
consider the state-of-the-art SA protocol (as used in [10], [12])
is in place and the attacker only sees the already masked model
updates {ui}ni=1 from the clients rather than the original ones
{δi}ni=1. The attacker cannot distinguish ui from a random
number but he can obtain the aggregated model update

∑n
i=1 δi

through summing the masked inputs
∑n

i=1 δi =
∑n

i=1 ui. We
assume the communications between the parameter server and
clients are secure and no third party can alter the transmitted
messages between them. We assume the attacker is able to

Client 1 Client 2 Client n

Parameter
Server

u1 u2 u𝑛𝑛

…

×

I only know the aggregated
result ∑𝑖𝑖=1𝑛𝑛 δ𝑖𝑖= ∑𝑖𝑖=1𝑛𝑛 𝑢𝑢𝑖𝑖.

δ1 δ2 δ𝑛𝑛

𝐷𝐷1 𝐷𝐷2 𝐷𝐷n

…

Collects 𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎

𝐷𝐷𝑎𝑎𝑎𝑎𝑎𝑎
Secure

Aggregation

Fig. 1: Scale-MIA threat model.

modify the global model G’s parameters but not architecture
and knows global training configurations such as the learning
rate η and weights αi, as in [16] and [17]. We also assume the
attacker possesses an auxiliary dataset DAdv that has similar
data distribution as training data DTrain, following the same
assumptions in [18], [19]. In practice, the attacker can collect
this DAdv by using the existing public resources, manually
collecting samples, or even colluding with a fraction of clients.

The attack aims to achieve the same goal as [18], [19], which
is to recover the whole global input batch ∪n

i=1Di efficiently
and precisely, i.e. ∪n

i=1Di = Reverse(
∑n

i=1 δi, Ĝ,DAdv). We
illustrate our threat model in Figure 1.

IV. ATTACK PRELIMINARIES

A. Autoencoder

Autoencoder is an unsupervised learning technique that helps
to learn an informative and compressed data representation
[33], [34], [35]. The autoencoder’s model architecture contains
an encoder Enc and a decoder Dec. It is trained to minimize
the difference between the original inputs and the reconstructed
outputs, i.e., argminθ d(x,Dec(Enc(x))), where θ is the
autoencoder’s parameter vector and d() refers to the error
function such as the mean square error. As a result, a
fine-tuned autoencoder can almost perfectly reconstruct its
model inputs at the outputs, i.e. x ≈ Dec(Enc(x)), even
for the batched inputs ∪m

j=1xj . More specifically, a well-
trained autoencoder consists of an encoder that encode the
input samples to their latent space representations (LSRs), i.e.
∪m
j=1LSRj = Enc(∪m

j=1xj), and a decoder that decodes the
LSRs to samples, i.e. ∪m

j=1x̂j = Dec(∪m
j=1LSRj) and x̂j

satisfies x̂j ≈ xj .

B. Linear Leakage

Linear leakage refers to a mathematical property that a model
with two subsequent linear layers, denoted by W [2], with a
non-linear activation function (e.g. ReLU) in between can

5

Fig. 2: The model architecture of machine-learning classifiers.

be crafted to perfectly reconstruct its batched inputs ∪m
j=1xj

from the aggregated gradients of the layers
∑m

j=1 g
[2]
j with the

help of a representative auxiliary dataset Daux, i.e. ∪m
j=1xj =

LinearLeak(
∑m

j=1 g
[2]
j ,W [2], Daux) [18].

To describe this property, we define the linear module as:

y = δ(w1x+ b1)

z = w2y + b2
(5)

where x ∈ Rd, y ∈ Rk, z ∈ Ro, w1 ∈ Rk×d, b1 ∈ Rk,
w2 ∈ Ro×k, b2 ∈ Ro, and δ is the ReLU function. Suppose the
attacker can accurately estimate the CDF of feature h(x) =
vh.x of the input dataset as ψ(h(x)) from the auxiliary dataset
Daux, where vh ∈ R1×d. Suppose the loss function is L(x; θ)
or simply L where θ refers to the module parameters. The
input batch size is m and can be expressed as ∪m

i=1xj =
[x1, x2, · · · , xm].

The attacker can craft the linear leakage module in the follow-
ing steps: (1) Having the row vectors w1(r), r ∈ {1, 2, · · · , k}
of weight matrix w1 all identical to vh; (2) dividing the distri-
bution of the feature h(x) into equally k bins by calculating
hi = ψ−1(i

k), which results in having a random variable h the
same probability to falls in each bin [hs, hs+1]; (3) assigning
the bias vector b1 identical to the opposite values of h vector
[−h1,−h2, · · · ,−hk]; and (4) letting the row vectors of weight
matrix w2 be identical. After this, the attacker conducts the FL
training process to obtain the aggregated gradients and then
calculates the following equation to create k bins to reconstruct
the input samples, for r ∈ {1, 2, · · · , k}:

(∇w1(r+1)L−∇w1(r)L)/(∇b1(r+1)L−∇b1(r)L) (6)

where specially we have ∇w1(k+1)L and ∇b1(k+1)L equal
zero.

When batch size m is smaller than neuron number k, each
input sample will only activate and be reconstructed by one
bin. More specifically, sample xp as the pth smallest one in
terms of feature h(x) that falls in the lth bin [hl, hl+1] alone
will be reconstructed by Eq. 6 when r = l:

∇w1(l+1)L−∇w1(l)L

∇b1(l+1)L−∇b1(l)L
=

∂L
∂yl+1

∂y(l+1)

∂w1(l+1)
− ∂L

∂yl

∂y(l)

∂w1(l)

∂L
∂yl+1

∂y(l+1)

∂b1(l+1)
− ∂L

∂yl

∂y(l)

∂b1(l)

=

p∑
v=1

∂L
∂yl+1

xv −
p−1∑
v=1

∂L
∂yl
xv

p∑
v=1

∂L
∂yl+1

−
p−1∑
v=1

∂L
∂yl

=

p∑
v=1

∂L
∂yl
xv −

p−1∑
v=1

∂L
∂yl
xv

p∑
v=1

∂L
∂yl

−
p−1∑
v=1

∂L
∂yl

=

∂L
∂yl
xp

∂L
∂yl

= xp

(7)

Note that we have leveraged the property of ∇w1(l+1)L =

∂L
∂yl+1

∂y(l+1)

∂w1(l+1)
=

p∑
v=1

∂L
∂yl+1

xv , and ∂L
∂yl+1

= ∂L
∂yl

. Their detailed

mathematical proof can be found in the Appendix.
On the other hand, when batch size m is larger than neuron

number k, linear leakage cannot ensure that one sample is
only activated and reconstructed by one bin. In some bins, the
samples collide with each other and are mixed together during
the reconstruction process, leading to reconstruction failures.
Therefore, we regard the neuron number k as the performance
bottleneck of the linear leakage primitive.

Linear Leakage in Federated Learning: In the federated
learning system with SA, the parameter server S needs to infer
the aggregated gradients

∑m
j=1 gj from the aggregated model

updates
∑n

i=1 δi in order to launch the linear leakage attack. For
the FedSGD system, the two values are identical as

∑n
i=1 δi =∑m

j=1 gj . But for the FedAVG system, each model updates δi
are trained by clients for several local rounds. Assuming the
clients employ the SGD algorithm for local training, the server
can only get approximated aggregated gradients

∑m
j=1 ĝj from

the aggregated model updates
∑n

i=1 δi with analytical tools,
resulting in a slightly decreased linear leakage performance,
i.e. ∪m

j=1xj ≈ LinearLeak(
∑n

i=1 δi,W
[2], Daux).

V. ATTACK METHOD

A. Attack Intuition

Linear leakage provides us with a powerful primitive to
reconstruct samples. A straightforward attack strategy is to
place a crafted linear leakage module W [2] right in front of
the global model G as G⊕W [2] and publish it to the clients.
As a result, when the server receives the aggregated gradients∑n

i=1 g
[2]
i from clients, it can reconstruct the input samples

with the primitive [18]. However, as we have discussed in
Section II, it is too suspicious and can be easily prevented by
integrity checking as the attacker needs to change the global
model architecture. We abandon this architectural modification
approach and examine the built-in components of models for
potential attack exploitation.

We observe that machine learning classifiers are commonly
composed of a feature extraction encoder Enc followed by
a multi-layer perceptron (MLP) in their model architectures,
as exemplified in Figure 2. Motivated by this, we target the
latent space as the key layer to launch the attack based on the
following reasons.

6

Adversarial Model Generation Phase (Attack Preparation)

Auxiliary
Dataset 𝐷𝐷𝐴𝐴𝐴𝐴𝐴𝐴

𝐸𝐸𝐸𝐸𝐸𝐸

Global Model 𝐺𝐺

Encoder 𝑀𝑀𝑀𝑀𝑀𝑀

Craft

①
�𝐸𝐸𝐸𝐸𝐸𝐸 �𝐷𝐷𝐷𝐷𝐷𝐷

Surrogate Autoencoder

Encoder Decoder

Train②
③

③
Estimate CDF �𝐸𝐸𝐸𝐸𝐸𝐸

Trained Encoder

⑤

�𝐸𝐸𝐸𝐸𝐸𝐸’s Parameters

④
Statistics

�𝐸𝐸𝐸𝐸𝐸𝐸

Adversarial Model 𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴

Crafted Parameters

Training Autoencoder

�𝐸𝐸𝐸𝐸𝐸𝐸’s Parameters

Crafting Linear Leakage Module
Linear Leakage
Module 𝑊𝑊[2]

⑤ 𝑊𝑊[2]’s
Parameters

⑥ 𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴

Local Dataset 𝐷𝐷1

Client 1
�𝐸𝐸𝐸𝐸𝐸𝐸

Local Dataset 𝐷𝐷2

Client 2
�𝐸𝐸𝐸𝐸𝐸𝐸

Local Dataset 𝐷𝐷𝑛𝑛

Client n
�𝐸𝐸𝐸𝐸𝐸𝐸

…⑥ 𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴

⑥ 𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴

Secure Aggregation

δ1

δ2

δ𝑛𝑛

⑦ Aggregated Model
Updates ∑𝑖𝑖=1𝑛𝑛 𝑢𝑢𝑖𝑖 = ∑𝑖𝑖=1𝑛𝑛 δ𝑖𝑖

Parameter Server

Input Reconstruction Phase

Linear Leakage

�𝐷𝐷𝐷𝐷𝐷𝐷

Decoder

LSRs

Two-step Reconstruction

⑧

Output

Reconstructed Samples
[𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑚𝑚]

u1

u2

u𝑛𝑛

𝑊𝑊[2]

Fig. 3: Scale-MIA is a two-phase attack. The first phase is performed locally to produce essential information to conduct the
second phase. The second is the actual attack phase, during which the attacker interacts with the clients and reconstructs their
local training samples.

1) LSRs contain enough information to reconstruct the
inputs and are widely regarded as the “information
bottleneck” within the whole model architecture.

2) LSRs have relatively lower dimensions and can be
processed more efficiently.

3) In most machine learning models, LSRs are followed up
by MLPs, which can be exploited to launch the analytical
linear leakage primitive.

a) Problem Decomposition: Based on our previous
findings, we decompose the original complex reconstruc-
tion task ∪n

i=1Di = Reverse(
∑n

i=1 δi, Ĝ,DAdv) into two
sub-problems, including firstly reconstruct the LSRs with
the linear leakage primitive from the crafted MLPs (in
terms of parameters) in the latent space, i.e. ∪m

j=1LSRj =

Reverse(
∑n

i=1 δi, Ŵ
[2], DAdv), then reconstruct the training

samples by feeding these LSRs into a fine-tuned decoder, i.e.
∪m
j=1xj = Dec(∪m

j=1LSRj), where ∪m
j=1xj is identical to

∪n
i=1Di. Both two steps only involve matrix computation and

feed-forward neural network computations, making the attack
super efficient.

B. Attack Overview

We illustrate the attack flow of Scale-MIA in Figure 3.
Scale-MIA consists of two main phases: the adversarial model
generation phase (attack preparation, Steps 1⃝- 5⃝) and the
input reconstruction phase (Steps 6⃝- 8⃝). The first phase is
conducted locally on the parameter server S and its purpose
is to generate an adversarial global model Gadv with crafted

parameters, as well as a highly accurate generative decoder
D̂ec. This phase contains two sub-functions including training
a crafted surrogate autoencoder Â and crafting a linear leakage
module W [2]. Â is trained with the auxiliary dataset DAdv and
has the same encoder architecture ˆEnc as the global model G’s
encoder Enc, as well as a customized decoder D̂ec that has the
capability to reconstruct the inputs. W [2] is crafted on the MLP
layers of the global model G, whose necessary parameters
and statistics are produced through feeding the auxiliary
dataset DAdv to the already-trained encoder ˆEnc. Finally,
the adversarial model GAdv is assembled with the surrogate
encoder ˆEnc and the linear leakage module W [2]. By doing
so the adversarial model GAdv has the same architecture as
the original global model G but with the necessary parameters
to launch our reconstruction attack. This phase is conducted
completely offline and covers all the required training efforts.

For the input reconstruction phase, the attacker first dis-
tributes the adversarial model GAdv to the clients and awaits
their feedback. After receiving the feedback, the attacker ex-
amines the model updates of the MLP layers in the adversarial
global model to first reconstruct the batched latent space
representations (LSRs) through the linear leakage primitive,
and then reconstruct the input samples by feeding the LSRs to
the trained decoder D̂ec. All the operations involved in this
actual attack phase only involve linear-complexity calculations
and the reconstruction is significantly accelerated.

7

HMNIST (Avg PSNR: 31.1414) FMNIST (Avg PSNR: 39.8541) CIFAR10 (Avg PSNR: 25.2528)

Original

Reconstructed

TinyImageNet (Avg PSNR: 24.1612)

Original

Reconstructed

ImageNette (Avg PSNR: 22.6447) CelebA (Avg PSNR: 25.2056)

Fig. 4: Reconstruction examples. These examples are taken from large reconstruction batches. Full reconstructed batches and
more discussions can be found in the Appendix.

C. Detailed Workflow

Adversarial Model Generation: We assume that the global
model G has an architecture consisting of an encoder Enc
followed by a multi-layer perception (MLP). This assump-
tion is practical and commonly observed in popular image
classification models such as CNN-based AlexNet, VGGNet,
ResNet, and Vision Transformers. In step 1⃝, the attacker
crafts a surrogate autoencoder Â consisting of an encoder
ˆEnc and a decoder D̂ec. The encoder ˆEnc has the same

model architecture as the global model’s encoder Enc and the
decoder D̂ec is constructed according to the model architecture
of ˆEnc. For example, for an encoder with several convolutional
layers, the decoder can have several de-convolutional layers
to reconstruct the input. In step 2⃝, the attacker trains the
surrogate autoencoder Â using the auxiliary dataset DAdv with
the objective of minimizing the distance between its inputs and
outputs. DAdv can be a publicly available dataset or a custom-
collected dataset targeting a specific purpose or victim. In step
3⃝, the attacker feeds the auxiliary dataset DAdv to the already

trained encoder ˆEnc to get the LSRs (LSRAdv) of the dataset.
The attacker estimates the CDF of the brightness (the average
value among all pixels) of the LSRAdv and calculates the
corresponding bias vector H = [−h1,−h2, · · · ,−hk] of the k
bins according to the “linear leakage” primitive we described.
Here k is identical to the neuron number of the first MLP
layer of the global model G. Then, in step 4⃝, the attacker
crafts a linear leakage module W [2] on the first two MLP
layers with respect to H . More specifically, the attacker has
all the elements of the weight matrix of the first layer w1

identical to 1
d , where d is the dimension of the LSRs; as well

as having the bias vector of the first layer b1 equals H and the
row vectors of the second weight matrix w2 identical. Finally,
the attacker generates the adversarial global model GAdv by
having the parameters of GAdv’s encoder identical to ˆEnc and
the parameters of the MLP layers identical to W [2].

Input Reconstruction: After generating the adversarial

model GAdv , the attacker publishes it in step 6⃝ to all clients.
Then according to the FL framework, in step 7⃝ the clients
send back their model updates δi. Because we assume the
SA is in place, the server receives the aggregated model
update

∑n
i=1 δi instead of individual ones. In step 8⃝, the

reconstruction module takes the aggregated model update
as the input and first uses the linear leakage primitive to
recover a batch of LSRs, i.e. [LSR1, LSR2, · · · , LSRm] ≈
LinearLeak(

∑n
i=1 δi,W

[2], DAdv), where m is the global
batch size identical to the cardinality of ∪n

i=1Di. Then these
LSRs are taken as the inputs to the trained decoder D̂ec
and the attacker finally gets ∪m

j=1x̂j = D̂ec(∪m
j=1LSRj) =

D̂ec(ˆEnc(∪m
j=1xj)) as the reconstruction outputs. According

to the mathematical property of the linear leakage primitive
and autoencoder, x̂j and xj are identical or highly similar.

D. Efficacy and Efficiency Analysis

Performance Bottleneck: Three main factors affect the
performance of Scale-MIA. The first one is the neuron number
of the first linear layer k, subject to the linear leakage’s
constraints. However, the neuron numbers of the first linear
layers of popular machine learning models are usually very
large, typically in the scale of thousands (e.g. 4096 for
ImageNet classifiers), which is enough for the attacker to
reconstruct hundreds or even a few thousands of samples
simultaneously. In practice, we observe that the attacker can
achieve high reconstruction rates (≥ 0.7) when the batch size
m is lower than k

2 , i.e. m < k
2 , instead of the theoretical

threshold k because of imperfect estimations and noise. We
observe more collided samples in different bins and gradually
dropped reconstruction rates when m exceeds k

2 . But we argue
that both the theoretical k and practical k

2 thresholds are not
hard bounds, meaning that the attacker can still reconstruct
a portion of local samples even when these thresholds are
exceeded, although may only with relatively low reconstruction
rates (≤ 0.3).

8

TABLE III: The comparison between Scale-MIA and the existing MIAs. * and + means that we use different thresholds other
than 18. For [5] we select the threshold to be 14 and for [7] select the threshold to be 10.

Attack Metric 1 2 4 8 16 64 256

DLG [3] /iDLG [4]
PSNR (dB) 33.0844 – – – – – –

Time (s) 127.1043 – – – – – –
Rate (ratio) 0.634 – – – – – –

InvertingGrad [5]
PSNR (dB) 15.8407 16.2223 15.4679 14.8693 – – –

Time (s) 280.126 305.6257 477.1157 866.8414 – – –
Rate∗ (ratio) 0.1999 0.12 0.0833 0.0417 – – –

GradInversion [7]
PSNR (dB) 13.3059 12.7896 12.0550 11.1410 10.1029 – –

Time (s) 324.8003 341.6113 348.2077 377.3184 462.2559 – –
Rate+ (ratio) 0.99 0.95 0.85 0.65 0.245 – –

Robbing the Fed [18]
PSNR (dB) 150.568 147.9793 142.0058 134.6393 129.1871 112.3125 103.9919

Time (s) 0.1042 0.1124 0.1137 0.1141 0.1169 0.1658 0.3192
Rate (ratio) 0.89 0.925 0.91 0.8988 0.8981 0.8743 0.8335

Loki [19]
PSNR (dB) - 85.8121 54.2885 43.1088 41.1882 40.4387 38.7883

Time (s) - 3.4335 4.4684 5.7417 8.6886 24.8163 99.3890
Rate (ratio) - 1.0 0.875 0.7666 0.7916 0.7344 0.7109

Scale-MIA
PSNR (dB) 29.4192 29.4162 29.3292 29.2977 29.1853 28.9188 27.2986

Time (s) 0.01951 0.02154 0.02463 0.03060 0.04134 0.09541 0.2214
Rate (ratio) 1.0 0.999 0.993 0.9927 0.992 0.9438 0.8464

The second factor is the quality of the auxiliary dataset DAdv .
Scale-MIA can achieve near-perfect reconstruction performance
when DAdv can represent the target training dataset DTrain

well. In practice, the attacker can leverage various online
resources including public-available datasets, image-searching
tools, and even generative models such as GAN [36], [37],
[38], and diffusion models [39], [40], [41] to help collect
the auxiliary dataset. Note that the auxiliary samples do
not necessarily need to be highly similar to the targets, all
samples in the same format and class can help to improve
the reconstruction performance. On the other hand, Scale-MIA
enables the attacker to launch a targeted reconstruction even
if the auxiliary dataset is biased, amount-deficient, and even
skewed to some extent.

The third factor is whether the attacker can have a good
estimation of the required statistics (i.e. the LSR distribution)
to craft the linear leakage module. Fortunately, the LSRs in the
latent space usually exhibit Gaussian or Laplace distribution
and can be accurately estimated by the attacker. Furthermore,
because the surrogate autoencoder’s training process is fully
controlled by the attacker, it can also use the variational
autoencoder (VAE), a variant of the autoencoders to regulate
the LSRs to follow Gaussian distribution [34], [42], [43]. In
this way, the LSR distribution can be perfectly estimated.

Attack Overhead: The major overhead imposed by Scale-
MIA is in the adversarial model generation phase, or more
specifically, the training process of the autoencoder. Except this,
the other steps in phase one and the second input reconstruction
phase only involve analytical operations and are efficient to
perform. Scale-MIA allows this autoencoder training process
to be conducted fully offline and the attacker can leverage any
computation resource to fulfill this. The attacker can also resort
to finding publicly available pre-trained autoencoders. Scale-

MIA is a single-round attack and once the attack preparation
phase is finished, the attacker can iteratively launch attacks for
multiple rounds, i.e. “train once, and attack multiple rounds”.

Binary Reconstruction: Scale-MIA exhibits a binary recon-
struction property, meaning that for one specific sample, the
reconstruction performance is either good enough to obtain a
highly similar reconstructed sample or completely fails to obtain
any meaningful content. This is because the major reason for
reconstruction failure is the collisions within the reconstruction
bins of the linear leakage primitive. The successful samples
fall in one bin alone and can be properly reconstructed. But the
failed ones fall in the same bin together and their reconstructed
images are also mixed and blurred with each other.

Targeted Attack: Scale-MIA allows the attacker to launch
targeted reconstruction with biased auxiliary dataset DAdv

containing limited classes of samples. For example, an auxiliary
dataset full of “dog” samples can help the attacker reconstruct
samples with the “dog” label among all input samples. In
our experiment, we find that an auxiliary dataset with a few
hundred samples in one class can reconstruct new images in
the same class with high accuracy. This is particularly useful,
as in many cases, the attacker may have a biased auxiliary
dataset and is only curious about certain classes of samples.

VI. EVALUATION

A. Experiment Settings

We implemented Scale-MIA on the PyTorch platform. We
run all the experiments on a server equipped with an Intel
Core i7-8700K CPU 3.70GHz×12, two GeForce RTX 2080
Ti GPUs, and Ubuntu 18.04.3 LTS.

We considered three important evaluation metrics including
the reconstruction batch size, reconstruction rate, and the peak
signal-to-noise ratio (PSNR) score. The batch size refers to

9

TABLE IV: The reconstruction performance of Scale-MIA over different batch sizes on FedSGD and FedAVG systems.

Systems Datasets 64 128 256 512 1024
Rate PSNR Rate PSNR Rate PSNR Rate PSNR Rate PSNR

CIFAR-10 0.9328 28.6453 0.8988 28.3626 0.8464 27.2986 0.7126 26.7407 0.4841 25.2302
FedSGD FMNIST 0.9402 39.4908 0.9057 38.6366 0.7882 34.2213 0.6613 33.9857 0.4173 28.2084
(iter=1) HMNIST 0.9619 28.3522 0.9150 26.9998 0.8134 24.6165 0.6719 23.2551 0.4271 22.4616

TinyImageNet 0.8906 25.0072 0.8804 23.2042 0.8136 22.9310 0.6826 22.6568 0.5252 22.3976
ImageNette 0.8875 22.8267 0.8132 22.7786 0.7136 22.5842 0.5852 22.6251 0.4155 22.4451

CelebA 0.9234 23.3090 0.8656 23.1878 0.7625 23.1235 0.5871 22.6476 0.3721 22.3869

CIFAR-10 0.9231 28.3490 0.8770 28.0728 0.8006 27.4762 0.6129 25.2569 0.4709 24.7438
FedAVG FMNIST 0.9687 39.2831 0.9063 38.6342 0.8068 36.7750 0.6641 32.1269 0.4146 28.3235
(iter=3) HMNIST 0.9434 28.5524 0.9111 26.9872 0.7246 24.7298 0.6426 22.9255 0.5073 22.0577

TinyImageNet 0.9070 23.2623 0.8203 23.0105 0.7488 22.8969 0.6804 22.6052 0.5210 22.2692
ImageNette 0.8678 22.8635 0.8016 22.7005 0.7141 22.6861 0.5640 22.6489 0.3541 22.1800

CelebA 0.9188 23.1996 0.8453 23.1373 0.7796 23.2074 0.5492 22.6717 0.3529 22.3813

CIFAR-10 0.9121 28.0774 0.8412 27.7808 0.8010 27.9652 0.6401 26.1579 0.4507 24.7552
FedAVG FMNIST 0.9046 38.7166 0.8984 37.8936 0.7421 34.0984 0.6308 34.2613 0.4355 28.8201
(iter=5) HMNIST 0.9551 28.2060 0.9089 27.0392 0.7651 24.5628 0.5439 22.1618 0.4628 22.1073

TinyImageNet 0.8917 23.2300 0.8125 23.1355 0.6804 22.6053 0.5527 22.4353 0.5261 22.4493
ImageNette 0.8615 22.7716 0.7953 22.6870 0.7121 22.6863 0.5883 22.6171 0.3506 22.3832

CelebA 0.9125 23.2661 0.8559 23.1304 0.7547 23.1276 0.5931 23.0004 0.3524 22.4913

TABLE V: The reconstruction performance of Scale-MIA over different models and batch sizes.

Models 64 128 256 512 1024
Rate PSNR Rate PSNR Rate PSNR Rate PSNR Rate PSNR

Alexnet (512) 0.9146 29.0523 0.8383 28.8489 0.7308 28.5446 0.4974 27.2409 – –
Resnet (512) 0.9162 27.9498 0.8408 27.6572 0.7136 26.7230 0.4869 24.1208 – –
ViT (512) 0.7656 21.3008 0.6641 20.9629 0.5391 21.0911 0.3809 20.8525 – –
CNN (1024) 0.9328 28.6453 0.8988 28.3626 0.8464 27.2986 0.7126 26.7407 0.4841 25.2302
VGG (1024) 0.9572 28.2689 0.9191 28.2333 0.8463 27.7959 0.7301 26.9002 0.5032 25.0889

the global batch size, i.e. the cardinality of the union of all
the local datasets |∪n

i=1Di|. This can be interpreted as the
multiplication of local batch sizes and the number of clients n.
For example, a global batch with 512 samples can be uploaded
by 512 mobile clients with each client having one sample,
by 16 clients with each having 32 samples, or just by one
client with 512 samples. By default, we consider the system to
contain 8 clients in one FL training round. The reconstruction
rate is the ratio between the successfully reconstructed samples
and the total samples. The definition of the successfulness
of reconstructing a sample is by calculating the PSNR score
between the original input sample and the reconstructed one,
and checking whether the score exceeds a certain threshold
th. In our work, we take th = 18 because this threshold is
enough for the attacker to distinguish the meaningful contents
from the reconstructed figures clearly. The PSNR score is a
widely adopted metric to quantify reconstruction quality for
images and video subject to lossy compression. It can be
expressed as PSNR = 20 log10(

maxI√
MSE

), where maxI refers
to the maximum image pixel value and MSE refers to the
mean square error. In this work, we use it to measure the
performance of Scale-MIA, following the convention of the
existing papers [5], [18], [17], [19].

We implemented Scale-MIA on the Fashion MNIST (FM-
NIST) [20], Colorectal Histology MNIST (HMNIST) [21],

CIFAR-10 [22], TinyImageNet [23], CelebA [24], and Ima-
geNette [23] datasets. Their detailed introduction can be found
in the Appendix. For each dataset, we randomly selected a
subset of the training set (containing {1%, 3%, 10%, and
100%} of total samples) as the auxiliary dataset and aimed
to reconstruct the whole evaluation set, making sure there
is no intersection between them. We evaluated Scale-MIA’s
performance on common machine learning model architectures
including the convolutional neural network (CNN), AlexNet
[44], VGGNet [45], ResNet [46], and ViT [47]. For each result,
we repeated our experiment 5 times to eliminate uncertainty
and noise. In Figure 4, we demonstrate several reconstructed
examples over the six datasets. We plot the original images in
the first row and the reconstructed ones in the second row along
with the average PSNR scores. More reconstruction figures
with larger batch sizes (from Figure 7 to 12) can be found in
the Appendix.

B. Benchmark Comparison

We implemented and compared Scale-MIA with state-of-the-
art model inversion attacks that have publicly available artifacts,
including the DLG [3], iDLG [4], GradInversion [7], Inverting
Gradient [5], robbing the fed [18], and Loki [19]. Among them,
DLG/iDLG, GradInversion, and Inverting Gradient attacks are
well-received optimization-based gradient inversion attacks,
which are used as the fundamental building blocks of more

10

0 10 20 30 40 50
FL rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Ac

cu
ra

cy

No attack
1 round attack
5 rounds attack

(a) FL training performance with and
without Scale-MIA attack.

5 10 15 20 25 30
Client Number

24

25

26

27

28

29

30

PS
NR

 S
co

re 27.6639
27.1868 27.2287

27.6549

26.4243
26.8443

(b) Reconstruction PSNR scores over
different FL client numbers.

5 10 15 20 25 30
Client Number

0.0

0.2

0.4

0.6

0.8

1.0

Re
co

ns
tru

ct
io

n
Ra

te

0.798 0.7696 0.7673 0.78 0.7493 0.7596

(c) Reconstruction rates over different
FL client numbers.

5 10 15 20 25 30
Client Number

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

At
ta

ck
 T

im
e

(s
)

0.2712

0.3796

0.5173

0.6003

0.7226

0.8745

(d) Attack time (s) over different FL
client numbers.

Fig. 5: Scale-MIA’s attack performance over different federated learning settings.

advanced gradient disaggregation attacks including fishing for
user [17], and eluding secure aggregation [16] attacks. Robbing
the Fed [18] and Loki [19] represent the most recent large-
batch reconstruction attacks that aim to reconstruct large input
batches but at the cost of modifying model architectures. To
make a fair comparison, we re-implemented all these attacks
on the CIFAR-10 dataset and with the CNN model architecture.
We focused on the reconstruction rate, average PSNR score, and
attack time (the time to reconstruct one batch of inputs) metrics
to evaluate the effectiveness and efficiency of the attacks on
reconstructing sample batches whose sizes ranged from {1, 2,
4, 8, 16, 64, 256}. We summarize the experiment results in
Table III.

From the experiment results, we observe that Scale-MIA
outperforms all other attacks in terms of reconstruction rate
and attack time while keeping decent PSNR scores. More
specifically, the optimization-based attacks [3], [4], [5], [7]
suffer from super long reconstruction time (hundreds of
seconds), poor reconstruction rate for even small batch sizes,
and low PSNR scores. We also experienced large uncertainty
during our implementations of these methods because they rely
on search-based optimization methods and we got completely
different results with different initialization settings. Note that
although the batch sizes we used in this experiment have
reached or exceeded the performance upper bound of these
optimization-based attacks, they have not yet reached the
performance bottleneck of Scale-MIA. In comparison, Robbing
the fed attack [18] achieves good reconstruction rates with large
batch sizes, comparable attack efficiency (reconstruct samples
in milliseconds), and even better PSNR scores compared to
Scale-MIA. This is because Robbing the Fed is a closed-form
attack and no optimization process is required. The other
closed-form attack Loki also achieves good reconstruction rates
and even better PSNR scores. However, its attack efficiency
is significantly worse and requires tens of seconds when the
batch size becomes large (as shown in Table III). This is
because it adopts a complex model crafting and reversion
algorithm. Moreover, as we have discussed in Section II, both
Robbing the Fed and Loki attacks adopt a much stronger
assumption that requires the attacker to modify the pre-defined
model architecture, i.e., adding extra modules before the

original model architecture, making them easy to detect. In
contrast, Scale-MIA abandons this assumption and still obtains
comparable or even better attack performance.

C. Large Batch Recovery Performance

We evaluated Scale-MIA’s performance with global batch
sizes ranging from {64, 128, 256, 512, 1024} to validate Scale-
MIA’s performance on reconstructing large global batches
under both the FedSGD and FedAVG settings over different
datasets. We changed the number of local training iterations
that the clients conducted ranging from {1,3,5}. We used
a convolutional neural network (CNN) as the target model
architecture. The experiment results are shown in Table IV.

We find that Scale-MIA achieves high reconstruction rates
and PSNR scores and there is no obvious performance
pitfall when the global batch size is smaller than 512. We
observe that both the reconstruction rates and PSNR scores
are monotonically decreasing with respect to larger batch
sizes, which is consistent with our theoretical results, as larger
reconstruction batches increase the probability of reconstruction
collisions and failures. We also find that when clients conduct
more local training iterations, the attack performance slightly
decreases. This is because, with more local iterations, the
accuracy of the approximated aggregated gradients from the
aggregated model updates decreases. But in general, under all
assumptions, Scale-MIA achieves decent attack performance
and is not affected by whether the system employs the FedSGD
or FedAVG algorithms.

We also evaluated Scale-MIA’s performance concerning
different model architectures under the FedSGD setting on
the CIFAR-10 dataset. The results are shown in Table V.
We include the neuron number of the first linear layer k
beside the model architectures and find that the reconstruction
rate is largely affected by it. The models with larger k have
better reconstruction rates for a fixed batch size except for
a few outliers. We observe that Scale-MIA achieves good
reconstruction rates when the batch sizes are smaller than
half of the neuron number k, in line with our analysis. In
general, Scale-MIA achieves decent attack performance on
most model architectures, with only achieving a slightly worse
attack performance on the ViT, demonstrating that our attack
can be applied to different architectures and is model agnostic.

11

TABLE VI: The reconstruction performance of Scale-MIA over different amounts of data.

Batch 1% (500 samples) 3% (1500 samples) 10% (5000 samples) 100% (50000 samples)
Rate PSNR Rate PSNR Rate PSNR Rate PSNR

16 0.9808 25.1174 0.9824 25.4396 0.9809 27.9021 0.9827 29.4134
32 0.9537 24.9192 0.9569 25.2514 0.9550 27.7217 0.9586 29.1968
64 0.9090 24.8604 0.9136 25.1489 0.9143 27.6032 0.9146 29.0523
128 0.8243 24.6688 0.8316 24.9584 0.8317 27.3481 0.8313 28.8489
256 0.6873 24.3534 0.6923 24.6209 0.7018 26.8835 0.7308 27.2409

TABLE VII: The reconstruction performance of Scale-MIA over different numbers of classes of data.

Batch 1 class 2 classes 3 classes 10 classes
Rate PSNR Rate PSNR Rate PSNR Rate PSNR

16 0.9818 25.1320 0.9856 24.8238 0.9753 25.2728 0.9827 29.4134
32 0.9557 25.0041 0.9701 24.8306 0.9505 25.2147 0.9586 29.1968
64 0.8984 24.8337 0.9128 24.7875 0.8971 25.1607 0.9146 29.0523
128 0.8307 24.5928 0.8568 24.5584 0.8229 25.0155 0.8313 28.8489
256 0.6914 24.1795 0.7214 24.0819 0.6615 24.5275 0.7308 27.2409

TABLE VIII: The reconstruction performance of Scale-MIA
over data skew.

Training Data Testing Data 1 Testing Data 2

Batch Intra-class Skew Inter-class Skew
Rate PSNR Rate PSNR

16 0.9851 23.2206 0.7025 20.2722
32 0.9750 23.1560 0.6625 20.1722
64 0.9194 22.4435 0.6468 19.7398
128 0.8463 22.2957 0.6057 19.6457
256 0.7929 22.1004 0.4678 19.4764

D. Performance over Different FL Settings

In Figure. 5, we demonstrate Scale-MIA’s performance under
different federated learning settings. We first investigated the
overall training accuracy of the FL system with and without
our attack. We trained the FL system with 8 clients using the
CNN classifier on the CIFAR-10 dataset for 50 rounds. We
consider two different attack scenarios, including the attacker
only launching a single-round attack in the first training round,
and the attacker continuously launching attacks in the first 5
training rounds. From the results, we find that the convergence
speed of the FL training process becomes slower in the initial
training rounds when the attacks are launched, but the final
training accuracy is not affected. In our experiment, the trained
model obtained 0.7298 accuracy without any attack, 0.7354
accuracy under a single-round attack, and 0.7301 accuracy
under a 5-round attack.

We also investigated Scale-MIA’s performance over different
numbers of FL clients. We implemented our attack on the
CIFAR-10 dataset and fixed the reconstruction batch size to
300. We increased the FL client number from 5 to 30, which
was {5, 10, 15, 20, 25, 30}, and evaluated the PSNR scores,
reconstruction rates, and elapsed time (in seconds). From the

results, we find that the PSNR score and reconstruction rate
are slightly affected by the FL client number and remain
at a decent high level. This indicates that the reconstruction
performance is not affected and the reconstructed images are of
good quality. However, we observe that the attack time is almost
linear increasing with respect to the FL client number. This is
reasonable because more clients involve more communication
and computation overhead within the FL system and the
complexity of our inversion attack increases accordingly.

E. Data Deficiency and Bias
The quality of the auxiliary dataset DAdv is an important

factor that impacts the performance of Scale-MIA. The ideal
situation is that DAdv has the same distribution and can
represent the training dataset well. However, in practice, there
is usually data deficiency and bias and we evaluate the impacts
of them in this section.

Data Deficiency: We varied the amount of data available
to the attacker for launching Scale-MIA and evaluated its
performance on the CIFAR-10 dataset using the AlexNet model.
We considered scenarios where the attacker possesses different
proportions of the total training data in the auxiliary dataset,
ranging from 1%, 3%, 10%, to 100% (equivalent to 500, 1500,
5000, to 50,000 images). The attack performance was tested
on the entire validation set, which consists of 10,000 images.
Given that the first linear layer of the AlexNet model has 512
neurons, we varied the reconstruction batch size from 16 to
256 to ensure a reasonable reconstruction performance.

We demonstrate the attack performance in table VI. We
observe that the number of available samples has little impact
on the reconstruction rate, as it remains relatively stable at high
values across the full range of data availability. The PSNR score
does decrease slightly when the number of available samples
decreases, but it remains in a decent range. Specifically, even if
the attacker only has 1% samples (500 images in total and 50
images for each class) of the total training dataset, Scale-MIA
still achieves very high reconstruction rates and PSNR scores
in our experiment. This indicates that Scale-MIA is a practical

12

TABLE IX: The reconstruction performance of Scale-MIA when the system is protected by DP.

Budget/Batch 64 128 256 512
Rate PSNR Rate PSNR Rate PSNR Rate PSNR

No DP 0.9328 28.6453 0.8988 28.3626 0.8464 27.2986 0.7126 26.7407
(1, 10−5) 0.9253 25.2141 0.9079 25.1279 0.8445 24.9721 0.6855 24.6703
(1, 10−4) 0.9140 25.1581 0.9019 25.1392 0.8542 25.0477 0.6934 24.7081
(5, 10−5) 0.9194 25.1359 0.9034 25.1417 0.8359 25.1688 0.6933 24.5526

attack and the attacker only needs to collect or generate a few
hundred samples to obtain a decent attack performance.

Data Bias: We assumed the auxiliary dataset DAdv to
have different numbers of data classes from the CIFAR-
10 dataset to evaluate Scale-MIA’s performance over biased
data. We considered the attacker to have {1,2,3,10} classes
of data samples and evaluated Scale-MIA’s performance on
these particular classes. For example, if we had the attacker
possess the “dog” samples, we would only evaluate Scale-
MIA’s performance on reconstructing the “dog” samples in
the validation set, ignoring the samples from other classes. We
focused on the PSNR score and reconstruction rate for batch
sizes ranging from 16 to 256, following the same setting as
our previous experiments.

Table VII presents the targeted attack’s performance. The
results show that data bias has a very limited impact on the
reconstruction rate, as it remains stable even when the attacker
has only a few classes of samples. The decrease in PSNR score
is also not significant, and even the worst value remains at
a relatively high level. These results demonstrate that Scale-
MIA’s attack performance is robust against data bias. The
attacker can successfully launch a targeted attack on specific
classes with minimal performance degradation.

Data Skew: We considered the auxiliary dataset DAdv to
contain skewed data from the target images. We considered two
data skew cases including intra-class skew and inter-class skew.
We conducted our experiment on the TinyImageNet dataset
and evaluated the attack reconstruction rates and PSNR scores.
We considered the auxiliary dataset to contain 500 “monarch
butterfly” images. For the intra-class skew, we assumed the
target images were 500 “sulfur butterfly” images. For the inter-
class skew, we assumed the targets were 500 “frog” images.

In Table VIII, we demonstrate the attack performance over
different data skew settings. We find that the attack performance
slightly decreases (but remains decent) under intra-class skew
settings, while the attack performance significantly drops under
inter-class skew settings. This is because autoencoders can only
reconstruct images similar to training samples by design. The
results indicate that Scale-MIA can overcome intra-class skew
well, but still faces gaps in dealing with inter-class skew.

F. Differential Privacy

Differential privacy (DP) [48], [49], [50] has been widely
used to protect the training data’s privacy in machine learning
systems [51], [52], [53], [54]. It has shown its effectiveness
in protecting client-level and data record-level membership
privacy for FL systems by preventing the attacker from knowing

whether one item (either a client or a record) exists in the
system. The fundamental idea of DP is to add artificial noise
to the model updates before they are sent to the parameter server.
Though DP can protect the FL systems against membership
inference attacks by its definition, it is demonstrated to be less
effective against the model inversion attacks [55].

In this section, we consider the FL system is protected
by both the DP and SA protocols, and we examine Scale-
MIA’s performance on it to check whether our attack can
still break them. We assume the clients adopt the DP-SGD
algorithm [51] during the local training process with different
(ϵ, δ) privacy budgets. In our experiment, we implement DP
with the open-source Python-based DP library named Opacus
[56]. We demonstrate the results in Table IX. From the results,
we find that the reconstruction rate is slightly affected by
the DP mechanism and remains stable at high levels under
different privacy budgets. The PSNR scores decrease slightly
when DP is employed but not significantly. This shows that
Scale-MIA can still reconstruct samples with high accuracy
and good scalability performance even when the DP is in place.
However, Scale-MIA cannot link the reconstructed samples
back to its clients (membership inference), showing that DP
can still preserve a certain level of privacy.

VII. DISCUSSION

Privacy by Shuffling: Scale-MIA allows a malicious
parameter server to reconstruct the whole input batch accurately
from the aggregated model updates, demonstrating a serious
privacy vulnerability of the SA protocol and federated learning
system. However, under the current design, the attacker cannot
infer the belongings of these reconstructed samples and attribute
them to certain clients. This property is known as “privacy
by shuffling”, which prevents the attacker from conducting
membership inference and shows that the SA protocol can still
preserve a certain level of privacy. To further break this privacy
guarantee, Scale-MIA can be used in conjunction with the
gradient disaggregation attacks [17], [16] by launching these
attacks in the first step to obtain the individual model updates
from the victims and then using Scale-MIA as a replacement
of the existing gradient inversion mechanisms to boost the
reconstruction performance.

Two-Linear-Layer Limitation: Scale-MIA requires the
model to have two consecutive linear layers to craft the linear
leakage module. However, we acknowledge that not all machine
learning models necessarily have this component in their
architectures although most machine learning classifiers contain
it. For example, some Resnet-based and ViT-based models only

13

have one linear layer in the latent space and the attacker must
add extra linear layers to launch Scale-MIA. Meanwhile, we
observe that some non-linear modules in the feature extraction
layers such as the convolutional layers and vision transformers
may also leak private information analytically, which can help
the attacker bypass the two-linear-layer limitation. We leave
this as our future work to investigate.

Attack Stealthiness: Scale-MIA is a single-round attack
that can be executed at any stage of FL training. To enhance
attack stealthiness while maintaining effective performance, the
attacker may choose to launch the attack during the initial or
the first training rounds. In these rounds, the model parameters
can be initialized with arbitrary patterns, making it challenging
for defenders to distinguish between adversarial and benign
parameters. From a performance perspective, the parameter
server receives relatively large aggregated gradients during
these initial rounds, as the global model has not yet converged,
which facilitates more accurate linear leakage calculations and
improves the model inversion performance.

Potential Countermeasure: The data synthesis method
could be a potential countermeasure against our novel attack.
The fundamental idea is to have each client generate a mask
set that hides the original sensitive data samples. These mask
sets ensure that the mask samples within them rather than
the original local samples owned by individual clients are
reconstructed during the reconstruction attack. At the same
time, the mask sets shall not affect the federated learning
training performance. We consider the guided diffusion model
a promising tool for generating such mask sets. But we leave
the detailed technical design as the future work.

VIII. CONCLUSION

In this paper, we propose Scale-MIA, a powerful MIA that
breaks the strong SA protocol by reconstructing the whole
global batch possessed by the clients efficiently from the already
masked and aggregated model updates. Scale-MIA launches
the inversion attack from a new perspective by delving into
the detailed architecture of the global model and decomposing
the complex model inversion problem into two steps: an LSR
reconstruction step and an input generation step, based on the
observation that the latent space is the critical layer to breach
the privacy. Scale-MIA uses a closed-form “linear leakage”
primitive to conduct the first step and a fine-tuned generative
decoder for the second, making it highly efficient and suitable
for large-scale reconstruction. Scale-MIA is also a very stealthy
attack as it does not modify the model architecture and can
be conducted in any FL training round. With these distinct
features, Scale-MIA represents a potent and inconspicuous
approach to breach privacy in FL systems, prompting the need
for more robust defense mechanisms against such advanced
attacks.

ACKNOWLEDGMENTS

This work was supported in part by the Office of Naval
Research under grants N00014-24-1-2730 and N00014-19-1-
2621, by the US National Science Foundation under grants

2247560, 2247561, 2154929, 1916902, 2312447, 2332675,
2331936, and 2235232, and by the Virginia Commonwealth
Cyber Initiative (CCI).

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[2] D. Enthoven and Z. Al-Ars, “An overview of federated deep learning
privacy attacks and defensive strategies,” Federated Learning Systems:
Towards Next-Generation AI, pp. 173–196, 2021.

[3] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” Advances
in neural information processing systems, vol. 32, 2019.

[4] B. Zhao, K. R. Mopuri, and H. Bilen, “idlg: Improved deep leakage
from gradients,” arXiv preprint arXiv:2001.02610, 2020.

[5] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, “Inverting
gradients-how easy is it to break privacy in federated learning?” Advances
in Neural Information Processing Systems, vol. 33, pp. 16 937–16 947,
2020.

[6] J. Zhu and M. Blaschko, “R-gap: Recursive gradient attack on privacy,”
arXiv preprint arXiv:2010.07733, 2020.

[7] H. Yin, A. Mallya, A. Vahdat, J. M. Alvarez, J. Kautz, and P. Molchanov,
“See through gradients: Image batch recovery via gradinversion,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 16 337–16 346.

[8] J. Lu, X. S. Zhang, T. Zhao, X. He, and J. Cheng, “April: Finding the
achilles’ heel on privacy for vision transformers,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2022, pp. 10 051–10 060.

[9] A. Hatamizadeh, H. Yin, H. R. Roth, W. Li, J. Kautz, D. Xu, and
P. Molchanov, “Gradvit: Gradient inversion of vision transformers,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 10 021–10 030.

[10] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” in proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
2017, pp. 1175–1191.

[11] Y. Huang, S. Gupta, Z. Song, K. Li, and S. Arora, “Evaluating gradient
inversion attacks and defenses in federated learning,” Advances in Neural
Information Processing Systems, vol. 34, pp. 7232–7241, 2021.

[12] J. H. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint, and M. Raykova,
“Secure single-server aggregation with (poly) logarithmic overhead,” in
Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, 2020, pp. 1253–1269.

[13] X. Guo, Z. Liu, J. Li, J. Gao, B. Hou, C. Dong, and T. Baker, “V eri
fl: Communication-efficient and fast verifiable aggregation for federated
learning,” IEEE Transactions on Information Forensics and Security,
vol. 16, pp. 1736–1751, 2020.

[14] S. Kadhe, N. Rajaraman, O. O. Koyluoglu, and K. Ramchandran,
“Fastsecagg: Scalable secure aggregation for privacy-preserving federated
learning,” arXiv preprint arXiv:2009.11248, 2020.

[15] G. Xu, H. Li, S. Liu, K. Yang, and X. Lin, “Verifynet: Secure
and verifiable federated learning,” IEEE Transactions on Information
Forensics and Security, vol. 15, pp. 911–926, 2019.

[16] D. Pasquini, D. Francati, and G. Ateniese, “Eluding secure aggregation in
federated learning via model inconsistency,” in Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security,
2022, pp. 2429–2443.

[17] Y. Wen, J. Geiping, L. Fowl, M. Goldblum, and T. Goldstein, “Fishing
for user data in large-batch federated learning via gradient magnification,”
arXiv preprint arXiv:2202.00580, 2022.

[18] L. Fowl, J. Geiping, W. Czaja, M. Goldblum, and T. Goldstein, “Robbing
the fed: Directly obtaining private data in federated learning with modified
models,” arXiv preprint arXiv:2110.13057, 2021.

[19] J. C. Zhao, A. Sharma, A. R. Elkordy, Y. H. Ezzeldin, S. Avestimehr, and
S. Bagchi, “Loki: Large-scale data reconstruction attack against federated
learning through model manipulation,” in 2024 IEEE Symposium on
Security and Privacy (SP). IEEE, 2024, pp. 1287–1305.

[20] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

14

[21] N. Codella, V. Rotemberg, P. Tschandl, M. E. Celebi, S. Dusza,
D. Gutman, B. Helba, A. Kalloo, K. Liopyris, M. Marchetti et al., “Skin
lesion analysis toward melanoma detection 2018: A challenge hosted
by the international skin imaging collaboration (isic),” arXiv preprint
arXiv:1902.03368, 2019.

[22] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[23] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[24] Z. Liu, P. Luo, X. Wang, and X. Tang, “Large-scale celebfaces attributes
(celeba) dataset,” Retrieved August, vol. 15, no. 2018, p. 11, 2018.

[25] D. I. Dimitrov, M. Balunovic, N. Konstantinov, and M. Vechev, “Data
leakage in federated averaging,” Transactions on Machine Learning
Research, 2022.

[26] R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer, “A stochastic
quasi-newton method for large-scale optimization,” SIAM Journal on
Optimization, vol. 26, no. 2, pp. 1008–1031, 2016.

[27] Y. Aono, T. Hayashi, L. Wang, S. Moriai et al., “Privacy-preserving deep
learning via additively homomorphic encryption,” IEEE transactions on
information forensics and security, vol. 13, no. 5, pp. 1333–1345, 2017.

[28] B. Choi, J.-y. Sohn, D.-J. Han, and J. Moon, “Communication-
computation efficient secure aggregation for federated learning,” arXiv
preprint arXiv:2012.05433, 2020.

[29] L. Burkhalter, H. Lycklama, A. Viand, N. Küchler, and A. Hithnawi,
“Rofl: Attestable robustness for secure federated learning,” arXiv e-prints,
pp. arXiv–2107, 2021.

[30] M. Rathee, C. Shen, S. Wagh, and R. A. Popa, “Elsa: Secure aggregation
for federated learning with malicious actors,” in 2023 IEEE Symposium
on Security and Privacy (SP). IEEE, 2023, pp. 1961–1979.

[31] J. Bell, A. Gascón, T. Lepoint, B. Li, S. Meiklejohn, M. Raykova,
and C. Yun, “{ACORN}: input validation for secure aggregation,” in
32nd USENIX Security Symposium (USENIX Security 23), 2023, pp.
4805–4822.

[32] Y. Ma, J. Woods, S. Angel, A. Polychroniadou, and T. Rabin, “Flamingo:
Multi-round single-server secure aggregation with applications to private
federated learning,” in 2023 IEEE Symposium on Security and Privacy
(SP). IEEE, 2023, pp. 477–496.

[33] D. Bank, N. Koenigstein, and R. Giryes, “Autoencoders,” arXiv preprint
arXiv:2003.05991, 2020.

[34] Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens, and L. Carin,
“Variational autoencoder for deep learning of images, labels and captions,”
Advances in neural information processing systems, vol. 29, 2016.

[35] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked
autoencoders are scalable vision learners,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2022,
pp. 16 000–16 009.

[36] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
Advances in neural information processing systems, vol. 27, 2014.

[37] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture
for generative adversarial networks,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, 2019, pp. 4401–
4410.

[38] N. Park, M. Mohammadi, K. Gorde, S. Jajodia, H. Park, and Y. Kim,
“Data synthesis based on generative adversarial networks,” arXiv preprint
arXiv:1806.03384, 2018.

[39] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”
Advances in neural information processing systems, vol. 33, pp. 6840–
6851, 2020.

[40] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-
resolution image synthesis with latent diffusion models,” in Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition,
2022, pp. 10 684–10 695.

[41] P. Dhariwal and A. Nichol, “Diffusion models beat gans on image
synthesis,” Advances in neural information processing systems, vol. 34,
pp. 8780–8794, 2021.

[42] T. Cemgil, S. Ghaisas, K. Dvijotham, S. Gowal, and P. Kohli, “The
autoencoding variational autoencoder,” Advances in Neural Information
Processing Systems, vol. 33, pp. 15 077–15 087, 2020.

[43] D. P. Kingma, M. Welling et al., “An introduction to variational
autoencoders,” Foundations and Trends® in Machine Learning, vol. 12,
no. 4, pp. 307–392, 2019.

[44] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural information
processing systems, vol. 25, 2012.

[45] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[46] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[47] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition at
scale,” arXiv preprint arXiv:2010.11929, 2020.

[48] C. Dwork, “Differential privacy,” in International colloquium on automata,
languages, and programming. Springer, 2006, pp. 1–12.

[49] C. Dwork, A. Roth et al., “The algorithmic foundations of differential
privacy,” Foundations and Trends® in Theoretical Computer Science,
vol. 9, no. 3–4, pp. 211–407, 2014.

[50] C. Dwork, “Differential privacy: A survey of results,” in International
conference on theory and applications of models of computation.
Springer, 2008, pp. 1–19.

[51] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar,
and L. Zhang, “Deep learning with differential privacy,” in Proceedings
of the 2016 ACM SIGSAC conference on computer and communications
security, 2016, pp. 308–318.

[52] A. Blanco-Justicia, D. Sánchez, J. Domingo-Ferrer, and K. Muralidhar,
“A critical review on the use (and misuse) of differential privacy in
machine learning,” ACM Computing Surveys, vol. 55, no. 8, pp. 1–16,
2022.

[53] B. Jayaraman and D. Evans, “Evaluating differentially private machine
learning in practice,” in 28th USENIX Security Symposium (USENIX
Security 19), 2019, pp. 1895–1912.

[54] L. Song and P. Mittal, “Systematic evaluation of privacy risks of machine
learning models,” in 30th USENIX Security Symposium (USENIX Security
21), 2021, pp. 2615–2632.

[55] S. H. Na, H. G. Hong, J. Kim, and S. Shin, “Closing the loophole:
Rethinking reconstruction attacks in federated learning from a privacy
standpoint,” in Proceedings of the 38th Annual Computer Security
Applications Conference, 2022, pp. 332–345.

[56] A. Yousefpour, I. Shilov, A. Sablayrolles, D. Testuggine, K. Prasad,
M. Malek, J. Nguyen, S. Ghosh, A. Bharadwaj, J. Zhao et al., “Opacus:
User-friendly differential privacy library in pytorch,” arXiv preprint
arXiv:2109.12298, 2021.

APPENDIX A
PROOF OF LINEAR LEAKAGE PROPERTIES

We provide mathematical proofs for the following two
properties of the linear leakage primitive, which help to prove
the Eq. 7 in Section IV.

Property 1: For l in {1, 2, · · · , k}, considering xp is the
pth smallest sample in terms of feature h(x) and falls in
the lth bin [hl, hl+1] alone, ∇w1(l+1)L satisfies ∇w1(l+1)L =

∂L
∂yl+1

∂y(l+1)

∂w1(l+1)
=

p∑
v=1

∂L
∂yl+1

xv .

Proof: According to the chain rule, we can calculate the

gradient as ∇w1(l+1)L =
k∑

v=1

∂L
∂yl+1

xv. We decompose this

equation into two parts as
p∑

v=1

∂L
∂yl+1

xv +
k∑

v=p+1

∂L
∂yl+1

xv. For

the second part, we have y(l+1) < 0 because all these xv are
smaller than xp and can not activate bin l. Then according to
the property of the ReLU function (zero gradients for negative
values), ∂L

∂yl+1
= 0 for these values. This indicates that the

second part is always zero and the property holds.
Property 2: By letting the row vectors of w2 identical, we

have ∂L
∂yl+1

= ∂L
∂yl

.

15

TABLE X: Attack performance on the FashionMNIST dataset
with and without VAE regulation.

Batch Without VAE VAE Regulated
Rate PSNR Rate PSNR

64 0.9402 39.4908 0.9625 28.0435
128 0.9057 38.6366 0.9107 27.8447
256 0.7882 34.2213 0.8775 27.3211
512 0.6613 33.9857 0.8307 26.4764

Proof: According to the chain rule, we have ∂L
∂yl+1

=
o∑

i=1

∂L
∂zi

∂zi
∂yl+1

. Because all the row vectors of w2 are identical,
∂zi

∂yl+1
= ∂zi

∂yl
for all i ∈ {1, 2, · · · , o}. Then we take it back

and have
o∑

i=1

∂L
∂zi

∂zi
∂yl+1

=
o∑

i=1

∂L
∂zi

∂zi
∂yl

= ∂L
∂yl

.

APPENDIX B
EXPERIMENT DATASETS

The FMNIST dataset consists of a training set of 60,000
samples and a test set of 10,000 samples. Each sample is
a 28 × 28 grayscale image, associated with a label from 10
classes, including T-shirts, trousers, pullovers, dresses, coats,
sandals, shirts, sneakers, bags, and ankle boots. HMNIST is a
medical dataset that contains 5000 images for 8 types of skin
cancers. Each sample is a 28× 28 grayscale image, associated
with a label from 8 classes of cancers. The CIFAR-10 dataset
consists of 60,000 32 × 32 color images in 10 classes, with
50,000 training images and 10,000 test images. Each image is
from one of the ten classes, including airplanes, automobiles,
birds, cats, deer, dogs, frogs, horses, ships, and trucks. The
TinyImageNet dataset contains 120000 images of 200 classes
(600 for each class) sized to 64×64 colored images. Each class
has 500 training images, 50 validation images, and 50 test
images. The CelebFaces Attributes (CelebA) dataset contains
202,599 face images from 10,177 celebrities of size 178×218,
each annotated with 40 binary labels indicating facial attributes
like hair color, gender, and age. The training set consists of
162770 images, the test set consists of 19867 images and the
validation set consists of 19962 images. The ImageNette dataset
is a subset of the super large ImageNet dataset that contains 10
out of 1000 classes in the original ImageNet dataset, including
Tench (a type of fish), English springer (dog breed), Cassette
player, Chain saw, Church, French horn, Garbage truck, Gas
pump, Golf ball, and Parachute. The dataset contains 13000
images of pixel size 320×320.

APPENDIX C
REGULATING LSR DISTRIBUTION

In this section, we evaluate the Scale-MIA’s attack per-
formance when the LSR distribution is regulated to certain
distributions. We clarify that the attacker controls this regulation
process during the attack preparation phase. More specifically,
the attacker can regulate the surrogate autoencoder’s local
training process to ensure that the LSR distribution of the
auxiliary dataset follows pre-defined distributions when the
surrogate model is converged. We assume the attacker uses the

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
LSR Brightness

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

LSR Dist
Estimated Dist

(a) LSR distribution of FMNIST
dataset without regulation.

0.10 0.05 0.00 0.05 0.10
LSR Brightness

0

5

10

15

20

De
ns

ity

LSR Dist
Estimated Dist

(b) LSR distribution of FMNIST
dataset with VAE regulation method.

Fig. 6: The LSR distribution of the FMNIST dataset before
and after using the VAE regulation method.

widely used variational autoencoder (VAE) as the regulation
method. We evaluated the regulation performance on the Fash-
ionMNIST dataset as without regulation the LSR distribution
of the FashionMNIST dataset is biased and not similar to the
standard Gaussian distribution. In Figure. 6, we demonstrate
the LSR distribution of the dataset before and after the VAE
regulation. From the figure, we can clearly observe that the
LSR distribution of the FashionMNIST dataset becomes an
almost perfect Gaussian distribution after the VAE is used.
This makes the statistical estimation much easier. We further
demonstrate attack performance in Table. X. We find that using
VAE will make the PSNR score lower but remain in a decent
range. The main benefit of using VAE is that it makes the
LSR distribution shapes better and this contributed to better
reconstruction rates, which is validated by the reconstruction
rate performance in Table. X.

APPENDIX D
BATCHED RECONSTRUCTION EXAMPLES

We plot six randomly selected reconstructed batches with
batch size 64 from the CIFAR-10, FMNIST, HMNIST, TinyIm-
ageNet, ImageNette, and CelebA datasets in Figure 7, Figure
8, Figure 9, Figure 10, Figure 11, and Figure 12 respectively.
We can observe excellent reconstruction rates and good PSNR
scores on all 6 batches. For each dataset, 60, 62, 55, 57,
62, and 61 out of 64 images are successfully reconstructed
respectively. The successfully reconstructed images are very
clear and visually identical to the original ones.We also mark
the reconstruction failure images in red rectangles. We observe
that the failure images usually collide with their neighborhoods
and are mixed with each other during the reconstruction
process. For these collided pairs, usually one sample instead
of two is repeatedly reconstructed. There are also a few
reconstruction failure samples that completely collapse and no
useful information can be extracted from them.

16

(a) A batch of 64 images from the CIFAR-10 dataset. (b) The reconstructed images for the CIFAR-10 input batch.

Fig. 7: The comparison between the original images and the reconstructed images with batch size 64 on CIFAR-10.

(a) A batch of 64 images from the FMNIST dataset. (b) The reconstructed images for the FMNIST input batch.

Fig. 8: The comparison between the original images and the reconstructed images with batch size 64 on FMNIST.

(a) A batch of 64 images from the HMNIST dataset. (b) The reconstructed images for the HMNIST input batch.

Fig. 9: The comparison between the original images and the reconstructed images with batch size 64 on HMNIST.

17

(a) A batch of 64 images from the TinyImageNet dataset. (b) The reconstructed images for the TinyImageNet input batch.

Fig. 10: The comparison between the original images and the reconstructed images with batch size 64 on TinyImageNet.

■

II

■
II

(a) A batch of 64 images from the ImageNette dataset. (b) The reconstructed images for the ImageNette input batch.

Fig. 11: The comparison between the original images and the reconstructed images with batch size 64 on ImageNette.

(a) A batch of 64 images from the CelebA dataset. (b) The reconstructed images for the CelebA input batch.

Fig. 12: The comparison between the original images and the reconstructed images with batch size 64 on CelebA.

18

APPENDIX E
ARTIFACT APPENDIX

In this work1, we implement a novel model inversion attack
against the federated learning system protected by secure
aggregation protocols. Our attack, named Scale-MIA, can
reverse the aggregated model updates back to local training
samples owned by the clients. This breaks the fundamental
privacy-preserving property of the federated learning systems.
In this artifact, we provide a complete description of the
implementation details of our attack, followed by detailed
instructions on how to run it.

A. Description & Requirements

1) How to access: The artifact is publicly available at
https://github.com/unknown123489/Scale-MIA and on Zenodo
at https://doi.org/10.5281/zenodo.14249064. We provide all
implementation code and experiment results for our attack.
However, due to space limitations, we omit the large exper-
iment datasets (on the GB scale) in the artifact. Instead, we
incorporate downloading code in the files and they will be
automatically downloaded when the attack is conducted. Users
can also resort to manually downloading these public-available
datasets from their official websites.

2) Hardware dependencies: Our artifact can be run on
a desktop equipped with GPUs and capable of conducting
common machine-learning tasks such as image classification.
To ensure all artifact experiments run smoothly, we recommend
using a desktop equipped with a GTX 3080 Ti GPU or better.

3) Software dependencies: Our artifact requires a Linux
operating system, preferred to be Ubuntu 18.03.3 LTS or later
versions. Our artifact is programmed by Python (3.8.10) and
requires commonly used machine learning and data processing
packages including torch 2.0.1, torchvision 0.15.2, matplotlib
3.7.4, numpy 1.24.4, datasets 3.0.1, scipy 1.14.1, and opacus
1.3.0.

B. Artifact Installation & Configuration

We require our repository to be downloaded to a local folder
via git clone. For the software dependencies, we recommend
users download them with the pip command, i.e. pip install
package name. Alternatively, they can be manually downloaded
from their official channels.

C. Experiment Workflow

The artifact contains 5 independent folders organized by
the experiment datasets and target systems. For example, the
fedavg-tinyimagenet folder contains all experiment code and
results related to the TinyImageNet dataset on the FedAVG
system. Within each folder, the attack consists of three Python
files including the fedavg-adv-train.py, fedavg-para-gen.py,
and fedavg-recover-attack.py. The first two files correspond
to the attack preparation phase (steps 1⃝ to 5⃝), including the
training of the surrogate autoencoder and the parameter crafting

1This paper was undergoing major revision at the time the artifact evaluation
committee conducted their evaluation. The content of the paper has since been
updated.

of the adversarial global model. The third file implements
the actual attack phase (steps 6⃝ to 8⃝), which reverses the
aggregated model updates back to local training samples. Users
can execute the three files in sequence to achieve the complete
attack process. However, due to the large computation and
memory overhead introduced in the attack preparation phase,
we provide well-trained intermediate models and results for the
first two files in each folder and users can bypass this overhead
by directly executing the third file (i.e. the attack phase). This
provides the same results as executing three files in order, while
also significantly reducing the execution overheads.

Regarding the experiment results, our code automatically
prints the reconstruction rate, MSE score, PSNR score, and
attack elapsed time when they are executed. Our artifact also
provides figures for the training loss trend, original images,
reconstructed images, and reconstruction statistics in the figs
folder.

Particularly, within the fedavg-cifar folder, we provide the
implementation and results of our attack under data deficiency
and bias settings, using different machine learning model
architectures, as well as under differential privacy protections.
We provide flexible arguments for users to specify the detailed
attack parameters for these experiments.

D. Major Claims

• (C1): Our attack can accurately reconstruct large batches
of local training samples owned by the client from the
aggregated model updates under the FedAVG system. This
is proven by reconstructed images yielded in E1. The
results show similar values (±0.05 for reconstruction rate
and ±3 for PSNR score) as Tab 4.

• (C2): Our attack can be applied to many popular machine
learning models. This is proven by experiment (E2) as it
yields experiment results similar to those in Tab. 5.

• (C3): Our attack can handle data deficiency and bias
settings and maintain decent attack performance. This
is proven by experiment (E3), which yields experiment
results similar to those in Tab. 6 and Tab. 7.

• (C4): The differential privacy mechanism cannot prevent
our attack. This is proven by experiment (E4), which
yields experiment results similar to those in Tab. 8.

E. Evaluation

1) Experiment (E1): [Image Reconstruction Results] [1
compute-hour]: This experiment demonstrates Scale-MIA’s
capability to reconstruct large-batch and high-quality local
training samples.

[Preparation] Users need to go into a specific folder and
execute the following attack preparation files in sequence:
cd foldername

python fedavg-adv-train.py

python fedavg-para-gen.py

These steps are in charge of training the surrogate autoen-
coder and crafting the adversarial global model. However, this
step is optional because we have already stored all necessary

19

intermediate results within each folder. Users can directly go
to the execution step to evaluate the attack performance.

[Execution] To evaluate the attack performance under differ-
ent attack settings, users can execute the following command
and specify detailed attack arguments (e.g. batch size, test
rounds):
python fedavg-recover-attack.py --batch_size

=64 --test_rounds=10

We provide the following arguments for users:
--batch_size: Reconstruction batch size.
--test_rounds: Reconstruction batch numbers.
--client_num: Number of FL clients
--local_epoch: Each client’s local training epochs.
[Results] After executing the attack main file, the recon-

struction rate, MSE score, PSNR score, and attack time will
be printed in the command line interface. Users can further
execute the visual.py to produce two figures for original images
and reconstructed images. They are shown in the figs folder.
python visual.py

2) Experiment (E2): [Regarding Model Architectures] [1
compute-hour]: This experiment demonstrates that Scale-MIA
can be applied to many popular machine learning model
architectures.

[Preparation] Users need to go into the fedavg-cifar folder
and execute the following attack preparation files in sequence
while specifying the target model name (e.g. Resnet):
cd fedavg-cifar

python multimodel-adv-train.py --model_name=

Resnet

python multimodel-para-gen.py --model_name=

Resnet

Again, this step is optional and users can directly go to the
following execution step. We define the following argument so
that users can specify which ML model is evaluated. Candidate
models include Vggnet, Alexnet, Resnet, CNN, and Vit.
--model_name: Name of the ML model.
[Execution] Users can execute the following command

to evaluate Scale-MIA’s performance on different model
architectures:
python multimodel-recover-attack.py --model

_name=Resnet

[Results] The experiment results will be automatically
printed in the command line interface.

3) Experiment (E3): [Data Deficiency and Bias Results]
[1 compute-hour]: This experiment demonstrates Scale-MIA’s
performance when its auxiliary dataset is under data deficiency
and bias settings.

[Preparation] Users need to go into the fedavg-cifar folder
and execute the following attack preparation files in sequence:
cd fedavg-cifar

python targeted-adv-train.py

python targeted-para-gen.py

This step is still optional and users can directly go to the
following execution step.

[Execution] Users can execute the following command
to evaluate Scale-MIA’s performance under data deficiency
settings:
python fedavg-recover-attack.py --aux=1

The --aux argument specifies the percentage of training
samples the auxiliary dataset contains. Candidate values are
1,3,10,100. Note that the auxiliary dataset has no intersection
with the reconstructed images.

Additionally, users can execute the following command to
evaluate Scale-MIA’s performance under data bias settings:
python targeted-recover-attack.py

[Results] The experiment results will be automatically
printed in the command line interface.

4) Experiment (E4): [Differential Privacy Results] [1
compute-hour]: This experiment demonstrates that the differ-
ential privacy mechanisms cannot defend our attack.

[Preparation] Users need to go into the dp-cifar folder and
execute the following attack preparation files in sequence:
cd fedavg-cifar

python fedavg-adv-train.py

python fedavg-para-gen.py

Users can also resort to directly going to the execution step as
these intermediate execution results have already been stored.

[Execution] We specify the --epsilon and --delta

arguments for users to change the experiment parameters of
the DP mechanism. The two parameters represent the privacy
budget of the DP mechanism.
python dp-recover-attack.py --epsilon=1

--delta=1e-4

[Results] As before, the experiment results will be automat-
ically printed in the command line interface.

20

