WAVEN: WebAssembly Memory
Virtualization for Enclaves

Weili Wang*
Southern University of Science and Technology
12032870 @mail.sustech.edu.cn

Ye Wu
ByteDance Inc.

Yao Zhang
ByteDance Inc.
zhangyao.crypto@bytedance.com

Abstract—The advancement of trusted execution environments
(TEEs) has enabled the confidential computing paradigm and
created new application scenarios for WebAssembly (Wasm).
“Wasm+TEE” designs achieve in-enclave multi-tenancy with
strong isolation, facilitating concurrent execution of untrusted
code instances from multiple users. However, the linear memory
model of Wasm lacks efficient cross-module data sharing and
fine-grained memory access control, significantly restricting its
applications in certain confidential computing scenarios where
secure data sharing is essential (e.g., confidential stateful FaaS
and data marketplaces). In this paper, we propose WAVEN
(WebAssembly Memory Virtualization for ENclaves), a novel
WebAssembly memory virtualization scheme, to enable memory
sharing among Wasm modules and page-level access control. We
implement WAVEN atop WAMR, a popular Wasm runtime for
TEEs, and empirically demonstrate its efficiency and effective-
ness. To the best of our knowledge, our work represents the
first approach that enables cross-module memory sharing with
fine-grained memory access control in Wasm.

I. INTRODUCTION

Trusted execution environments (TEEs) are processor ex-
tensions that provide applications with secure execution en-
vironments that protect the confidentiality and integrity of
their private data and code, such that even malicious system
software or administrators cannot access the memory regions
protected by TEEs. This feature enables a new computing
paradigm where sensitive computations can be performed on
untrusted computing platforms, which is commonly called
confidential computing.

The TEE technology has gained significant traction in recent
years. Both commodity and open-source processors have TEE
support. According to the abstraction they present to the users,
TEEs can be categorized into user-space TEEs and VM-
based TEEs. Prominent examples of user-space TEEs are Intel

*Affiliated with the Research Institute of Trustworthy Autonomous Systems
and the Department of Computer Science and Engineering

TCorresponding Author

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA

ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.230746
www.ndss-symposium.org

jihonghan.12138 @bytedance.com

wuye.2020@bytedance.com

Peixuan He
ByteDance Inc.
hepeixuan.patrick @bytedance.com

Honghan Ji
ByteDance Inc.

Yingian Zhang*f
Southern University of Science and Technology
yingianz@acm.org

SGX [1] and Sanctum [2], which partitions the memory space
of an application into trusted regions (called enclaves) and
untrusted regions. Compared to VM-based TEEs, user-space
TEEs offer a significantly smaller trusted computing base
(TCB), reducing the attack surface. Particularly, Intel SGX
is the earliest commodity user-space TEE that is available on
the processor market and receives the widest adoption in both
academia and industry.

Many confidential computing platforms have been built atop
SGX, such as confidential Function-as-a-Service (FaaS) [3],
[4], [5] and privacy-preserving data analysis [6], [7]. Hosting
multiple mutually distrustful workloads inside a single user-
space enclave is desired for better efficiency as inter-enclave
scheduling incurs high overhead [8], [5]. For instance, Zhao et
al. [5] report that reusing an enclave is averagely 159x faster
than creating a new enclave, and Ahmad ef al. [8] show that
hosting multiple clients in a single enclave performs 4.06-
53.70x better than hosting each client in a separate enclave.
This practice demands in-enclave multi-tenancy with strong
security isolation, to prevent a malicious tenant from harming
the others sharing the same enclave.

However, there is no established support for in-enclave
multi-tenancy in SGX, although several efforts have been made
to address this issue. One line of research [9], [10], [11], [12]
manages to utilize hardware primitives (e.g., Intel MPX [13]
and MPK [14]) to achieve intra-enclave isolation. Depending
on additional specialized hardware support other than SGX
renders these solutions less practical. Another line of research
explores the use of software fault isolation (SFI) [6], [15],
[7], [8] in enclaves. Among these works, the most prevalent
direction is to integrate WebAssembly (Wasm) [16] with SGX
enclaves, due to its formally specified and verified nature [17],
[18], as well as its well-established ecosystem supported by
industry leaders [19].

Wasm is a novel portable and efficient binary format.
Wasm runtimes provide SFI-based sandboxes for untrusted
code instances (i.e., Wasm modules), ensuring strong isolation
between them. Integrating Wasm runtimes with SGX enclaves
holds great promise for confidential computing platforms that
serve multiple mutually distrustful users. Notably, there have



been numerous academic prototypes [4], [20], [21], [15], [22],
[5] and industry products [23] that explore this direction. The
“Wasm+SGX” combination can be traced back to the proposal
of Ryoan [6], which uses Native Client [24], the predecessor of
Wasm, to isolate different workloads within an enclave. Simi-
larly, systems like TWINE [15] and AccTEE [20] establish in-
enclave sandboxes using Wasm runtimes. Based on in-enclave
Wasm runtimes, confidential computing platforms such as Se-
Lambda [4], S-FaaS [21], Teaclave [3] have been developed
to provide confidential FaaS services.

Despite the widespread adoption of in-enclave Wasm, its
memory management is insufficient in confidential computing
settings. The root cause is the over-simplified linear memory
model of Wasm, which treats the entire memory as a single
indivisible byte array and does not involve any memory
sharing or protection mechanism. While this design choice
may have been reasonable for Wasm’s original purpose of
lightweight Web applications, it proves unsuitable for stan-
dalone environments, particularly within enclaves.

Such insufficiency is particularly noteworthy in the fol-
lowing aspects: First, Wasm does not support cross-module
memory sharing—it only allows a module to export its entire
memory instead of specific data regions. This is not flexible
enough for practical use cases. Second, a Wasm module’s
entire linear memory is writable, lacking read-only regions.
This coarse-grained memory access control not only prevents
secure data sharing among modules (shared memory can be
written by all) but also exposes security vulnerabilities [25].
These deficiencies greatly restrict in-enclave Wasm. To ensure
confidentiality in platforms (e.g., stateful FaaS [26] and data
marketplaces [27]) where multiple users concurrently access
the shared data with different permissions, a memory manage-
ment scheme with efficient memory sharing and fine-grained
access control is needed.

The Wasm community is aware of the limitations of the
linear memory model and plans to address them. The official
documentation explicitly states that “In the future, support
for multiple linear memory sections and finer-grained mem-
ory operations (e.g., shared memory, page protection, large
pages, etc.) will be implemented” [28]. However, to date,
there is no proposal for the memory protection feature in
the WebAssembly proposal list [29], and the multi-memory
proposal [30] related to shared memory is not fully developed
and lacks compiler support [31], [32]. While a non-official
shared memory scheme has been implemented in Faasm [33],
it relies on a system call that is impossible to implement
in enclaves. As such, the lack of efficient memory sharing
and fine-grained memory access control in Wasm remains a
significant challenge for enclaves.

In this paper, we seek to design a memory virtualization
scheme for in-enclave Wasm runtimes, aiming to achieve
efficient memory sharing across multiple Wasm modules and
fine-grained memory access control. However, fulfilling these
goals poses several challenges.

o Complexity: Memory virtualization that supports in-enclave
multi-tenancy, especially scenarios requiring efficient mem-

ory sharing and fine-grained access control, demands com-
plicated system design.

o Efficiency: Memory virtualization in SGX without hardware
and OS support requires the implementation of a software
memory management unit (MMU) in the Wasm runtime,
which introduces significant performance overhead.

o Compatibility: The memory virtualization scheme must be
compatible with Wasm specification, supporting the execu-
tion of traditional Wasm modules without modification.

In response to these challenges, we propose WAVEN,
WebAssembly Memory Virtualization for ENclaves, a Wasm
memory virtualization scheme that implements a software
MMU for paging. Firstly, WAVEN implements a single-level
page table and a software MMU logic for page table walks.
Each memory access incurs only one page table visit, minimiz-
ing the performance overhead due to page table walks. Sec-
ondly, WAVEN leverages novel schemes like exception pages
and memory paddings to reduce the time-consuming boundary
checks for each memory access, optimizing the performance of
WAVEN. Thirdly, to support fine-grained memory access con-
trol, WAVEN leverages two separate page tables for read and
write operations, enforcing read-only memory semantics while
avoiding heavy-weight permission checks. Finally, WAVEN
remains compatible with the Wasm specification, allowing
unmodified Wasm modules to run.

We implement WAVEN atop WAMR [34] and evaluate its
performance inside SGX, the most widely deployed user-space
TEEs. The evaluation results show that memory virtualization
introduces moderate overhead—the geometric mean of over-
heads in PolyBench [35] is only 10.42%. In the STREAM
benchmark performing memory stress test, WAVEN even out-
performs the vanilla WAMR implementation in three of the
four test cases. In two typical confidential computing work-
loads, namely confidential database and privacy-preserving
machine learning, WAVEN incurs 12.52% and 6.14% over-
heads, respectively, indicating its suitability in common con-
fidential computing scenarios. For further demonstration of
the applicability of WAVEN, we also develop a confidential
computing platform prototype atop WAVEN and compare it
to the one without memory virtualization. The results confirm
that our scheme can significantly improve performance (up to
2.4x faster in high concurrency settings) in different memory
sharing scenarios, including multi-write multi-read and multi-
read sharing patterns.

In sum, the paper makes the following contributions:

e The first practical design of Wasm memory virtualization for
in-enclave multi-tenancy, enabling efficient page-level cross-
module memory sharing and access control.

e Multiple performance optimization schemes in WAVEN,
such as exception pages and memory paddings, exemplifying
a software MMU design with minimal performance overhead.

e A prototype implementation and systematic evaluation of
WAVEN, as well as evaluation on data sharing scenarios,
demonstrating its practical applicability.



II. BACKGROUND
A. WebAssembly in A Nutshell

WebAssembly is a binary instruction format and a portable
compilation target for high-level languages, functioning as a
fast, sandboxed stack machine. A Wasm program, also known
as a module, consists of a linear memory, variables, functions,
and tables. A module will get executed when its exported
functions are invoked, and the runtime is responsible for
managing its operand stack.

1) Software Fault Isolation: The design of Wasm incor-
porates SFI techniques to achieve control flow integrity and
memory isolation among modules.

Control flow integrity (CFI). Unlike traditional CFI enforce-
ments that involve time-consuming runtime instrumentation,
Wasm implements CFI implicitly through structured control
flow. This prevents modules from jumping to arbitrary targets.
A function table, generated during load time and managed
by the runtime, indexes all Wasm functions. It is utilized
to resolve direct and indirect function calls. Consequently,
a Wasm module can only call functions that are known to
the runtime. Additionally, there are function type checks for
indirect calls to ensure that the function being called indirectly
possesses the correct type signature as recorded in the function
table. Lastly, the operand stack consisting of call frames is
managed by the runtime, and direct access to the operand stack
by modules is not allowed, which protects return addresses.

Memory isolation. Memory isolation ensures that each Wasm
module can only access its linear memory, which is a
contiguous byte array allocated by the runtime. Within the
Wasm module, memory addresses are expressed as 32-bit
values called Wasm addresses, ranging from 0x00000000
to Oxfff£££££f. These addresses are then translated to 64-
bit virtual addresses within the runtime process.

When allocating memory for a module, the runtime records
the base address of its linear memory. When the module
accesses a Wasm address, it is translated to an effective virtual
address by adding the base address and the Wasm address. The
runtime then checks the legality of the effective virtual address
to ensure it falls within the memory range of the module. This
type of boundary checking can be implemented using either
hardware traps or software comparisons. Although software
boundary checks are easier to implement, they introduce
more overhead as they require an additional comparison for
every memory access. In the hardware-based approach, the
runtime marks memory outside the module’s memory range
as inaccessible, and hardware raises an exception when there
is illegal access. This approach eliminates the need for explicit
boundary checks and thus is more efficient, but it necessitates
hardware support, which may not be available on all platforms
(e.g., not supported in SGX enclaves).

Wasm system interface (WASI). WASI is a modular system
interface designed to be platform-independent. It acts as a
bridge between Wasm modules and the host operating system,
enabling unprivileged modules to access OS functionalities

like file systems and networking. WASI specifies a set of
standardized interfaces for modules to use system utilities,
and Wasm runtimes are required to implement the interfaces
based on the host environment. WASI improves portability and
reduces security risks by limiting the attack surface.

2) Wasm Execution Modes: Most Wasm runtimes, such
as WAMR [34] and Wasmtime [36], support three execution
modes for Wasm modules:

Interpretation. The Wasm module is executed by a Wasm
interpreter within the runtime. The interpreter reads Wasm
bytecode and executes instructions one after another. Due to
the interpretation overhead, this mode is the slowest.

Just-in-Time (JIT) compilation. The Wasm runtime loads
and compiles bytecode into native code for execution. JIT
compilation is dynamically performed, but the overhead is
offset by fast native code execution, leading to improved per-
formance. Different runtimes employ various JIT compilation
schemes, like tiered compilation in WAMR and speculative
compilation in Wasmtime, to enhance performance.

Ahead-of-Time (AOT) compilation. The AOT mode is the
fastest among the three modes. In this mode, the AOT compil-
ers compile the Wasm bytecode into native code in advance,
and the Wasm runtime directly executes the compiled code.
Different Wasm runtimes specify different AOT formats and
have their own AOT compilers.

B. User-space TEEs

User-space and VM-based TEEs are two types of TEEs.
User-space TEEs (e.g., Intel SGX [1]) allow unprivileged
user applications to create isolated memory regions, dubbed
enclaves, in their own address spaces, and load sensitive
code and data into these enclaves such that their execution is
protected by the TEE hardware. Examples of VM-based TEEs
include Intel TDX [37], AMD SEV [38] and ARM CCA [39].
They provide TEE users with a virtual machine abstraction,
allowing unmodified applications to run inside of the so-called
confidential VMs directly.

Intel Software Guard eXtension. Intel SGX provides
hardware-based security features to protect sensitive data and
code execution. It allows developers to create isolated en-
claves, encrypted memory regions that are immune to attacks
from other processes, the operating system, and even partial
physical intrusion. SGX also supports local and remote attes-
tation, enabling enclaves to verify counterparts on the same
platform and allowing remote parties to verify an enclave’s
identity and memory integrity.

SGX software development entails a tedious process of
dividing applications into the trusted part and the untrusted
part, and an enclave can only run a single application. To
ease the development and support multi-tenancy in an enclave,
embedding a runtime in the enclave is a common practice, with
Wasm being a popular choice. Examples include TWINE [15],
[22] and AccTEE [20], where applications are compiled into
Wasm modules and then executed in sandboxes in the enclave.



User-space TEEs are here to stay. The deprecation of Intel
SGX on desktop CPUs [40] and the growing popularity of
VM-based TEEs, such as AMD SEV [41], [42], seem to have
indicated that VM-based TEEs will be the dominating form
of TEEs in the future. However, this is not the case.

Firstly, Intel did not abandon SGX. In fact, Intel continues
to view SGX as an indispensable element in the realm of
confidential computing and will continue to provide SGX
support on server-grade processors [43]. Even on TDX ma-
chines, SGX enclaves are still used to establish the chain
of trust and support remote attestation for TDX [44]. The
deprecation of desktop SGX is in part due to its mismatch with
confidential computing scenarios. Moreover, cloud providers
have also heavily invested in SGX technology. For instance,
Microsoft Azure and Alibaba Cloud both provide SGX-
enabled VMs [45], [46], and IBM Cloud offers bare metal
servers with SGX support [47].

Secondly, user-space TEEs have smaller TCB and hence are
better suited for scenarios with high security demand. Particu-
larly, as a VM-based TEE must incorporate an entire operating
system into its TCB, confidential applications relying on VM-
based TEEs tend to have a significantly larger attack surface.
As a prominent example, Intel has to make a great effort
to tailor a Linux kernel for TDX, in order to mitigate some
known attack vectors [48]. This drawback has been recognized
and efforts have been made to reduce the TCB of VM-based
TEEs by providing user-space enclaves inside a confidential
VM [49], [50], [51], [52].

III. MOTIVATION

We first present the system model and example use cases
to highlight the importance of efficient data sharing and
fine-grained memory access control in an in-enclave Wasm
runtime. We then discuss the limitations of the current Wasm
linear memory model that hinder its adoption in enclaves, and
finally introduce the inspiration behind WAVEN.

A. System Model

Fig. 1 shows the system model that motivates the design of
WAVEN. Specifically, we consider a Wasm-based confidential
computing platform running in an SGX enclave, and there
are three mutually distrustful roles: the platform owner, data
providers, and data consumers. Data providers and consumers
are users who interact with the platform to share data and
perform computation. For a piece of data, the data provider
and the data consumer can be the same or different entities,
depending on the scenario.

In the platform, multiple tasks from the same or different
data consumers can concurrently access the same data, but
only the data provider or authorized consumers can modify the
data. This computing paradigm mandates efficient data sharing
with fine-grained access control across Wasm modules. The
platform’s security goals include ensuring (1) that the data
providers’ data cannot be leaked or used without their consent,
and (2) that the confidentiality and integrity of the execution
of the data consumers’ tasks are preserved.

Platform owner Data providers Data consumers
| ! ~

' / AN
Manage

— .. ,
\
1
@ Enclave / \\

Data !

Upload data N \

Submit tasks
l

Data sharing with ,/

access control

BE E
o)

L J

I
|1j ......

Wasm runtime

Figure 1: Illustration of the system model. The platform owner
manages the enclave and the platform, data providers upload
data, and data consumers submit computation tasks.

Platform owner. The platform owner develops the platform
program and manages the enclave hosting the platform. The
platform provides services to data providers and data con-
sumers, such as data storage, computation execution, and
access control enforcement. The platform utilized a Wasm run-
time to enable mutually distrustful data consumers to execute
their computation tasks in in-enclave Wasm sandboxes. The
platform owner will make the source code of the platform
program available to the users for auditing. As such, the users
can verify the correctness of the platform program and the
enclave through remote attestation although they do not trust
the owner. Note that only the platform program logic is public
but in-enclave data and tasks remain confidential.

Data providers. Data providers are users who own private data
and want to share it with others or to compute on it themselves
using the platform’s computing power. Data providers upload
data to the platform and specify the access control policies.

Data consumers. Data consumers submit their computation
tasks to the platform in the form of Wasm modules and obtain
the computation results. A task can be a machine learning
model or a data processing script that operates on the data
stored in the platform. The platform validates whether the user
is authorized to access the data before executing the task.

B. Threat Model

We assume that the underlying SGX enclave fulfills its secu-
rity guarantees, namely, the confidentiality and integrity of in-
enclave data and code are well protected. The platform owner,
data providers, and data consumers, however, can be malicious
and collude with one another to violate the platform’s security
goals. Specifically, we consider the following threats:

Insecure platform program. The platform owner may de-
velop a platform program with backdoors that steals or tampers
with users’ data or code. As the source code of the platform
program is public, the users can audit the platform program
to detect such misbehavior.



Arbitrary input data. Data providers can upload arbitrary
data to the platform. The platform makes no assumption about
the data’s correctness or usefulness. Data providers can also
launch Denial-of-service (DoS) attacks by uploading a large
amount of data, but the impact is minor as the platform usually
charges the data providers for the storage space in practice.

Arbitrary input modules. The data consumers can generate
Wasm modules with arbitrary computation logic and submit
them to the platform. DoS attacks can be closed by charging
the data consumers for the computation resources.

The platform owner controlling the system software may
refuse to provide services to users or launch side-channel
attacks [53] to compromise the enclave’s security. We do not
consider such threats.

C. Example Use Cases

The considered system model plays a significant role in
various confidential computing scenarios. We present two
example target scenarios to illustrate the importance of data
sharing and fine-grained memory access control in an in-
enclave Wasm runtime.

1) Confidential Stateful FaaS: FaaS (serverless) comput-
ing paradigm is predicted to dominate the future of cloud
computing [54], and mainstream cloud providers have already
launched their FaaS platforms (e.g., AWS Lambda [55] and
Google Cloud Functions [56]). FaaS supports stateless and
stateful applications. Recently, stateful FaaS has been gaining
traction due to its ability to maintain state across function
invocations, enabling more complex applications [26], [33],
[571, [58].

In this setting, FaaS users may compute on their data or
public data. When processing private data, the user is both
a data provider and a data consumer—it can upload the data
and the computation task to the platform and then leverage
the auto-scaling feature of FaaS to execute the task more
efficiently. When processing public data like public datasets
organized by the FaaS platform (e.g., AWS Lambda users can
use public datasets maintained in AWS Open Data [59]), the
user is only a data consumer.

Need for data sharing. Either private or public data, the to-
be-computed data should be shared among multiple function
instances. A FaaS user can create a large number of function
instances to process a dataset in parallel to speed up the
computation, with each function instance accessing the partial
or entire data. Data sharing across function instances enables
direct computation on the original data without duplication and
can significantly enhance the performance, as demonstrated in
prior works [33], [26].

Need for access control over shared data. For private
data, the user owns the data but may want to keep the data
unchanged in computation. For example, unintended bugs
in function instances may corrupt the data and deviate the
computation. With access control, the user can specify that
the data is read-only for the function instances, preventing
accidental data modification, similar to the use of constants

in programming languages. For public data shared among
different users, access control becomes more critical—a user
can affect other users’ computation by tampering with the
shared data if there is no access control. To sum up, the
platform needs to enforce fine-grained memory access control
over the shared data to prevent unauthorized data modification.

Status quo. There have been several Wasm-based FaaS plat-
forms [20], [S] running in enclaves, showing the popularity
of this combination. However, these platforms lack efficient
data sharing mechanisms and fine-grained memory access
control, which are important for stateful FaaS applications, as
discussed above. The system model we considered can address
these issues and fill the gap in the current in-enclave Wasm-
based FaaS platforms.

2) Secure Data Marketplaces: Data marketplaces facilitate
data exchange and utilization and thus are of great value
in this big data era. The global data marketplace platform
market is expected to grow from $1,192.1 million in 2023 to
$7,312.5 million by 2032, with a growth rate of 22.33% during
2024-2032 [60]. Notable industry data marketplaces include
Snowflake Marketplace [61] and AWS Data Exchange [62].

To build secure data marketplaces that protect data privacy
and integrity, numerous designs(e.g., [63], [64], [65]) com-
bining blockchain technology and SGX have been proposed.
In these designs, the platform owner acts as the marketplace
operator, who manages the enclave hosting the marketplace
and provides services to data sellers and data buyers. The data
sellers and buyers are the data providers and consumers in our
system model, respectively.

Need for data sharing with access control. In data market-
places, sellers upload their data, and buyers can purchase the
data in the blockchain and compute on it. The computation is
either on the raw data [64] or on the statistical features ex-
tracted from the raw data [63]. In both cases, the computation
is usually performed by the blockchain execution engine (e.g.,
EVM [66] and Wasm). In the marketplace, it is common for
a piece of data to be sold to multiple buyers, necessitating
data sharing across buyers’ computation instances to enhance
performance. Otherwise, each buyer must copy the purchased
data before computation, which not only wastes memory but
also slows down the process. Moreover, fine-grained memory
access control over the shared data is essential—the seller
should have the privilege to modify the data while buyers
should only be able to read the shared data.

Status quo. The aforementioned confidential data marketplace
designs [63], [64], [65] do not support data sharing with fine-
grained access control inside the enclave, which is addressed
in our system model. The increasing adoption of Wasm as
the execution engine in blockchains, as evidenced by its use
in several blockchains [67], [68], [69], further validates the
practicality of our system model for this case.

D. Limitations of Wasm Linear Memory

Wasm’s linear memory, a contiguous block of memory
that is allocated and managed by the runtime environment,



is a crucial component of the Wasm virtual machine that
allows programs to access and store data. Although linear
memory has been a de facto standard that has been adopted by
most WebAssembly runtimes, it has several limitations when
deployed in enclaves.

Poor data sharing. A Wasm module has at most one linear
memory and it can export its memory to other modules
or import another module’s memory. This enables memory
sharing among different modules, but it is rather inflexible
and impractical—what developers need to share is usually
a specific data region instead of the entire linear memory.
Fig. 2a illustrates a scenario in which a module intends to
share its data with two other modules. However, with the
current linear memory model, these two modules are unable
to directly access the shared data; explicit memory copies
are necessary. The draft multi-memory proposal [30] allows a
module to have multiple memory regions, aiming to facilitate
data exchange among modules. However, this approach has
its own limitations. First, the granularity with which memory
regions can be shared is very coarse. It is not possible to share
a fraction of a memory region. This becomes a more severe
issue when a module needs to share different data with dif-
ferent modules. Second, compiling programs written in high-
level languages into Wasm bytecode with multiple memory
support is challenging, as these languages typically assume a
single memory model. This issue remains unresolved since the
introduction of the multi-memory proposal in 2019 [70]. To
date, developers are still unable to compile their code written
in other languages to Wasm modules with multiple memories
due to the lack of compiler support [31], [32].

Some Wasm-based FaaS frameworks implement their own
data sharing mechanisms. For example, FAASM [33] leverages
the Linux mremep system call to make a module’s partial
linear memory point to the shared data. However, this approach
is not applicable to user-space TEEs like SGX. This is
because SGX enclaves rely on the untrusted OS to conduct
memory allocation and page table management. To ensure
security, SGX hardware maintains Enclave Page Cache Map
(EPCM) inside the protected memory, recording the allocation
information (e.g., the owner enclave, access permission) of
EPC pages. An EPCM entry contains the virtual address
used to access the corresponding EPC page, which ensures
that an EPC page can only be accessed by a unique virtual
address[71, Sec. 5.2.3]. As such, sharing memory via mremap
will map different virtual addresses to the same EPC page of
the enclave memory, leading to unsuccessful EPCM checks
and thus enclave termination.

Coarse-grained memory access control. Wasm restricts each
module to access its own memory region, but it does not
provide fine-grained memory access control, such as read-only
memory. As shown in Fig. 2b, the data region, auxiliary stack,
and heap are all writable. The entirely writable memory poses
significant challenges to secure data sharing across modules
within the enclave. In this design, the module sharing its data
with other modules lacks control over the access permissions

.......................

Heap

(a) Inefficient data sharing. (b) Entirely writable linear memory.

Figure 2: Limitations of the linear memory model.

of the shared data, which potentially leads to unauthorized data
modification. Furthermore, the coarse-grained memory access
control may result in undefined behavior or even security
vulnerabilities. Lehmann et al. [25] have shown an end-to-
end attack targeting standalone Wasm runtimes. Due to the
lack of read-only memory, the attacker can tamper with the
victim module’s constant data by contriving malicious inputs,
and successfully write arbitrary files in the host file system
via WASI. This case suggests that entirely writable memory is
not secure, even in regular environments, let alone in enclaves
where the security requirements are even more stringent.

E. Solution: WebAssembly Memory Virtualization

Modules hosted inside a Wasm runtime are similar to pro-
cesses running in an OS, and alike an OS kernel, the runtime
needs to allocate memory for modules, and manage their
execution. The evolvement of memory management in OSs,
especially the transition from direct allocation on physical
memory (similar to the linear memory model of Wasm) to
memory paging, provides valuable insights for better memory
management in Wasm runtimes. We draw inspiration from
OSs’ experience and propose a memory virtualization scheme
for Wasm runtimes, which is based on memory paging.

Paging in OS functions to map the virtual addresses of
processes to physical addresses in memory. In the case of
Wasm modules, which operate within the runtime process, we
refer to Wasm addresses as “virtual addresses” and the run-
time’s virtual addresses as “physical addresses”. Specifically, a
module’s entire Wasm address space and the runtime’s partial
virtual address space are divided into fixed-size pages. Each
Wasm page is assigned a unique page index, which is then
mapped to a virtual page. To record mappings, we leverage
page tables, which serve as lookup tables for address trans-
lation. The runtime is responsible for creating and managing
page tables, and each Wasm module has its own page table.

IV. WAVEN DESIGN
A. Overview

WAVEN is a WebAssembly Memory Virtualization scheme
for ENclaves that aims to support multiple WebAssembly



modules to efficiently share their memories with fine-grained

access control. WAVEN has the following design goals:

e Practicality. While enabling flexible memory management
(i.e., memory sharing and access control), the scheme should
also provide the same linear memory abstraction to Wasm
modules and comply with the Wasm specification (as much
as possible).

e Security. The scheme should ensure memory isolation as
the linear memory does, that is, each Wasm module only
accesses its own “virtual” linear memory.

e Performance. The introduced performance degradation
should be minimal.

To meet the design goals with a paging-based memory
virtualization scheme, however, we still need to address the
following challenges:

e C1: Complexity. Designing a scheme supporting in-enclave
multi-tenancy with efficient memory sharing and fine-grained
access control could be complex. Controlling the complexity
of the scheme is key to ensure its practicality.

e (2: Efficiency. Deploying the scheme inside SGX enclaves
without hardware and OS support mandates a software MMU
implementation in the WebAssembly runtime. This could
introduce significant overhead without proper optimizations.

e (C3: Compatibility. The linear memory model is a crucial
component of the WebAssembly specification, and introduc-
ing paging as an alternative while ensuring compatibility with
Wasm poses challenges.

B. WebAssembly Paging

At the core of WAVEN is a novel paging scheme and an
efficient software MMU design for Wasm.

Page size. Theoretically, WAVEN can support arbitrary page
sizes, but we set the page size to 64KB in accordance with the
WebAssembly specification. The specification specifies that
the size of a Wasm module’s memory should be a multiple of
64KB for portability. For 32-bit Wasm addresses, the higher 16
bits indicate the page index, while the lower 16 bits represent
the offset within a page (2'°B = 64KB).

Page table. A Wasm module is limited to a maximum of 4GB
of memory space, equivalent to 65536 memory pages. Page
tables translate the Wasm module’s 32-bit addresses (ranging
from 0x00000000 to OXFFFFFFFF) to the runtime’s 64-bit
virtual addresses. WAVEN adopts single-level page tables. This
choice reduces the performance overhead by performing only
one page table walk per memory access. It also simplifies the
design of memory sharing and access control. Therefore, the
choice of single-level page tables helps to address challenge
C1 and C2. In this configuration, a page table consists of
65536 entries, each containing a 64-bit virtual address. Con-
sequently, a single page table occupies a memory space of
512KB, which is small and acceptable.

Address translation. Address translation occurs when Wasm
modules access memory addresses using related instruc-
tions(e.g., 132.1oad and 132.store). To translate a 32-

Wasm address Virtual address

Page table

Wasm page 0 \

Virtual page

Wasm page n

Virtual page

Figure 3: The paging scheme. Arrows denote the page table.

bit Wasm address, the Wasm runtime first extracts the higher
16 bits as the page index, looks up the page table to find
the virtual address of this Wasm page, and finally calculates
the virtual address to be accessed by adding the lower 16
bits (page offset) to the previously retrieved virtual address.
Fig. 3 illustrates the paging scheme. The arrows represent page
table entries that record the mapping from a module’s Wasm
pages to the runtime’s virtual pages. Note that adjacent Wasm
pages can be mapped to non-adjacent virtual pages. Paging
introduces an extra memory read in the address translation
process compared to the linear memory model, where the
virtual address is calculated by simply adding the base address
and the Wasm address.

C. Memory Isolation

The linear memory model ensures memory isolation among
Wasm modules using boundary checks. The runtime first
checks whether the target Wasm address is accessible before
translating it to a virtual address. Given that paging already
incurs one additional memory read (page table lookup) in
every address translation, adopting inefficient boundary checks
(SGX only supports software boundary checks with high over-
head) would further degrade the performance. To overcome
this challenge (related to C2), we propose the use of exception
page and page padding to optimize address translation and
improve performance (as shown in Fig. 4).

Wasm address Virtual address

Page table

Wasm page 0 Virtual page

... Wasmpagel [T Virtualpage

L., Wasmpage2 | —— Virtual page
Wasm page 3 \

..................... Virtual page

Exception page

Unallocated
Unallocated
[ ......... M Virtual page

Unallocated

Virtual page

Virtual page

Figure 4: Tllustration of the exception page (highlighted in red)
and page padding (represented using black rectangles).

Exception page. In paging, memory isolation is enforced by
manipulating page table entries, which control the translation



from Wasm addresses to the runtime’s virtual addresses. Dur-
ing module instantiation, the runtime not only allocates initial
memory pages but also creates a 64KB empty exception page
for the module. For Wasm addresses within the initial memory
space (legal accesses), the runtime sets the corresponding page
table entries to the virtual addresses of the allocated memory
pages. On the other hand, for Wasm addresses outside the
initial memory space (out-of-bounds accesses), the runtime
modifies the related entries to point to the exception page. As
a result, when a module performs an out-of-bounds access,
the address translation will direct it to its own exception page.
This effectively prevents the module from interfering with the
memory of another module or the runtime without explicit
boundary checks.

Page padding. Similar to paging in modern computer archi-
tectures, WAVEN also needs to deal with unaligned memory
accesses. Common unaligned accesses that entirely lie inside
a 64KB page bring no trouble, while those crossing page
boundaries need special handling. For instance, a 132 .load
instruction reading four bytes may start from the last byte
of a Wasm page and end at the first three bytes of the next
page. The high overhead of these cross-page accesses is two-
fold in WAVEN. First, it needs to check whether the memory
access crosses two pages. Second, it needs to conduct address
translation two times for unaligned accesses, resulting in two
page table lookups.

By contrast, the probability of cross-page memory accesses
is rather low. Compilers (e.g., Emscripten [72] and WASI
SDK [73]) emitting Wasm bytecode will align memory ac-
cesses automatically (aligned memory accesses never span two
pages). In addition, not all unaligned memory accesses are
cross-page accesses. Our compilation of the PolyBench [35]
test suite further supports this observation—there are no cross-
page accesses in all memory accesses of the 30 compiled
Wasm modules.

Considering the prohibitive overhead and small probabil-
ity of cross-page accesses, we discard support for them in
WAVEN—we pad each page with several bytes to ensure that
even cross-page accesses lie inside a single page. In this
way, the runtime can always translate a Wasm address to a
virtual address with only one page table lookup. Even in cross-
page accesses, the runtime will not generate illegal memory
accesses. Instead, it will access the padding bytes, effectively
ensuring memory isolation. As one Wasm memory access
instruction at most reads/writes eight bytes (we do not consider
SIMD instructions at this time), the minimum padding size is
seven. The empirical study reported in Sec. VI-B suggests that
the 7B padding is a good choice.

With page padding, the correctness of execution without
cross-page accesses is guaranteed whereas the one with cross-
page accesses is not. This is reasonable as the compiled Wasm
bytecode rarely accesses memory across page boundaries, and
developers can still manually align memory accesses to avoid
cross-page accesses with the help of WAVEN’s debugging
mode: To assist developers in identifying subtle bugs that may

be caused by cross-page accesses, WAVEN offers a debugging
mode to detect cross-page accesses. In the debugging mode,
the runtime inserts one additional boundary check before each
memory access, and informs the developer when a cross-
page access is detected. As such, developers can locate the
problematic code and manually align memory accesses, which
is a common practice in architectures that do not mandate
support for unaligned memory accesses, such as RISC-V [74]
and ARM [75].

D. Memory Access Control

Wasm modules have their own page tables, allowing us to
utilize isolated page tables to confine memory accesses of
different modules. Building on this idea, we propose a memory
access control solution using dual page tables, which does
not involve time-consuming software permission checks and
contributes to the address of challenge C1 and C2.

Our approach involves using two separate page tables for
read and write operations. The write page table handles
memory writes and stores the virtual addresses of writable
pages. On the other hand, the read page table is used for
memory reads and stores the virtual addresses of readable
pages. The page table entries for writable pages are the same
in both page tables, while the entries for read-only pages differ.

In the read page table, the entries corresponding to read-
only pages point to effective virtual addresses. In contrast, the
entries in the write page table for read-only pages point to the
address of an exception page. This setup allows the runtime to
dynamically change page permissions by modifying the page
table entries in response to requests from Wasm modules.

To illustrate this concept, consider the example of read-only
pages shown in Fig. 5. In the module’s read page table, Wasm
page 3 is mapped to a normal virtual page. However, in the
write page table, it is mapped to the exception page. As a
result, the module can read the content of Wasm page 3 but
cannot modify it.

Virtual address Wasm address

Wasm address

Write page table Read page table

Wasm page 0 Virtual page Wasm page 0

Virtual page

Virtual page

Virtual page

ion page

Virtual page

Unallocated Unallocated

Virtual page

Virtual page

Figure 5: An example of read-only pages. Page 3 is read-only
and mapped to the exception page in the write page table.

This fine-grained access control is particularly useful in
shared memory scenarios, where multiple Wasm modules may
need to read shared content but should not be able to modify it
without permission. Additionally, the introduction of read-only
pages also enhances security by preventing Wasm modules
from modifying constant (read-only) regions. In a previous
study by Lehmann et al. [25], it is demonstrated that attackers



can write arbitrary files by exploiting buffer overflow attacks
to modify constant data.

E. Memory Remapping

Unlike the mremap system call in Linux, which requires
a transition to kernel space, memory remapping in WAVEN
is simpler and can be done in user space at runtime. In
WAVEN, a page table entry maps a Wasm page to a virtual
page, allowing the runtime to easily remap a Wasm page to
another virtual page by overwriting the page table entries. This
memory remapping feature greatly facilitates shared memory
among multiple WebAssembly modules, as modules can share
data by mapping their Wasm pages to the same virtual pages.

Furthermore, by combining memory remapping with read-
only pages, WAVEN can enforce read-only permissions on the
shared memory region. This means that some modules can
only read from the shared memory while others can modify
it. This level of control is not achievable with shared memory
implementations based on mremap, as there is no way to
set read-only permissions for specific Wasm modules within
a runtime process without specialized hardware support such
as Intel MPK [14].

F. Summary

To overcome the challenges mentioned in Sec. IV-A, we
propose WAVEN, a novel paging scheme with an efficient
software MMU design. The use of single-level page tables and
dual-page-table-based memory access control helps to tackle
challenges C1 and C2. To further address challenge C2, we
introduce the exception page and page padding. Furthermore,
we address challenge C3 by designing a scheme that only
requires modifications to Wasm runtimes, and not to the Wasm
applications themselves. This means that developers can still
use their preferred compilers to compile high-level language
code into Wasm bytecode without making any modifications.

V. IMPLEMENTATION

We implement WAVEN on top of WAMR [76] (commit
92c4bbe) and SGX SDK 2.19, adding approximately 3,000
lines of code. WAVEN does not require changes to the Wasm
bytecode itself. It uses existing LLVM toolchains, such as
WASI SDK [73] and Emscripten [72], to generate the bytecode
without any modifications.

Since WAMR supports Intel SGX out of the box, there
is no need to port the implementation to SGX enclaves.
Our prototype implementation primarily targets the fastest
execution mode—AOT compilation. The AOT compiler in
WAMR leverages LLVM to compile Wasm bytecode to AOT
(native) code, and thus we modify the LLVM backend (version
15.0.7) to enable memory virtualization. WAVEN can be easily
extended to support JIT compilation since both the AOT
and JIT compilers share most of the codebase in WAMR.
Additionally, supporting interpretation mode is straightforward
as it only requires modification of the runtime, which is
finished already in our prototype.

We also implement runtime interfaces for shared memory
management, enabling the Wasm module developers (i.e., the
data consumers in the system model described in Sec. III-A)
to use shared memory. Similar to WASI, these interfaces are
implemented as runtime functions that can be invoked by
Wasm modules, and they are exposed to developers in the form
of function declarations. In development, the developers can
include the header files that contain these function declarations
to use these interfaces. The finished source code is first
compiled to Wasm bytecode using the aforementioned existing
tools, and then passed to our modified AOT compiler for
generating the AOT code with memory virtualization support.
Finally, the AOT code is executed in our modified WAMR run-
time that supports memory virtualization. The above process
is also illustrated in Fig. 6.

p @ Used

Source code

y

LLVM toolchain

Implemented

&

AOT compiler

————

2

WAMR runtime

Runtime interfaces

iabetatetetetatatuted |

b i}

Bytecode AOT code

Figure 6: Illustration of the workflow for developers to
generate and execute a Wasm module with WAVEN. Our
implementation is enclosed in a dotted box.

We then detail the compiler modification for page-based
address translation, runtime modification for page table man-
agement, and runtime interface implementation.

A. AOT Compiler Modification

The AOT compiler takes the bytecode of a Wasm module
as input and produces native code as output. It first parses the
bytecode and constructs the LLVM intermediate representation
(IR) of the Wasm module. Then, the compiler performs
optimizations and generates a more efficient IR, from which
the native code is generated.

Address translation from Wasm addresses to the runtime’s
virtual addresses occurs during the parsing step. The AOT
compiler parses the Wasm bytecode function by function. As
the compiler cannot infer the runtime’s virtual address space
throughout the AOT compilation, it adds an extra argument to
store running information into each Wasm function’s param-
eter list. This facilitates address translation. For example, a
Wasm function declared as void func (arg0, argl,

., argN) in the bytecode is parsed into an LLVM
function with the declaration void func (exec_env,
arg0, argl, ..., argN) in the IR. The exec_env
variable is a C language structure created by the runtime,
which stores a module’s running information, including the
virtual address of the linear memory. When encountering
WebAssembly memory access instructions (e.g., 132.load
and 132.store) within a function, the compiler inserts



address translation instructions (IR instructions). These in-
structions take a Wasm address as input, check its legality,
and calculate the virtual address using the information inside
exec_env. This way, the generated AOT code can perform
address translation at runtime.

To support memory virtualization, we encode a module’s
two page tables into the exec_env structure and rewrite the
address translation process using these page tables. Specifi-
cally, when compiling ordinary Wasm memory read (write)
instructions (i.e., load and store instructions), we inject
IR instructions that extract the page index and offset from the
Wasm address to be translated, look up the read (write) page
table to obtain the virtual address of the corresponding Wasm
page, and calculate the final virtual address by adding the page
offset to the Wasm page’s virtual address. For more complex
memory instructions like memory.copy, memory.fill,
and memory .grow, we insert IR instructions that invoke the
runtime’s functions to perform address translation and execute
the corresponding operations.

B. Runtime Modification

The AOT-compiled native code is loaded and executed by
the WAMR runtime, which we modify to support memory
virtualization during execution. When instantiating a mod-
ule, the runtime creates the necessary virtual pages with
paddings, an exception page, and two page tables. When
executing a function of a Wasm module, the runtime creates
the exec_env structure with pointers to the page tables and
passes it to the function. This allows the function to perform
address translation using the page tables. We also implement
a set of runtime functions to handle memory management
requests from Wasm modules, corresponding to instructions
such as memory.grow, memory.size, memory.copy,
and memory.fill.

C. Runtime Interfaces

To support the evaluation of the data sharing capability of
WAVEN (Sec. VI-G), we have implemented a preliminary set
of runtime interfaces for shared memory.

User and module identification. We assume that the platform
(i.e., WAMR runtime) assigns unique user IDs (userID) to
registered users (i.e., Wasm module developer) and unique
module IDs (moduleID) to the Wasm modules uploaded by
users. userID and moduleID are integers that start from 0.

Shared memory management. Each shared memory region is
identified by a unique string ID (dataID), which is assigned
by users when creating the region. The runtime records the
corresponding virtual pages for each shared memory region
in a map (shared_mem_map) that maps the datalID to the
virtual pages.

Authentication. To manage access permissions for shared
memory regions, the runtime maintains a mapping (i.e.,
permission_map) from the dataID to a policy struc-
ture. policy is a list of triples (userID, modulelD,
read_only), where moduleID records the module allowed

10

to access the shared region, userID records the user who
owns the module, and read_only is a boolean value indicat-
ing whether the module has write access to the shared region.
Setting the moduleID or userID to -1 allows all modules
or all users to access the shared memory region. For example,
the policy triple (-1, -1, false) allows all modules to
access the shared memory region with read-only permission,
and the policy triple (0, -1, true) allows all modules
uploaded by user O to access the shared memory region with
write permission. If a module is not listed in the policy of a
shared memory region, it is not allowed to access that region.
The runtime performs authentication when a module attempts
to access a shared memory region.

Interfaces. The bool create_shared_mem(charx
dataID, uint8_t« data, long len, policyx*

p) interface allows a user’s Wasm module to create a shared
memory region. The module provides the shared data (data),
the ID (dataID), the length (1en), and the access policy (p)
specifying which modules can access the shared data and their
permissions. The runtime then updates shared_mem_map
and permission_map, and returns true if the shared
region is successfully created.

uint8_t* access_shared_mem(charx datalD,
long len) interface allows modules to access shared data.
The runtime first checks the existence of the shared data in
shared_mem_map. Then, it verifies the access permission
of the requesting module by consulting permission_map.
If the shared data exists and the module has access, the
runtime allocates a new region in the requesting module’s
memory space to store the data and performs memory
remapping (see Sec. IV-E) to redirect the newly allocated
region to the shared data with the specified access permissions
(see Sec. IV-D).

The above interface implementation serves as a proof-of-
concept, demonstrating that WAVEN can enable efficient data
sharing with fine-grained access control across Wasm modules.
Using WAVEN, platform owners can design more complex
interfaces to support various secure data sharing scenarios in
their platforms, such as self-expiring shared data.

VI. EVALUATION

In this section, we begin by presenting our experimental
setup. We then evaluate WAVEN, examining the selection of
padding sizes, the effectiveness of optimizations, and the per-
formance in benchmarks, confidential computing workloads,
memory-intensive operations, and memory sharing scenarios.

A. Experimental Setup

Testbeds. The testbed is a server that is equipped with 48-core
Intel Xeon Gold 5318Y x2 processors (with SGX2 support)
and 256GB of RAM. PVE 7.2 was installed on the host
machine to create SGX2-compatible virtual machines. We
perform the evaluation in a virtual machine with 16 vCPUs
and 32GB of RAM. The virtual machine runs Ubuntu 20.04
with Linux kernel 5.15.0-70-generic and has 8GB of EPC.



Baseline. To validate the correctness and evaluate the perfor-
mance of our implementation with WAVEN, we compare it
with the vanilla WAMR implementation (commit 92c4bbe).
The WAMR implementation consists of an AOT compiler and
a Wasm runtime. In generating SGX-compatible AOT code,
the vanilla compiler inserts boundary check instructions for
every memory access, since SGX does not support hardware-
based boundary checks.

Benchmarks. We use PolyBench 4.2.1 [35] as our main test
suite, which includes 30 numerical computation tasks. To
perform memory stress test, we use STREAM [77], which
measures the sustainable memory bandwidth of a system. We
also consider two typical confidential computing workloads,
to assess the practicality of WAVEN in real-world scenarios.
Following the practice of the vanilla WAMR implementation,
we compile the above benchmarks written in C into Wasm
bytecode using WASI SDK 19.0 [73], and then into native code
using WAMR’s AOT compiler. We use the default optimization
level (-03) for both the clang compiler in WASI SDK and
the AOT compiler. Each benchmark is executed with 128KB
stack space and 256MB of heap memory, which is sufficient
and will not trigger memory growth during execution. For
PolyBench benchmarks, we use the default problem size (i.e.,
large) throughout the evaluation.

B. Selection of Padding Size

The default page size of x86-64 Linux is 4KB and the cache
line size of x86-64 processors is typically 64B. Although the
Wasm page size is exactly 64KB, we need to pad each page
with = bytes (see Sec. IV-C) to prevent the unsupported cross-
page memory accesses from bypassing Wasm sandboxes. As
a result, the padded Wasm page size is 64KB + zB. The
minimum value of x is 7B, which is sufficient for all Wasm
memory access instructions, but it also makes the padded
Wasm pages unaligned with system pages and cache lines.

To determine the optimal padding size, we measure the
performance of our implementation by running PolyBench
50 times with different padding sizes: OB (no padding), 7B
(unaligned padding), 64B (cache line aligned padding) and
40968 (page aligned padding). Fig. 7 displays the results of
the average execution time for each benchmark with the four
padding sizes, showing that the performance is relatively stable
across different padding sizes.

Compared to the baseline (no padding), the geometric mean
of overheads is 4.56% for 7B padding, 5.4% for 64B padding,
and 0.06% for 4096B padding. The similar performance of the
7B and 64B padding sizes suggests that cache line alignment is
not a significant factor in padding size selection. Page-aligned
padding introduces the minimal overhead, but consumes way
more memory. Overall, 7B padding incurs insignificant over-
head and has the smallest memory usage, indicating that it
is a good trade-off between memory usage and performance.
As such, we choose 7B as the padding size for the rest of
the evaluation. With this setting, a Wasm module with 4GB
memory (65536 pages) requires 65536 « 7B = 448KB of
padding, which is deemed acceptable.

11

C. Effectiveness of Optimizations

1) Exception Pages and Page Paddings: By employing
exception pages and page paddings, we achieve the same
level of memory isolation as the vanilla linear memory model,
but without requiring any boundary checks. Now, we demon-
strate the effectiveness of this optimization by examining
the overhead that would be introduced if we were to use
checks. Table I presents the overheads incurred by inserting
a boundary check to validate the target address in every
memory access. The results show that there is a noticeable
performance penalty when using boundary checks. Out of
the 30 benchmarks tested, 21 of them experience more than
20% overhead. The maximum overhead is 64.69% (doitgen)
whereas the geometric mean of overheads is 30.09%. These
significant overheads highlight the effectiveness of the use of
exception pages and page paddings.

Table I: Overheads of using boundary checks in PolyBench.
Our implementation with exception pages and page paddings
(thus no checks needed) is used as the baseline for comparison.

Benchmark  Overhead Benchmark Overhead Benchmark Overhead
2mm 54.07% durbin 42.03% Iu 35.79%
3mm 55.30% fdtd-2d 39.67% ludemp 10.51%

adi 31.38% floyd-warshall 42.92% mvt 22.06%
atax 58.87% gemm 28.12% nussinov 45.84%
bicg 22.73% gemver 27.31% seidel-2d 0.10%

cholesky 54.10% gesummy 37.02% symm 58.08%
correlation 3.44% gramschmidt 13.04% syr2k 11.92%
covariance 3.42% heat-3d 28.63% syrk 22.09%
deriche 8.06% jacobi-1d 39.24% trisolv 44.35%
doitgen 64.69% jacobi-2d 17.33% trmm 18.67%

2) Dual Page Tables: We leverage two separate page tables
to enforce read-only memory semantics while avoiding per-
mission checks. To evaluate the effectiveness of this design, we
compare it with two alternative designs: 1) a scheme (referred
to as S-I) using a single page table without permission
checks, and 2) a scheme (referred to as S—ITI) using a single
page table with permission checks for write instructions.

S—T is the fastest but lacks read-only memory semantics,
and S—IT checks each memory write to determine whether it
is permitted. Compared to S—I, S—-II exhibits a geometric
mean overhead of 22.78% across PolyBench benchmarks,
while the dual page table scheme only incurs an average
overhead of 2.36%. Fig. 8 further displays the execution
time comparison between the dual page table design and
S—I1I, showing that our design performs much better without
relying on heavy-weight permission checks (compared to our
design, S—-IT is 19.96% slower in average). This comparison
demonstrates that the dual page table design can achieve fine-
grained memory access control with minimal overhead.

D. Performance

We first measure the performance of WAVEN in terms of
compilation and execution, using the PolyBench benchmarks.
1) Compilation: In terms of compilation, we compile each
PolyBench benchmark 50 times using both the modified
AOT compiler and the vanilla AOT compiler and take the
average compilation time for each. We observe that these



: 3 3

Execution Time (s)
3
L

15
i

>
® > “b.&ﬂ X
£ 6‘“‘&

SO N S
SN &

o>
O
e

<@ </ 2’
o 535 o &
& o

oo

iﬁ“‘“ o1 o (o

&

- 0B

. 7B
648

. 40968

A N o @ ot 98 D R
A AP ' (v 580
0 Bc""x Cdox o &3 e’@e\’ eﬂw & B B o
b

5
5 K o

Figure 7: Execution time with different padding sizes (Log scale is used on the Y-axis).

EEE Dual page table design

. s-11
Ry

I E Nw«“»@

102 [

100

Execution Time (s)

Figure 8: Execution time comparison: Dual page table design
vs. S-I1 (Log scale is used on the Y-axis).

benchmarks have similar compilation time when compiled
with the same compiler. The results, as shown in Table II,
indicate that the compilation time of the modified compiler
ranges from 1417ms (gesummv) to 1535ms (ludcmp), with
an average value of 1457.07+29.02ms. On the other hand, the
compilation time of the vanilla compiler ranges from 1491ms
(gesummv) to 1600ms (Ludcmp), with an average value of
1530.43+27.85ms.

Table II: Compilation time of the two compilers (unit: ms).

Value Modified compiler Vanilla compiler
Maximum 1535 (ludemp) 1600 (ludcmp)
Minimum 1417 (gesummv) 1491 (gesummv)

Average 1457.07 1530.43
Standard deviation 29.02 27.85

When considering the size of the compiled code, the
differences among benchmarks are not noticeable for the
same compiler. As shown in Table III, the modified compiler
generates code with an average size of 76.63 + 0.84KB,
whereas the vanilla compiler generates code with an average
size of 89.73 + 0.77KB.

In sum, the modified AOT compiler generates native code
that is 16.9% smaller in size and has a 5.49% shorter compi-
lation time compared to the vanilla compiler. This is expected
since the modified compiler does not need to generate code
for boundary checks, as the vanilla compiler does.

2) Execution: We execute the PolyBench benchmarks 50
times with our implementation and the vanilla WAMR imple-
mentation, respectively, to compare their execution time. The
execution time is measured and printed by PolyBench itself,
with the POLYBENCH_TIME macro enabled.

12

Table III: Sizes of the AOT-compiled code (unit: KB).

Value Modified compiler  Vanilla compiler
Maximum 78 91
Minimum 75 89

Average 76.63 89.73
Standard deviation 0.84 0.77

Fig. 9 shows the results, including the average execution
time of the 30 benchmarks in two runtimes (Fig. 9a), and
the normalized execution time (our implementation vs. vanilla
WAMR) (Fig. 9b).

Compared to the linear memory model, WAVEN eliminates
the need for boundary checks but introduces an additional
memory read for every memory access due to the page table
lookup in address translation. As illustrated in Fig. 9, the over-
all overhead of memory virtualization is relatively small, with
the geometric mean of overheads reaching only 10.42%. The
paging overheads are highly dependent on the memory access
patterns of the benchmarks and tend to fluctuate. In some
cases, memory virtualization introduces more overhead. For
instance, the overheads of jacobi-1d and jacobi-2d are
54.61% and 56.50% (the maximum overhead), respectively.
In other cases, memory virtualization even outperforms vanilla
WAMR. For example, with 3mm, our implementation performs
30.57% faster than vanilla WAMR.

E. Evaluation of Confidential Workloads

The result of micro benchmarks (Sec. VI-D) demonstrates
the moderate overhead of WAVEN. To further assess its prac-
ticality, we also evaluate its performance in two commonly
deployed confidential computing workloads, i.e., confidential
database and privacy-preserving machine learning.

Confidential database. We develop confidential in-
memory databases by running an open-sourced Wasm-
ported version [78] of SQLite v3.32.3 [79] in enclaves.
Speedtestl [80] is a SQLite performance test program
containing 32 tests, and the Wasm-ported code [78] consists
of 29 tests. We run the ported tests in our implementation
with  WAVEN and the vanilla WAMR implementation 50
times, and measure the average execution time.

The 29 tests can be categorized into two groups, namely
database query (14 tests) and database update (15 tests), and
the overheads of our implementation in the two groups are
displayed in Fig. 10. In query tests, the observed overheads
vary between 1.92% and 23.09%, with a geometric mean of



o —
I Proposed
 Vanilla

= 10

2

E e

g

=1

q:,i 10t

#

=

102
B B ah o a0 (@ 2 e 3 2 D S @ (¢ 30 20 A% 9 4 (oY 08 Dl
s>t B P vs; OXZ%;e‘?w:&*”&ae‘x&é&%e i \"w&b&&ﬁ“ﬁ P q,e‘“q:e%“iefx@"“@‘ R \»&a “)0599\0-&9’ o 7 o K’&e‘, <
o & o Sl b
fad
(a) Execution time (Log scale is used on the Y-axis).

1.6
o
E 14
a
= 12
=]

= o o =
= 5 @ o

e

Normalized Executi
o

°
5

>
o 1B e \’29‘4»‘! &
SO

e
& «
o O

oS o R R RN P g
42> 562> X% e @,& A

80> P

o

@““:ew“

I N I N
5 o o
e 3¢

A9 @ © ot 9 o B oF
o o & e_xbe\ e o B "
&

o «®
N

% o
%g»

(b) Normalized execution time.
Figure 9: Execution performance in two implementations.

S -
o o i

0.6

Normalized
Execution Time

P AR RN BN U\ SRNIPY SO NI\ PN NI NS ]

(a) Database query.

0
A0 00 @ D gD 2D g g g0 g g oD (O

(b) Database update.

Figure 10: Overheads of WAVEN in SQLite tests. The X-axis
shows the test ID in Speedtestl.

11.47%. Similarly, in update tests, the minimum and maximum
overheads are 2.3% and 22.08%, respectively, with a geometric
mean of 12.52%. The close overheads in the two groups
indicate that WAVEN is stable for both read- and write-
intensive database operations. Moreover, these figures prove
that WAVEN introduces moderate overheads when deployed
in confidential database workloads.

Privacy-preserving machine learning. Face detection is a
representative privacy-preserving machine learning workload,
where face images uploaded by end users should be kept
confidential. We perform face detection in enclaves using a
convolutional neural network (CNN) model [81], [82]. For
this task, we utilize the WIDER FACE validation dataset [83],
which contains 3,226 images categorized into 62 groups.
Specifically, we select all 115 images from the first category
(i.e., Parade), as the input for the CNN model.

We measure the time required to process all 115 images and

13

repeat the test 50 times. On average, our implementation with
WAVEN takes 176.06 seconds to process the 115 images, while
the vanilla WAMR implementation takes 165.87 seconds. This
low overhead (6.14%) demonstrates that WAVEN is suitable for
privacy-preserving machine learning workloads.

F. Memory Stress Test

To evaluate the performance of WAVEN under memory
stress, we use STREAM [77], a well-known industry standard
benchmark that measures memory bandwidths of different
memory-intensive operations. As listed in Table IV, the bench-
mark consists of four kernels: Copy, Scale, Add, and Triad.
Each kernel operates on large memory regions composed of
three arrays. For instance, the Copy kernel copies all elements
from array b to array a.

As requested in the benchmark website [84], each array
must be at least 4x the size of the last-level cache used in the
run. The default array size (i.e., 10,000,000 elements per array,
each element takes 8B and each array takes 76.3MB) satisfies
this requirement (the last-level cache size of the testbed is
16MB) and is used in our evaluation.

In this memory stress test, we consider three implemen-
tations: 1) the vanilla WAMR implementation (Vanilla),
2) the vanilla WAMR implementation without boundary
checks (VanillaNoChk), and 3) our implementation with
memory virtualization (Proposed). VanillaNoChk dis-
ables boundary checks in the vanilla WAMR implementa-
tion and thus cannot provide memory isolation. Compared
to VanillaNoChk, Vanilla inserts boundary checks per
memory access, and Proposed uses memory virtualization
to provide memory isolation. As such, VanillaNoChk is
considered the baseline for comparison.

The reported bandwidths from STREAM is shown in
Table IV, where we observe Proposed achieves more band-
widths than Vanilla in three of the four kernels.



The Copy kernel copying the entire array b to array
a is compiled to one Wasm instruction (memory.copy).
Thus, Vanilla only performs one boundary check for the
entire array copy and has nearly the same bandwidth as
VanillaNoChk. As explained in Sec. V-A-V-B, in WAMR
implementation, the memory . copy instruction is finally han-
dled by a runtime function that performs the actual memory
copy. VanillaNoChk and Vanilla use linear memory
model and have the same copy runtime function, which in-
vokes memmove once to finish the copy. However, Proposed
performs page-by-page copy and thus will invoke memmove
many times for large copy operations, lowering the bandwidth.

For the remaining kernels, Vanilla achieves 64.17%
(Scale), 62.94% (Add), and 63.15% (Triad) of the bandwidths
of VanillaNoChk. In comparison, Proposed achieves
81.74%, 69.05%, and 67.6%, respectively. The overhead of
Vanilla is attributed to boundary checks, while the overhead
of Proposed is due to page table lookups. The better per-
formance of Proposed compared to Vanilla in the Scale,
Add, and Triad kernels illustrates that page table lookups have
a lower overhead than boundary checks in memory stress
operations, suggesting that WAVEN is suitable for memory-
intensive workloads.

Table IV: STREAM benchmark details and evaluation results.
The percentages in parentheses indicate the bandwidths rela-
tive to VanillaNoChk.

Bandwidth (MB/s)

Kernel - Workload VanillaNoChk Vanilla Proposed

Copy afi] = b[i] 8215.7 8125.1 (98.9%) 6881.4 (83.76%)
Scale a[i] = q*bli] 4712.5 3023.8 (64.17%)  3851.8 (81.74%)
Add a[i] = b[i] + cli] 7050.8 4438.1 (62.94%)  4868.7 (69.05%)
Triad a[i] = b[i] + q*c[i] 6998.3 4419.7 (63.15%) 4731.2 (67.6%)

G. Effectiveness of Memory Sharing

As described in Sec. III, the need for data sharing with fine-
grained access control is common in real-world confidential
computing platforms, especially in confidential stateful FaaS
and secure data marketplaces. To demonstrate the effectiveness
of WAVEN in fulfilling this requirement, we develop two
platform prototypes: one with memory virtualization (referred
to as P—1I) and the other without (referred to as P—II, which
does not support shared memory). These two platforms are
implemented based on the same enclave code, with the only
difference being that P—I incorporates WAVEN while P—-I1
employs the linear memory model. Then we evaluate the two
platforms in two scenarios with different memory sharing
patterns commonly encountered in confidential stateful FaaS
and secure data marketplaces, and compare their performance.

1) Multi-write Multi-read Scenario: We first consider a
typical scenario in confidential stateful FaaS, where a FaaS
user creates a function chain consisting of multiple functions
that read different parts of the same dataset, process the data
in parallel, and then write the results back to the same place.

Specifically, we load the RCV1 dataset [85] (a collection
of news stories from Reuters) downloaded from [86] into
the enclave, with each copy of the dataset requiring around

14

900MB of memory. We then let each user train a text clas-
sifier using the same algorithm and dataset. Each user first
creates a master function and then the master function will
spawn 8 worker functions, each of which reads one-eighth of
the dataset, computes the loss concurrently, and updates the
central weights stored in the master function’s memory. The
master and worker functions implement the “HOGWILD!”
algorithm [87], a lock-free stochastic gradient descent (SGD)
algorithm designed for parallel computing. As such, different
workers can update the same model weight vector stored in
the master functions’ memory space without synchronization.
In the evaluation, each FaaS function is a Wasm module,
and we set the number of concurrent users to 1, 2, 4, 8,
16, and 32. With 32 users, the platform needs to execute 32
master modules and 256 worker modules in total. Fig. 11a
shows the time taken to complete all users’ tasks in the two
platforms, and we observe that P—I gradually outperforms
P-ITI as the number of concurrent users increases. When
serving 16 and 32 concurrent users, P—I outperforms P—IT
by 1.56x and 1.82x, respectively. Memory sharing enhances
the performance from two aspects: 1) it eliminates data copies
from the original dataset to each user’s worker functions, and
2) it allows workers to update the central model weights in
situ. The above result shows that WAVEN can significantly
boost the execution in multi-write multi-read scenarios.

[ -=- P-I

w
S

T T
- P-I

g -=- P-II

- P-II

S =

Running time (s)

L L L L
4 16 32 64

Number of concurrent users (log scale)

2 4 8 16 32
Number of concurrent users (log scale)

(a) Multi-write multi-read scenario. (b) Multi-read scenario.

Figure 11: Evaluation of the effectiveness of memory sharing.

2) Multi-read Scenario: This scenario represents the mem-
ory sharing patterns in data marketplaces—multiple data buy-
ers (users) can compute on the same purchased data inside the
platform but cannot modify it.

We continue to use the RCV1 dataset and also let each
data user train a classifier using the same code. However, in
this case, each user only creates one Wasm module, which
will read the entire dataset and finish training. The number of
concurrent data users is set to 1, 2, 4, 8, 16, 32, and 64,
respectively, and we also measure the total execution time
required to complete all data users’ tasks.

The results are plotted in Fig. 11b, where P—IT exhibits a
steeper slope compared to P—1I. In highly-concurrent scenarios
(i.e., 16, 32, 64 concurrent data users), P—I outperforms
P-ITI, achieving a speedup of 2.4x-2.5x. This substantial
performance improvement is expected, as P—II copies the
entire dataset for each user, resulting in both time and memory
wastage. Notably, when running P—-I1, the evaluated enclave
with a capacity of 8GB EPC can support a maximum of



seven concurrent users. Additionally, even when the number
of concurrent data users is small (e.g., 1, 2, 4), P-T still
exhibits slightly better performance than P-II. These re-
sults demonstrate the effectiveness of WebAssembly memory
virtualization in reducing memory utilization and enhancing
performance in multi-read scenarios.

VII. DISCUSSION

Prevelance of in-enclave WebAssembly. Compared to other
SFI-based options, running Wasm to support in-enclave multi-
tenancy is more appealing. First, Wasm is formally specified
and verified. Wasm is specified in a formal semantics [16],
which has been formally verified [17], [18], and the formal
reasoning of real Wasm programs is also developed [88]. As
such, incorporating Wasm into the TCB can be considered
more reliable. Second, Wasm has a well-established ecosys-
tem. Numerous programming languages can be compiled to
Wasm, providing a wide range of options for developers. The
Bytecode Alliance [19], which consists of industry leaders
such as Amazon, Microsoft, and Intel, actively develops
Wasm-based technologies. These advancements can also be
leveraged for Wasm usage within enclaves.

Generalization to other TEEs. SGX is the most widely
deployed user-space TEE and has been extensively adopted by
academia and industry. Given that Intel will treat SGX as a
first-class citizen in their confidential computing strategy [43],
it is anticipated that WAVEN will be a very important addition
in practice. Although our investigation and evaluation primar-
ily concentrate on SGX, WAVEN can be applied to other user-
space TEEs such as CURE [50] and SHELTER [51].

TLB implementation. The overhead introduced by memory
virtualization is primarily due to the additional memory read
during address translation. Implementing a software TLB
may help amortize the overhead, and we report our TLB
implementation and evaluation as follows.

Unlike hardware TLBs usually implemented in associative
storages, most software TLBs use direct-mapped data struc-
tures to cache the translation results because of their sim-
plicity and efficiency [89], [90]. Prominent examples include
QEMU [91] and Spike [92], both of which use direct-mapped
software TLBs. As analyzed by Hong et al. [89]: “SoftTLB is
usually implemented as a directly mapped hash table relying
on virtual guest addresses for efficiency. This is because,
unlike the fully associative hardware TLB, SoftTLB cannot
search its content in a parallel manner.”

Following the common practice, we also implement a direct-
mapped software TLB with 2, 4, 8, 16, 32, 64, 128, 256, and
512 entries. Each TLB entry caches a 64-bit virtual address
for a Wasm page, and we use the modulo operation on the
Wasm page index to locate the TLB entry. For instance, when
the TLB size is 4, we use Wasm_page_index % 4 to
determine the TLB entry of a page. In the evaluation, to better
observe the TLB performance, we configure both memory
writes and reads to use a single page table. This setup, referred
to as S—I in Sec. VI-C2, serves as the baseline. According

15

to Sec. VI-C2, WAVEN and S-1I exhibit similar performance.
Therefore, the performance of S—I with TLB not only sheds
light on the performance implications of TLB but also closely
approximates the performance of WAVEN with TLB.

Fig. 12 displays the average TLB hit rate and performance
overhead of different TLB sizes on PolyBench benchmarks.
For each TLB size, the average TLB hit rate and overhead
is obtained by computing the geometric mean of hit rates and
overheads of all benchmarks. We observe that the performance
overhead first decreases and then stabilizes, with the increase
of the TLB size and the hit rate. When the TLB size is small,
the hit rate is low, and the overhead is relatively high. For
example, when the TLB size is 2, the hit rate is 49.54%, and
the overhead is 30.76%. As the TLB size increases, the hit
rate increases, and the overhead decreases and then stabilizes
at around 21%. Even when the hit rate is 99.89% (512 TLB
entries), the overhead is still 21.66%.

Our evaluation results in Sec. VI-C have shown that insert-
ing checks in the memory access path causes significant over-
head. Performing TLB lookups involves “miss or hit” checks
and thus is expected to introduce similar overhead, which
neutralizes the performance benefits of TLB. For the above
analysis, we conclude that TLB cannot effectively amortize
the overhead of memory virtualization in our implementation.

= 100
80

83,630 923l D4l S0t g0 tns- o=
70.41% -~ 2

g
Z60[49.54% ="
= A 1 5 16 32 61 128 236 512
TLB size (Log scale)
(a) Average hit rates
—  30.76%
=30 ;
= S<2578%
ER -l 2323% 99009 22.32% 21.87% 21.53% 21.66%
ER) T T e e 1804 -8
3

16 32 64 512

TLB size (Log scale)

4 8

ol

(b) Average overheads

Figure 12: TLB performance on PolyBench benchmarks.
VIII. RELATED WORK

Intra-enclave isolation. Although SGX does not provide
enclave isolation by default, there have been several proposed
solutions to achieve this. Some of these solutions are based
on hardware primitives such as Intel MPX [13] and Intel
MPK [14], while others rely on software fault isolation. For
instance, CHANCEL [8] proposes an SFI mechanism inspired
by Native Client [24] to isolate multiple clients inside a single
enclave. Each client’s request is handled by a compartmen-
talized thread. However, CHANCEL lacks flexibility as it
does not allow clients to execute customized code. Other
solutions, such as MPTEE [9], Occlum [10], and Spons &
Shields [11], utilize MPX to enforce enclave isolation. Un-
fortunately, MPX is immature [93] and later deprecated [94],
which significantly limits the practicality of these prototypes.
SGXJail [95] and SGXLock [96] leverage Intel MPK [14] to
prevent potentially malicious enclaves from accessing arbitrary



host regions, but they do not achieve fine-grained (i.e., intra-
enclave) isolation. Moreover, as MPK demands trust on OS
kernel, which contradicts to SGX’s threat model, incorporating
MPK inside enclaves to achieve intra-enclave is challenging
and often leads to significant modifications that render the
scheme less practical. For instance, LightEnclave [12] explores
the combination of MPK and SGX to isolate multiple light-
enclaves within an enclave, requiring not only MPK support
but also hardware modifications, which reduce its practicality.
In contrast, in-enclave WebAssembly, as demonstrated in
this paper, efficiently supports intra-enclave isolation without
relying on other hardware support or modifications, making it
a better choice compared to the aforementioned approaches.

Fine-grained linear memory access control. Lehmann et
al. [25] reveals that the lack of read-only memory semantics
in Wasm’s linear memory model can lead to security vulnera-
bilities, as a module’s constant area can be overwritten by ma-
licious inputs. To perform better access control for the linear
memory, Lei ef al. propose Domain Isolated Linear Memory
(DILM) [97] model, where a Wasm module’s memory is sliced
into multiple data domains and each Wasm function has access
to at most one domain. However, as it requires the use of
MPK, DILM cannot work inside SGX enclaves. Moreover,
from the perspective of data sharing, the DILM model focuses
on memory protection within a single Wasm module; it does
not specify how to support shared memory across modules.
In contrast, WAVEN not only enables flexible memory sharing
but also supports more fine-grained access control.

Comparison to MPK approaches. As mentioned above, Intel
MPK has been used to enforce different isolation schemes in
SGX enclaves [95], [96], [12] or to provide memory protection
for Wasm modules [97]. We further compare WAVEN with
these MPK-based approaches here.

SGXJail [95] and SGXLock [96] leverage MPK to confine
enclave behaviors and protect the host OS, whose design goals
differ significantly from ours. LightEnclave [12] uses MPK to
achieve intra-enclave isolation, similar to WAVEN. LightEn-
clave requires hardware modification and is evaluated in an
emulated setting, making it hard to compare LightEnclave with
WAVEN directly. DILM [97] enables memory access control
for multiple functions inside a single Wasm module using
MPK, but it is incompatible with SGX’s threat model due to
its use of MPK. Besides, DILM is developed atop Wasmtime,
which does not support SGX. As such, a direct performance
comparison between WAVEN and DILM is difficult. As for
developer effort, LightEnclave is built atop a library OS and
supports native binary execution without modification, leading
to a small developer effort. Both DILM and WAVEN require
developers to incorporate interfaces into the Wasm module to
utilize their features, resulting in a moderate developer effort.
The above comparison is summarized in Table V. While we
are unable to evaluate LightEnclave and DILM in the same
environment as WAVEN, we list the performance overheads of
LightEnclave and DILM from their respective papers.

WebAssembly use cases. Wasm is widely used in various

16

Table V: Comparison to MPK-based approaches.

Overhead
4%

Approach Functionality Deployment  Developer Effort

LightEnclave Intra-enclave isolation only Hard Small
Separate data domains for different
functions in a single Wasm module; Each
domain has its own access control policy
Intra-enclave isolation with memory
sharing across multiple Wasm modules

and fine-grained memory access control

Incompatible )
DILM 10% with SGX Moderate

WAVEN 10.42% Easy Moderate

use cases. For example, FaaS platforms like Fastly Com-
pute Edge [98] and Cloudflare Workers [99] rely on Wasm
sandboxes to execute untrusted user functions. Chadha et
al. [100] leverage Wasm to host high-performance computing
workloads, achieving near-native performance while reducing
binary size. Internet of Things (IoT) runtimes like WAIT [101]
and WiProg [102] facilitate IoT application development with
the portability of Wasm. Furthermore, blockchain systems
such as EOSIO [67], NEAR [68], and Ethereum [69] actively
promote the use of Wasm for contract execution engines.

Confidential computing with WebAssembly. Wasm has also
been widely adopted in confidential computing. TWINE [15]
and AccTEE [20] both build two-way sandboxes by running a
Wasm runtime in SGX. AccTEE also supports trusted resource
accounting. Teaclave [3] and Se-Lambda [4] are two SGX-
based confidential FaaS platforms that support Wasm function
executors. Additionally, Wasm is used in other TEEs as well.
WATZ [103] runs a Wasm runtime entirely in ARM TrustZone,
providing a portable and secure execution environment for
IoT devices. Enarx [23] is another Wasm-based confidential
computing framework that supports multiple TEEs, including
Intel SGX and AMD SEV. These works leverage Wasm’s
portability and security to enhance confidential computing.
WAVEN, along with efficient data sharing and fine-grained
memory access control, can further improve these platforms.

IX. CONCLUSION

We present WAVEN, an in-enclave memory virtualization
scheme for WebAssembly, enabling efficient data sharing with
fine-grained memory access control. Through evaluation in
SGX enclaves, we demonstrate the efficiency and effective-
ness of WAVEN. This work advances the field by addressing
Wasm’s memory limitations and facilitating secure and effi-
cient data sharing in confidential computing environments.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for the constructive feedback to this paper. Yingian Zhang
is in part supported by National Natural Science Founda-
tion of china under grant No. 62361166633, National Key
R&D Program of China under grant No. 2023YFB4503902,
Shenzhen Science and Technology Program under grant No.
JSGG20220831095603007, Futian District Trustworthy Con-
fidential Computing Innovation Consortium, and a research
grant from ByteDance Inc.

REFERENCES

[1] “Intel Software Guard Extensions,” https://www.intel.com/content/
www/us/en/architecture-and-technology/software- guard-extensions.
html.


https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html

(2]

(3]
[4]

[3]

(6]

(7]

[8]

[91

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal hardware
extensions for strong software isolation,” in 25th USENIX Security
Symposium (USENIX Security 16), 2016, pp. 857-874.

“APACHE TEACLAVE,” https://teaclave.apache.org.

W. Qiang, Z. Dong, and H. Jin, “Se-lambda: Securing privacy-
sensitive serverless applications using SGX enclave,” in Security and
Privacy in Communication Networks: 14th International Conference,
SecureComm 2018, Singapore, Singapore, August 8-10, 2018, Proceed-
ings, Part I.  Springer, 2018, pp. 451-470.

S. Zhao, P. Xu, G. Chen, M. Zhang, Y. Zhang, and Z. Lin, “Reusable
Enclaves for Confidential Serverless Computing,” in 32nd USENIX
Security Symposium (USENIX Security 23), 2023.

T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan: A Distributed
Sandbox for Untrusted Computation on Secret Data,” in 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
16), 2016, pp. 533-549.

W. Liu, W. Wang, H. Chen, X. Wang, Y. Lu, K. Chen, X. Wang,
Q. Shen, Y. Chen, and H. Tang, “Practical and Efficient in-Enclave
Verification of Privacy Compliance,” in 2021 51st Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
2021, pp. 413-425.

A. Ahmad, J. Kim, J. Seo, I. Shin, P. Fonseca, and B. Lee, “CHANCEL:
Efficient Multi-client Isolation Under Adversarial Programs.” in NDSS,
2021.

W. Zhao, K. Lu, Y. Qi, and S. Qi, “MPTEE: Bringing Flexible and
Efficient Memory Protection to Intel SGX,” in Proceedings of the
Fifteenth European Conference on Computer Systems, 2020, pp. 1-15.
Y. Shen, H. Tian, Y. Chen, K. Chen, R. Wang, Y. Xu, Y. Xia, and
S. Yan, “Occlum: Secure and efficient multitasking inside a single
enclave of Intel SGX,” in Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2020, pp. 955-970.

V. A. Sartakov, D. O’Keeffe, D. Eyers, L. Vilanova, and P. Pietzuch,
“Spons & Shields: practical isolation for trusted execution,” in Proceed-
ings of the 17th ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments, 2021, pp. 186-200.

J. Gu, B. Zhu, M. Li, W. Li, Y. Xia, and H. Chen, “A Hardware-
Software Co-design for Efficient Intra-Enclave Isolation,” in 31st
USENIX Security Symposium (USENIX Security 22), 2022, pp. 3129-
3145.

R. Ramakesavan, D. Zimmerman, and P. Singaravelu, “Intel Memory
Protection Extensions (Intel MPX) Enabling Guide,” no. April, 2015.
“Memory Protection Keys,” https://lwn.net/Articles/643797/.

J. Ménétrey, M. Pasin, P. Felber, and V. Schiavoni, “Twine: An
embedded trusted runtime for WebAssembly,” in 2021 IEEE 37th
International Conference on Data Engineering (ICDE). 1EEE, 2021,
pp. 205-216.

A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,
D. Gohman, L. Wagner, A. Zakai, and J. Bastien, “Bringing the
web up to speed with WebAssembly,” in Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2017, pp. 185-200.

C. Watt, “Mechanising and verifying the WebAssembly specification,”
in Proceedings of the 7th ACM SIGPLAN International Conference on
Certified Programs and Proofs, ser. CPP 2018. New York, NY, USA:
Association for Computing Machinery, 2018, pp. 53-65. [Online].
Available: https://doi.org/10.1145/3167082

C. Watt, X. Rao, J. Pichon-Pharabod, M. Bodin, and P. Gardner,
“Two Mechanisations of WebAssembly 1.0, in Formal Methods,
M. Huisman, C. Piasidreanu, and N. Zhan, Eds. Cham: Springer
International Publishing, 2021, pp. 61-79.

“Bytecode Alliance,” https://bytecodealliance.org.

D. Goltzsche, M. Nieke, T. Knauth, and R. Kapitza, “AccTEE: A
WebAssembly-based Two-way Sandbox for Trusted Resource Account-
ing,” in Proceedings of the 20th International Middleware Conference,
2019, pp. 123-135.

F. Alder, N. Asokan, A. Kurnikov, A. Paverd, and M. Steiner,
“S-FaaS: Trustworthy and Accountable Function-as-a-Service using
Intel SGX,” in Proceedings of the 2019 ACM SIGSAC Conference
on Cloud Computing Security Workshop, ser. CCSW’19. New York,
NY, USA: Association for Computing Machinery, 2019, pp. 185-199.
[Online]. Available: https://doi.org/10.1145/3338466.3358916

J. Ménétrey, M. Pasin, P. Felber, V. Schiavoni, G. Mazzeo, A. Hollum,
and D. Vaydia, “A Comprehensive Trusted Runtime for WebAssem-

17

[23]
[24]

[25]

[26]

[34]
[35]
[36]
[37]
[38]
[39]

[40]

[41]
[42]

[43]

[44]

[45]
[46]
[47]

[48]

[49]

bly with Intel SGX,” IEEE Transactions on Dependable and Secure
Computing, 2023.

“Enarx,” https://enarx.dev.

B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar, “Native client: A sandbox
for portable, untrusted x86 native code,” Communications of the ACM,
vol. 53, no. 1, pp. 91-99, 2010.

D. Lehmann, J. Kinder, and M. Pradel, “Everything Old is New
Again: Binary Security of WebAssembly,” in 29th USENIX Security
Symposium (USENIX Security 20). USENIX Association, Aug. 2020,
pp. 217-234. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity20/presentation/lehmann

V. Sreekanti, C. Wu, X. C. Lin, J. Schleier-Smith, J. E. Gonzalez,
J. M. Hellerstein, and A. Tumanov, “Cloudburst: Stateful Functions-
as-a-Service,” Proceedings of the VLDB Endowment, vol. 13, no. 12,
2020.

R. Song, B. Xiao, Y. Song, S. Guo, and Y. Yang, “A Survey of
Blockchain-based Schemes for Data Sharing and Exchange,” IEEE
Transactions on Big Data, 2023.

“WebAssembly Documentation,” https://webassembly.org/docs/
security/.
“WebAssembly Proposals,” https://github.com/WebAssembly/
proposals.
“Multi-Memory Proposal for WebAssembly,” https://github.com/

WebAssembly/multi-memory.

“How to write Rust Wasm code to take advantage of multi-memory,”
https://github.com/bytecodealliance/wasmtime/issues/4300.
“Multi-memory support,” https://github.com/WebAssembly/wasi-sdk/
issues/211.

S. Shillaker and P. Pietzuch, “Faasm: Lightweight Isolation for
Efficient Stateful Serverless Computing,” in 2020 USENIX Annual
Technical Conference (USENIX ATC 20). USENIX Association,
Jul. 2020, pp. 419-433. [Online]. Available: https://www.usenix.org/
conference/atc20/presentation/shillaker

“WebAssembly Micro Runtime,” https://bytecodealliance.github.io/
wamr.dev.

“PolyBench/C 4.2.1,” https://sourceforge.net/projects/polybench.
“Wasmtime,” https://wasmtime.dev.

“Intel Trust Domain Extensions,” https://www.intel.com/content/www/
us/en/developer/articles/technical/intel- trust-domain-extensions.html.
“AMD Secure Encrypted Virtualization,” https://www.amd.com/en/
processors/amd-secure-encrypted- virtualization.

“ARM Confidential Compute Architecture,” https://www.arm.com/
architecture/security-features/arm-confidential-compute-architecture.
“12th Generation Intel Core Processors Datasheet, Volume 1,7
https://www.intel.com/content/www/us/en/content-details/655258/
content-details.html.

“Support of AMD SEV-SNP in Amazon EC2,” https://docs.aws.
amazon.com/AWSEC2/latest/UserGuide/sev-snp.html.

“Azure Confidential VM Options,” https://learn.microsoft.com/en-us/
azure/confidential-computing/virtual-machine-solutions.

“Rising to the Challenge-Data Security with In-
tel Confidential Computing,” https://community.
intel.com/t5/Blogs/Products-and- Solutions/Security/
Rising-to-the-Challenge-Data- Security- with-Intel-Confidential/
post/1353141.

P-C. Cheng, W. Ozga, E. Valdez, S. Ahmed, Z. Gu, H. Jamjoom,
H. Franke, and J. Bottomley, “Intel TDX Demystified: A Top-Down
Approach,” 2023.

“SGX Enclaves in Microsoft Azure,” https://learn.microsoft.com/en-us/
azure/confidential-computing/confidential-computing-enclaves.

“SGX Enclaves in Alibaba Cloud,” https://www.alibabacloud.com/help/
en/ecs/user-guide/build-an-sgx-encrypted-computing-environment.
“IBM Cloud Bare Metal Servers with SGX,” https://cloud.ibm.com/
docs/bare-metal ?topic=bare-metal-bm-server-provision-sgx.

“Intel Trust  Domain  Extension  Guest  Linux Ker-
nel Hardening Strategy,” https://intel.github.io/
ccc-linux-guest-hardening-docs/security-spec.html#
tdx-linux-guest-kernel-overall-hardening- methodology.

F. Brasser, D. Gens, P. Jauernig, A.-R. Sadeghi, and E. Stapf, “SANC-
TUARY: ARMing TrustZone with User-space Enclaves.” in NDSS,
2019.


https://teaclave.apache.org
https://lwn.net/Articles/643797/
https://doi.org/10.1145/3167082
https://bytecodealliance.org
https://doi.org/10.1145/3338466.3358916
https://enarx.dev
https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann
https://www.usenix.org/conference/usenixsecurity20/presentation/lehmann
https://webassembly.org/docs/security/
https://webassembly.org/docs/security/
https://github.com/WebAssembly/proposals
https://github.com/WebAssembly/proposals
https://github.com/WebAssembly/multi-memory
https://github.com/WebAssembly/multi-memory
https://github.com/bytecodealliance/wasmtime/issues/4300
https://github.com/WebAssembly/wasi-sdk/issues/211
https://github.com/WebAssembly/wasi-sdk/issues/211
https://www.usenix.org/conference/atc20/presentation/shillaker
https://www.usenix.org/conference/atc20/presentation/shillaker
https://bytecodealliance.github.io/wamr.dev
https://bytecodealliance.github.io/wamr.dev
https://sourceforge.net/projects/polybench
https://wasmtime.dev
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.amd.com/en/processors/amd-secure-encrypted-virtualization
https://www.amd.com/en/processors/amd-secure-encrypted-virtualization
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.arm.com/architecture/security-features/arm-confidential-compute-architecture
https://www.intel.com/content/www/us/en/content-details/655258/content-details.html
https://www.intel.com/content/www/us/en/content-details/655258/content-details.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/sev-snp.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/sev-snp.html
https://learn.microsoft.com/en-us/azure/confidential-computing/virtual-machine-solutions
https://learn.microsoft.com/en-us/azure/confidential-computing/virtual-machine-solutions
https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/Rising-to-the-Challenge-Data-Security-with-Intel-Confidential/post/1353141
https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/Rising-to-the-Challenge-Data-Security-with-Intel-Confidential/post/1353141
https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/Rising-to-the-Challenge-Data-Security-with-Intel-Confidential/post/1353141
https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/Rising-to-the-Challenge-Data-Security-with-Intel-Confidential/post/1353141
https://learn.microsoft.com/en-us/azure/confidential-computing/confidential-computing-enclaves
https://learn.microsoft.com/en-us/azure/confidential-computing/confidential-computing-enclaves
https://www.alibabacloud.com/help/en/ecs/user-guide/build-an-sgx-encrypted-computing-environment
https://www.alibabacloud.com/help/en/ecs/user-guide/build-an-sgx-encrypted-computing-environment
https://cloud.ibm.com/docs/bare-metal?topic=bare-metal-bm-server-provision-sgx
https://cloud.ibm.com/docs/bare-metal?topic=bare-metal-bm-server-provision-sgx
https://intel.github.io/ccc-linux-guest-hardening-docs/security-spec.html#tdx-linux-guest-kernel-overall-hardening-methodology
https://intel.github.io/ccc-linux-guest-hardening-docs/security-spec.html#tdx-linux-guest-kernel-overall-hardening-methodology
https://intel.github.io/ccc-linux-guest-hardening-docs/security-spec.html#tdx-linux-guest-kernel-overall-hardening-methodology

[50]

[51]

[52]

[53]

[54]

[55]
[56]
[57]

[58]

[59]
[60]
[61]

[62]
[63]

[64]

[65]

[66]
[67]
[68]

[69]
[70]

[71]

[72]
[73]
[74]
[75]
[76]

[77]

[78]

[79]
[80]
[81]

R. Bahmani, F. Brasser, G. Dessouky, P. Jauernig, M. Klimmek, A.-
R. Sadeghi, and E. Stapf, “CURE: A security architecture with cus-
tomizable and resilient enclaves,” in 30th USENIX Security Symposium
(USENIX Security 21), 2021, pp. 1073-1090.

Y. Zhang, Y. Hu, Z. Ning, F. Zhang, X. Luo, H. Huang, S. Yan, and
Z. He, “SHELTER: Extending Arm CCA with Isolation in User Space,”
in 32nd USENIX Security Symposium (USENIX Security 23), 2023.
W. Wang, L. Song, B. Mei, S. Liu, S. Zhao, S. Yan, X. Wang, D. Meng,
and R. Hou, “NestedSGX: Bootstrapping Trust to Enclaves within
Confidential VMs,” arXiv preprint arXiv:2402.11438, 2024.

S. van Schaik, A. Seto, T. Yurek, A. Batori, B. AlBassam, C. Garman,
D. Genkin, A. Miller, E. Ronen, and Y. Yarom, “SoK: SGX.Fail: How
stuff get eXposed,” 2022.

E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal,
Q. Pu, V. Shankar, J. Carreira, K. Krauth, N. Yadwadkar et al., “Cloud
programming simplified: A berkeley view on serverless computing,”
arXiv preprint arXiv:1902.03383, 2019.

“AWS Lambda,” https://aws.amazon.com/lambda.

“Google Cloud Functions,” https://cloud.google.com/functions.

Z. Jia and E. Witchel, “Boki: Stateful Serverless Computing with
Shared Logs,” in Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles, 2021, pp. 691-707.

D. Barcelona-Pons, P. Sutra, M. Sdnchez-Artigas, G. Paris, and
P. Garcia-Lopez, “Stateful Serverless Computing with CRUCIAL,”
ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 31, no. 3, pp. 1-38, 2022.

“Open Data Documentation on AWS,” https://github.com/awslabs/
open-data-docs.git.

“Data marketplace platform market report,” https://www.imarcgroup.
com/data-marketplace-platform-market.

“Snowflake Marketplace,” https://www.snowflake.com/en/data-cloud/
marketplace/.

“AWS Data Exchange,” https://aws.amazon.com/data-exchange/.

N. Hynes, D. Dao, D. Yan, R. Cheng, and D. Song, “A Demonstration
of Sterling: A Privacy-Preserving Data Marketplace,” Proc. VLDB
Endow., vol. 11, no. 12, pp. 2086-2089, aug 2018. [Online]. Available:
https://doi.org/10.14778/3229863.3236266

W. Dai, C. Dai, K.-K. R. Choo, C. Cui, D. Zou, and H. Jin, “SDTE:
A Secure Blockchain-Based Data Trading Ecosystem,” IEEE Trans-
actions on Information Forensics and Security, vol. 15, pp. 725-737,
2020.

G. Su, W. Yang, Z. Luo, Y. Zhang, Z. Bai, and Y. Zhu, “BDTF: A
Blockchain-Based Data Trading Framework with Trusted Execution
Environment,” in 2020 16th International Conference on Mobility,
Sensing and Networking (MSN), 2020, pp. 92-97.

“ETHEREUM VIRTUAL MACHINE (EVM),” https://ethereum.org/
en/developers/docs/evm.

“EOSIO Blockchain,” https://eos.io.

“NEAR Blockchain,” https://near.org.

“Ethereum Flavored WebAssembly,” https://github.com/ewasm.
“Multi-Memory Proposal for WebAssembly (The time when it
was proposed),” https://github.com/WebAssembly/proposals/commit/
af91cbf960d1c0bf820707d9eb299f395f942973.

V. Costan and S. Devadas, “Intel SGX Explained,” Cryptology
ePrint Archive, Paper 2016/086, 2016, https://eprint.iacr.org/2016/086.
[Online]. Available: https://eprint.iacr.org/2016/086

“Emscripten,” https://emscripten.org/index.html.

“WASI SDK,” https://github.com/WebAssembly/wasi-sdk.

“RISC-V  Instruction Set Manual,” https://github.com/riscv/
riscv-isa-manual.

“ARMYVS5 Architecture Reference Manual,” https://developer.arm.com/
documentation/ddi0100/latest.

“WebAssembly Micro Runtime Source Code,” https://github.com/
bytecodealliance/wasm-micro-runtime.

J. D. McCalpin, “Memory bandwidth and machine balance in current
high performance computers,” IEEE Computer Society Technical Com-
mittee on Computer Architecture (TCCA) Newsletter, pp. 19-25, Dec.
1995.

“SQLite code ported to WebAssembly,” https://github.com/
JamesMenetrey/unine- twine/tree/main/benchmarks/sqlite.

“SQLite website,” https://www.sqlite.org/index.html.

“SQLite Speedtest]l Program Description,” https://sqlite.org/cpu.html.
“YuNet: A Tiny Millisecond-level Face Detector (Source Code),” https:
//github.com/ShiqiYu/libfacedetection.git, (Accessed: 2022-05-03).

18

[82]
[83]
[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]
[95]

[96]

[97]

[98]
[99]

[100]

[101]

[102]

[103]

W. Wu, H. Peng, and S. Yu, “YuNet: A Tiny Millisecond-level Face
Detector,” Machine Intelligence Research, pp. 1-10, 2023.

“WIDER FACE: A Face Detection Benchmark,” http://shuoyang1213.
me/WIDERFACE/, (Accessed: 2022-05-03).

“STREAM Benchmark Guidelines,” https://www.cs.virginia.edu/
stream/ref . html.

D. D. Lewis, Y. Yang, T. Russell-Rose, and F. Li, “Rcvl: A new
benchmark collection for text categorization research,” Journal of
machine learning research, vol. 5, no. Apr, pp. 361-397, 2004.
“HOGWILD! Code Releases,” http://i.stanford.edu/hazy/victor/
Hogwild/.

B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild!: A lock-free
approach to parallelizing stochastic gradient descent,” Advances in
neural information processing systems, vol. 24, 2011.

X. Rao, A. L. Georges, M. Legoupil, C. Watt, J. Pichon-
Pharabod, P. Gardner, and L. Birkedal, “Iris-Wasm: Robust and
Modular Verification of WebAssembly Programs,” Proc. ACM
Program. Lang., vol. 7, no. PLDI, jun 2023. [Online]. Available:
https://doi.org/10.1145/3591265

D.-Y. Hong, C.-C. Hsu, C.-Y. Chou, W.-C. Hsu, P. Liu, and J.-J.
Wu, “Optimizing control transfer and memory virtualization in full
system emulators,” ACM Trans. Archit. Code Optim., vol. 12, no. 4,
dec 2015. [Online]. Available: https://doi.org/10.1145/2837027

X. Guo and R. Mullins, “Fast TLB simulation for RISC-V systems,”
arXiv preprint arXiv:1905.06825, 2019.

F. Bellard, “Qemu, a fast and portable dynamic translator.” in USENIX
annual technical conference, FREENIX Track, vol. 41, no. 46. Cali-
fornia, USA, 2005, pp. 10-5555.

“Spike RISC-V ISA Simulator,” https://github.com/riscv-software-src/
riscv-isa-sim.git.

0. Oleksenko, D. Kuvaiskii, P. Bhatotia, P. Felber, and C. Fetzer, “Intel
MPX Explained: A Cross-layer Analysis of the Intel MPX System
Stack,” Proceedings of the ACM on Measurement and Analysis of
Computing Systems, 2018.

“Intel MPX Explained,” https://intel-mpx.github.io.

S. Weiser, L. Mayr, M. Schwarz, and D. Gruss, “SGXIJail: Defeating
Enclave Malware via Confinement,” in 22nd International Symposium
on Research in Attacks, Intrusions and Defenses (RAID 2019), 2019,
pp. 353-366.

Y. Chen, J. Li, G. Xu, Y. Zhou, Z. Wang, C. Wang, and K. Ren,
“SGXLock: Towards Efficiently Establishing Mutual Distrust Between
Host Application and Enclave for SGX,” in 31st USENIX Security
Symposium (USENIX Security 22), 2022, pp. 4129-4146.

H. Lei, Z. Zhang, S. Zhang, P. Jiang, Z. Zhong, N. He, D. Li, Y. Guo,
and X. Chen, “Put Your Memory in Order: Efficient Domain-based
Memory Isolation for WASM Applications,” in Proceedings of the 2023
ACM SIGSAC Conference on Computer and Communications Security,
2023, pp. 904-918.

“Fastly Compute @Edge,” https://docs.fastly.com/products/
compute-at-edge.
“Cloudflare ~ Workers,”  https://developers.cloudflare.com/workers/

platform/web-assembly.

M. Chadha, N. Krueger, J. John, A. Jindal, M. Gerndt, and S. Benedict,
“Exploring the Use of WebAssembly in HPC,” in Proceedings of the
28th ACM SIGPLAN Annual Symposium on Principles and Practice
of Parallel Programming, ser. PPoPP °23. New York, NY, USA:
Association for Computing Machinery, 2023, pp. 92-106. [Online].
Available: https://doi.org/10.1145/3572848.3577436

B. Li, H. Fan, Y. Gao, and W. Dong, “Bringing WebAssembly
to Resource-Constrained IoT Devices for Seamless Device-Cloud
Integration,” in Proceedings of the 20th Annual International
Conference on Mobile Systems, Applications and Services, ser.
MobiSys ’22. New York, NY, USA: Association for Computing
Machinery, 2022, pp. 261-272. [Online]. Available: https://doi.org/10.
1145/3498361.3538922

B. Li, W. Dong, and Y. Gao, “WiProg: A WebAssembly-based Ap-
proach to Integrated IoT Programming,” in IEEE INFOCOM 2021 -
IEEE Conference on Computer Communications, 2021, pp. 1-10.

J. Ménétrey, M. Pasin, P. Felber, and V. Schiavoni, “Watz: a Trusted
WebAssembly runtime environment with remote attestation for Trust-
Zone,” in 2022 IEEE 42nd International Conference on Distributed
Computing Systems (ICDCS). 1EEE, 2022, pp. 1177-1189.


https://aws.amazon.com/lambda
https://cloud.google.com/functions
https://github.com/awslabs/open-data-docs.git
https://github.com/awslabs/open-data-docs.git
https://www.imarcgroup.com/data-marketplace-platform-market
https://www.imarcgroup.com/data-marketplace-platform-market
https://www.snowflake.com/en/data-cloud/marketplace/
https://www.snowflake.com/en/data-cloud/marketplace/
https://aws.amazon.com/data-exchange/
https://doi.org/10.14778/3229863.3236266
https://ethereum.org/en/developers/docs/evm
https://ethereum.org/en/developers/docs/evm
https://eos.io
https://near.org
https://github.com/ewasm
https://github.com/WebAssembly/proposals/commit/af91cbf960d1c0bf820707d9eb299f395f942973
https://github.com/WebAssembly/proposals/commit/af91cbf960d1c0bf820707d9eb299f395f942973
https://eprint.iacr.org/2016/086
https://eprint.iacr.org/2016/086
https://emscripten.org/index.html
https://github.com/WebAssembly/wasi-sdk
https://github.com/riscv/riscv-isa-manual
https://github.com/riscv/riscv-isa-manual
https://developer.arm.com/documentation/ddi0100/latest
https://developer.arm.com/documentation/ddi0100/latest
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/JamesMenetrey/unine-twine/tree/main/benchmarks/sqlite
https://github.com/JamesMenetrey/unine-twine/tree/main/benchmarks/sqlite
https://www.sqlite.org/index.html
https://sqlite.org/cpu.html
https://github.com/ShiqiYu/libfacedetection.git
https://github.com/ShiqiYu/libfacedetection.git
http://shuoyang1213.me/WIDERFACE/
http://shuoyang1213.me/WIDERFACE/
https://www.cs.virginia.edu/stream/ref.html
https://www.cs.virginia.edu/stream/ref.html
http://i.stanford.edu/hazy/victor/Hogwild/
http://i.stanford.edu/hazy/victor/Hogwild/
https://doi.org/10.1145/3591265
https://doi.org/10.1145/2837027
https://github.com/riscv-software-src/riscv-isa-sim.git
https://github.com/riscv-software-src/riscv-isa-sim.git
https://intel-mpx.github.io
https://docs.fastly.com/products/compute-at-edge
https://docs.fastly.com/products/compute-at-edge
https://developers.cloudflare.com/workers/platform/web-assembly
https://developers.cloudflare.com/workers/platform/web-assembly
https://doi.org/10.1145/3572848.3577436
https://doi.org/10.1145/3498361.3538922
https://doi.org/10.1145/3498361.3538922

	Introduction
	Background
	WebAssembly in A Nutshell
	Software Fault Isolation
	Wasm Execution Modes

	User-space TEEs

	Motivation
	System Model
	Threat Model
	Example Use Cases
	Confidential Stateful FaaS
	Secure Data Marketplaces

	Limitations of Wasm Linear Memory
	Solution: WebAssembly Memory Virtualization

	Waven Design
	Overview
	WebAssembly Paging
	Memory Isolation
	Memory Access Control
	Memory Remapping
	Summary

	Implementation
	AOT Compiler Modification
	Runtime Modification
	Runtime Interfaces

	Evaluation
	Experimental Setup
	Selection of Padding Size
	Effectiveness of Optimizations
	Exception Pages and Page Paddings
	Dual Page Tables

	Performance
	Compilation
	Execution

	Evaluation of Confidential Workloads
	Memory Stress Test
	Effectiveness of Memory Sharing
	Multi-write Multi-read Scenario
	Multi-read Scenario


	Discussion
	Related Work
	Conclusion
	References

