
AlphaDog: No-Box Camouflage Attacks via Alpha
Channel Oversight

Qi Xia
Department of Electrical and Computer Engineering

University of Texas at San Antonio
qi.xia@my.utsa.edu

Qian Chen
Department of Electrical and Computer Engineering

University of Texas at San Antonio
guenevereqian.chen@utsa.edu

Abstract—Traditional black-box adversarial attacks on com-
puter vision models face significant limitations, including inten-
sive querying requirements, time-consuming iterative processes,
a lack of universality, and low attack success rates (ASR)
and confidence levels (CL) due to subtle perturbations. This
paper introduces AlphaDog, an Alpha channel attack, the first
universally efficient targeted no-box attack, exploiting the often
overlooked Alpha channel in RGBA images to create visual dis-
parities between human perception and machine interpretation,
efficiently deceiving both. Specifically, AlphaDog maliciously
sets the RGB channels to represent the desired object for
AI recognition, while crafting the Alpha channel to create a
different perception for humans when blended with a standard
or default background color of digital media (thumbnail or image
viewer apps). Leveraging differences in how AI models and
human vision process transparency, AlphaDog outperforms
existing adversarial attacks in four key ways: (i) as a no-box
attack, it requires zero queries; (ii) it achieves highly efficient
generation, taking milliseconds to produce arbitrary attack im-
ages; (iii) AlphaDog can be universally applied, compromising
most AI models with a single attack image; (iv) it guarantees
100% ASR and CL. The assessment of 6,500 AlphaDog
attack examples across 100 state-of-the-art image recognition
systems demonstrates AlphaDog’s effectiveness, and an IRB-
approved experiment involving 20 college-age participants val-
idates AlphaDog’s stealthiness. AlphaDog can be applied in
data poisoning, evasion attacks, and content moderation. Addi-
tionally, a novel pixel-intensity histogram-based detection method
is introduced to identify AlphaDog, achieving 100% effectiveness
in detecting and protecting computer vision models against
AlphaDog. Demos are available on the AlphaDog website [1]
(https://sites.google.com/view/alphachannelattack/home).

I. INTRODUCTION

Artificial intelligence (AI) plays a crucial role in computer
vision tasks, enabling machines to comprehend visual data
with precision. These AI models analyze diverse image for-
mats, ranging from the conventional RGB format of JPEG
to the enriched domain introduced by PNG, TIFF, HEIF,
WebP, and GIF, which incorporate the Alpha Channel. This
transparent layer revolutionizes image integration, fostering

creativity in graphic design and web development by seam-
lessly blending opaque and translucent elements.

Challenges of Traditional Adversarial Attacks. Despite the
advancements, traditional black-box adversarial attacks [2]–
[8] pose formidable challenges. These attacks, leveraging
subtle manipulations of benign image RGB channels, confront
four significant limitations such as (i) Intensive Querying:
Crafting adversarial examples demands repeated querying of
victim AI models, hindered by API limits and the risk of
detection due to excessive queries. (ii) Low Efficiency: Gen-
erating attack examples through iterative perturbation tuning
consumes substantial time, hindering operational agility. (iii)
Model Specificity: Adversarial examples are often tailored
to specific AI models, limiting their applicability across di-
verse architectures. (iv) Low Success Rate and Confidence:
Constrained perturbations at imperceptible levels lead to low
Attack Success Rates (ASR) and Confidence Levels (CL),
challenging the efficacy of deceiving robust AI models.

Exploiting Alpha Channel Oversights: A Universal

AlphaDog Approach. Modern image recognition platforms
and computer vision models frequently overlook the Alpha
channel during the input/output (I/O) processing stage,
exposing a critical vulnerability that is exploited by our
AlphaDog, an Alpha channel attack. Exploiting this vul-
nerability, AlphaDog efficiently generates attack images,
regardless of the victim model’s architecture or design, making
it a universally effective attack method. By manipulating
transparency, AlphaDog generates attack images that look
normal to human observers but are recognized as malicious
by AI models, creating a gap between human perception and
machine interpretation. This vulnerability primarily impacts
pure grayscale images and grayscale areas within color images,
as the RGBA format manages only a single Alpha channel,
leaving color regions unaffected.

Efficient AlphaDog Attack Image Generation. To achieve
this deception, the RGB channels of AlphaDog attack
images IAtk are relevant to those of the malicious target
image (IAI). When AI models process the input attack image,
they disregard its Alpha channel and focus solely on the
information from IAI ’s RGB channels. Meanwhile, meticulous
calculation of Alpha channel values ensures that when IAtk

is viewed through digital image media, humans perceive it
as IEye. It is important to note that both IAI and IEye are

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.230789
www.ndss-symposium.org

https://sites.google.com/view/alphachannelattack/home

arbitrary grayscale images or grayscale regions within color
images. For further details, refer to Section IV.

Challenges in Designing and Executing AlphaDog At-

tacks. As outlined earlier, AlphaDog exploits a vulnerability
in modern AI models’ input/output (I/O) libraries, where the
Alpha channel of the input image is often ignored. This allows
the creation of AlphaDog attack images that consistently
trick AI models into identifying IAtk as IAI , achieving a
100% Attack Success Rate (ASR). However, for AlphaDog
attacks to be truly effective and covert, it is critical that
human observers perceive IAtk as a benign, normal image
IEye. This perception is influenced by the background color
of the digital media displaying the image. For example, in
most common image viewer applications like web browsers,
the default background color is typically white. On macOS,
the default image viewer app is Preview, and on Windows, it
is Photos, both of which use a default gray background. The
calculated Alpha channel values for IAtk are influenced by the
background colors, as the attack image is blended with them.

A challenge arises when an AlphaDog image intended
for a white background is viewed in an App with a gray
background. In such cases, artifacts from IAI or unintended
visual elements may become noticeable, potentially alerting
attentive users. To address this, we recommend reducing the
intensity of IAI to minimize the visibility of these artifacts
and ensure that the attack remains undetected. Further details
on addressing this challenge are provided in Section IV-C.

AlphaDog Threats Across Critical Sectors. Critical
infrastructure that relies on AI technology is highly vulner-
able to AlphaDog attacks. In image-based systems, the
insertion of a single AlphaDog attack image, such as one
depicting two political figures, can disrupt facial recognition
systems. In the realm of telehealth and medical imaging,
AlphaDog presents a serious threat by potentially leading
to misdiagnoses in grayscale images like X-rays, MRIs, and
CT scans. AlphaDog can endanger patient safety and also
open the door to fraud, such as manipulating insurance claims.
Even in everyday scenarios like traffic signs, AlphaDog can
alter grayscale elements of road signs, potentially misleading
autonomous vehicles and posing a significant risk to road
safety. The wide-reaching implications of AlphaDog make
it a critical concern across multiple sectors.

AlphaDog Real-World Practical Scenarios. We generated
6,500 AlphaDog attack images and tested them across 100
AI models, including 80 open-source systems and 20 cloud-
based AI platforms. AlphaDog achieved a 100% Attack
Success Rate (ASR) and 100% Classification Loss (CL).
Figure 1 illustrates four examples of AlphaDog attacks and
their evaluations. These examples reflect real-world scenarios
in which AlphaDog manipulates grayscale elements within
color images, such as a grayscale “20” speed limit sign in
a color street scene, a grayscale image of a cat, a grayscale
photo of President Biden, and an X-ray of a healthy hand.

The results presented in Figure 1 demonstrate AlphaDog’s
effectiveness in deceiving cloud-based image recognition sys-
tems with predefined malicious targets. For instance, Chat-

GPT4 [9] incorrectly interprets the speed limit sign as in-
dicating 75 miles per hour, while IMAGERecognize [10]
misidentifies the grayscale cat image as a Canine/Dog/Husky
with a confidence score of 100%. Similarly, Amazon Rekog-
nition [11] mistakenly identifies President Biden’s image as
President Obama with a confidence score of 99.9%. Further-
more, Google Bard [12] (later renamed to Gemini) incorrectly
classifies the X-ray of a healthy hand as showing a clear
proximal dislocation. For more demonstrations and details,
visit the AlphaDog website [1], which provides an extensive
overview of AlphaDog attack examples. These examples
illustrate AlphaDog’s ability to compromise various AI mod-
els, highlighting the significant discrepancy between machine
interpretation and human observation.

(a) (b)

(c) (d)

Fig. 1: Illustration of AlphaDog and four out of 6,500 tested
attack image examples using the Google Chrome web browser
as the image media. (a) The attack image is interpreted by
ChatGPT-4 Vision [9] as “75 mph,” but visualized by human
observers as “20 mph”. (b) The attack image is visualized as a
cat by human observers, but an online AI Image Recognition
System [10] identifies it as a husky dog. (c) The attack image is
visualized as President Biden, while Amazon Rekognition [11]
recognizes it as President Obama’s image. (d) The attack
image is an X-ray of a healthy hand, but Bard [12] interprets it
as a dislocated hand. AlphaDog demos are available here [1].

Contributions. AlphaDog presents several significant con-
tributions to the field of adversarial attacks in computer vision:
• First Targeted No-box Attacks: AlphaDog stands as the

first no-box attack, requiring zero queries and no prior
access to AI models. This is possible due to a common
behavior among targeted AI models: the removal of the
input image’s Alpha channel. This innovation facilitates data
poisoning, image alteration, and content removal attacks
without requiring queries or responses between attackers and
the targeted AI models.

Mridula
2

• First Universal Attack: A single AlphaDog attack can
effectively compromise all AI models that process the Alpha
channel in a similar way. AlphaDog achieves a 100%
ASR, validated across 100 state-of-the-art open-source and
commercial AI models using 6,500 AlphaDog attack
images derived from two arbitrary images. Of these models,
98 remove the Alpha channel from RGBA images, while
only two replace the Alpha channel with either a black or
white background. This universal approach eliminates the
need for attackers to craft tailored adversarial examples for
individual AI systems, representing a major leap forward in
the adversarial threat landscape.

• Guarantees 100% ASR, CL, and Stealthiness: Unlike
perturbation-based attacks, which often suffer from low
adversarial success rates (ASR) and confidence levels (CL),
AlphaDog delivers clear target images to AI models,
ensuring 100% ASR and CL. An IRB-approved experiment
with 20 participants from a large U.S. university campus
confirmed the stealthiness of AlphaDog attack images.

• Efficient and Automated Attack Example Generation:
Unlike traditional adversarial attacks, which require exten-
sive queries and time, AlphaDog efficiently produces
attack examples. The time complexity of automatic attack
image generation is O(MN) (Quadratic Time), enabling the
generation of a 1, 000⇥1, 000 attack image in milliseconds,
even on a standard Intel i3 CPU laptop.

• Root Cause Analysis: This study performs a root cause
analysis on 20 off-the-shelf cloud-based image recognition
systems and 80 open-source AI models. It identifies the
vulnerability of AlphaDog stemming from the overlooked
Alpha channel of input RGBA images by AI models.

• Broad Applicability: AlphaDog demonstrates effective-
ness across various image contexts, compromising trans-
parency in both grayscale and color images with grayscale
regions. Experimental results highlight AlphaDog’s ef-
ficiency and disruptive potential in critical sectors such
as transportation, medical imaging, telehealth, and online
image-based surveys, all achieved without prior knowledge
of or access to victim AI models.

• Defense Mechanism Development: A novel intensity
histogram-based detector is crafted to effectively protect
AI models from AlphaDog attacks, achieving a 100%
detection rate.

• AlphaDog Adversarial Attack Dataset: A dataset con-
taining 6,500 AlphaDog attack examples of arbitrary
images is established, aiming to bridge the perceptual gap
between human perception and machine interpretation. This
dataset serves as a valuable resource for designing state-
of-the-art AI models and enhancing their resilience against
AlphaDog attacks.
Ethical Issue. We have engaged with key stakeholders,

including Google, Amazon, and Microsoft, regarding the
AlphaDog issue and received responses indicating their
proactive efforts to address this concern. Notably, AlphaDog
has been recognized and selected as a candidate for the
Microsoft Bug Bounty Award 2024, highlighting the industry’s

recognition of the critical need to resolve this vulnerability.
Paper Outline. Section II describes preliminary knowledge.

Section III presents the threat model. Section IV explains
the AlphaDog math foundation. Section V demonstrates
AlphaDog real-world feasibility. Section VI analyzes the
factors affecting AlphaDog. Section VII investigates the
defense strategy against AlphaDog. Section VIII discusses
the limitations of the study. Section IX reviews related prior
studies. Section X concludes the paper.

II. BACKGROUND AND PRELIMINARIES

AlphaDog introduces an innovative technique exploiting
vulnerabilities in the Alpha channel specific to RGBA image
formats. This method seamlessly combines an AlphaDog
attack image with a background color, creating distinctions
between normal and malicious target images that can be per-
ceived by human observers and interpreted by AI models. This
section provides an overview of essential concepts, covering
the RGBA image format and transparency, the portrayal of
background colors in image media, and the Alpha Compositing
technique. Additionally, we explore how modern AI models
handle transparency information from input RGBA image files
and discuss the latest advancements in blackbox settings for
adversarial image attacks.

A. RGBA Image Format.
The widely used RGBA image format has Red (R), Green

(G), and Blue (B) color channels and an Alpha channel (A).
Alpha channel values range from 0 (fully transparent) to
1 (fully opaque) for each pixel. When an RGBA image is
composited onto a background, the Alpha channel controls
the level of transparency. Introducing a background color
influences the overall appearance of the image. For example,
adding a pure white background causes pixels with higher
Alpha values to appear more opaque, while pixels with lower
Alpha values permit more of the white background to show
through, resulting in varying levels of transparency.

B. Digital Image Media and Background Colors
Digital image media has two types: Image Viewer (IV)

and Thumbnails (TB). IVs like Chrome, Adobe PDF Viewer,
Windows Photo Viewer, Mac Preview, and iPhone Photo
display images in their original size. The scaled-down versions
provided by operating system TB tools, like Windows File
Explorer and Mac Finder, enable users to preview image
content without opening it through IVs. Image media comes
with either white or gray background colors. When visualizing
RGBA images, images get composited onto these apps’ back-
grounds. This can cause variations in the same RGBA image
because pixel transparency is notably influenced by the image
medium’s background color.

The grayscale background of image media enables color
normalization from black to white on a scale of 0 to 1.
In this scale, 0 signifies black, and 1 represents white. The
intermediate shades of gray are used to convey various levels
of transparency in the composited image. Table I summarizes

Mridula
3

TABLE I: Background Colors of Image Media Apps. * indi-
cates default Apps for the Operating System.

Composition
Strategy

Thumbnail
(Reduced-Size
Image Display)

Viewer
(Full-Size

Image Display)

White
Background

Google Chrome, Safari,
Mozilla Firefox ,
Microsoft Edge,
Microsoft IE,
macOS Finder*,
iPhone Photos*,
Win10 file explorer*
Ubuntu file explorer*

Google Chrome,
Safari,
Mozilla Firefox,
Microsoft Edge,
Microsoft IE,
Adobe PDF viewer,
Adobe Photoshop
Ubuntu Image viewer*
iPhone Photos*

Gray
Background N/A

Win10 Photos*
(R:64 G:64 B:64),
Mac Preview*
(R:150,G:150,B:150)

commonly used image media and their background colors.
Most default to a white background, except for Windows 10
Photos (gray), and Mac Preview (gray).

C. Handling of RGBA Images by AI Models
The AI models’ I/O often involves processing only the

RGB channel values while disregarding the Alpha channel
of input images. This common practice among these sys-
tems typically entails either discarding the Alpha channel
entirely or introducing and merging a default white or black
background color with the input image before proceeding to
the image processing stage or pipeline. Table II provides a
breakdown of 100 widely utilized computer vision models,
comprising 80 open-source models categorized based on their
training datasets, alongside 20 commercial cloud-based image
recognition systems. Notably, among these models, 98 remove
the Alpha channel from the input image. However, Google
Bard [12] and Google Cloud Vision API [13] deviate from
this norm by adding a black or white background.

D. Element-wise Operations
Element-wise matrix operations are mathematical functions

and algorithms utilized in computer vision, operating on
individual pixels of an image. When two image matrices A and
B share the same dimensions, all four basic operations of addi-
tion (+), subtraction (�), multiplication (�), and division (↵)
between these matrices can be performed. Detailed operation
can be seen in Appendix B. Element-wise operations adhere to
the same rules as operations on numbers, including the order
of precedence, associative property, and commutative rules.
In Section IV-B, to determine the intensity range of target
images, we leverage the multiplication property of division
(i.e., Equations 5 and 6), which can be expressed as:

A↵B = C () A = B � C (1)

E. Alpha Compositing in Computer Graphics
Alpha Compositing, also known as Alpha Blending, is a

technique utilized in computer graphics to merge an image

TABLE II: Computer vision models for Alpha channel treat-
ment in input images. “Open” denotes open-source models,
and “Cloud” signifies commercial cloud-based image recog-
nition systems. Only the underscored cloud-based systems
with w (Google Cloud Vision Api) and b (Bard) add a
white background to the input image; others remove the input
image’s Alpha channel.

Training Dataset
(Model Category)

100 Computer Vision Models
80 (Open) and 20 (Cloud)

Mask RCNN [14]–[17],
YOLOv3 [18]–[32]

COCO [33] YOLOv4 [34], YOLOv5 [35], [36]
(Open) RetinaNet [37]–[40], CenterNet [41]–[44]

EfficientDet [45]–[49],
Cascade RCNN [50], [51]

Pascal VOC [52] Faster RCNN VGG [53]–[58]
(Open) YOLOv1 [59],YOLOv2 [60]

AlexNet [61]–[65], ResNet [66]–[71]
ImageNet [72] EfficientNet [73]–[76], InceptionV3 [77]

(Open) InceptionV4 [78], GoogLeNet [79]
MNIST [80] LeNet-5 [81], [82]

(Open)
FDDB [83] Facedet [84]

(Open) Cascade CNN [85]
KITTI [86] MonoDepth [87]–[90]

(Open)
BDD100k [91] YOLOv3 [92], [93], YOLOv5 [94]

(Open)
Wider Face [95] Facenet [96],

(Open) YOLOv3 [97], [98], YOLOv2 [99], [100]
CIFAR-10 [101] ResNet [102]

(Open)
Bardb [12]

GoogleCloudV isionApiw [13]
Amazon Rekognition [11]

Dataset GeminiProVisionAPI [103]
Unknown Baidu Image [104], Baidu API [105]
(Cloud) IMAGERecognize [10],

TeachableMachine [106],
Nyckel [107], Labelbox [108],

ChatGPT4 [9], Wolfram [109], Vue.ai [110]
Microsoft Azure [111], AliYunVision [112]
Tencent Vision [113], Landing Lens [114]

Clarifai [115], Imagga [116], ANYLINE [117]

with a background, replicating partial or complete trans-
parency. The term “Alpha” pertains to the Alpha channel of
RGBA images. A grayscale RGBA image IAtk comprises a 3-
D matrix of size m⇥n⇥2, consisting of two 2-D matrices of
the same size (m⇥n): an RGB channel intensity matrix (IIN)
and an Alpha Channel Matrix (A). Therefore, the AlphaDog
attack image IAtk can be expressed as the concatenation of
IIN and A as follows:

IAtk = Concat(IIN , A). (2)

When this RGBA image IAtk is superimposed on a back-
ground color BKG of digital image media, it blends to
produce a final composite image IEye, perceived by human
eyes. The Alpha compositing formula is given by:

Mridula
4

IEye = A � IIN + (1�A) ·BKG. (3)

Here, BKG is technically a m ⇥ n matrix as well, but it
is often a constant matrix with all elements having the same
value. Thus, we can treat BKG as a scalar for simplicity
(e.g., BKG = 1 for a white background) and calculate it
by scalar multiplication with another matrix. Therefore, the
operation between matrix IIN and matrix A is element-wise
multiplication, while the operation between matrix (1 � A)
and constant number BKG is scalar multiplication.

Application of Alpha Compositing for AlphaDog
Design. Alpha Compositing (Equation 3) serves as the founda-
tional theoretical framework for generating AlphaDog attack
images. In the process, when AI models process IAtk, its
Alpha channel A is disregarded, leading the AI models to per-
ceive IAI as equivalent to IIN . Conversely, human observers
perceive the composite image IEye, resulting in a perceptual
disparity between AI models and human interpretation.

To illustrate how AlphaDog generates targeted perceptual
disparity, we provide a 5 ⇥ 5 compositing example where
we design IAtk to be identified by AI models as the letter
“Z” (IAI), while our goal is for human observers to perceive
the letter “K” (IEye) as depicted in Figure 2. Since we
have predetermined IAI and IEye, we can calculate A using
Equation 3. It is important to note that all matrices are
normalized with intensities ranging from 0 to 1. Additionally,
BKG = 1 indicates a white background, which is common in
most widely used image viewers as observed in Table I. We
have “Z” (IAI) and “K” (IEye) as:

IAI = IIN =

2

664

0 0 0 0 0
0.5 0.5 0.5 0 0.5
0.5 0.5 0 0.5 0.5
0.5 0 0.5 0.5 0.5
0 0 0 0 0

3

775

IEye = A � IIN + 1�A =

2

664

1 0.5 1 1 0.5
1 0.5 1 0.5 1
1 0.5 0.5 1 1
1 0.5 1 0.5 1
1 0.5 1 1 0.5

3

775

, and therefore, we obtain A as:

A =

2

664

0 0.5 0 0 0.5
0 1 0 0.5 0
0 1 0.5 0 0
0 0.5 0 1 0
0 0.5 0 0 0.5

3

775 .

During the practical AlphaDog attack image generation
process, the attacker can freely/arbitrarily select two target
images IAI (IIN = IAI) and IEye to compute A using
Equation 3. With the calculated A and IIN , the attacker can
then create IAtk, making it an exceptionally efficient one-step
procedure. Refer to Section IV for further elaboration.

F. Black-box Adversarial Image

A black-box attack, as defined by Papernot et al. and Costa
et al. [118], [119], is characterized by the constraint that

Fig. 2: An example of visual disparity by AlphaDog, where
an AI model removes Alpha channel from IAtk and sees only
IIN as “Z”, while human eyes sees the blending result IEye

as “K”.

attackers can only access samples from an oracle or pairs
consisting of an AI model’s input and output. In practical
terms, attackers introduce imperceptible perturbations to an
otherwise benign image. They then submit this altered image
as queries to the target AI model to elicit responses. Based on
these responses, attackers adjust the perturbations incremen-
tally. This process is iterative and can involve hundreds or even
thousands of iterations. Through this method, attackers aim to
subtly manipulate the image until the AI model misclassifies
it. However, such attacks face several limitations, including
the need for excessive queries, low efficiency due to iterative
tuning, model-specificity, and low success rates and confidence
levels. To address these challenges, this paper introduces a
targeted no-box threat model for AlphaDog, overcoming the
limitations of traditional black-box adversarial attacks.

III. ALPHADOG : TARGETED NO-BOX THREAT MODEL

This section performs a root cause analysis of AlphaDog,
highlighting vulnerabilities in both open-source and propri-
etary AI models. We then establish the AlphaDog threat
model, delineating attack objectives and associated no-box
settings, investigating potential attacker capabilities, and ex-
amining real-world AlphaDog attack scenarios.

A. Root Cause Analysis of AlphaDog

The vulnerability exploited by AlphaDog originates from
how contemporary computer vision models process input
RGBA images. Rather than utilizing information from all four
RGBA channels in the input images, these models selectively
read data solely from the RGB channels. Frequently, the Alpha
channel values of the AI models’ input image are disregarded
by either eliminating this channel or, in occasional instances,
blending the input image with a white or black background.

1) Analysis of open-source AI models: We analyzed the I/O
source code of 80 widely-used open-source computer vision
models available on GitHub to examine how they process
the Alpha channel of input images, confirming and validating
the presence of the AlphaDog vulnerability. Table II pro-
vides the complete list of examined open-source AI models.

Mridula
5

OpenCV [120], TensorFlow I/O [121], and Pillow [122] are the
primary libraries used by these models to read input images.
OpenCV, through the imread(imageFilePath) function,
defaults to extracting image data only from the RGB channels,
excluding Alpha channel information. While TensorFlow I/O
and Pillow can consider every channel when reading a PNG
image, our analysis indicates that most programmers, if not all,
typically trim the RGB channels, neglecting the Alpha channel
values. A code sample demonstrating this behavior is provided
in Figure 7 in Appendix A. This analysis of 80 open-source
AI models’ I/O source code confirms that the most popular
open-source computer vision models remove Alpha channel
information from input images.

2) Analysis of cloud-based image recognition systems:
proprietary AI models: We analyze 20 prominent commer-
cial cloud-based image recognition systems, chosen for their
prominence and accessibility on the internet. These systems
and analysis results which include ChatGPT-4.0 [9] and
Google’s Gemini Pro API [103], are listed in Table II. Our
investigation revealed that out of the 20 proprietary systems
tested, only Google’s Bard [12] and Google Cloud Vision
API [13] handle the Alpha channel differently by blending
a black or white background color with the input image.
In contrast, similar to many open-source AI models, the
remaining 18 cloud-based image recognition systems discard
the Alpha channel information from the input image.

B. Attack Objective: Targeted Attack
AlphaDog is a targeted attack that manipulates image

transparency to deceive computer vision AI models. Its goal
is to cause these models to misclassify the AlphaDog attack
image as a predetermined malicious target image or class.
Concurrently, the attack aims to ensure that human observers
perceive the manipulated image differently, recognizing it as a
specific normal target image without detecting any anomalies
or suspicious information. Grayscale regions are vulnerable to
AlphaDog, while colorful regions remain immune since the
RGBA image format’s Alpha channel can modulate a pixel’s
overall intensity but cannot alter the intensity ratio between
the red (R), green (G), and blue (B) channels. Based on the
goals of the AlphaDog attack, the following definitions are
set up.
1) Human Observer/Victim User: Refers to AI model design-

ers, developers, or users who are humans and visualize
images using digital image media apps.

2) Targeted/Victim AI (or Computer Vision) Models: Denotes
open-source AI models or cloud-based image recognition
systems capable of interpreting images and classifying or
predicting their contents.

3) Normal Target Image: Refers to the specific target image
intended for recognition by human observers.

4) Malicious Target Image: Denotes the particular target im-
age that the victim AI model should interpret.

5) AlphaDog Attack Images: Represents the source or input
images fed into victim AI models, intending to deceive the
models into interpreting the attack as the malicious target

image. Simultaneously, human observers should recognize
it as a normal target image without discerning any noise
or suspicious information.

C. No-box Settings
Based on the root cause analysis outlined in Section III-A,

AlphaDog emerges as highly effective in a No-box attack
scenario since almost all cutting-edge AI models demonstrate
the behavior of discarding the Alpha channel. In this context,
No-box signifies that the attack does not require access to the
victim AI model (or the “box”).

• Query: No query. The attacker assumes that all victim AI
models remove the input image’s Alpha channel.

• AI Model Output Response: No response from the victim
AI models.

• Human Visualized Image: Normal target images IEye.

D. Attacker Capability
The attackers possess the following two capabilities or re-

quirements for the design and implementation of AlphaDog.
• Selection of malicious-normal target image pairs for AI

models and human observers: The attacker strategically
chooses a pair of target images aligned with their attack
objectives and the critical sectors they aim to compromise.
One image is the malicious target for AI model interpreta-
tion, while the other appears normal for human observation.

• Restricted access and no knowledge of victim AI models.
Attackers face restrictions on accessing or understanding
targeted AI models, especially in their developmental stages
when models remain inaccessible. Despite this limitation,
attackers can still craft AlphaDog attack images under the
assumption that these new models adhere to the prevalent
practice of disregarding the input image’s Alpha channel.
These crafted attack images might be illicitly integrated into
training datasets, potentially resulting in the deployment of
unreliable and untrustworthy AI models for the public use.

E. Attack Scenario
Real-world targeted no-box AlphaDog attack scenarios

can be implemented as follows.
1) Exploiting Grayscale Areas: AlphaDog excels at target-

ing grayscale regions within images, enabling attackers to
compromise the integrity of both purely grayscale images
and colored images containing such regions.

2) Evasion Attacks: Malicious AlphaDog images can lead
to the misidentification of crucial components within the
normal target image when analyzed by AI models.

3) Data Poisoning: Attackers insert malicious AlphaDog
images into the training dataset, leading to models learning
incorrect behaviors or creating exploitable vulnerabilities.

IV. ALPHADOG DESIGN FOUNDATION

A. AlphaDog Attack Image Generation
An adversary constructs the AlphaDog attack image IAtk

using a pair of arbitrary target images, determined by the
adversary’s attack purpose: IAI , designated as the malicious

Mridula
6

target image for interpretation by AI models, and IEye, in-
tended as the normal target for human observation. As outlined
in Section II-E, the construction of IAtk involves obtaining
two 2-D matrices: the RGB channel matrix IIN and the
Alpha channel matrix A. The RGB channel matrix of IAtk

is set equal to IAI , ensuring that AI models disregarding the
Alpha channel perceive it as IAI . Additionally, A is calculated
using Equation (Eq.) 4 to ensure that when IAtk is viewed
on digital image media with a background, it appears as
IEye. Algorithm 1 outlines the pseudocode for automatically
generating AlphaDog attack images.

Algorithm 1 AlphaDog Attack Image Generation
function IMAGEGENERATION(IAI , IEye, m, n)

IAtk empty 3D array with dimensionsm⇥ n⇥ 2
A empty 2D array with dimensionsm⇥ n

IAI PREPROCESS(IAI ,m, n)⇥ 0.8 + 0.2
IEye PREPROCESS(IEyem,n)⇥ 0.2 . Eq. 9
for i 1 to m do

for j 1 to n do
A[i][j] 1�IEye[i][j]

1�IAI [i][j]
. Eq. 4

end for
end for
IAtk = [IAI , A] . concatenate RGB and Alpha
return IAtk ⇥ 255 . return 8-bit attack image

end function
function PREPROCESS(I , m, n)

I remove I’s alpha channel
I resize(I ,m,n) . Resize the image to n⇥m

I I/255 . Normalize the 8-bit image
return I

end function

1) Preprocessing: In this step, adversaries arbitrarily select
a pair of target images: IAI and IEye. The RGB matrices
of these target images are known to the attackers, and they
may be of any image type, including RGB or RGBA. If
the target images are RGBA images, their Alpha channel
values are discarded. These grayscale image pairs are nor-
malized before processing, ensuring that the generated IAtk

is also normalized, with intensities ranging from 0 to 1.
Normalization is achieved by dividing each pixel value by
its maximum intensity value, typically 255 for an 8-bit image.
Additionally, all images are resized to a standardized size of
m ⇥ n. The resulting IAtk comprises two 2-D matrices: the
RGB channel intensity matrix (IIN) and the Alpha matrix
(A). IAtk is represented as a 3D matrix of size m ⇥ n ⇥ 2,
formed by concatenating IIN and A along the third dimension.
Equation 2 illustrates this concatenation. In Algorithm 1, this
step corresponds to the PREPROCESS function.

2) Creating IAtk: Generating the AlphaDog attack image
IAtk involves calculating its Alpha channel matrix A, which
depends on IEye and the background color of the digital image
media. For illustration, we assume a white background color
(BKG = 1), commonly seen in web browsers and thumbnails

(see Table I). The steps for creating IAtk are as follows,
referring to lines 6-11 of Algorithm 1:
(a) Initialize IIN = IAI , considering that most advanced AI

models remove the Alpha Channel (A) and process only
the intensity matrix IIN .

(b) When IAtk blends with digital image media containing
a white background (intensity = 1), according to Equa-
tion 3, calculate the Alpha matrix:

A = (1� IEye)↵ (1� IAI) (4)

(c) According to Equation 2, concatenating IIN and A to
obtain IAtk = Concat(IAI , (1� IEye)↵ (1� IAI))

Insight 1: Crafting an IAtk image is an efficient process
with a time complexity of O(MN), where M and N are the
dimensions of the image.

B. Achieving Stealthy AlphaDog Attack: Target Image In-
tensity Histogram Features Analysis

To ensure the stealthiness of IAtk in AlphaDog attacks,
the histograms of IAI and IEye must exhibit high separation,
preventing any discernible noise or malicious target image
been observed by human eyes. Given that IAtk and its Alpha
matrix A are normalized, namely 0  A  1, according to
Equation 4 the following element-wise inequality holds:

0  (1� IEye)↵ (1� IAI)  1. (5)

To address this inequality, we apply the multiplication property
of the division rule (Equation 1) by multiplying both sides by
the denominator (1 � IAI). Consequently, we establish that
the overall intensity of IAI must be lower than that of IEye:

0  IAI  IEye  1 (6)

This analysis confirms that the histograms of IAI and IEye

exhibit a distinct separation, with IAI on the left side and IEye

on the right side. Consequently, no histogram overlapping
between IAI and IEye is allowed; otherwise, Equation 6 is
violated. If IEye < IAI , plugging this into the expression for
A in Equation 4 yields A > 1. As the upper bound of A is 1
due to normalization, values greater than 1 are unexpectedly
“clipped” to the maximum allowable value of 1. In regions
where A is clipped (Aclip), a large area with Aclip = 1 exists.
Utilizing Equation 3, we can derive IEye in this clipped area
as:

IEye = Aclip � IIN + (1�Aclip)⇥ 1

= 1⇥ IIN + (1� 1)

= IIN = IAI (7)

This implies that in the clipped area of A (Aclip), IAI

becomes visible to human eyes, compromising AlphaDog
stealthiness. Figure 3 illustrates how a large histogram overlap
reveals IAI (the dog silhouette) to human eyes.

On the contrary, benign RGBA images typically exhibit
consistent histograms (lack of separation) irrespective of
the background with which they are blended. This disparity

Mridula
7

(a) 20% overlap (b) 5% overlap (c) 0 overlap

(d) 20% overlap (e) 5% overlap (f) 0 overlap

Fig. 3: Illustration demonstrating how intensity histogram
overlap between IAI (dog) and IEye (cat) can expose IAI

(dog) to human eyes. The attack image IAtk is viewed using
Chrome with a white background blended as IEye: (a) 20%
histogram overlap reveals a clear view of the dog; (b) 5%
histogram overlap reveals a silhouette of the dog (Husky); (c)
No histogram overlap effectively conceals the dog. Subfigures
(d), (e), and (f) depict the histograms of the target images
under different levels of overlapping.

in histogram separation between IAtk and benign images
forms the basis of the novel defense mechanism introduced
in Section VII, enabling the detection of AlphaDog attack
images with a 100% detection rate.

Insight 2: The distinct separation of histograms between
IAI and IEye is crucial to maintain AlphaDog stealthiness.
This characteristic is utilized to design a defense to detect
AlphaDog attack images from benign images, as discussed
in Section VII.

C. Addressing the AlphaDog Design Challenge: Ensuring
IAtk Stealthiness by Reducing the Intensity of IAI

To wage AlphaDog successfully, AlphaDog remains
stealthy when the victim opens the attack image using any
image viewer listed in Table I. A key challenge arises when
blending IAtk with a gray background, as seen in applications
like Windows Photo or Mac Preview, where IAI might be
inadvertently revealed, compromising AlphaDog stealthi-
ness. This occurs because Equation 3, designed to ensure that
IEye is displayed when blended with a white background
(BKG = 1), cannot account for the possibility of a gray
background (BKGgr). When IAtk is blended with a gray
background, IEye2 is determined by:

IEye2 = A � IAI + (1�A) ·BKGgr (8)

Since BKGgr 6= 1, IEye2 6= IEye, potentially revealing parts
of IAI and jeopardizing AlphaDog stealthiness. To mitigate
this risk, we propose reducing the intensity of IAI . Lowering
IAI intensity minimizes its contribution to IEye2, making it
nearly invisible. After testing 6,500 examples, we found that
setting 0.2 as the upper bound for IAI intensity achieves both

100% ASR and stealthiness. Thus, Equation 6 can be updated
as:

0  IAI  0.2  IEye  1 (9)

Once Equation 9 is ensured, a stealthy IAtk can be created.
It is important to note that the value 0.2 serves as a universal
threshold, independent of the specific target images (IAI

or IEye) or AI models. For a detailed mathematical proof,
please refer to Appendix D. The evaluation of stealthiness is
thoroughly discussed in Section VI.

Furthermore, it is worth highlighting that this section in-
troduces an additional constraint (Equation 9), which does
not conflict with any existing equations or inequalities in
Sections IV-A and IV-B. As a result, IAtk remains displayed
as IEye when blended with a white background. This is par-
ticularly significant because thumbnails predominantly utilize
a white background, ensuring the preservation of stealthiness
when displayed on a web browser.

Insight 3: By reducing the intensity of IAI to 0.2, the
leakage of IAI is effectively prevented when observed by
victim users (human eyes) in IAtk, ensuring the stealthiness
of the AlphaDog attack.

D. AlphaDog Design for AI Models with Differential Treat-
ment of Input Image Alpha Channels

In Table II, it is evident that only two cutting-edge AI
models deviate from the norm by utilizing a solid white/black
background instead of simply removing the Alpha channel
from input images. To effectively target these exceptional
models, we leverage Equation 3 to compute the A and
IIN matrices to create successful adversarial images IAtk.
We provide an in-depth exploration of this methodology in
Appendix D, demonstrating its effectiveness in crafting such
specialized attack images. Additionally, we confirm that In-
sight 2 remains pertinent even for these outliers, thus ensuring
that the defensive strategies outlined in Section VII are equally
applicable in mitigating attacks targeting these models.

V. ALPHADOG REAL-WORLD APPLICATIONS

A. Automatic Generation of AlphaDog Attack Images

In real-world scenarios, attackers can leverage AlphaDog
for various malicious purposes. One significant application is
the automatic generation of a large dataset of AlphaDog
attack images. To achieve this, attackers start by selecting arbi-
trary grayscale target image pairs IAI and IEye, which are then
used to craft the attack image IAtk following the procedure
outlined in Algorithm 1. The algorithm’s time complexity is
O(MN), ensuring efficiency in generating attack images.

When targeting grayscale regions within colorful images,
attackers should initially isolate and crop these grayscale areas,
designating them as IEye. Subsequently, they can choose a
suitable IAI and preprocess it using Algorithm 1 to generate
an attack image IAtk of the corresponding size. Finally, the
attacker should substitute the original grayscale area in the
image with the newly created attack image IAtk. This stream-
lined process empowers attackers to automatically generate

Mridula
8

AlphaDog attack images tailored to their specific objectives,
enabling them to compromise the integrity of both grayscale
and colorful images containing grayscale regions.

B. Practical Applications of AlphaDog and Examples of
Attack Images

The practical impact of AlphaDog in real-world scenarios
highlights its potency and potential for harm, extending from
deceptive practices in digital document fraud to potential risks
in autonomous vehicles, telehealth, and content moderation.
Table III presents a variety of applications, demonstrating
AlphaDog can create visual disparities between machine
interpretation and human perception.

TABLE III: Four examples of AlphaDog attack images
out of 6,500. The left column shows AI-visualized malicious
target images (IAI), while the right column displays human-
observed normal target images (IEye). Download examples of
AlphaDog attack images from [1].

Target image IAI

seen by AI models
Target image IEye

seen by eyes Description

Pure
grayscale
images

Speed limit:
A grayscale
region of
a color image

1) Deceptive Manipulation by leveraging inconsistencies
between displays: AlphaDog attack images are created by
exploring different image media apps’ different background
colors. An attacker can create an image document that shows
different content when blended with different background
colors. The attack can then get two parties to share the
same document. If they use different image viewer with
different background color, the content being displayed will be
different. This inconsistency can become the basis of potential
financial fraud activities

2) Threats to AI Trustworthiness: Implications for
Healthcare and Autonomous Vehicles: Beyond camouflage,
AlphaDog also functions as an image alteration attack,
posing risks to AI reliability by inducing false predictions,
data poisoning, and inaccurate diagnoses. For instance,
consider the scenario where an AI model falsely diagnoses a
healthy finger as having a bone fracture due to AlphaDog
manipulation. This example highlights the potential impact
of AlphaDog on patient safety and the risk of insurance
fraud within telehealth platforms, as depicted in the second
AlphaDog attack image example in Table III.

The manipulation of grayscale regions within color images,
particularly through adversarial attacks, poses a significant risk
for severe traffic accidents by poisoning the underlying AI
models of Autonomous Vehicles (AVs). The last example in
Table III illustrates how a speed limit of 20 miles per hour is
falsely detected as 75 miles per hour, causing AVs to accelerate
beyond the appropriate speed.

3) Threats to Content Moderation Integrity: Exploiting
AlphaDog in Online Environments: The utilization of com-
puter vision for content moderation is widespread across nu-
merous online social media platforms and services, including
Google [13], Amazon AWS [123], and Microsoft Azure [111].
However, the emergence of AlphaDog presents a potential
threat to these systems by compromising the availability and
integrity of their AI models. For instance, consider the case of
Moderate Content [124], a real-time image content moderation
API utilized by numerous websites to filter inappropriate
content. AlphaDog can deceive these AI models, causing
them to perceive offensive content such as hate speech,
pornography, graphic violence, and defamatory material as
acceptable. This deceptive capability of AlphaDog poses
significant challenges and may contribute to the spread of
harmful content within online communities.

VI. ALPHADOG EFFECTIVENESS

This section empirically evaluates the effectiveness and
universality of AlphaDog as a targeted no-box attack.
Additionally, it investigates the influence of image formats on
the success rate of AlphaDog.

Test Image Dataset: Our dataset encompasses the follow-
ing, and is publicly accessible at [1].
1) 2,000 AlphaDog attack images in PNG format, each

sized 256 ⇥ 256, under the assumption that AI models
remove the input Alpha channel.

2) 4,000 attack images of identical dimensions but in alter-
native formats (TIFF, WebP, SVG, and GIF), with 1,000
examples per format.

3) 500 attack images each specifically tailored for testing the
Bard and Gemini AI models, known for their deviations
from the norm.

A. AlphaDog Attack Image Generation Efficiency Analysis
As detailed in Section V-A, the time complexity for gener-

ating an attack image of size M ⇥ N is O(MN). To assess
practical performance, we conducted experiments on a Dell

Mridula
9

Intel Core i3 8th Gen and 4GB RAM, implementing the
algorithm described in Section V-A using Matlab. The process
of generating the 2,000 PNG images, each sized 256×256,
required a total of 26 seconds, averaging approximately 13
milliseconds per image.

Insight 4: The generation process for AlphaDog images
is highly efficient, with each image processed in milliseconds.

B. AlphaDog Attack Image Stealthiness Evaluation

The stealthiness of AlphaDog attack images is evaluated
both mathematically and through an IRB-approved experi-
ment.

For the mathematical verification, we employ the mean
squared error (MSE) method. After normalizing IEye and
IEye2, we compute MSE as follows:

MSE =
1

mn

mX

i=1

nX

j=1

(IEye[i, j]� IEye2[i, j])
2

All testing images in Test Image Dataset-1) exhibit an MSE
value of 0, indicating perfect stealthiness. This alignment
with IEye is essential for maintaining absolute stealthiness,
particularly in thumbnail images and most image viewers with
white backgrounds. In the analysis of Test Image Dataset-3
on gray backgrounds, such as those in Windows Photo and
Mac Preview, all MSE values are less than 0.08. This further
confirms the stealthiness of the attack image datasets, even
when viewed against gray backgrounds.

In addition, we conducted an IRB-approved experiment
involving 20 participants recruited from a large U.S. university
campus. Recruitment methods included distributing project
flyers on campus and disseminating digital flyers via email
and social media platforms. The participants, aged between
18 and 45 years (with a mean age of 25.18 and a standard
deviation of 6.8), comprised 50% females. Ethnic composition
among participants was 50% Hispanic, 45% Caucasian, and
5% Asian, African American, and other ethnicities. All par-
ticipants correctly identified images from Test Image Dataset-
1) as IEye without detecting any anomalies, affirming the
stealthiness of AlphaDog attack images.

C. Experimental Validation of AlphaDog Universality

To assess the universal effectiveness of AlphaDog in
compromising 98 state-of-the-art open-source computer vision
AI models and cloud-based image recognition systems, all
capable of removing the input image’s Alpha channel, we
conduct experiments on two sets of 1,000 randomly selecting
target images from Test Image Dataset-1), labeling them as
Set 1 and Set 2. The goal is to evaluate whether identical
AlphaDog attack images could successfully compromise
different AI models, thus validating AlphaDog universality.

Our findings reveal that all attack images achieve an excep-
tional 100% ASR, surpassing the performance of any existing
black-box attack methods documented in related literature.
This remarkable success underscores the unique approach
of AlphaDog, which diverges from traditional adversarial

attacks. Unlike conventional methods that introduce pertur-
bations to images in an attempt to mislead computer vision
models by crossing decision boundaries, AlphaDog directly
presents clear, unmodified target images to the models, ensur-
ing both 100% ASR and 100% CL.

D. Influence of Different RGBA Image Formats

This experiment assesses the compatibility of AlphaDog
attack images with five modern RGBA image formats: PNG,
TIFF, WebP, SVG, and GIF. The objective is to evaluate how
these formats are handled by computer vision models and to
ensure the successful execution of AlphaDog attacks when
using attack images saved in these formats. We conduct the
assessment using 4,000 attack examples of Test Image Data-
2), across the five different formats and evaluated them against
100 computer vision models.

Among the 80 open-source AI models examined, we ob-
serve that they utilize a variety of frameworks and I/O libraries
such as OpenCV, TensorFlow, Pillow, Imageio, and SimpleTik
for reading input images. Upon inspecting the source code of
these models, we find that only the PNG format is universally
accepted. Conversely, the SVG format is unsupported by most
models. Additionally, TIFF, WebP, and GIF formats exhibit
varying levels of support across different I/O libraries, as
summarized in Table IV. Models that support a particular
image format achieve a 100% ASR, while those that do not
simply respond with an “input format error”.

For the 20 cloud-based image recognition systems, since the
frameworks are unknown, we conduct experiments to verify
if AlphaDog attacks using different image formats could
be successful. We craft efficient attack images for the cat-
dog example and saved them in five RGBA formats. These
images were then fed into the 20 cloud-based systems using
the appropriate variants. Similar to open-source models, PNG
images, being the most widely supported format, successfully
compromised all cloud-based systems with a 100% success
rate. The compatibility of different image formats is detailed
in Table IV.

Insight 5: PNG emerges as the universally supported format
and should be considered the primary option for attackers.

VII. DEFENSE

In Section III-A, we discussed that the root cause of
AlphaDog lies in the neglect of Alpha channel information in
input RGBA images by AI model designers, which typically
either remove it entirely or blend the image uniformly with
a white or black background color. To mitigate AlphaDog
threats, AI designers have two options. Firstly, they can update
their pre-processing code to include a pixel intensity histogram
analysis of the input image after the image is read by the
I/O library, ensuring its normalcy before further processing.
Alternatively, they can develop a separate detector to identify
AlphaDog attacks using the same approach of intensity
histogram analysis through an independent I/O process. In
this case, input images would first pass through the detector,

Mridula
10

TABLE IV: Effects of RGBA image formats on AlphaDog
success for open-source and cloud-based models. Checkmark
(X) indicates successful AlphaDog attacks with the cor-
responding format, while cross (⇥) indicates ”format unsup-
ported error”.

Model I/O Library
or Model

RGBA Image Format
PNG TIFF Webp SVG GIF

80 open- OpenCV X X X ⇥ X
sourced TensorflowIO X ⇥ ⇥ ⇥ X
models Pillow X X X ⇥ X
shown in Imageio X X X ⇥ X
Table II SimpleTik X X ⇥ ⇥ ⇥

ChatGPT4 X X X X X
BaiduImage X ⇥ ⇥ ⇥ X
BaiduAPI X ⇥ ⇥ ⇥ ⇥
FreeImage X ⇥ ⇥ ⇥ ⇥

20 Wolfram X X X X X
Cloud- Google Api X X X ⇥ X
based Gemini X ⇥ X ⇥ ⇥
systems Teaching X X ⇥ ⇥ X

LabelBox X ⇥ ⇥ ⇥ X
Nyckel X X ⇥ ⇥ ⇥
MS Azure X X X ⇥ X
AliYun X ⇥ X ⇥ X
Tencent X ⇥ ⇥ ⇥ ⇥
Amazon X ⇥ ⇥ ⇥ ⇥
Bard X ⇥ ⇥ ⇥ ⇥
GoogleCloud X X X ⇥ X
LandingLens X ⇥ ⇥ ⇥ ⇥
Clarifai X X X ⇥ X
Imagga X ⇥ ⇥ ⇥ ⇥
Anyline X ⇥ ⇥ ⇥ ⇥
Vue.ai X ⇥ ⇥ ⇥ ⇥

and only normal images would proceed to the models’ pre-
processing phases for tasks like object detection or other
computer vision tasks.

Fig. 4: Diagram illustrating intensity histogram-based detec-
tion.

A. Intensity Histogram-Based Detection Framework
Building upon Insight 2, we establish a foundation for

detecting AlphaDog attack images using intensity histogram
analysis. The defense strategy involves the reconstruction of
IAI and IEye from the input IAtk, followed by the computa-
tion of their histogram overlap rate.

To restore IAI , we remove the Alpha Matrix A from IAtk,
while IEye is restored by exhaustively blending IAtk with all
possible backgrounds. Since the standard 8-bit intensity level

is widely adopted, we blend IAtk with 256 backgrounds span-
ning intensities from 0 to 255, yielding 256 IEye candidate
images.

Once IAtk and the 256 IEye candidates are identified, we
conduct 256 pairwise comparisons to calculate the histogram
overlap rate. Empirically, we find that an overlap rate lower
than 5% indicates the input image is likely an AlphaDog
attack image. Figure 4 illustrates the intensity histogram-
based detection process, wherein 256 IEye candidates are
generated from the grayscale image. Detection of AlphaDog
attacks hinges on the percentage of intensity-overlapping pix-
els among these pairs, with the detection threshold set at 5%
or lower intensity overlap.

It is crucial to note that even if the attacker intentionally
attempts to overlap the histograms of IAI and IEye by
more than 5%, they cannot circumvent our histogram-
based detection method. As explained in Section IV-B and
demonstrated in Figure 3, a substantial histogram overlap
makes IAI visible to human eyes, undermining the stealthiness
of AlphaDog. This inherent contradiction results in the
failure of the attack, making it mutually exclusive.

B. Evaluation of AlphaDog Detection
The intensity histogram-based detector operates indepen-

dently, requiring no modifications to the source code of
computer vision AI models. To gauge its effectiveness, we
randomly collected 1,000 benign PNG images from online
sources like Google Images. For each benign image, we
generated IAI and 256 IEye candidates (IEye1 to IEye256)
by either removing their Alpha channel or creating 256 levels
of grayscale background colors. Using the rule-based detec-
tion algorithm, all these images were correctly identified as
“normal.”

Similarly, we treated the 1,000 benign images as normal
target images and randomly selected two different images
of the same size from Google Images to serve as mali-
cious target images. This process resulted in the creation of
1,000 AlphaDog attack images, with 800 categorized as
AlphaDog removal and 200 with solid background attacks,
respectively. For each of the 1,000 attack images, we generated
IAI and 256 IEye candidates. Our detector then analyzed the
intensity histograms of these 256 image pairs, successfully
flagging all of them as AlphaDog attacks.

Figure 5 illustrates the minimum pixel intensity overlap
percentage among the 256 pairs of images for both the 1,000
benign images and the 1,000 AlphaDog attack examples.
While all benign images surpassed the predefined thresholds,
the overlaps in AlphaDog attack images were nearly 0%,
significantly lower than the threshold. This demonstrates the
effectiveness of our defense mechanism, the histogram-based
detector, in identifying and mitigating potential AlphaDog
attacks on AI models.

VIII. LIMITATIONS

A primary limitation of AlphaDog is its vulnerability
confined to grayscale regions within an image. This limitation

Mridula
11

Fig. 5: Intensity histogram-based detection results for 1,000
AlphaDog attack images compared to 1,000 benign images.

(a) AlphaDog

(b) Traditional Adversarial Attack

(c) Image Scaling Attack

Fig. 6: Comparison of Three Different Attacks: (a)
AlphaDog attacks I/O, requiring zero queries, (b) traditional
attacks targeting Neural Networks, requiring intensive queries,
and (c) Scaling Attacks targeting scaling algorithms, requiring
queries to determine scaling algorithm type and scaling ratio.

arises because the Alpha channel can only adjust the overall
intensity of each pixel, without affecting the intensity ratio
between the RGB channels. However, it is worth noting that
grayscale images are extensively utilized in various domains
such as traffic signs, medical imagery, and face recognition,
thereby ensuring the potential impact of AlphaDog despite
this constraint.

IX. RELATED WORK

This section provides an overview of current black-box
attacks aimed at compromising the security of computer vision
AI models. Furthermore, we delve into AlphaDog, com-
paring it with other research, particularly the Image Scaling
Attack. This comparison highlights AlphaDog universality,
ease of deployment, and more potent method for attacking
computer vision AI models. Figure 6 shows the comparison
between AlphaDog and existing adversarial attacks.

A. Black-box Adversarial Attacks

Recent research has focused on developing image adver-
sarial attacks within a black-box setting [2]–[8]. These attacks
typically follow an iterative, query-based methodology, requir-
ing the attacker to perform numerous queries with modified
perturbations and have access to the model’s decision-making
process for evaluating the impact of perturbations.

Square Attack [2] employs a randomized search scheme
with a score-based black-box approach to enhance query
efficiency, addressing the challenge of query budget. Boundary
Attack [3] minimizes the need for hyperparameter tuning and
reduces reliance on substitute models, making it competitive
and efficient compared to traditional gradient-based attacks.
Chen et al. [4] improve query efficiency by significantly re-
ducing the number of model queries required, making it more
efficient for attacking black-box machine-learning models.
GenAttack [5] enhances query efficiency through the use of
genetic algorithms and gradient-free optimization techniques.
Moon et al. [6] introduce the triangle attack, utilizing geomet-
ric information to optimize perturbations in a low-frequency
space, resulting in a higher attack success rate within a limited
query budget. Ilyas et al. [7] leverage adaptive, optimization-
focused algorithms such as multi-armed bandits and contextual
bandits to efficiently manage exploration-exploitation trade-
offs and reduce unnecessary queries across various domains.
Simple black-box adversarial attacks (SimBA) [8] adopt a
straightforward iterative process, randomly sampling vectors
from a predefined orthonormal basis and adjusting them to
the target image.

Comparative Analysis: Black-Box Attacks and
AlphaDog. Despite advancements in improving query
efficiency, conventional black-box adversarial attacks often
necessitate a significant number of queries for generating a
single adversarial instance. In practical scenarios, frequent
queries and access to an online model’s decisions are often
unfeasible. For instance, ChatGPT-4, with an average response
time of 5 seconds per input image, imposes a limitation of
only 25 queries every 3 hours [125]. This renders the attack
preparation time-consuming and impractical. Furthermore,
in situations where a new AI model or version is in the
testing phase and accessibility is restricted to developers
or a limited user base, attackers may only play the role
of testers, contributing testing data to the development of
the new AI models. In such cases, attackers lack access to
model decisions, resulting in the failure of black-box attacks.
Additionally, black-box adversarial examples are typically
model- or framework-specific, meaning one attack instance
can only target a particular model.

In contrast, AlphaDog introduces a strong targeted no-
box approach, leveraging the shared behavior of AI models
in removing the Alpha channel from RGBA images. This
approach requires zero queries and does not rely on model
outputs, making it simpler yet highly effective across various
AI models. However, AlphaDog primarily targets grayscale
regions of RGBA images, while recent black-box attacks

Mridula
12

impose fewer requirements on image color and format.

B. Image Scaling Attacks
Image Scaling Attacks, demonstrated by Xiao et al. [126]

and Quiring et al. [127], exploit vulnerabilities in image
scaling algorithms to embed a smaller image within a larger
benign image. This technique aims to deceive AI models by
concealing the attack image within the benign one. While
Image Scaling Attacks have shown effectiveness, they face
several challenges.

One major challenge is accurately determining the resizing
ratio required for embedding the attack image, which can
be time-consuming and difficult, especially in black-box or
cloud-based AI models where direct access to the downscaled
image is unavailable. Additionally, if the scaling ratio is not
large enough, the hidden image might become visible to
the user, compromising the attack’s stealth. The success of
these attacks is also impacted by various image pre-processing
actions associated with scaling methods, including cropping,
filtering, affine transformations, and color adjustments. More-
over, Image Scaling Attacks are typically model-dependent,
meaning crafted attack images can only target specific AI
models, requiring attackers to gather basic information about
the target model beforehand.

Comparative Analysis: Image Scaling and AlphaDog.
AlphaDog demonstrates distinct advantages over Image Scal-
ing Attacks [126], [127], owing to its no-box approach and
universality. Firstly, AlphaDog does not need a scaling
step in the AI model’s pre-processing pipeline, in contrast
to Image Scaling Attacks, which heavily depend on such
a step; without it, the attack becomes ineffective. Secondly,
AlphaDog exhibits universal scalability across various AI
models, allowing the AlphaDog attack image to be univer-
sally applied to compromise computer vision models without
tailoring it to specific ones. In contrast, Image Scaling Attacks
require customized attack images aligned with the scaling
algorithm and ratio of each targeted AI model. Thirdly, the
time-consuming process of reverse engineering scaling ratios,
which poses a significant hindrance to Image Scaling Attacks,
does not apply to AlphaDog due to its no-box nature.
Lastly, AlphaDog offers enhanced stealth and applicability.
AlphaDog is less prone to visibility issues, establishing itself
as a more versatile and potent technique for adversarial image
manipulation.

X. CONCLUSION

AlphaDog represents a groundbreaking advancement in
adversarial attacks, adopting a targeted no-box methodology.
By exploiting grayscale regions in RGBA images, AlphaDog
deceives AI models into interpreting the attack image as
malicious, while displaying a normal image to human ob-
servers. Notably, AlphaDog seamlessly operates in the
targeted no-box scenario, eliminating the necessity for queries
and responses from AI model outputs, thereby showcasing a
streamlined yet remarkably effective strategy. The universal
adaptability, coupled with its 100% confidence level and ASR

across a diverse array of AI models, underscores the versatility
and potency of AlphaDog as a revolutionary technique for
adversarial image manipulation.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their comments that
guided us in revising the paper. This work was supported by
the U.S. Department of Energy/National Nuclear Security Ad-
ministration (DOE/NNSA) #DE-NA0003985. Any opinions,
findings, conclusions, or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of the funding agency.

REFERENCES

[1] “Alpha channel attack website.” https://sites.google.com/view/
alphachannelattack/home, 2023. Accessed: 2024-1-10.

[2] M. Andriushchenko, F. Croce, N. Flammarion, and M. Hein, “Square
attack: a query-efficient black-box adversarial attack via random
search,” in European conference on computer vision, pp. 484–501,
Springer, 2020.

[3] W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial
attacks: Reliable attacks against black-box machine learning models,”
arXiv preprint arXiv:1712.04248, 2017.

[4] J. Chen, M. I. Jordan, and M. J. Wainwright, “Hopskipjumpattack:
A query-efficient decision-based attack,” in 2020 ieee symposium on
security and privacy (sp), pp. 1277–1294, IEEE, 2020.

[5] M. Alzantot, Y. Sharma, S. Chakraborty, H. Zhang, C.-J. Hsieh, and
M. B. Srivastava, “Genattack: Practical black-box attacks with gradient-
free optimization,” in Proceedings of the genetic and evolutionary
computation conference, pp. 1111–1119, 2019.

[6] S. Moon, G. An, and H. O. Song, “Parsimonious black-box adversar-
ial attacks via efficient combinatorial optimization,” in International
conference on machine learning, pp. 4636–4645, PMLR, 2019.

[7] A. Ilyas, L. Engstrom, and A. Madry, “Prior convictions: Black-
box adversarial attacks with bandits and priors,” arXiv preprint
arXiv:1807.07978, 2018.

[8] C. Guo, J. Gardner, Y. You, A. G. Wilson, and K. Weinberger, “Simple
black-box adversarial attacks,” in International Conference on Machine
Learning, pp. 2484–2493, PMLR, 2019.

[9] “Openai chatgpt.” chat.openai.com, 2023. Accessed: 2024-1-10.
[10] “Free image recognition online.” imagerecognize.com, 2023. Accessed:

2024-1-10.
[11] “Amazon rekognition.” aws.amazon.com/pm/rekognition/, 2024. Ac-

cessed: 2024-1-10.
[12] “Bard vision.” bard.google.com, 2023. Accessed: 2024-1-10.
[13] “Google cloud vision api.” cloud.google.com/vision, 2023. Accessed:

2024-1-10.
[14] “Mask rcnn nvidia.” github.com/NVIDIA/DeepLearningExamples,

2023. Accessed: 2024-1-10.
[15] “Mask rcnn facebook.” github.com/facebookresearch/

maskrcnn-benchmark, 2023. Accessed: 2024-1-10.
[16] “Mask rcnn matterport.” github.com/matterport/Mask RCNN, 2023.

Accessed: 2024-1-10.
[17] “Mask rcnn tusimple.” github.com/TuSimple/mx-maskrcnn, 2023. Ac-

cessed: 2024-1-10.
[18] “Yolov3 Alexeyab.” github.com/AlexeyAB/yolo2 light, 2024. Ac-

cessed: 2024-1-10.
[19] “Yolov3 died.” github.com/died/YOLO3-With-OpenCvSharp4, 2024.

Accessed: 2024-1-10.
[20] “Yolov3 madhawav.” github.com/madhawav/YOLO3-4-Py, 2024. Ac-

cessed: 2024-1-10.
[21] “Yolov3 walktree.” github.com/walktree/libtorch-yolov3, 2024. Ac-

cessed: 2024-1-10.
[22] “Yolov3 Xiaochus.” github.com/xiaochus/YOLOv3, 2024. Accessed:

2024-1-10.
[23] “Yolov3 Yu-zhewen.” github.com/Yu-Zhewen/Tiny YOLO v3

ZYNQ, 2024. Accessed: 2024-1-10.
[24] “Yolov3 David8862.” github.com/david8862/

keras-YOLOv3-model-set, 2024. Accessed: 2024-1-10.

https://sites.google.com/view/alphachannelattack/home
https://sites.google.com/view/alphachannelattack/home
chat.openai.com
imagerecognize.com
aws.amazon.com/pm/rekognition/
bard.google.com
cloud.google.com/vision
github.com/NVIDIA/DeepLearningExamples
github.com/facebookresearch/maskrcnn-benchmark
github.com/facebookresearch/maskrcnn-benchmark
github.com/matterport/Mask_RCNN%20
github.com/TuSimple/mx-maskrcnn
github.com/AlexeyAB/yolo2_light
github.com/died/YOLO3-With-OpenCvSharp4
github.com/madhawav/YOLO3-4-Py
github.com/walktree/libtorch-yolov3
github.com/xiaochus/YOLOv3
github.com/Yu-Zhewen/Tiny_YOLO_v3_ZYNQ
github.com/Yu-Zhewen/Tiny_YOLO_v3_ZYNQ
github.com/david8862/keras-YOLOv3-model-set
github.com/david8862/keras-YOLOv3-model-set
Mridula
13

[25] “Yolov3 Mystic123.” github.com/mystic123/tensorflow-yolo-v3, 2024.
Accessed: 2024-1-10.

[26] “Yolov3 Qidian213.” github.com/Qidian213/deep sort yolov3, 2024.
Accessed: 2024-1-10.

[27] “Yolov3 Spikeking.” github.com/SpikeKing/keras-yolo3-detection,
2024. Accessed: 2024-1-10.

[28] “Yolov3 Dataxujing.” github.com/DataXujing/YOLO-V3-Tensorflow,
2024. Accessed: 2024-1-10.

[29] “Yolov3 heartkilla.” github.com/heartkilla/yolo-v3, 2024. Accessed:
2024-1-10.

[30] “Yolov3 jasonyip184.” github.com/jasonyip184/yolo, 2024. Accessed:
2024-1-10.

[31] “Yolov3 Chenyingpeng.” github.com/ChenYingpeng/caffe-yolov3,
2024. Accessed: 2024-1-10.

[32] “Yolov3 Ayooshkathuria.” github.com/ayooshkathuria/
pytorch-yolo-v3, 2024. Accessed: 2024-1-10.

[33] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13,
pp. 740–755, Springer, 2014.

[34] “Yolov4 hunglc007.” github.com/hunglc007/tensorflow-yolov4-tflite,
2023. Accessed: 2024-1-10.

[35] “Yolov5 Megvii.” github.com/Megvii-BaseDetection/YOLOX, 2023.
Accessed: 2024-1-10.

[36] “Yolov5 Dataxujing.” github.com/DataXujing/YOLO-v5, 2023. Ac-
cessed: 2024-1-10.

[37] “Retinanet fizyr.” github.com/fizyr/keras-retinanet, 2023. Accessed:
2024-1-10.

[38] “Retinanet nvidia.” github.com/NVIDIA/retinanet-examples, 2023. Ac-
cessed: 2024-1-10.

[39] “Retinanet yhenon.” github.com/yhenon/pytorch-retinanet, 2023. Ac-
cessed: 2024-1-10.

[40] “Retinanet kuangliu.” github.com/kuangliu/pytorch-retinanet, 2023.
Accessed: 2024-1-10.

[41] “Centernet Caowgg.” github.com/CaoWGG/TensorRT-CenterNet,
2023. Accessed: 2024-1-10.

[42] “Centernet Duankaiwen.” github.com/Duankaiwen/CenterNet, 2023.
Accessed: 2024-1-10.

[43] “Centernet xingyizhou.” github.com/xingyizhou/CenterNet, 2023. Ac-
cessed: 2024-1-10.

[44] “Centernet xingyizhou2.” github.com/xingyizhou/CenterNet2, 2023.
Accessed: 2024-1-10.

[45] “Efficientdet zylo117.” github.com/zylo117/
Yet-Another-EfficientDet-Pytorch, 2024. Accessed: 2024-1-10.

[46] “Efficientdet signatrix.” github.com/signatrix/efficientdet, 2024. Ac-
cessed: 2024-1-10.

[47] “Efficientdet rwightman.” github.com/rwightman/efficientdet-pytorch,
2024. Accessed: 2024-1-10.

[48] “Efficientdet xuannianz.” github.com/xuannianz/EfficientDet, 2024.
Accessed: 2024-1-10.

[49] “Efficientdet toandaominh1997.” github.com/toandaominh1997/
EfficientDet.Pytorch, 2024. Accessed: 2024-1-10.

[50] “Cascadercnn haoweicai.” github.com/haoweicai/
Detectron-Cascade-RCNN, 2024. Accessed: 2024-1-10.

[51] “Cascadercnn ruoqianguo.” github.com/ruoqianguo/cascade-rcnn
Pytorch, 2024. Accessed: 2024-1-10.

[52] X. Li, T. Wei, Y. P. Chen, Y.-W. Tai, and C.-K. Tang, “Fss-1000:
A 1000-class dataset for few-shot segmentation,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
pp. 2869–2878, 2020.

[53] “Fasterrcnnvgg16 fengkaibit.” github.com/fengkaibit/faster-rcnn
vgg16, 2024. Accessed: 2024-1-10.

[54] “Fasterrcnnvgg16 jwyang.” github.com/jwyang/faster-rcnn.pytorch,
2024. Accessed: 2024-1-10.

[55] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[56] “Vgg16 ry.” github.com/ry/tensorflow-vgg16, 2024. Accessed: 2024-
1-10.

[57] “Vgg16 machrisaa.” github.com/machrisaa/tensorflow-vgg, 2024. Ac-
cessed: 2024-1-10.

[58] “Repvgg Dingxiaoh.” github.com/DingXiaoH/RepVGG, 2024. Ac-
cessed: 2024-1-10.

[59] “Yolov1 abeardear.” github.com/abeardear/pytorch-YOLO-v1, 2024.
Accessed: 2024-1-10.

[60] “Yolov2 longcw.” github.com/longcw/yolo2-pytorch, 2024. Accessed:
2024-1-10.

[61] “Alexnet kratzert.” github.com/kratzert/finetune alexnet with
tensorflow, 2024. Accessed: 2024-1-10.

[62] “Alexnet Dynmi.” github.com/Dynmi/AlexNet, 2024. Accessed: 2024-
1-10.

[63] “Alexnet songhan.” github.com/songhan/Deep-Compression-AlexNet,
2024. Accessed: 2024-1-10.

[64] “Alexnet udacity.” github.com/udacity/CarND-Alexnet-Feature, 2024.
Accessed: 2024-1-10.

[65] “Alexnet uoguelph-mlrg.” github.com/uoguelph-mlrg/theano alexnet,
2024. Accessed: 2024-1-10.

[66] “Resnet akamaster.” github.com/akamaster/pytorch resnet cifar10,
2024. Accessed: 2024-1-10.

[67] “Resnet facebookarchive.” github.com/facebookarchive/fb.resnet.torch,
2024. Accessed: 2024-1-10.

[68] “Resnet kenshohara.” github.com/kenshohara/3D-ResNets-PyTorch,
2024. Accessed: 2024-1-10.

[69] “Resnet raghakot.” github.com/raghakot/keras-resnet, 2024. Accessed:
2024-1-10.

[70] “Resnet ry.” github.com/ry/tensorflow-resnet, 2024. Accessed: 2024-1-
10.

[71] “Resnet tornadomeet.” github.com/tornadomeet/ResNet, 2024. Ac-
cessed: 2024-1-10.

[72] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural infor-
mation processing systems, vol. 25, 2012.

[73] “Efficientnet lukemelas.” github.com/lukemelas/EfficientNet-PyTorch,
2024. Accessed: 2024-1-10.

[74] “Efficientnet qubvel.” github.com/qubvel/efficientnet, 2024. Accessed:
2024-1-10.

[75] “Efficientnet rwightman.” github.com/rwightman/
gen-efficientnet-pytorch, 2024. Accessed: 2024-1-10.

[76] “Efficientnetv2 d-li14.” github.com/d-li14/efficientnetv2.pytorch, 2024.
Accessed: 2024-1-10.

[77] “Inceptionv3 smichalowski.” github.com/smichalowski/google
inception v3 for caffe, 2024. Accessed: 2024-1-10.

[78] “Inception v4 Cadene.” github.com/Cadene/tensorflow-model-zoo.
torch, 2024. Accessed: 2024-1-10.

[79] “Googlenet inception conan7882.” github.com/conan7882/
GoogLeNet-Inception, 2024. Accessed: 2024-1-10.

[80] L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6,
pp. 141–142, 2012.

[81] “Lenet5 changwoolee.” github.com/changwoolee/lenet5 hls, 2024. Ac-
cessed: 2024-1-10.

[82] “Lenet ganyc717.” github.com/ganyc717/LeNet, 2024. Accessed: 2024-
1-10.

[83] V. Jain and E. Learned-Miller, “Fddb: A benchmark for face detection
in unconstrained settings,” Tech. Rep. UM-CS-2010-009, University of
Massachusetts, Amherst, 2010.

[84] “Facedet guanfuchen.” github.com/guanfuchen/facedet, 2024. Ac-
cessed: 2024-1-10.

[85] “Face detection layumi.” github.com/layumi/2015 Face Detection,
2024. Accessed: 2024-1-10.

[86] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231–1237, 2013.

[87] “Monodepth haofengac.” github.com/haofengac/
MonoDepth-FPN-PyTorch, 2024. Accessed: 2024-1-10.

[88] “Monodepth mrharicot.” github.com/mrharicot/monodepth, 2024. Ac-
cessed: 2024-1-10.

[89] “Monodepth nianticlabs.” github.com/nianticlabs/monodepth2, 2024.
Accessed: 2024-1-10.

[90] “Monodepth Oniroai.” github.com/OniroAI/MonoDepth-PyTorch,
2024. Accessed: 2024-1-10.

[91] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan,
and T. Darrell, “Bdd100k: A diverse driving dataset for heterogeneous
multitask learning,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 2636–2645, 2020.

[92] “Yolov3 sanwong15.” github.com/sanwong15/yolo-v3-with-bdd, 2024.
Accessed: 2024-1-10.

github.com/mystic123/tensorflow-yolo-v3
github.com/Qidian213/deep_sort_yolov3
github.com/SpikeKing/keras-yolo3-detection
github.com/DataXujing/YOLO-V3-Tensorflow
github.com/heartkilla/yolo-v3
github.com/jasonyip184/yolo
github.com/ChenYingpeng/caffe-yolov3
github.com/ayooshkathuria/pytorch-yolo-v3
github.com/ayooshkathuria/pytorch-yolo-v3
github.com/hunglc007/tensorflow-yolov4-tflite
github.com/Megvii-BaseDetection/YOLOX
github.com/DataXujing/YOLO-v5
github.com/fizyr/keras-retinanet
github.com/NVIDIA/retinanet-examples
github.com/yhenon/pytorch-retinanet
github.com/kuangliu/pytorch-retinanet
github.com/CaoWGG/TensorRT-CenterNet
github.com/Duankaiwen/CenterNet
github.com/xingyizhou/CenterNet
github.com/xingyizhou/CenterNet2
github.com/zylo117/Yet-Another-EfficientDet-Pytorch
github.com/zylo117/Yet-Another-EfficientDet-Pytorch
github.com/signatrix/efficientdet
github.com/rwightman/efficientdet-pytorch
github.com/xuannianz/EfficientDet
github.com/toandaominh1997/EfficientDet.Pytorch
github.com/toandaominh1997/EfficientDet.Pytorch
github.com/haoweicai/Detectron-Cascade-RCNN
github.com/haoweicai/Detectron-Cascade-RCNN
github.com/ruoqianguo/cascade-rcnn_Pytorch
github.com/ruoqianguo/cascade-rcnn_Pytorch
github.com/fengkaibit/faster-rcnn_vgg16
github.com/fengkaibit/faster-rcnn_vgg16
github.com/jwyang/faster-rcnn.pytorch
github.com/ry/tensorflow-vgg16
github.com/machrisaa/tensorflow-vgg
github.com/DingXiaoH/RepVGG
github.com/abeardear/pytorch-YOLO-v1
github.com/longcw/yolo2-pytorch
github.com/kratzert/finetune_alexnet_with_tensorflow
github.com/kratzert/finetune_alexnet_with_tensorflow
github.com/Dynmi/AlexNet
github.com/songhan/Deep-Compression-AlexNet
github.com/udacity/CarND-Alexnet-Feature
github.com/uoguelph-mlrg/theano_alexnet
github.com/akamaster/pytorch_resnet_cifar10
github.com/facebookarchive/fb.resnet.torch
github.com/kenshohara/3D-ResNets-PyTorch
github.com/raghakot/keras-resnet
github.com/ry/tensorflow-resnet
github.com/tornadomeet/ResNet
github.com/lukemelas/EfficientNet-PyTorch
github.com/qubvel/efficientnet
github.com/rwightman/gen-efficientnet-pytorch
github.com/rwightman/gen-efficientnet-pytorch
github.com/d-li14/efficientnetv2.pytorch
github.com/smichalowski/google_inception_v3_for_caffe
github.com/smichalowski/google_inception_v3_for_caffe
github.com/Cadene/tensorflow-model-zoo.torch
github.com/Cadene/tensorflow-model-zoo.torch
github.com/conan7882/GoogLeNet-Inception
github.com/conan7882/GoogLeNet-Inception
github.com/changwoolee/lenet5_hls
github.com/ganyc717/LeNet
github.com/guanfuchen/facedet
github.com/layumi/2015_Face_Detection
github.com/haofengac/MonoDepth-FPN-PyTorch
github.com/haofengac/MonoDepth-FPN-PyTorch
github.com/mrharicot/monodepth
github.com/nianticlabs/monodepth2
github.com/OniroAI/MonoDepth-PyTorch
github.com/sanwong15/yolo-v3-with-bdd
Mridula
14

[93] “Yolov3 yogeshgajjar.” github.com/yogeshgajjar/
BDD100k-YOLOV3-tiny, 2024. Accessed: 2024-1-10.

[94] “Yolov5 williamhyin.” github.com/williamhyin/yolov5s bdd100k,
2024. Accessed: 2024-1-10.

[95] S. Yang, P. Luo, C. C. Loy, and X. Tang, “Wider face: A face detection
benchmark,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016.

[96] “Facenet davidsandberg.” github.com/davidsandberg/facenet, 2024. Ac-
cessed: 2024-1-10.

[97] “yoloface.” github.com/sthanhng/yoloface, 2024. Accessed: 2024-1-10.
[98] “yoloface2.” github.com/swdev1202/keras-yolo3-facedetection, 2024.

Accessed: 2024-1-10.
[99] “yoloface3.” github.com/zlmo/Face-Detection, 2024. Accessed: 2024-

1-10.
[100] “yoloface3.” github.com/azmathmoosa/azFace, 2024. Accessed: 2024-

1-10.
[101] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features

from tiny images.” Technical report, University of Toronto, 2009.
Accessed: [Insert date of access].

[102] “Resnet cifar-10 akamaster.” github.com/akamaster/pytorch resnet
cifar10, 2024. Accessed: 2024-1-10.

[103] “Gemini pro vision api.” ai.google.dev/docs, 2023. Accessed: 2024-1-
10.

[104] “Baidu graph recognition.” graph.baidu.com/, 2023. Accessed: 2024-
1-10.

[105] “Baidu vision api.” ai.baidu.com/tech/imagerecognition/fine grained,
2024. Accessed: 2024-1-10.

[106] “Teachable machine.” teachablemachine.withgoogle.com, 2023. Ac-
cessed: 2024-1-10.

[107] “Nyckel.” nyckel.com, 2023. Accessed: 2024-1-10.
[108] “Labelbox.” labelbox.com, 2023. Accessed: 2024-1-10.
[109] “Wolfram image identification project.” https://www.imageidentify.

com/, 2023. Accessed: 2024-1-10.
[110] “vue.ai.” https://vue.ai/.
[111] “Microsoft azure.” azure.microsoft.com/en-us/services/

cognitive-services/content-moderator/., 2023. Accessed: 2024-1-
10.

[112] “Alibaba cloud vision api.” https://vision.aliyun.com/.
[113] “Tecent vision.” https://cloud.tencent.com/.
[114] “Landing lens.” landing.ai/platform, 2024. Accessed: 2024-1-10.
[115] “Clarifai.” clarifai.com, 2024. Accessed: 2024-1-10.
[116] “Imagga image recognition api.” imagga.com.
[117] “Anyline.” https://anyline.com/.
[118] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and

A. Swami, “The limitations of deep learning in adversarial settings,” in
2016 IEEE European symposium on security and privacy (EuroS&P),
pp. 372–387, IEEE, 2016.

[119] J. C. Costa, T. Roxo, H. Proença, and P. R. Inácio, “How deep learning
sees the world: A survey on adversarial attacks & defenses,” arXiv
preprint arXiv:2305.10862, 2023.

[120] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[121] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kud-
lur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale ma-
chine learning on heterogeneous systems.” https://www.tensorflow.org/,
2015. Software available from tensorflow.org.

[122] A. Clark, “Pillow (pil fork) documentation.” buildmedia.readthedocs.
org/media/pdf/pillow/latest/pillow.pdf, 2015.

[123] “Mxnet.” docs.aws.amazon.com/sagemaker/latest/dg/
image-classification.html, 2023. Accessed: 2024-1-10.

[124] “ModerateContent.” moderatecontent.com.
[125] “Chatgpt4 Cap Limit.” community.openai.com/t/

less-than-40-requests-for-paid-service-is-not-acceptable-gpt-4/
105424.

[126] Q. Xiao, Y. Chen, C. Shen, Y. Chen, and K. Li, “Seeing is not believing:
Camouflage attacks on image scaling algorithms,” in 28th USENIX
Security Symposium (USENIX Security 19), pp. 443–460, 2019.

[127] E. Quiring, D. Klein, D. Arp, M. Johns, and K. Rieck, “Adversarial
preprocessing: Understanding and preventing {Image-Scaling} attacks
in machine learning,” in 29th USENIX Security Symposium (USENIX
Security 20), pp. 1363–1380, 2020.

[128] “Sharpness aware minimization tensorflow.” github.com/sayakpaul/
Sharpness-Aware-Minimization-TensorFlow/blob/main/SAM.ipynb,
2023. Accessed: 2024-1-10.

[129] “Stack overflow use pillow to read a png.” stackoverflow.com/a/
33618483.

APPENDIX

A. Supplementary figures for Section III-A1

Figure 7 shows code samples discussed in Section III-A1.

(a)

(b)

(c)

Fig. 7: Illustration of Alpha channel neglect: (a) OpenCV
default reading only RGB channels from a Kaggle OpenCV
tutorial [120]; (b) TensorFlow code extracting only RGB chan-
nels from [128], the best benchmark for EffNET-L2 CIFAR-
100; (c) Stack Overflow Q&A [129] suggesting developers use
Pillow [122], ignoring the Alpha channel.

B. Element-wise Operation

A and B should be of the same size. Let

A =


a11 a12

a21 a22

�
, B =


b11 b12

b21 b22

�

then the element-wise multiplication of A and B is given by

A �B =


a11 ⇥ b11 a12 ⇥ b12

a21 ⇥ b21 a22 ⇥ b22

�

element-wise division of A and B is given by

A↵B =


a11/b11 a12/b12

a21/b21 a22/b22

�

github.com/yogeshgajjar/BDD100k-YOLOV3-tiny
github.com/yogeshgajjar/BDD100k-YOLOV3-tiny
github.com/williamhyin/yolov5s_bdd100k
github.com/davidsandberg/facenet
github.com/sthanhng/yoloface
github.com/swdev1202/keras-yolo3-facedetection
github.com/zlmo/Face-Detection
github.com/azmathmoosa/azFace
github.com/akamaster/pytorch_resnet_cifar10
github.com/akamaster/pytorch_resnet_cifar10
ai.google.dev/docs
graph.baidu.com/
ai.baidu.com/tech/imagerecognition/fine_grained
teachablemachine.withgoogle.com
nyckel.com
labelbox.com
https://www.imageidentify.com/
https://www.imageidentify.com/
https://vue.ai/
azure.microsoft.com/en-us/services/cognitive-services/content-moderator/.
azure.microsoft.com/en-us/services/cognitive-services/content-moderator/.
https://vision.aliyun.com/
https://cloud.tencent.com/
landing.ai/platform
clarifai.com
imagga.com
https://anyline.com/
https://www.tensorflow.org/
buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf
buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf
docs.aws.amazon.com/sagemaker/latest/dg/image-classification.html
docs.aws.amazon.com/sagemaker/latest/dg/image-classification.html
moderatecontent.com
community.openai.com/t/less-than-40-requests-for-paid-service-is-not-acceptable-gpt-4/105424
community.openai.com/t/less-than-40-requests-for-paid-service-is-not-acceptable-gpt-4/105424
community.openai.com/t/less-than-40-requests-for-paid-service-is-not-acceptable-gpt-4/105424
github.com/sayakpaul/Sharpness-Aware-Minimization-TensorFlow/blob/main/SAM.ipynb
github.com/sayakpaul/Sharpness-Aware-Minimization-TensorFlow/blob/main/SAM.ipynb
stackoverflow.com/a/33618483
stackoverflow.com/a/33618483
Mridula
15

element-wise addition/subtraction of A and B is given by

A±B =


a11 ± b11 a12 ± b12

a21 ± b21 a22 ± b22

�

, especially if A is a constant matrix with every element value
be 1 (A = 1), then we can rewrite it as:

1±B =


1± b11 1± b12

1± b21 1± b22

�

C. Investigate AI models’ Alpha Channel Processing Strategy

As shown in Figure II, most AI models remove the Alpha
channel. However, some outliers use backgrounds instead. To
determine how an AI model processes the Alpha channel,
an attacker can upload a transparent image with the RGB
channel set to red. If the AI model responds with “Red,”
it indicates that the model removes the input image’s Alpha
channel values. If it responds with “White” or “Black,” it
implies the model blends a “White” or “Black” background
color to the input image, respectively.

D. Utilizing Background Colors Difference to Develop Target-
Adaptive AlphaDog Attack Images

As discussed earlier and outlined in Table II, modern AI
models treat the Alpha channel of RGBA images in three
ways: either by removing the Alpha channel or blending
the image with a white or black background. This can be
mathematically represented as:

BKGAI = {“Removal”, “White”, “Black”}, (10)

where BKGAI denotes how AI models treat the image’s
Alpha channel, also referred to as the AI model background
color. Image media can be further classified into Thumbnails
and Image Viewers. According to our analysis and survey
shown in Table I, popular Thumbnails typically employ a
white background:

BKGTB = {“White”}. (11)

Image Viewers (BKGIV) background colors vary. Most Im-
age Viewers opt for a white background, with some using
backgrounds of different gray levels, and a few employing a
black background:

BKGIV = {“White”, “Gray”, “Black”} (12)

It is critical that the background colors of the image media
BKGEye, including both the Image Viewer (BKGIV) and
Thumbnails (BKGTB), differ from those used by the AI
model (BKGAI), to ensure that the victim user perceives the
normal target image IEye while the AI model interprets the
malicious target image IAI . Notably, Thumbnails and Image
Viewers may not always have the same default background
color. For example, Thumbnail macOS Finder has a white
background, whereas Image Viewer Mac Preview has a gray
background. The Thumbnail and Image Viewer backgrounds

are not the same as the AI background’s mathematical repre-
sentation, which is:

BKGAI \ (BKGTB [BKGIV) = ;. (13)

By considering Equation 13 and all feasible values for sets
BKGAI , BKGTB , and BKGIV , we enumerate combina-
tions meeting the criteria, denoted by ”Re” for “Removal,”
”W” for “White,” Gr for “Gray,” and ”Bk” for “Black.” Two
distinct representatives emerge: Equation 14 mirrors real-world
scenarios involving operating systems and default background
colors of image media, detailed in Table I.

BKGAI ⇥BKGTB ⇥BKGIV = {(Re,W,W),

(Re,W,Gr), (Re,W,Bk),

(Bk,W,W), (Bk,W,Gr)} (14)

Conversely, Equation 15 explores potential combinations, con-
sidering customized image media background colors such as
“Black,” as well as theoretically satisfied background color
combinations not observed in real-world image media apps.

BKGAI ⇥BKGTB ⇥BKGIV = {
(Re,Gr,W), (Re,Gr,Gr), (Re,Bk,Bk),

(Re,Gr,Bk), (Re,Bk,W), (Re,Bk,Gr),

(W,Bk,Gr), (W,Gr,Gr), (W,Gr,Bk),

(W,Bk,Bk), (Bk,Gr,W), (Bk,Gr,Gr)} (15)

1) Creating Pure Grayscale AlphaDog Attack Images:
Attackers have the flexibility to choose both the normal target
image (IEye) and the malicious target image (IAI), ensuring
they share dimensions of M ⇥N . To create the attack image
IAtk, its RGB color values (IRGB) and the same-dimensional
transparency matrix of the Alpha channel values (A) should
be calculated. Figure 8 (a) illustrates IAtk’s creation process.

(a) (b)

Fig. 8: Illustration of (a) attack Image IAtk creation process,
and (b) how IAtk blends with three different backgrounds to
achieve AlphaDog.

Figure 8 (b) presents how AlphaDog creates a perceptual
contradiction between humans and machines, with AI models
recognizing IAI while humans perceive IEye. AlphaDog
attack images IAtk are blended with different BKGAI colors
based on the AI models they target. These attack images
are blended with BKGTB and BKGIV background colors
viewed by human observers (IEye) through Thumbnail or
Image Viewer apps, denoted as ITB and IIV , respectively. The

Mridula
16

three background color combinations must adhere to the con-
ditions specified in Equations 14 and 15, resulting in blended
attack images IBKG AI, IBKG TB, and IBKG IV, respectively.

Each pixel in images IAI , IEye, IBKG AI, IBKG TB, and
IBKG IV is represented by iAI , iEye, iBKG AI, iBKG TB, and
iBKG IV, respectively. Similarly, iAtk denotes each pixel in the
attack image IAtk, comprising the RGB value iRGB and the
Alpha channel value ↵ of each pixel. To ensure consistent
perception of the same normal target image IEye by human
observers, regardless of whether attack images are displayed
by Thumbnails or Image Viewers, the following equation must
be satisfied:

IEye = ITB / IIV . (16)

This condition is crucial to prevent AlphaDog attacks from
being detected by vigilant users. It is worth noting that each
pixel i of the input image has been normalized, indicating that
0  i  1.

Pixel-level Alpha Compositing. As the AI model treats
the input image’s Alpha channel differently, the pixel-level
value of the malicious target image iAI varies. If the victim AI
model removes the Alpha channel (BKGAI = Re), the attack
image’s RGB value iRGB and the malicious target image iAI

are identical:
iAI = iRGB . (17)

If the victim AI models blend a background color to the input
image (BKGAI = {W,Bk}), iAI is expressed as:

iAI = ↵ · iRGB + iBKG AI(1� ↵). (18)

The normal target image IEye always blends with the
image media’s background colors IBKG Eye, including both
Thumbnails’ and Image Viewers’ (IBKG Eye represents either
IBKG TB or IBKG IV), and each pixel iEye can be expressed
as:

iEye = ↵ · iRGB + iBKG Eye(1� ↵). (19)

By combining Equations 17 and 19, we can solve for ↵

when the AI model removes the Alpha channel:

↵ =
iEye � iBKG Eye

iAI � iBKG Eye
. (20)

Additionally, for AI models that blend a background color
with the input image, we can determine the values of ↵ and
iRGB for this case by combining Equations 18 and 19 as:

↵ = 1� iAI � iEye

iBKG AI � iBKG Eye
(21)

iRGB =
iAI · iBKG Eye � iEye · iBKG AI

iBKG AI � iBKG Eye � iAI + iEye
. (22)

For a comprehensive overview, the values of iRGB and
↵ corresponding to all background combinations outlined in
Equations 14 and 15 are provided in Table V.

In the following, we explore the mathematical process of
crafting AlphaDog attack images for the strong no-box
settings when BKGAI is specified as “Re.” In this scenario,

the background colors of Thumbnails or Image Viewers can be
either the same or different. We illustrate both cases using the
following two background color combinations as examples:

BKGAI ⇥BKGTB ⇥BKGIV = (Re,W,W), (23)

and

BKGAI ⇥BKGTB ⇥BKGIV = (Re,W,Gr) (24)

Case 1 (Equation 23). In this combination, the AI model
removes the input image’s Alpha channel information, and
thumbnail shares the same background with the image viewer.
Consequently, Equations 17 and 20 should be used. As
both image media background colors are “W,” indicating
iBKG TB = iBKG IV = 1. Therefore, we can determine ↵

as:
↵ =

iEye � 1

iAI � 1
. (25)

Given that image transparency ranges between 0 and 1
(0  ↵  1), according to Equation 25, we deduce that the
malicious target image should be darker than the normal target
image:

0  iAI  iEye  1, (26)

where 0 represents black and 1 signifies white. After acquiring
M ⇤N matrices (or pixels) of IRGB and A, the attack image
IAtk can be created by combining IRGB and A.

Case 2 (Equation 24). Similar to Case 1, each pixel’s RGB
color of the attack image is the same as the malicious target
image’s (refer to Equation 17). In contrast to Case 1, where
image media backgrounds are identical, Case 2 introduces
attack images blended and displayed with distinct background
colors for Thumbnails and Image Viewers. This difference can
potentially alert careful users to anomalies or even the presence
of a malicious target image. To ensure that only the normal
target image is perceptible to vigilant users, as demonstrated in
Equation 16, we derive the following two equations according
to Equation 19:

iEye = iTB = ↵ · iAI + (1� ↵), (27)

and

iEye / iIV = ↵ · iAI + iBKG IV (1� ↵). (28)

Fig. 9: Graph of k function.

We first ensure the satisfaction of Equation 27 to make
the attack image viewed in Thumbnails ITB identical to

Mridula
17

Mridula
2

TABLE V: Creation of attack image (IAtk) with various background combinations of AI models, Thumbnails, and Image
Viewers, as mentioned in Equations 14 and 15. Each cell displays the expression for calculating iRGB , ↵, and how to adjust
iAI to ensure consistent visualization of the normal target image by different Thumbnails and Image Viewers.

BKGAI

⇥BKGTB

⇥BKGIV =

Attack Image Additional constraint to
ensure iEye / iIV

iRGB = ↵ =

(“Re”,“W”,“W”) iEye�1
iAI�1 N/A

(“Re”,“Bk”,“Bk”) iEye

iAI
N/A

(“Re”,“Gr”,“Gr”) iAI
iEye�iBKG TB

iAI�iBKG TB

iAI�iBKG IV
iAI�iBKG TB

⇡ const

iAI ·iBKG IV �iBKG TB
iAI�iBKG TB

⇡ const

(“Re”,“W”,“Gr”)
(“Re”,“Gr”,“W”)

iEye�1
iAI�1

iAI�iBKG IV
iAI�1 ⇡ const

(“Re”,“Bk”,“Gr”)
(“Re”,“Gr”,“Bk”)

iEye

iAI
1� iBKG IV

iAI
⇡ const

(“Re”,“W”,“Bk”)
(“Re”,“Bk”,“W”)

Failure: Mathematics yields no solution. The only real-world scenario
where AlphaDog deception may fail is if victim users utilize iPhone Photos
as their image viewer while the targeted AI models remove
the Alpha channel.

(“W”,“Bk”,“Bk”) 1� iAI + iEye N/A
(“W”,“Bk”,“Gr”)
(“W”,“Gr”,“Bk”)

�iEye

1�iAI+iEye
iAI · iBKG IV ⇡ const

(“W”,“Gr”,“Gr”) iAI ·iBKG TB�iEye

1�iBKG TB�iAI+iEye
1� iAI�iEye

1�iBKG TB
↵ · iRGB + iBKGIV (1�↵)/iEye

(“Bk”,“W”,“W”) iAI � iEye N/A
(“Bk”,“W”,“Gr”)
(“Bk”,“Gr”,“W”)

iAI
iEye�iAI�1 (1� iBKG IV) · iAI ⇡ const

(“Bk”,“Gr”,“Gr”) iAI ·iBKG TB
�iBKG TB�iAI+iEye

1 + iAI�iEye

iBKG TB
1� iBKG IV

iAI
⇡ const

the normal target image IEye, which we obtain the same ↵

expression as Case1 Equation 25. Subsequently, we replace
↵ in Equation 28 by using Equation 25, and express iIV in
terms of iEye as:

iIV = k(iEye � 1) + iBKG IV , (29)

where
k =

iAI � iBKG IV

iAI � 1
. (30)

We note that the term k (Equation 30) is not a constant.
Therefore, the relationship between iIV and iEye cannot be
linear unless k is independent of changes in iAI , i.e., �k ⇡
0. Examining the curve of k’s function plotted in Figure 9,
we observe that the slope decreases when iAI is closer to 0.
Consequently, a slight decrease in iAI significantly reduces
�k, making k approach a constant value.

By crafting attack images using different values and visu-
alizing them through image media with different background
colors, we determine that when 0 < iAI < 0.2, �k < 0.1,
and iAI becomes invisible to human observers. Figure 10 (a-
c) illustrates IIV generated with different IAI pixel intensity
ranges, where the normal target image (Cat) is clearer, while
the malicious target image (Dog) is concealed and cannot be
visualized when 0 < iAI < 0.2.

Limitation in Deceiving Human Observers: Table V
illustrates instances where AlphaDog fails to deceive hu-

(a) (b) (c)

Fig. 10: Illustration of AlphaDog Case 2 attack image gener-
ation, concealing a malicious target image IAI (dog) within a
normal target image IEye (cat) to prevent detection by human
observers. The attack image is viewed using macOS’ default
Image Viewer Preview, with a background color intensity set
to 0.6 (“Gray”). Different IAI intensity ranges are presented:
(a) 0  IAI  0.5, revealing a silhouette of the dog (Husky);
(b) 0  IAI  0.3, significantly reducing the visibility of
the dog image; (c) 0  IAI  0.2, rendering the dog image
completely invisible.

man observers due to the absence of mathematical solutions.
Specifically, when the background color combinations are
BKGAI⇥BKGTB⇥BKGIV = {(Re, W,Bk), (Re, Bk,W)}.
A potential real-world scenario arises if users use customized
backgrounds to view the images.

Mridula
18

	Introduction
	Background and Preliminaries
	RGBA Image Format.
	Digital Image Media and Background Colors
	Handling of RGBA Images by AI Models
	Element-wise Operations
	Alpha Compositing in Computer Graphics
	Black-box Adversarial Image

	AlphaDog: Targeted No-box Threat Model
	Root Cause Analysis of AlphaDog
	Analysis of open-source AI models
	Analysis of cloud-based image recognition systems: proprietary AI models

	Attack Objective: Targeted Attack
	No-box Settings
	Attacker Capability
	Attack Scenario

	 AlphaDog Design Foundation
	 AlphaDog Attack Image Generation
	Preprocessing
	Creating IAtk

	Achieving Stealthy AlphaDog Attack: Target Image Intensity Histogram Features Analysis
	Addressing the AlphaDog Design Challenge: Ensuring IAtk Stealthiness by Reducing the Intensity of IAI
	 AlphaDog Design for AI Models with Differential Treatment of Input Image Alpha Channels

	 AlphaDog Real-World Applications
	Automatic Generation of AlphaDog Attack Images
	Practical Applications of AlphaDog and Examples of Attack Images
	Deceptive Manipulation by leveraging inconsistencies between displays
	Threats to AI Trustworthiness: Implications for Healthcare and Autonomous Vehicles
	Threats to Content Moderation Integrity: Exploiting AlphaDog in Online Environments

	 AlphaDog Effectiveness
	 AlphaDog Attack Image Generation Efficiency Analysis
	 AlphaDog Attack Image Stealthiness Evaluation
	Experimental Validation of AlphaDog Universality
	Influence of Different RGBA Image Formats

	Defense
	Intensity Histogram-Based Detection Framework
	Evaluation of AlphaDog Detection

	Limitations
	Related Work
	Black-box Adversarial Attacks
	Image Scaling Attacks

	Conclusion
	References
	Appendix
	Supplementary figures for Section III-A1
	Element-wise Operation
	Investigate AI models' Alpha Channel Processing Strategy
	Utilizing Background Colors Difference to Develop Target-Adaptive AlphaDog Attack Images
	Creating Pure Grayscale AlphaDog Attack Images

