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Abstract—Software-based power side-channel attacks are a
significant security threat to modern computer systems, enabling
adversaries to extract confidential information. Existing attacks
typically exploit direct power signals from dedicated interfaces,
as demonstrated in the PLATYPUS attack, or power-dependent
timing variations, as in the case of the Hertzbleed attack. As
access to direct power signals is meanwhile restricted on more
and more platforms, an important question is whether other
exploitable power-related signals exist beyond timing proxies.

In this paper, we show that Android mobile devices expose
numerous power-related signals that allow power side-channel
attacks. We systematically analyze unprivileged sensors provided
by the Android sensor framework on multiple devices and
show that these sensors expose parasitic influences of the power
consumption. Our results include new insights into Android
sensor leakage, particularly a novel leakage primitive: the
rotation-dependent power leakage of the geomagnetic rotation
vector sensor. We extensively evaluate the exposed sensors for
different information leakage types. We compare them with
the corresponding ground truth, achieving correlations greater
than 0.9 for some of our tested sensors. In extreme cases, we
observe not only statistical results but also, e.g., changes in a
compass app’s needle by approximately 30° due to CPU stress.
Additionally, we evaluate the capabilities of our identified leakage
primitives in two case studies: As a remote attacker via the
Google Chrome web browser and as a local attacker running
inside an installed app. In particular, we present an end-to-end
pixel-stealing attack on different Android devices that effectively
circumvents the browser’s cross-origin isolation with a leakage
rate of 5 - 10 s per pixel. Lastly, we demonstrate a proof-of-
concept AES attack, leaking individual key bytes using our newly
discovered leakage primitive.

I. INTRODUCTION

One of the growing concerns in system security is the
rise of software-based power side-channel attacks [1]–[9].
These attacks exploit information leakage through variations
in power consumption due to the underlying CMOS hardware
and pose a significant threat to the confidentiality and integrity
of sensitive data. Traditional power analysis techniques [10]–
[14] typically require external measurement equipment and
were mostly practical on embedded devices. However, several
traditional power analysis attacks using physical measuring
equipment have also targeted mobile devices [15]–[17]. The
PLATYPUS attack [3] removes the limitation for external

measurement equipment by using a CPU internal interface
to measure the power consumption and demonstrates that
traditional power analysis attacks are practical using software-
based interfaces. However, attacks using such direct power
interfaces were easily mitigated by restricting access to the
interface [3], [18]. The Hertzbleed attack [6] and Liu et al. [5]
show how to circumvent interface restrictions by using power-
dependent timing variations originating from the dynamic
power management of modern CPUs. We refer to such in-
direct power signals as power-related signals that are strongly
correlated to the power consumption of the device.

So far, software-based power analysis attacks exploiting
the power consumption directly or via power-related signals
have mainly been done on desktop and server CPUs. There
have also been initial works on mobile phones. For instance,
multiple attacks have used the direct power interface before
Android 7 to steal password lengths, user locations, as well as
app fingerprinting [19]–[21]. Furthermore, Taneja et al. [22]
demonstrate a pixel-stealing attack, leaking pixels from an
inline frame (iframe), violating the cross-origin isolation of
Google Chrome by using a timing-based power-related signal.

Although the direct energy interface on Android mobile
systems is meanwhile restricted, the Android sensor frame-
work [23] still exposes sensor signals to unprivileged apps.
This framework sparked numerous non-power-oriented side-
channel attacks [24] focusing, e.g., on motion sensors or
the magnetometer to localize devices [25] or infer user in-
puts [26]–[28]. While initial research has demonstrated a
relation between CPU utilization and sensor measurements by
the magnetometer [29], it remains unclear whether this relation
has a similar potential for exploitation as Hertzbleed [5], [6].
Given that Android exposes this framework to unprivileged
apps and web browsers, such an unaddressed threat could pose
a significant risk to millions of Android devices.

In this paper, we present a power-related side-channel attack
using the Android sensor framework that can be exploited by
remote and local attackers. Initially, we systematically analyze
9 commodity Android devices with overall 137 integrated
sensors accessible from unprivileged applications through the
Android sensor framework, identifying novel power-related
signals. We then perform a leakage analysis that categorizes
and quantifies sensors based on three distinct leakage types:
leaking CPU utilization levels (i.e., high and low CPU load),
comparing different instruction sequences, and leaking data
operands. These categories identify the potential risk and
attack vectors a given sensor exposes, independent of the
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actual root cause of the power-related signal. We perform a
correlation-based analysis between the sensor readings and a
ground truth signal to quantify the leakage strength for each
category. Our results indicate that the performance of the
sensors varies between these categories. For instance, while the
magnetometer of our Google Pixel 6a shows a high correlation
of 0.973 with CPU utilization, it only shows a medium
correlation of 0.395 for instruction-dependent leakage, i.e.,
correlation of supply voltage and sensor readings. However,
we observe the inverse effect for a pressure-based sensor
where the instruction-dependent leakage has a high correlation
of 0.955 over a medium correlation with CPU utilization of
0.472. In extreme cases, we also observe visual effects besides
correlation, e.g., in the deflection of the needle of a compass
app by around 30° due to CPU stress. Finally, the geomagnetic
rotation vector sensor exposes our most prominent power-
related signal. We provide a detailed leakage analysis for
this sensor, highlighting characteristics such as orientation-
dependent leakage and the internal workings of the sensor.

We demonstrate the capabilities of our identified leakage
primitives in two case studies: as a remote attacker in the
web browser and as a local attacker operating inside an
installed app. For the remote setting, we present an end-to-
end pixel-stealing attack on different devices that effectively
bypasses the cross-origin isolation implemented by a modern
web browser, e.g., Google Chrome. In this attack, we leverage
sensor-based leakage from the JavaScript sensor framework,
accessible as a remote attacker, to leak pixels at leakage rates
of 5 -10 s per pixel, thereby breaking cross-origin isolation.
For the local setting, we use the geomagnetic rotation vector
sensor to analyze the data-dependent leakage of ARM NEON’s
side-channel resistant hardware AES implementation. We then
provide a proof-of-concept CPA attack to recover AES key
bytes within 300 000 samples. Our findings conclude that
the Android sensor framework exposes multiple sensors that
can act as power-related signals due to significant parasitic
influences of actual physical properties on the sensor signal
on modern mobile devices.
Contributions. In summary, our key contributions are:

1) Systematic analysis of Android sensors. We demon-
strate through a systematic analysis of 9 recent An-
droid smartphones that general-purpose sensors, accessi-
ble without special permissions, capture parasitic physical
influences, elevating them to power-related signals.

2) Analysis of the geomagnetic rotation vector sensor.
We are the first to provide an in-depth analysis of the
power-leakage of the geomagnetic rotation vector sensor.

3) An AES CPA attacks using geomagnetic rotation.
We provide a proof-of-concept leakage analysis of ARM
NEON’s AES implementation and results of a CPA at-
tack. While full key recovery was not possible, individual
keybytes were recovered using 300 000 samples.

4) A remote sensor-based pixel stealing attack. We
provide an end-to-end pixel-stealing attack on Android
exploiting the generic sensor framework accessible from
JavaScript in the Google Chrome web browser.

Outline. The paper is structured as follows. Section II
provides background of this work. Section III provides the
systematic sensor leakage analysis. Section IV introduces our
novel leakage primitive based on the geomagnetic rotation
vector sensor. Section V presents a remote sensor-based pixel-
stealing attack. Section VI presents a CPA attack on AES. Sec-
tion VII discusses related work, mitigations, and limitations.
Finally, Section VIII concludes this work.
Responsible Disclosure. We disclosed our findings to Google
in February 2024. As a response, Google added additional
rounding to the Magnetometer sensor interface of the Google
Chrome browser [30]. Additionally, Google is planning to
add an additional permission prompt to access the orientation
sensor of the Google Chrome browser.

II. BACKGROUND

This section provides the required background on side-
channel attacks and the Android sensor framework.

A. Power Side-Channel Attacks

Side-channel attacks are a passive type of attack, exploiting
information leakage of a device during data processing.

These attacks can be mounted using software-based inter-
faces or physical measurement equipment, allowing an adver-
sary to measure the leaked side-channel information. Common
sources of side-channel leakages include timing behavior, elec-
tromagnetic radiation [31]–[33], and power consumption [10],
[11], [34] of the device. The obtained side-channel traces are
analyzed to gain insights about the processed secret.

Simple Power Analysis (SPA) [11] exemplifies the concept
of side-channel attacks. SPA reconstructs the executed CPU
operations based on the processor’s power consumption during
execution. SPA uses power traces and attempts to match them
against the processor’s internal computations. This concept of
information leakage is extended by using statistical methods.
For instance, Differential Power Analysis (DPA) [11] reveals
secrets by analyzing differences in power traces while the
device is computing on varying data with a constant secret.
Furthermore, Correlation Power Analysis (CPA) [10] is a
special case of DPA that uses correlation-based approaches
to reveal cryptographic secrets.

Recent discoveries highlight that software interfaces re-
porting power measurements enable power analysis attacks
without physical access to the device. Lipp et al. [3] showcase
how to extract cryptographic keys from enclaves and how to
break Kernel Address Space Layout Randomization (KASLR)
using Intel’s Running Average Power Limit (RAPL) [35]
interface. Consequently, the unprivileged access to the RAPL
interface was removed [18]. Wang et al. [6], [7] demonstrate
that the adaptive power management of modern CPUs in-
fluences the CPU frequency based on the system’s power
consumption. Thus, variations in power consumption cause
frequency throttling to comply with the system’s power con-
straints. Wang et al. [6] show that frequency throttling-induced
execution time variations can be used as a power-related
signal, stealing cryptographic keys, even as a remote attacker.

2



TABLE I: The CPU hardware specifications of all the tested Android devices used in our systematic analysis.

Model CPU Architecture Cores Perf. #P-States Frequency
Perf. Core Cores [GHz]

Google Pixel 6a Google Tensor ARM Cortex-X1 8 2 16 500 - 2802
Samsung Galaxy S20 FE Samsung Exynos 990 Samsung Exynos M5 8 2 22 442 - 2730
Samsung Galaxy A51 Samsung Exynos 9611 ARM Cortex-A73 8 2 15 403 - 2310
Samasung Galaxy S9 Samsung Exynos 9810 Samsung Exynos M3 8 4 16 455 - 2700
One Plus 5T Qualcom Snapdragon 835 Kryo 280 8 4 31 300 - 2460
Honor View 20 HiSilicon Kirin 980 ARM Cortex-A55 8 4 13 826 - 2600
Honor P90 Lite Mediatek Dimensity 6020 Cortex-A76 8 2 16 725 - 2203
Google Pixel 7a Google Tensor G2 ARM Cortex-X1 8 2 18 500 - 2850
Google Pixel 9 Google Tensor G4 ARM Cortex-X4 8 1 18 700 - 3105

Liu et al. [5] show that frequency and timing variations
directly relate to power, extracting cryptographic AES keys.
Taneja et al. [22] demonstrate the effect of frequency, power,
and temperature variations on ARM mobile devices and GPUs,
demonstrating a pixel-stealing attack from the browser and
website fingerprinting. Kogler et al. [2] present a generic CPA
attack from software on the shared memory subsystem of a
CPU, leaking arbitrary data from the kernel and processes.

B. Android Sensor Framework

Android mobile devices come equipped with various sen-
sors [23], providing data on the device’s movement, ori-
entation, and environment, usable by Android applications.
These sensors are categorized into two main types: hardware-
and software-based sensors. Hardware-based sensors directly
collect data from dedicated physical hardware to report en-
vironmental information, while software-based sensors utilize
one or several hardware sensors to emulate real hardware.

Unprivileged applications can access these integrated sen-
sors through the Android sensor framework, providing an
interface for configuring and receiving sensor data. Each
sensor adheres to specific constraints, such as the resolution for
reading values and the minimum and maximum data acquisi-
tion rates. An Android application can either set up a callback
function that triggers when new sensor values are available or
actively poll for the next sensor event. The reporting intervals
vary depending on the sensor types. Streaming sensors provide
values at regular intervals, while non-streaming sensors only
update values when changes in the measured parameter occur.

In addition, the maximum refresh rate of the sensors
depends on their initial configuration. Starting from
Android 12, an application needs to declare the
HIGH_SAMPLING_RATE_SENSORS permission in the
applications’ manifest to leverage arbitrary small sensor
delays. Otherwise, the maximum sensor refresh is capped
at 200Hz. Requesting refresh rates larger than 200Hz is
regarded as a warning and may lead to rejection from a listing
in the Google Play Store [36]. Notably, the specified update
rates serve only as a recommendation and are not obligatory
for the system to adhere to, as each sensor imposes a
maximal update rate. Additionally, the system will not disable
sensors when the screen is turned off [23]. Furthermore, the
application must either be in the foreground or implement
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Fig. 1: Sensor values of the geomagnetic rotation vector sensor
and the pressure sensor of the Google Pixel 6a, captured over
a time period of 40 s while concurrently varying the CPU
utilization by creating CPU stress on all but one CPU core
alternated with sleep periods of roughly 2.5 s each.

a foreground service to capture sensor values. A subset of
the sensors from the native Android sensor framework is
accessible from JavaScript in the web browser [37]. The
web browser adds additional abstraction, like filtering and
reducing the refresh rates [38].

III. SYSTEMATIC ANALYSIS OF SENSOR LEAKAGE

This section provides a systematic analysis of sensor leak-
age on Android mobile devices. We demonstrate that Android
sensors, accessible by unprivileged applications [23], can
be exploited to obtain side-channel leakage of concurrent
system operations. Our systematic analysis includes all avail-
able streaming sensors of various evaluated Android devices
accessible to unprivileged applications through the Android
sensor framework. We quantify the leakage of each sensor
for CPU utilization (Section III-A), instruction-based leakage
(Section III-B), and data-dependent leakage (Section III-C).
This analysis identifies potential sensors to mount more pow-
erful side-channel attacks.
Experimental Setup. We analyze 9 Android mobile devices
featuring recent ARM CPUs. Table I highlights the CPU
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TABLE II: Results of the systematic leakage analysis of all streaming sensors of the Android sensor framework on the Google
Pixel 6a. The table includes the details for each evaluated sensor, whether it contains electromagnetic (EM) readings, its
resolution (indicating the smallest reported sensor increment) and update rate (fastest time interval between consecutive sensor
values). We provide an absolute correlation coefficient r in three categories: Varying CPU Utilization, Varying Instruction
Sequences and Varying Data. We also include a Significance Factor (|SF |) for varying data (defined in Section III-C).

Sensor EM Resolution Update Rate Varying CPU Utilization Varying Instruction Sequences Varying Data
[ms] r r r |SF |

LSM6DSR Accelerometer ✗ 4.78 · 10−3 5 0.476 0.132 - -
MMC56X3X Magnetometer ✓ 9.76 · 10−2 10 0.972 0.298 0.008 1.16
Orientation Sensor ✓ 1.00 · 10−5 5 0.362 0.614 0.018 5.55
LSM6DSR Gyroscope ✗ 1.22 · 10−3 5 0.399 - 0.016 2.18
ICP10101 Pressure Sensor ✗ 1.00 · 10−4 20 0.472 0.955 - -
Gravity Sensor ✗ 1.00 · 10−5 5 0.509 0.656 0.014 4.55
Linear Acceleration Sensor ✗ 1.00 · 10−5 20 0.258 0.032 - -
Rotation Vector Sensor ✓ 1.00 · 10−5 5 0.460 0.145 0.006 1.80
MMC56X3X Magnetometer-Uncalibrated ✓ 9.76 · 10−2 10 0.973 0.395 0.018 3.58
Game Rotation Vector Sensor ✗ 1.00 · 10−5 5 0.426 0.809 0.009 2.64
LSM6DSR Gyroscope-Uncalibrated ✗ 1.22 · 10−3 5 0.397 0.248 0.011 2.06
Geomagnetic Rotation Vector Sensor ✓ 1.00 · 10−5 5 0.932 0.913 0.040 12.77
LSM6DSR Accelerometer-Uncalibrated ✗ 4.79 · 10−3 5 0.327 0.152 0.010 1.53
LSM6DSR Temperature ✗ 3.91 · 10−3 9.23 - - - -
ICP10101 Temperature ✗ 1.00 · 10−2 20 - - - -
Auto Brightness ✗ 1.00 · 10−3 1000 - - - -

hardware specifications of the tested Android devices, includ-
ing high-end devices from Samsung, Google, OnePlus, and
Honor. All devices run the latest available Android version
at the time of writing, ranging from Android 10 (Honor
View 20, Samsung Galaxy S9), Android 13, to Android
14 (Google Pixel 9). Unless stated otherwise, all evaluated
devices maintain their default configurations without any mod-
ifications. Complementary information, like the ground truth
value of the system voltage and CPU frequency, is measured
on rooted Android devices. All experiments run as ordinary
Android applications without requiring additional permissions.
The experimental results are captured while the devices are
connected to a power source. However, we did not observe a
significant difference between the results of the experiments on
battery power. Additionally, we do not pin the CPU frequency
and keep Dynamic Voltage and Frequency Scaling (DVFS)
enabled. This allows dynamic adjustments to the system’s
voltage and operating frequency to adhere to thermal and
power limits.

A. Distinguishing CPU Utilization

As an initial step for our analysis, we demonstrate that
concurrent CPU utilization influences the sensor values of the
Android sensor framework. We alternate between heavy CPU
workload and idle periods to vary CPU utilization, with each
phase lasting 2.5 s. We use these time intervals as they provide
good results while maintaining a reasonable evaluation time.
We conduct multiple evaluations to capture measurements (i.e.,
sensor values) from all available sensors at their maximum
refresh rate. To stress the CPU, we utilize a benchmark from
the stress-ng [39] suite, specifically designed to generate
heavy CPU loads by executing multiple arithmetic instructions.
Additionally, we record the CPU temperature, supply voltage,
and current. Since access to voltage, current, and CPU temper-

ature requires root privileges, we further validate that rooting
the device does not affect the sensor interface by repeating the
experiments on unrooted devices.

Figure 1 shows the results of our experiment conducted
on the Google Pixel 6a Android device. The graphs illustrate
varying sensor values throughout the experiment, alongside the
CPU utilization during phases of CPU stress and CPU idle,
respectively. The sensor values demonstrate a correlation with
CPU utilization, indicating a recognizable trend that aligns
with the pattern of CPU utilization. Notably, the geomagnetic
rotation vector in Figure 1 shows fast transitions from low
to high and vice versa. Similarly, the pressure sensor of
Figure 1 changes based on the system state but at a slower
rate. Additionally, the pressure sensor signal is more noisy
than the geomagnetic rotation vector sensor.

To systematically quantify the extent of information leak-
age, we establish a ground truth model M = {1, 0}, represent-
ing high and low CPU utilization, respectively. Consequently,
we calculate the Pearson correlation coefficient r between
the captured sensor values and the ground truth model M,
quantifying the strength of the linear relationship. For sensors
with notable noise, like the pressure sensor, we remove high
frequent noise using a low pass filter. Additionally, many
sensors collect measurements via multiple channels, e.g., the
orientation sensor captures the orientation along the x, y, and
z axes. In our evaluation, we consider all channels from each
sensor and detail the result of the best channel per sensor.
Table II lists the results of this experiment for each sensor
of the Google Pixel 6a. The table includes the details for
each evaluated sensor, such as its value resolution (indicating
the smallest reported sensor increment) and update rate (the
fastest time interval between consecutive sensor values). We
list the gathered correlation coefficients of this experiment,
quantifying the relation between the sensor values and the
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Fig. 2: Averaged battery voltage readings and sensor readings
of the geomagnetic rotation vector sensor over 1.2 s, while
executing different instructions on the Google Pixel 6a.

varying CPU utilization in the column Varying CPU Utiliza-
tion. Appendix A provides detailed experiment results, in-
cluding experimental results from every evaluated smartphone.
We only list statistically significant correlations. Our results
show that 3 sensors of the Google Pixel 6a and 26 sensors
overall are susceptible to variations in CPU utilization (i.e.,
show r > 0.7). Sensors that include magnetometer data, like
the magnetometer or geomagnetic rotation vector, demonstrate
the best results. Sensors that do not include electromagnetic
measurements, such as the pressure sensor, accelerometer,
gravity sensor, and game rotation vector, are also susceptible
to side-channel leakage of concurrent CPU utilization.

Our analysis shows that 18.9% of all sensors expose a
significant (r > 0.7) influence of the CPU utilization in
the actual sensor measurement.

B. Distinguishing Instructions

This section presents a detailed analysis of side-channel
leakage beyond CPU utilization. Specifically, we demonstrate
that individual instructions executed on ARM mobile CPUs af-
fect the sensor readings of the Android sensor framework. Ad-
ditionally, we showcase that the unprivileged sensor readings
correlate to the phone’s battery voltage, which corresponds to
the internal supply voltage, thus indicating that unprivileged
sensor readings serve as a proxy for measuring battery voltage.

In this experiment, we collect sensor readings of each sensor
of the Android sensor framework at the highest data acquisi-
tion rate while concurrently executing selected instructions of
the ARM hardware platform in a loop. As a basis for the
instruction selection, we use, similar to Taneja et al. [22], the
survey from Oscar Lab [40], which quantifies and categorizes
the most frequently used x86 instructions. We select ARM
equivalents from these most commonly used instruction cate-
gories for our analysis. The selected instructions include data
store instructions (str) from a register to a specified memory
address, bit operations performed on registers (ror, and), and
arithmetic addition and multiplication (add, mul). Besides

integer arithmetics, we execute floating point addition and
multiplication (fadd, fmul). We repeatedly choose random
instructions from this set, executing them in a loop for 4 s
each. We chose this longer interval to account for the voltage
interface’s slower update rate of 175ms. In a second thread,
running in parallel, we query sensor readings at the highest
data acquisition rate from the Android sensor framework [23].
Additionally, we query the battery voltage at regular intervals
of 200ms, providing a ground truth for evaluation. We gather
the battery voltage from the sysfs interface1, which provides
an updated voltage reading roughly every 175ms. Note that
this voltage interface is only accessible by privileged users,
thus requiring root access for this experiment. We execute the
experiment for each sensor for 2 h, running at battery power.

Figure 2 illustrates the sensor measurements from the geo-
magnetic rotation vector sensor and the battery voltage read-
ings on the Google Pixel 6a. The geomagnetic rotation vector’s
measurements per instruction reveal three groups ranging from
0.06 to 0.10. The str, mul, and nop instructions form
the lowest value group, while the and, ror, add and aes
instructions occupy the middle-value range. The floating point
instructions fadd and fmul occupy the highest sensor values.
Notably, the voltage readings in Figure 2 show similar but
inversely proportional distributions for the instructions.

To quantify the observed relationship between the voltage
and sensor readings, we calculate the absolute correlation co-
efficient r between the sensor measurements and the recorded
battery voltage. Since the sysfs voltage interface reports
measurements at a much lower rate than the sensor framework,
we linearly interpolate the voltage readings before calculating
the correlation coefficients. The results in Table II, demonstrate
that 2 of the sensors on the Google Pixel 6a correlate with the
battery voltage. Especially the geomagnetic rotation vector and
the pressure sensor demonstrate very large correlations (r >
0.90). Furthermore, the game rotation vector, the orientation
sensor, and the gravity sensor also show a large correlation,
with the remaining sensors demonstrating lower correlation
coefficients while still showing statistical significance. Note
that we observe significant correlations between the voltage
readings and the sensor values independent of whether the
sensor contains magnetometer data.

Overall, 12.5% of sensors of the Google Pixel 6a cor-
relate significantly (r > 0.90) to the battery voltage
independent if they include magnetometer readings.

C. Distinguishing Data-Operands

As a next step of our analysis, we demonstrate that sensor
readings gathered via the Android sensor framework show
data-dependent leakage. We demonstrate this effect by repeat-
edly executing a constant-cycle instruction [41], processing
different data operands in a loop. In parallel, we collect
sensor readings at each sensor’s highest data acquisition rate.
To quantify the observed interference of the processed data

1Sysfs: /sys/class/power_supply/battery/voltage_now
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(a) Schematic experimental setup rotating the phone on a
horizontal plane in steps of 22.5◦ while creating CPU pressure
concurrent to reading sensor values.

(b) The amplitude of sensor value deviations of the geomagnetic
rotation vector sensor between CPU stress and sleep periods
rotating the phone 360◦ in steps of 22.5◦.

Fig. 3: Schematic experimental setup and analysis, evaluating which phone orientation preserves the best leakage.

operands with the measurements, we correlate the hamming
distance of the processed operands as a power model with the
gathered measurements.

The experiment involves an application executing a
constant-cycle instruction, i.e., xor (eor) repeatedly in a
loop. We utilize a constant-cycle instruction, removing data-
dependent control flow variations. The used xor instruction
operates exclusively on registers, taking two 64-bit input
registers as input, writing the result back to an output register.
We use registers instead of reading operands directly from
memory to minimize side effects, e.g., power influences of
caches [2]. Before starting the experiment, we pre-define
random, pairwise data operands G and V , which are used as
input to the experiment. We pick a random number between 0
and 7 for each data operand, and encode it in each hex digit
of that 64-bit input operand. This concatenates 16 hex digits
of the same value in the input register. We use this technique,
similar to Kogler et al. [2], to amplify the leakage by a factor of
16, speeding up the trace collection process of the experiment.
In the experiment, we use these value pairs G and V , as input to
the repeated xor instructions for a duration of approximately
0.5 s. We collect measurements for each sensor for two hours
while performing this experiment.

In the subsequent evaluation, we quantify the observed
leakage of the measurements by determining the Pearson
correlation coefficient r between the gathered measurements
of each sensor and the power model of the processed data
operands. We use the Hamming distance between the two input
operands G and V of the xor instruction as a power model,
i.e., the number of differing bits between the 64-bit registers.
We use this model as it usually reflects the power consumption
of xor instruction. We list the correlation coefficients of each
sensor of the Google Pixel 6a in Table II, only considering
statistically significant [34] entries.

Due to the varying data acquisition rates of each sensor,
which lie between 5ms and 1 s, the number of gathered sensor
values N of each sensor in the experiment varies. To evaluate
the statistical significance of the collected traces, we calculate
the noise level for a given number of traces N , which is defined
as rnoise = 4√

N
[34]. We only consider correlations r ≥ rnoise

as statistically significant and report the significance factor

|SF | = r/rnoise in our evaluation. We list the results of the
experiment of the Google Pixel 6a in Table II, additionally
providing results of all evaluated smartphones in Appendix A.

Our evaluations demonstrate that 60 of 137 (43.79%)
evaluated sensors pick up parasitic coupling of concurrently
processed data operands, as multiple sensors show statistically
significant correlations with the power model. The observed
leakage varies across different sensors, with sensors containing
magnetometer readings like the geomagnetic rotation vector,
magnetometer, and orientation sensor showing the best leakage
properties. Notably, the geomagnetic rotation vector sensor
demonstrates the highest leakage while running at the highest
sampling rate of 5ms. Additionally, sensors that do not contain
magnetometer readings, like the gyroscope and game rotation
vector, also show data-dependent leakage but at a lower
magnitude.

We find that 43.79% of the sensors leak data-dependent
information about concurrent CPU operations. We iden-
tify that the geomagnetic rotation vector shows the
strongest leakage across our analysis.

D. Leakage Across Different Devices

Our systematic analysis demonstrates that various built-in
sensors from different smartphones of multiple vendors leak
power-related CPU information. We provide a comprehensive
evaluation of multiple phones from different vendors and
smartphone generations, demonstrating the applicability of the
side channel, also on recent phones (see Table I).

While all evaluated phones of our systematic analysis show
power-related leakage (see Appendix A), our analysis also
demonstrates that phones across different generations are
susceptible to our power-related side channel. For instance,
we analyze the Google Pixel 6a (released in July 2022),
the Google Pixel 7a (released in May 2023), and the most
recent model, the Pixel 9 (released in August 2024). The
integrated sensors of these generations differ in their versions
and properties. While the Pixel 6a and 7a use sensors with
similar (or equal) properties concerning the sensor types and
resolutions, specific sensors of the Pixel 9 include increased
resolution. Despite the varying CPU chipsets and hardware
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sensors, the leakage properties of all three Google Pixel phones
are comparable. For instance, sensors containing magnetome-
ters show high correlations regarding CPU utilization, and
orientation sensors show a medium correlation of around 0.5.
Some results, e.g., of the accelerometer, differ between the
devices; while the Pixel 6a and 9 show a medium correlation
with CPU utilization, the Pixel 7a shows little correlation
concerning this type of sensor. To summarize, while newer
phones such as the Google Pixel 9 use different sensors, our
side channel still applies to these newer phones.

Our analysis covers 9 phones across different vendors
and generations released between 2017 and 2024, demon-
strating comparable trends of sensor-based power-related
leakage.

IV. GEOMAGNETIC ROTATION VECTOR LEAKAGE

In this section, we analyze the properties of the geomagnetic
rotation vector sensor. This sensor is the best-performing
sensor of our leakage analysis (see Section III) for the Google
Pixel 6a. Our focus is to obtain a deeper understanding of
the leakage properties of the sensor and how these properties
influence potential attacks. First, we demonstrate that the
phone’s spatial orientation influences the magnitude of inter-
ference (Section IV-A). Second, we present a novel, generic
method to determine if the sensor exposes an integrating
signal, i.e., if the sensor accumulates a signal over time.
Additionally, we determine the actual start and length of the
integration period relative to the reported timestamp of the
Android sensor framework (Section IV-B). Our results show
that the geomagnetic rotation vector is a rotation-dependent
and integrating sensor. Subsequently, we use these insights
for our AES analysis (see Section VI).

A. Orientation-Dependent Leakage

Our first analysis quantifies the intensity of leakage cor-
responding to different rotational placements to identify the
optimal orientation for potential attacks.
Experimental Setup. To systematically evaluate the effect of
rotational orientation on the sensor readings, we initially place
the device under test on a flat surface with the display facing
up (see Figure 3). This resembles a typical scenario in which
the phone is placed, e.g., for charging. We start our experiment
by rotating the phone in steps of 22.5◦ for an entire 360◦

rotation, as depicted in the schematic setup in Figure 3a. We
define a global reference point at the magnetic North Pole at an
angle of 0◦. In each evaluated orientation of the phone across
the full 360◦ rotation, we conduct the identical run: We either
create computational CPU stress in all but one concurrent CPU
threads or leave them idle. The CPU stress phases alternate
with sleep periods, each lasting 2.5 s. We collect sensor values
in the remaining thread at the maximum data acquisition rate
in parallel to this CPU workload. We run this measurement
for around 45 s while keeping the phone in a fixed position,
ultimately resulting in 16 measurement traces, one for each
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Fig. 4: Sensor readings of the geomagnetic rotation vector
sensor, and the varying CPU utilization while rotating the
phone in steps of α = 22.5◦ on a flat surface aligned at a
shared starting point at the y-axis of 0.

orientation. The phone remains connected to a power source
via a cable throughout the experiment.

Evaluation. We align the recorded traces in the time and
value domain since the geomagnetic orientation vector sensor,
by design, represents the orientation in the value domain.
Therefore, we align each of the 16 measured traces at the
start of the experiment by subtracting the first value from the
trace. Furthermore, we use the ground truth to align the traces
in the time domain. This approach eliminates variations in the
absolute sensor values, allowing a straightforward comparison
of the relative sensor value deviations. Figure 4 shows the
aligned traces. We observe two distinct properties in the traces:
First, the traces differ in amplitude, which is indicated by the
difference between the plot’s extremes. Second, the direction
of the interference differs between the orientations.

We observe that these leakage characteristics depend only
on the absolute value of the amplitude of the traces. Ori-
entations that expose larger amplitudes are less susceptible
to noise and other side effects for our attacks. To quantify
the leakage magnitude of each orientation, we compute the
average distance between the sensor values of the stress and
the idle phase, excluding the transition phases. Depending
on the phone’s orientation, the resulting averaged amplitudes
range between a maximum of 0.097 (±0.005) and a minimum
of 0.002 (±0.0002). This magnitude analysis signifies a dif-
ference in factor 50 between the two extremes. To put this into
perspective, in extreme cases, this is equivalent to a deviation
of a compass app’s needle by roughly 30◦ due to CPU stress.

We visualize the amplitudes for each orientation in Fig-
ure 3b to determine which orientation shows the highest
magnitude. The plot shows the maximal magnitude around
180◦, corresponding to the magnetic South Pole. The observed
amplitude decreases symmetrically as the phone is rotated in
both directions, reaching its minimum at a ±90◦ angle to
the plane between the North and South Poles. Consequently,
the best leakage of the geomagnetic rotation vector sensor is
achieved while oriented towards the geomagnetic South Pole.

7



time

∆t

? ? ?

high low

high low

high low

k5 ·∆θ

k10 ·∆θ

k

r

-1 1

Measurement Window ? Sensor Measurement

r
u
n

0
r
u
n

5
r
u
n

1
0

Fig. 5: Experimental setup characterizing a fine granular,
integrating behavior of the sensor measurements.

The leakage of the geomagnetic rotation vector sensor
is rotation-dependent and has the maximum leakage
magnitude when pointing to the geomagnetic South Pole.
CPU load can deviate a compass app’s needle up to
approximately 30°.

B. Analysis of Integrating Behavior

This section presents a generic method characterizing the
time window during which CPU operations affect sensor
measurements. We determine if and how operations at specific
time points affect sensor measurements done in parallel and
after executing the CPU operations. In addition, we determine
the relative start and end timestamps of the time window
affecting a single sensor measurement point.

The Android sensor framework [23] uses Analog-to-Digital
Converters (ADCs) to acquire analog signals and provide them
as digital representations to software. The datasheets for these
converters provide information on the hardware characteristics
and configuration options. However, they do not specify how
the hardware measurements relate to the reported software
sensor readings. For our detailed leakage assessments regard-
ing power-related leakage of CPU operations, the information
provided is insufficient and requires further evaluation.
Approach. Analog-to-Digital Converters (ADCs) sample ana-
log signals by observing a specific measurement time window.
Changes in an analog signal during that time window are
integrated and reported as a sensor value. CPU operations ex-
ecuted concurrently to this measurement time window distort
that corresponding sensor value (cf. Section III). Our experi-
mental approach aims to optimize the alignment between the
sensor time window and concurrently executed workloads.

Our experiment involves multiple runs, each executing two
workloads denoted as high and low. The workload high
corresponds to a high power draw, while low represents a
low power draw. Each run alternately executes the high
and low workloads while simultaneously collecting sensor
measurements at the highest data acquisition rate. As depicted
in the schematic setup in Figure 5, each workload is executed

for a predetermined time interval ∆t. This time interval ∆t
equals the time between two consecutive sensor measurements.

The runs of the experiment differ in the temporal alignment
of the workloads in relation to the sensor measurement. For
this alignment, we introduce a varying relative offset ki ·∆θ
between the start of each workload and the corresponding
sensor measurement. We determine the time interval ∆θ
by dividing the 2∆t time frame into 20 equally-sized time
intervals, providing fine-grained temporal granularity for the
experiment. The experiment consists of 20 runs, each aligning
the start of each workload at different relative offsets ki ·∆θ
with ki ∈ [0, 19] to the sensor measurements.

To evaluate the alignment and overlap of the executed work-
load with the measurement window in each run, we compute a
correlation coefficient r between a power model representing
the workloads and the corresponding sensor measurements.
Our power model represents M = {0, 1} for the ground truth
of the drawn power (low, high). The calculated correlation
coefficient reflects the relation between the model and the
measured values in an interval of [1,−1], resembling the
relationship’s magnitude and direction. A high correlation
between the power model and a run’s measurements thus
indicates strong alignment of the measurement window with
the workloads at that relative offset of ki ·∆θ.

Figure 5 depicts an exemplary sequence of correlations of
different runs with varying relative offsets, visualizing the
concept of the experiment. Run 0 shows strong alignment
of the measurement window and the workloads, thus resulting
in a large positive correlation r. Conversely, run 10, at a
relative offset of k10 · θ = ∆t, the time interval between
two sensor measurements, results in a negative correlation
of similar absolute value. At offsets where the measurement
window captures both workloads (i.e., kx · θ), the absolute
correlation at that offset ki · θ is decreased depending on the
contribution of each alternating workload to the time window.
Detailed Experimental Setup. Our experiment involves
executing identical constant-cycle workloads for both high
and low phases of Figure 5. While the workload’s control
flow is identical, they draw varying amounts of power due to
the varying processed data operands. The workloads execute
the xor (eor) instruction consecutively, processing two 64-bit
operands G and V . Furthermore, the workloads only operate on
registers, reducing side effects of memory loads, e.g., caching.

We set both input operands G and V to a pre-defined 64-bit
value before each invocation of the workload. The first operand
G is always fixed to an initial value of 0, while the second
operand V is either fixed to 0 (no bits set) or 1..1 (all bits
set). At each invocation, the workload repeatedly computes
the xor-instruction with the pre-defined input operands G and
V , writing the result back to operand G. This results in the
source register G being toggled (high power consumption) or
not (low power consumption), depending on the operand V .

Additionally, we determine the exact interval ∆t between
two consecutive sensor values. Although the Android sensor
framework software interface reports a minimum configurable
time between two sensor events of 5ms, we observe a precise
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Fig. 6: Correlation r of the sensor values of the geomagnetic
rotation vector sensor on the Google Pixel 6a with a model of
the shifted workloads at each shift offset throughout 9ms.

time interval of 4.571ms (± 2.86 µs) between consecutive
sensor events. We determine this interval by collecting 50 000
sensor readings, measuring the time difference between them
while the phone is idle.
Evaluation. In the evaluation, we calculate the correlation
coefficient r between the power model and the collected
measurements of each run. Each run includes 200 000 sensor
measurements used for evaluation. We use the operand V of
the xor operation, corresponding to high and low power
draw, as the power model. We display the resulting correlations
at each relative offset ki · ∆θ of each run ki in Figure 6.
The plot exhibits a sine curve with a period of 2∆t, starting
at an offset k0 · ∆θ = 0 with a correlation coefficient of
approximately 0.

The plot highlights a maximum correlation at a relative
offset of 2.40ms to the sensor values, indicating the best
alignment between the measurement window and the start of
the workloads. Thus, we infer that the sensor’s measurement
window starts around 2.17ms before a corresponding sensor
value. Furthermore, Figure 6 displays a gradual transition be-
tween the maximum and minimum correlation values, forming
a sine curve. Therefore, we infer that the sensor integrates
over a substantial measurement window rather than sampling
a small time window. The duration between the maximum
and minimum correlation values directly indicates the sensor’s
measurement window size. A shorter measurement window
would show faster transitions from the maximum to the
minimum with plateaus at the maxima and minima. Figure 6
shows this peak-to-peak duration of ∆t, indicating that the
sensor measures and integrates over the entire duration of ∆t.

V. PIXEL-STEALING ATTACK

This section presents a remote attack scenario where a
target Android device visits an attacker-controlled website
within a web browser, e.g., Google Chrome. The goal of
this scenario is to perform a pixel-stealing attack [42] that
violates the isolation enforcement of the web browser, i.e.,
cross-origin isolation, by using our novel sensor-based side-
channel attack. In this context, we refer to a pixel-stealing
attack as the capability to leak individual pixel colors rendered
in the web browser. In the following, we evaluate different
sensor-based leakage primitives (cf. Section V-A) accessible
from the JavaScript environment, demonstrating the leakage
properties of our approach. Subsequently, we present our end-
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Fig. 7: The measurements of sensor values from the mag-
netometer using the generic sensor framework. Here, the
magnetometer oscillates at different frequencies based on the
rendered image color when applying an SVG filter stack.

to-end exploit (cf. Section V-B), which leaks cross-origin
image content on different Android devices.
Threat Model. We assume a remote attack scenario where
a victim visits a website hosted or controlled by a remote at-
tacker via their browser. Potential methods for targeted attacks
could include, for instance, malicious web link distribution
via targeted phishing attacks [43] or malicious advertising,
as demonstrated in prior work [44]. The attacker’s website
embeds cross-origin content, like images or webpages, inside
an iframe, which serves as an element to display content
directly on the attacker’s web page. Due to the strict isolation
enforcement of the browser, the malicious website can not
read the iframe’s contents directly. Thus, the attacker’s website
utilizes sensor measurements gathered via the JavaScript sen-
sor interface to leak the secret image content rendered inside
the target iframe. Note that JavaScript grants access to the
sensor API [37] per default to unprivileged JavaScript. For
the general attack setup, we assume the victim runs Android
13 with an installed version of Google Chrome that does not
include Google’s patch applied in response to our disclosure,
e.g., version 120. Our general threat model aligns with threat
models presented in prior work [7], [22], [45], involving a
remote attacker running JavaScript inside a malicious website
on the victim’s device.

A. Leakage Primitive of Rendered Images

First, we need a leakage primitive in order to perform
our pixel-stealing attack. Therefore, we analyze the potential
leakage of the Google Chrome browser’s rendering process
through measured sensor values provided by the generic sensor
framework through JavaScript. Note that these sensor values
are accessible to an attacker hosting a malicious website.
Methodology. Initially, we analyze the leakage properties
of our sensor-based approach by distinguishing between two
monochrome images consisting of 256 x 256, either all-white
or all-black pixels. Here, we intentionally choose comple-
mentary colors since their representation in all RGB channels
(i.e., 0 for black and 255 for white) results in sizable Ham-
ming weight differences, resulting in substantial variations in
power consumption during the rendering process between both
images. We render both images in an alternating pattern on
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Fig. 8: Captured time intervals between consecutive sensor val-
ues from the absolute orientation sensor. The histogram shows
distinguishable distributions for black and white images, i.e.,
timing differences between consecutive sensor values.

a canvas of the Google Chrome browser, with each image
displayed for approximately 10 s. Similar to existing work [7],
[22], we apply an SVG filter before rendering the image in
each render pass of the browser window. The SVG filter
performs GPU-intensive computations on the pixel values,
leading to GPU power consumption variations due to the
pixels’ different Hamming weights. Specifically, the SVG filter
applies a Gaussian blur filter with a standard deviation of 1 to
each pixel of the image.

When a filter is applied multiple times to the same image,
the web browser will not recompute the filter on each render
pass and instead reuses cached results. Therefore, we add an
image containing random pixel noise to the input image on
every render pass before applying the Gaussian blur filter.
This methodology preserves significant Hamming weight dif-
ferences between the two images while only slightly altering
the image, forcing a recomputation of the Gaussian blur filter.
The images with random components used in this process
are dynamically generated at runtime before initiating the
measurement. Each time the SVG filter is invoked, a random
image is chosen and leveraged for composition with the input
image. Simultaneously, we capture sensor readings from the
JavaScript generic sensor framework.
Analysis Results. We identified two different leakage primi-
tives: The magnetometer and the absolute orientation sensor,
which show variations when rendering different colored im-
ages. Specifically, we can report different sensor-based leak-
age: the measurements with the magnetometer lead to different
signal frequencies for the two images, while the absolute ori-
entation sensor leads to time differences between constitutive
sensor values depending on the pixel color. Both sensors are
accessible from JavaScript in the Google Chrome browser us-
ing the generic sensor framework. Access to the magnetometer
requires one-time enabling of a browser flag [37] (which is
cached by the web browser), while the absolute orientation
sensor is always accessible without permission.

Figure 7 shows measurements gathered from our evaluation
of the magnetometer. The graph illustrates the sensor values
collected during the rendering process of alternating black and
white images throughout 40 s, with a low pass filter applied
to remove high-frequency noise. Moreover, the graph shows
sensor values for an alternating pattern, i.e., 10 s of black and
white images, where the blue signal (white image) and the

orange signal (black image) are concatenated for their respec-
tive time frame. While the absolute sensor values for both
images are similar in the time domain, we observe differences
in the signal’s frequency domain. Specifically, when rendering
white images, the signal oscillates at a lower frequency than
during the rendering of black images. We hypothesize that this
effect originates from changes in the GPU’s operating voltage
and frequency (i.e., P-states) while processing different colors.
This is in line with our systematic analysis (see Section III),
which shows that sensor measurements correlate with the
system’s battery voltage. Recent work [7], [22] demonstrates
a similar effect by measuring execution time differences due
to frequency changes.

Besides the magnetometer, we evaluate the absolute ori-
entation sensor, and demonstrate distinguishable differences
in the sensor measurements when rendering monochrome
black-and-white images. While the raw absolute sensor values
demonstrate little variations across different image colors, we
observe variations in the time intervals between consecutive
sensor values. Figure 8 shows a histogram of the captured time
intervals between consecutive sensor values while rendering
both black and white images. Here, the histogram shows
distinguishable distributions for both classes of rendering.
Precisely, time intervals between consecutive sensor values
collected while rendering black images are, on average, lower
than when rendering white images, thus allowing the im-
age color of the rendered images to be distinguished. As
a root cause behind this behavior, we suspect a security
mechanism implemented in the JavaScript sensor interface.
The JavaScript sensor interface implements an algorithm that
performs threshold checks before reporting sensor values for
specific sensors [38]. The interface discards sensor readings
that do not significantly differ from the latest readings of the
underlying Android sensor. The varying power consumption of
the rendered images of different color results in variations of
the sensor values by a varying magnitude. Consequently, the
threshold check discards different amounts of sensor values per
image color, leading to varying intervals between the sensor
values per image color.

We demonstrate that the magnetometer introduces leak-
age in the form of the oscillation frequency of the sensor
signal, and the absolute orientation sensor introduces
timing differences for consecutive sensor readings.

B. End-To-End Pixel Stealing Attack

We present an end-to-end pixel-stealing attack targeting
Android devices, leveraging the generic sensor framework
accessible through JavaScript in the Google Chrome web
browser. Thereby, our attack successfully circumvents the
cross-origin isolation enforced by the web browser, which
typically isolates content from different origins. Precisely,
cross-origin content, e.g., content rendered in containers like
an iframe, is intended to be inaccessible to JavaScript
outside that container. We demonstrate the effectiveness of
our approach using the JavaScript sensor framework to break
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Fig. 9: High-level overview of the end-to-end pixel stealing
attack on Android smartphones. The attacker runs a malicious
website embedding an iframe containing cross-origin con-
tent, e.g., an image. We crop the rendered image down to the
individual selected pixel and then apply the SVG filter stack
individually to each pixel of the image to leak the color.

this isolation, recovering images from different origins. We
evaluate our attack on different devices that demonstrated leak-
age in our initial systematic leakage analysis (cf. Section III),
precisely the Google Pixel 6a and the Samsung Galaxy S20.
Attack Methodology. In Figure 9, we provide a schematic
overview of the pixel-stealing attack. We follow a similar
approach to recent work [7], [22], where the attacker runs a
malicious website that embeds an iframe containing cross-
origin content, e.g., an image. The size of the iframe is 256
x 256 pixels and the iframe’s content is rendered to the
screen, visible to the user of the Android device. Protected by
the cross-origin isolation of the web browser, the JavaScript
running on the attacker’s website is unable to access the
content within the iframe. To extract individual pixel values
from the rendered cross-origin content, the attacker applies
an SVG filter stack on top of the rendering process of the
iframe, as previously described in Section V-A.

To distinguish different pixels colors, the SVG filter stack
is applied individually to each pixel of the image. Therefore,
a pixel of interest is selected before applying the filter stack.
Thus, the attacker crops the rendered image to the individual
selected pixel, discarding the rest of the image. In JavaScript
this is accomplished using the CSS clip-path property,
which selects a visible image region while hiding the rest of
the image outside that region. This clip-path region of size
1 x 1 is shifted over the image pixel by pixel, enabling the
selective rendering of one pixel at a time. Subsequently, the
cropped pixel is scaled up to 256 x 256 pixels, filling the entire
iframe with the color of the selected pixel. The displayed
image is converted to black and white to enhance the Hamming
weight differences of the pixels. Following the selection and
scaling of the target pixel, the SVG filter stack is applied to
the image. We use the SVG filter described in Section V-A for
our end-to-end pixel-stealing attack. In parallel to applying
the filter stack, we collect sensor measurements from the
JavaScript sensor framework at the highest data acquisition
rates. We provide a detailed evaluation of the attack using
different sensors, namely the magnetometer and the absolute
orientation sensor on the Google Pixel 6a. Additionally, we

evaluate the attack on different devices of our initial leakage
analysis (cf. Section III).

When reconstructing the individual pixel colors of the mag-
netometer traces, we calculate a Fast Fourier Transform (FFT)
of the collected measurements per pixel, revealing each pixel’s
signal frequency spectrum. As the singal oscillates with vary-
ing frequencies at different pixel colors (see Section V-A), the
FFT thus reveals peaks at different frequencies for the varying
pixel colors. Using a threshold at a specific frequency, we can
classify the pixel color of the image. Similarly, when evaluat-
ing the Absolute Orientation sensor, we use a thresholding
approach on the average times between consecutive sensor
values (see Section V-A), thus recovering the original image.
Evaluation. In our evaluation, we reconstruct a rendered
image with dimensions of 48 x 48 pixels. We display the
Google Chrome logo inside the iframe as an original image.
We demonstrate image reconstruction using the different sen-
sors and evaluate our attack on different target devices.

Figure 10 illustrates the reconstructed images using mea-
surements of different sensors. Additionally, it depicts the
corresponding reconstruction speed per pixel [s] and the
reconstruction accuracy [%], comparing the leakage of the
different sensors on a victim device such as the Google Pixel
6a. Here, the magnetometer provides the fastest reconstruction
time of 5 s/pixel, providing a reconstruction accuracy of
90%. The reconstructed image exhibits clear outlines, thus
providing a distinct representation of the original content. The
reconstructed image highlights sporadic, randomly distributed
bit errors. Nevertheless, these bit errors do not hinder the
recognition of the original image’s content, as the shape
of the image elements is clearly recognizable. Additionally,
Figure 10 shows the reconstructed image from the absolute
orientation sensor, demonstrating a reconstruction accuracy of
70 % at 10 s per pixel. While the reconstructed image quality
is lower than that of the magnetometer trace, the image content
is still recognizable.

We demonstrate an end-to-end pixel-stealing attack in
JavaScript in Google Chrome, bypassing the browser’s
cross-origin isolation by exploiting power-related Mag-
netometer and Absolute Orientation sensor readings.

Figure 11 depicts the results of the pixel-stealing attack
on different mobile devices, identified in our initial leakage
analysis (cf. Section III). The results of these evaluations using
the magnetometer sensor demonstrate similar reconstruction
accuracies around 90% at reconstruction speeds around 5 to
10 s/pixel. The resulting reconstructed images show distinct
outlines with randomly distributed bit errors. In summary,
our attack achieves results comparable to prior pixel-stealing
attacks [7], [22], leveraging power-related signals such as the
Hertzbleed effect (see Section VII-A).

We demonstrate that smartphones identified in our initial
leakage analysis are susceptible to sensor-based pixel-
stealing attacks.
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Fig. 10: The results of our attack evaluation include the
reconstructed images of the Google Chrome logo using the
magnetometer and the absolute orientation sensor on the
Google Pixel 6a, together with the leakage rates and accuracy.

VI. CPA ATTACK ON THE ARM AES INSTRUCTION

This section considers a local attack scenario where an
attacker runs inside an app. This app has been installed by
the user, e.g., via the Google Play store [46], and obeys the
strong isolation enforcement of Android’s app sandboxing.
In this attack scenario, we demonstrate how a local attacker
can exploit the default permitted sensor readings to leak
secret information, i.e., encryption keys. In the following,
we perform a case study that attacks a hardware-accelerated
AES implementation by performing Correlation Power Anal-
ysis (CPA) [10]. In our CPA attack, we exploit the profiled
properties of the previously analyzed geomagnetic rotation
vector sensor (see Section IV). Specifically, we demonstrate a
rank reduction attack by leaking individual AES key bytes.
Threat Model. We assume a local attacker operating within
an Android app installed by the device user, e.g., via Android’s
Google Play store [46]. The victim’s device runs Android
13 with the default configuration and no additional system
modifications. The malicious application requires access to the
Android sensor framework, which Android grants by default
and does not require user confirmation. There is no additional
requirement for user-granted system permissions to access any
other functionality. Thus, listing the application on an official
App Store, like the Google Play Store [46], would be possible
without violating security policies. To be able to capture sensor
readings, the application has to either run in the foreground or
as a foreground service. Examples of such foreground services
are a navigation app, fitness or sleep tracker initiated by the
user. This service can collect sensor measurements as a part
of its functionality, providing ongoing notifications without
the need for the app to be in the foreground [47]. Finally,
we assume that the malicious app can trigger arbitrary AES
encryptions with known plaintext blocks. This assumption
of an interface capable of initiating encryptions aligns with
prior state-of-the-art research publications like the PLATY-
PUS [3], Frequency-throttling [5] or the Plundervolt [48]
attacks. The attacked AES implementation uses constant-
cycle ARM NEON AES vector instructions [49] for each
encryption round, as commonly implemented in application-
class processors, e.g., smartphones. The used implementation

Original Samsung Galaxy

S20 FE

Google Pixel 6a

Phone Time/Pixel [s] Accuracy [%]

Samsung Galaxy S20 FE 10 89.2
Google Pixel 6a 5 90.2

Fig. 11: Results of the pixel-stealing attack on the Samsung
Galaxy S20 FE and the Google Pixel 6a with the correspond-
ing leakage rates and reconstruction accuracies observing
magnetometer traces.

is comparable to recent AES implementations of real-world
cryptographic libraries like Mbed TLS [50] or OpenSSL [51],
without side-channel countermeasures.
Attack Setup and Methodology. The attacker operates
within an unprivileged Android application evaluated on the
Google Pixel 6a, with default privileges. The attacker has
access to an interface capable of initiating AES encryptions
with arbitrarily known plaintexts. The AES implementation
makes use of dedicated ARM hardware instructions from
the ARM NEON [49] cryptographic extension, specifically
the aese and aesmc instructions. These vector instructions
operate on 16-byte vector registers and execute the sub-
steps of an AES round, such as add roundkey, sub bytes,
and shift rows with the aese instruction, and mix columns
with the aesmc instruction. Interleaving these instructions
for each of the 10 AES rounds results in a full AES128
implementation. Notably, the evaluated AES implementation
is constant-cycle, always requiring the same number of cycles
on each invocation, independent of the input data.

The attacker repeatedly invokes the AES implementation
with known plaintext blocks. Simultaneously, the attacker col-
lects measurements of the geomagnetic rotation vector sensor
on the Google Pixel 6a, utilizing the highest available data
acquisition rate of 4.571ms (± 2.86 µs). The attacker aligns
the invocations of the AES implementation to the profiled
relative measurement window of each sensor event, as detailed
in Section IV-B. Consequently, the attacker chooses a new
plaintext for each sensor measurement window and repeatedly
triggers the encryption with that plaintext.
Evaluation. First, we analyze the observable Hamming
distance and Hamming weight leakage of all architectural
intermediates, i.e., all the observable register values aessei
and aesmci of the internal encryption state changing due
to specific AES instructions. Second, we perform a CPA-style
attack and report how the key candidates of this analysis evolve
over the number of recorded samples.

Table III shows the results of the Hamming distance and
Hamming weight analysis. We recorded approximately 35.6
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TABLE III: Correlation analysis of the measurements and the
architectural observable intermediates. We report the Pearson
correlation coefficient r and the significance factor |SF |.

Hamming Weight Hamming Distance
Model r in 10−3 |SF | Model r in 10−3 |SF |

hw(pt) 1.340 1.41 -
hw(aesse0) -0.085 0.09 hd(pt, aesse0) -3.595 3.79
hw(aesmc0) 2.572 2.71 hd(aesse0, aesmc0) 0.744 0.78
hw(aesse1) -0.671 0.71 hd(aesmc0, aesse1) -0.878 0.92
hw(aesmc1) 0.042 0.04 hd(aesse1, aesmc1) -1.688 1.78
hw(aesse2) 0.380 0.40 hd(aesmc1, aesse2) 2.870 3.02
hw(aesmc2) 0.385 0.41 hd(aesse2, aesmc2) 0.295 0.31
hw(aesse3) -0.965 1.02 hd(aesmc2, aesse3) 0.196 0.21
hw(aesmc3) -0.847 0.89 hd(aesse3, aesmc3) -1.678 1.77
hw(aesse4) -1.772 1.87 hd(aesmc3, aesse4) 1.238 1.30
hw(aesmc4) -1.465 1.54 hd(aesse4, aesmc4) -1.065 1.12
hw(aesse5) -0.407 0.43 hd(aesmc4, aesse5) 1.113 1.17
hw(aesmc5) -0.050 0.05 hd(aesse5, aesmc5) 0.560 0.59
hw(aesse6) -0.175 0.18 hd(aesmc5, aesse6) -0.211 0.22
hw(aesmc6) 0.761 0.80 hd(aesse6, aesmc6) -2.037 2.15
hw(aesse7) 1.469 1.55 hd(aesmc6, aesse7) -1.038 1.09
hw(aesmc7) 1.121 1.18 hd(aesse7, aesmc7) 0.723 0.76
hw(aesse8) -1.521 1.60 hd(aesmc7, aesse8) -1.535 1.62
hw(aesmc8) 6.535 6.89 hd(aesse8, aesmc8) 1.878 1.98
hw(aesse9) 1.138 1.20 hd(aesmc8, aesse9) 1.220 1.29
hw(aesmc9) -0.707 0.74 -

million samples over a time span of 44 h. However, we only
use 17.8 million samples in the following analysis due to
filtering. During the experiment, we varied all possible input
bytes of the plaintext to include all potential leakage influ-
ences. We report the Pearson correlation coefficient and the
significance factor (see Section III-C) in the table for both the
Hamming weight and the Hamming distance of the individual
models, similar to the CPA analysis from Lipp et al. [3]. The
overall Pearson correlation coefficients are relatively low in
the range of 10−3. Nevertheless, we observe that, for instance,
the correlation of the Hamming weight of the output of the
eighth mix columns output shows a high significance factor of
|SF | = 6.89. Furthermore, we observe a significant leakage
(|SF | = 3.79) of the Hamming distance between the plaintext
and the output of the first aese instruction. Finally, we
observe that the direction of the Pearson correlation coefficient
is, i.e., changing the sign depending on the targeted round.
For the CPA attack, we reuse the samples from the previous
experiment. We use these recorded samples and perform a CPA
analysis using the following model: M = hw(sbox[pn⊕kn]).
Where pn represents the nth plaintext byte and kn the nth

targeted key byte of the first round. For each key byte kn,
we enumerate all possible key byte candidates ranging from 0
to 255. We use the Pearson correlation coefficient to correlate
the defined model M of each key byte candidate with the
measured samples. Figure 12 shows the rank of the correct
key candidate over the number of samples used in the CPA
attack. We observe that the rank of the correct key candidate
shows a downward trend and fluctuates after 150 000 samples
between 0 and 50. Overall, we observe key bytes for which
the CPA converges to a stable result (cf. Figure 12) like key
byte 0, 6, and 12. However, some of the bytes did not show
a meaningful trend. Therefore, we conclude that although the
geomagnetic rotation vector sensor exposes a power-related
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Fig. 12: Rank complexity analysis of the collected traces of
the AES implementation for different key byte guesses.

signal usable for a CPA attack, not all key bytes converge
toward a stable result.

The geomagnetic rotation vector sensor exposes a signifi-
cant leakage signal of the AES implementation. Although
the leakage exposes rather low correlation coefficients, an
adversary can still reduce the key complexity.

VII. RELATED WORK & DISCUSSION

This section gives an overview of related work, discussing
possible mitigations, limitations, and future work.

A. Related Work

Android Software-based Power Side Channels. Android
versions prior to Android 7 (released in 2018) offered un-
restricted access to power data via the sysfs [52]. This
enabled unprivileged Android apps to exploit power readings
directly without requiring power-related signals for estimation.
Yan et al. [19] and Michalevsky et al. [20] demonstrated
that software power interfaces allow to leak user locations
and password lengths to unprivileged users [19]. Subsequent
work [21] performed application fingerprinting using this
power interface. Android 7 removed unprivileged access to
this interface, removing the attack surface using direct power
signals. Thus, Qin et al. [52] demonstrated a power estimation
method to perform website fingerprinting by, e.g., reading
Android 7’s unprivileged CPU load and frequency information.
Subsequently, Android 8 removed unprivileged access to these
power-related interfaces [53], reducing the attack surface.
Sensor-based Attacks on Mobile Phones. Side-channel
attacks on smartphones, especially attacks using sensors [54],
mostly use motion data inferring, e.g., user interactions [24].
Demonstrated attacks perform user localization using motion
sensors [25] or infer user input due to device motion [26]–[28].
In addition to attacks that exploit sensors’ intended motion
properties, there are attacks exploiting the parasitic signal
captured with high-precision magnetic field sensors. Specif-
ically, Matyunin et al. [29] demonstrated that the Android’s
magnetic field sensor can be used to build covert channels
or website and application fingerprinting natively [29], and
from JavaScript [55]. Another study [56] leaked applica-
tion usage data through Magnetometer readings using deep
neural networks. Even though these studies provide a great
preliminary insight into the capabilities of an attacker, they
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only leak information based on coarse-grained influences,
e.g., CPU utilization, leaving the full potential of power-
related sensor-based side channels to be explored. Thus, in
this work, we show that various sensors, beyond magnetic
field sensors, expose power-related signals capable of also
leaking fine-grained differences in power, e.g., processed data
operands. Besides power-related signals, Mohamed et al. [57]
demonstrated that magnetometers in Apple iPhones can leak
touch events. Shepherd et al. [58] illustrated how to leverage
sensor multiplexing to construct a covert channel and conduct
application profiling.
Pixel Stealing. Barth et al. [42] initially observed that
SVG filters [59] leak rendered pixel colors in browsers. This
led to the discovery of pixel-stealing attacks, exploiting data-
dependent timing variations in the filters [60], [61]. Subse-
quently, browser vendors mitigated these attacks by removing
these data-dependent execution time dependencies [62]–[64].
Despite removing data dependencies, Andrysco et al. [65]
demonstrated that pixel stealing remained feasible using mi-
croarchitectural side channels. Kohlbrenner et al. [66] later
demonstrated that timing side channels in floating point oper-
ations are still present, prompting additional mitigations from
major browser vendors [67]–[69].

The introduction of software-based power side channels
opened up a new attack vector concerning pixel-stealing at-
tacks. As JavaScript does not provide a power interface, recent
discoveries [7], [22] exploited power-related signals using the
Hertzbleed effect, leveraging time as a proxy for power to
perform pixel stealing. While Wang et al. [7] focused on laptop
CPUs, achieving great leakage rates, Taneja et al. [22] per-
formed evaluations on multiple hardware platforms, including
mobile phones. On Android, they recover pixel values at rates
between 10 and 19 s/pixel with an accuracy of 70 to 82%. Our
work demonstrates additional power-related sensor signals,
beyond timing, that enable pixel-stealing attacks. Our findings
show recovery rates of 5 to 10 s/pixel and an accuracy of 70
to 90%, comparable to the results of Taneja et al. [22] (see
Section V-B). Besides power-related signals, Olejnik et al. [70]
demonstrated a pixel-stealing attack on mobile devices using
the ambient light sensor, exploiting physical light changes
due to rendered images. O’Connell et al. [45] demonstrated
cache attacks leaking cross-origin content in the browser.
Wang et al. [71] demonstrate pixel-stealing exploiting GPU
data-compression, and Pustelnik et al. [72] leak pixels exploit-
ing uninitialized GPU registers, showing the active research
effort towards performing pixel-stealing attacks in the browser.

B. Discussion

Limitations and Mitigations. Similar to prior side-channel
attacks [3], [6], mitigating our novel sensor-based attack must
be considered with user experience in mind. A successful
attack requires access to the Android sensor framework. Thus,
a straightforward mitigation would be restricting or limiting
sensor framework access. However, since many apps require
sensor readings to provide basic functionality, removing access
to the sensor framework would significantly impact user ex-

perience. Hiding specific sensors behind a permission prompt
could reduce the attack surface, making attacks easier to detect
while maintaining app functionality. However, prior work on
permission prompts on Android has shown [73] that users
may still grant permission, partially mitigating our attacks.
Reducing the accuracy of the sensor readings could decrease
leakage. This approach, similar as implemented in the Google
Chrome browser [38], could make attacks harder while pro-
viding enough information for coarse-grained tasks required
in general-purpose apps. However, reducing the interface’s
precision only partially prevents future attacks, as seen in the
PLATYPUS attack [3] that exploited the coarse-grained RAPL
interface, which seemed too imprecise for attacks at the time.

On a hardware level, one approach is implementing more
sophisticated algorithmic countermeasures like masking [74],
with cryptographic hardware instructions. This significantly
increases the difficulty of attacks. Likewise, implementing
algorithmic countermeasures from software can increase the
security of existing unprotected systems. Software counter-
measures typically increase latency, hindering widespread
adoption. Grégoire et al. [75] demonstrated how to implement
fast, higher-order masking using ARM NEON’s vectorized
AES instructions. This approach could be used to increase the
security of a system from software. A more generic defensive
approach is to add shielding to the sensors or to separate the
sensor circuit from the CPU’s power supply domain.

VIII. CONCLUSION

In this paper, we presented power-related side-channel at-
tacks targeting Android phones through sensor-based leakage.
We provided results of our systematic analysis of potential
leakage channels misusing the Android sensor framework. We
detailed novel insights into the characteristics of the geomag-
netic rotation vector sensor, serving as a leakage primitive for
our proof-of-concept exploit. We evaluated the power-related
leakage in two proof-of-concept attacks: in a remote setting
in the web browser and locally inside an app. As a remote
JavaScript attacker, we present an end-to-end pixel-stealing
attack, bypassing the browser’s cross-origin isolation. In the
local setting, we performed an AES CPA attack, exploiting
energy variations measured through the geomagnetic rotation
vector sensor, accessible to unprivileged Android applications.
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[75] B. Grégoire, K. Papagiannopoulos, P. Schwabe, and K. Stoffelen,
“Vectorizing Higher-Order Masking,” in COSCADE, 2018.

APPENDIX

A. Leakage Analysis Phones

In this section, we show the results of the systematic analy-
sis of all the remaining devices of Section III. The systematic
analysis in Tables IV, V, and VI, contains evaluations of
devices released over the past years up to recently released
phones, e.g., the Google Pixel 9 (released August 2024).

Besides the Google Pixel 6a in Section III, we also demon-
strate the leakage properties of different generations of the
Google Pixel series. Thus, we additionally evaluate the Pixel
7a (see Table Vc) and the Pixel 9 (see Table Vd). Despite
the different CPU generations and sensors, all three Google
Pixel devices show similar leakage properties. Each phone
generation shows significant leakage (r > 0.7) regarding
varying CPU utilization in three sensors, also demonstrating a
lower, observable correlation in other sensors, e.g., orientation
sensors. While the general trend is similar, there are slight
differences with specific sensors. For example, the accelerom-
eter shows little correlation concerning CPU utilization on
Pixel 7a while showing medium correlation on the other Pixel
devices. Regarding data-dependent leakage, the trend between
the varying Pixel devices is comparable, with the geomagnetic
rotation vector sensor showing the best results. Overall, 26
out of 47 sensors (55%) of three pixel devices demonstrate
significant (|SF | > 1) data-dependent leakage.

Table Va shows the results of the systematic leakage anal-
ysis of the Honor View 20. It shows that 6 sensors (50%)
demonstrate CPU utilization-dependent leakage (r > 0.7), and
7 sensors (58%) show a statistically significant (|SF | > 1)
data-dependent leakage. The evaluation results of Honor P90
Lite, released in 2023, given in Table IV demonstrate lower
correlations regarding CPU utilization-dependent leakage. Our
analysis shows that 7 of 10 sensors show to data-dependent
leakage on the Honor P90 Lite. We additionally evaluated
11 sensors of the One Plus 5T, in Table Vb. We observe 6
sensors (54.5%) demonstrating considerable CPU utilization-
dependent leakage and 5 sensors (45.5%) showing statistically
significant data-dependent leakage. Finally, we evaluated 3
Samsung devices, namely the Samsung Galaxy S20 FE (see
Table VIa), the Samsung Galaxy A51 (see Table VIb), and
the Samsung Galaxy S9 (see Table VIc). Out of the 57
evaluated sensors of the Samsung devices, 5 sensors (8.7%)
show significant leakage (r > 0.7) concerning CPU utilization.
Additionally, 15 sensors (26.3%) demonstrate data-dependent
leakage (|SF | > 1). Notably, the Samsung Galaxy S9 does not
show large correlations in CPU utilization while still showing
statistically significant data-dependent correlations.

TABLE IV: Systematic leakage analysis of the all sensos on the Honor P90 Lite

Sensor Resolution Update Rate Varying CPU Utilization Varying Data
[ms] r r |SF |

ACCELEROMETER 1.20 · 10−3 5 0.028 - -
MAGNETOMETER 1.50 · 10−1 20 0.645 0.009 1.253
ORIENTATION 3.91 · 10−3 5 0.325 0.004 1.225
GRAVITY 1.20 · 10−3 5 0.194 0.005 1.480
LINEARACCEL 1.20 · 10−3 5 0.049 - -
ROTATION VECTOR 5.96 · 10−8 5 0.612 0.008 1.821
UNCALI MAG 1.50 · 10−1 20 0.665 0.007 1.062
GAME ROTATION VECTOR 5.96 · 10−8 5 0.309 0.008 2.217
GEOMAGNETIC ROTATION VECTOR 5.96 · 10−8 5 0.275 0.008 2.411
UNCALI ACC 1.20 · 10−3 5 0.027 - -
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TABLE V: Systematic leakage analysis of the Honor View 20, the One Plus 5T, the Google Pixel 7a, and Google Pixel 9.

(a) Systematic leakage analysis of the all sensos on the Honor View 20.

Sensor Resolution Update Rate Varying CPU Utilization Varying Data
[ms] r r |SF |

accelerometer-lsm6ds3-c 1.00 · 10−5 4 0.610 - -
akm-akm09918 6.25 · 10−2 10 0.915 0.008 1.529
orientation 1.00 · 10−1 10 0.633 0.006 1.251
st-lsm6ds3-c 1.70 · 10−5 4 0.547 - -
gravity 1.53 · 10−1 10 0.713 0.008 1.738
linear Acceleration 9.58 · 10−3 10 0.484 - -
rotation Vector 5.96 · 10−8 10 0.710 0.019 4.251
uncalibrated Magnetic Field 6.25 · 10−2 16.667 0.900 0.007 1.444
game Rotation Vector 5.96 · 10−8 10 0.793 0.011 2.479
uncalibrated Gyroscope 1.70 · 10−5 4 0.563 - -
geomagnetic Rotation Vector 5.96 · 10−8 10 0.895 0.006 1.28
RPC sensor 1.00 · 10−0 500 - - -

(b) Systematic leakage analysis of the all sensos on the One Plus 5T.

Sensor Resolution Update Rate Varying CPU Utilization Varying Data
[ms] r r |SF |

BMI160 Accelerometer Uncalibrated 2.39 · 10−3 5 0.587 - -
AK09911 Magnetometer 5.99 · 10−1 20 0.280 0.007 1.047
AK09911 Magnetometer Uncalibrated 5.99 · 10−1 20 0.311 - -
BMI160 Gyroscope 1.07 · 10−3 5 - - -
BMI160 Gyroscope Uncalibrated 1.07 · 10−3 5 0.179 - -
Gravity 2.39 · 10−3 5 0.778 0.006 1.766
Linear Acceleration 2.39 · 10−3 5 0.766 - -
Rotation Vector 5.96 · 10−8 5 0.745 0.012 3.655
Game Rotation Vector 5.96 · 10−8 5 0.718 0.005 1.602
GeoMagnetic Rotation Vector 5.96 · 10−8 20 0.763 - -
Orientation 1.00 · 10−1 5 0.778 0.008 2.455

(c) Systematic leakage analysis of the all sensos on the Google Pixel 7a.

Sensor Resolution Update Rate Varying CPU Utilization Varying Data
[ms] r r |SF |

LSM6DSV Accelerometer 4.79 · 10−3 5 0.039 - -
MMC56X3X Magnetometer 9.76 · 10−2 10 0.940 0.008 1.388
Orientation Sensor 1.00 · 10−5 5 0.521 0.009 1.890
LSM6DSV Gyroscope 1.22 · 10−3 5 0.106 - -
ICP20100 Pressure Sensor 1.00 · 10−4 25 0.185 - -
Gravity Sensor 1.00 · 10−5 5 0.492 0.005 1.041
Linear Acceleration Sensor 1.00 · 10−5 20 0.158 - -
Rotation Vector Sensor 1.00 · 10−5 5 0.559 0.017 3.769
MMC56X3X Magnetometer-Uncalibrated 9.76 · 10−2 10 0.923 0.005 1.080
Game Rotation Vector Sensor 1.00 · 10−5 5 0.424 0.010 2.220
LSM6DSV Gyroscope-Uncalibrated 1.22 · 10−3 5 0.449 0.007 1.635
Geomagnetic Rotation Vector Sensor 1.00 · 10−5 5 0.934 0.022 4.827
LSM6DSV Accelerometer-Uncalibrated 4.79 · 10−3 5 - - -
LSM6DSV Temperature 3.91 · 10−3 16.667 0.110 - -
ICP20100 Temperature 1.00 · 10−2 25 0.107 - -

(d) Systematic leakage analysis of the all sensos on the Google Pixel 9.

Sensor Resolution Update Rate Varying CPU Utilization Varying Data
[ms] r r |SF |

ICM45631 Accelerometer 5.99 · 10−4 5 0.439 - -
MMC5616 Magnetometer 9.76 · 10−2 10 0.969 0.018 3.352
Orientation Sensor 1.00 · 10−5 5 0.417 0.017 4.652
ICM45631 Gyroscope 1.33 · 10−4 5 0.055 - -
ICP20100 Pressure Sensor 1.00 · 10−4 25 0.085 - -
Gravity Sensor 1.00 · 10−5 5 0.202 0.004 1.174
Linear Acceleration Sensor 1.00 · 10−5 20 0.511 0.009 1.320
Rotation Vector Sensor 1.00 · 10−5 5 0.433 0.008 2.233
MMC5616 Magnetometer-Uncalibrated 9.76 · 10−2 10 0.971 0.015 2.785
Game Rotation Vector Sensor 1.00 · 10−5 5 0.394 0.009 2.463
ICM45631 Gyroscope-Uncalibrated 1.33 · 10−4 5 0.187 - -
Geomagnetic Rotation Vector Sensor 1.00 · 10−5 5 0.892 0.035 7.742
ICM45631 Accelerometer-Uncalibrated 5.99 · 10−4 5 0.461 - -
ICM45631 Temperature 7.81 · 10−3 20 0.241 - -
ICP20100 Temperature 1.00 · 10−2 25 0.350 - -
VD6282 Rear Light Sensor 0.00 · 10−1 16 - - -
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TABLE VI: Systematic leakage analysis of the Samsung S20 FE, the Samsung Galaxy A51, and the Samsung Galaxy S9.

(a) Systematic leakage analysis of the all sensos on the Samsung Galaxy S20 FE.

Sensor Resolution Update Rate Varying CPU Utilization Varying Data
[ms] r r |SF |

ICM42632M Accelerometer 2.39 · 10−3 5 0.137 0.008 2.457
ICM42632M Gyroscope 5.33 · 10−3 5 - - -
AK09918C Uncalibrated Magnetometer 6.00 · 10−2 10 0.748 0.006 1.141
AK09918C Magnetometer 6.00 · 10−2 10 0.737 - -
ICM42632M Uncalibrated Gyroscope 5.33 · 10−4 5 0.131 - -
Game Rotation Vector 5.96 · 10−8 10 0.217 0.014 3.001
Samsung Rotation Vector 5.96 · 10−8 10 0.645 0.007 1.677
STK31610 Light CCT 1.00 · 10−0 20 - - -
ICM42632M Uncalirated Accelerometer 2.39 · 10−3 5 - - -
STK31610 Uncalibrated Light 1.00 · 10−0 20 - - -
Gravity Sensor 5.96 · 10−8 10 0.631 0.005 1.162
Linear Acceleration Sensor 2.39 · 10−3 10 0.652 - -
Orientation Sensor 3.91 · 10−3 10 0.661 0.006 1.369
STK31610 Light 1.00 · 10−0 20 - - -
ICM42632M Interrupt Gyroscope 1.07 · 10−3 20 - - -
TCS3407 Rear ALS 1.00 · 10−0 10 - - -
Calibrated Lux Sensor 1.00 · 10−0 20 - - -
STK31610 Light IR 1.00 · 10−0 20 - - -
Camera Light Sensor 1.00 · 10−0 20 - - -

(b) Systematic leakage analysis of the all sensos on the Samsung Galaxy A51.

Sensor Resolution Update Rate Varying CPU Utilization Varying Data
[ms] r r |SF |

AK09918C Magnetometer 6.00 · 10−2 8 0.800 - -
LSM6DSL Gyroscope 6.11 · 10−4 8 0.114 - -
TCS3701 Light 1.00 · 10−0 200 0.794 - -
AK09918C Magnetometer Uncalibrated 6.00 · 10−2 8 0.798 - -
LSM6DSL Gyroscope Uncalibrated 6.11 · 10−4 8 0.104 - -
TCS3701 Light CCT 1.00 · 10−0 200 0.318 - -
Samsung Game Rotation Vector Sensor 5.96 · 10−8 10 0.258 0.005 1.297
Samsung Gravity Sensor 2.39 · 10−3 10 0.204 0.015 3.487
Samsung Rotation Vector Sensor 5.96 · 10−8 10 0.179 0.005 1.339
Samsung Orientation Sensor 3.91 · 10−3 10 0.256 0.005 1.330
LSM6DSL Accelerometer 2.39 · 10−3 8 - - -
Samsung Linear Acceleration Sensor 2.39 · 10−3 10 - - -
Interrupt Gyroscope 6.11 · 10−4 20 - - -
VDIS Gyroscope 6.11 · 10−5 10 - - -
Calibrated Lux Sensor 1.00 · 10−0 200 - - -

(c) Systematic leakage analysis of the all sensos on the Samsung Galaxy S9.

Sensor Resolution Update Rate Varying CPU Utilization Varying Data
[ms] r r |SF |

LSM6DSL Acceleration Sensor 2.39 · 10−3 2 - - -
LSM6DSL Gyroscope Sensor 6.11 · 10−4 2 - - -
Acceleration Sensor UnCalibrated 2.39 · 10−3 2 - - -
Gyroscope sensor UnCalibrated 6.11 · 10−4 2 - - -
AK09916C Magnetic field Sensor 6.00 · 10−2 10 0.157 - -
Uncalibrated Magnetic Sensor 6.00 · 10−2 10 0.135 0.012 1.750
LPS22H Barometer Sensor 2.44 · 10−4 100 0.102 - -
Samsung Rotation Vector 5.96 · 10−8 10 0.140 0.007 1.081
Samsung Game Rotation Vector 5.96 · 10−8 10 0.140 0.011 1.668
Gravity Sensor 5.96 · 10−8 10 0.145 0.011 1.679
Linear Acceleration Sensor 2.39 · 10−3 10 0.124 - -
Orientation Sensor 3.90 · 10−3 10 0.151 0.013 2.001
TMD4906 lux Sensor 1.00 · 10−0 200 - - -
TMD4906 RGB IR Sensor 1.00 · 10−0 200 - - -
TMD4906 RGB Sensor 1.00 · 10−0 200 - - -
Light Flicker Sensor 0.00 · 10−1 200 - - -
MAX86915 Rear ALS 1.00 · 10−0 10 - - -
MAX86915 IR 1.00 · 10−0 10 - - -
MAX86915 RED 1.00 · 10−0 10 - - -
MAX86915 GREEN 1.00 · 10−0 10 - - -
MAX86915 BLUE 1.00 · 10−0 10 - - -
MAX86915 HRM RAW 1.00 · 10−0 10 - - -
HeartRate Sensor 1.00 · 10−0 1000 - - -

18


	Introduction
	Background
	Power Side-Channel Attacks
	Android Sensor Framework

	Systematic Analysis of Sensor Leakage
	Distinguishing CPU Utilization
	Distinguishing Instructions
	Distinguishing Data-Operands
	Leakage Across Different Devices

	Geomagnetic Rotation Vector Leakage
	Orientation-Dependent Leakage
	Analysis of Integrating Behavior

	Pixel-Stealing Attack
	Leakage Primitive of Rendered Images
	End-To-End Pixel Stealing Attack

	CPA Attack on the ARM AES Instruction
	Related Work & Discussion
	Related Work
	Discussion

	Conclusion
	References
	Appendix
	Leakage Analysis Phones


