
Impact Tracing: Identifying the Culprit of
Misinformation in Encrypted Messaging Systems

Zhongming Wang†, Tao Xiang†, Xiaoguo Li†(B), Biwen Chen†, Guomin Yang‡, Chuan Ma†, and Robert H. Deng‡
†College of Computer Science, Chongqing University, China

‡School of Computing and Information Systems, Singapore Management University, Singapore
{zmwang, txiang, csxgli, macrochen, chuan.ma}@cqu.edu.cn, {gmyang, robertdeng}@smu.edu.sg

Abstract—Encrypted messaging systems obstruct content
moderation, although they provide end-to-end security. As a
result, misinformation proliferates in these systems, thereby
exacerbating online hate and harassment. The paradigm of
“Reporting-then-Tracing” shows great potential in mitigating
the spread of misinformation. For instance, message traceback
(CCS’19) traces all the dissemination paths of a message, while
source tracing (CCS’21) traces its originator. However, message
traceback lacks privacy preservation for non-influential users
(e.g., users who only receive the message once), while source
tracing maintains privacy but only provides limited traceability.

In this paper, we initiate the study of impact tracing. In-
tuitively, impact tracing traces influential spreaders central to
disseminating misinformation while providing privacy protection
for non-influential users. We introduce noises to hide non-
influential users and demonstrate that these noises do not hinder
the identification of influential spreaders. Then, we formally prove
our scheme’s security and show it achieves differential privacy
protection for non-influential users. Additionally, we define three
metrics to evaluate its traceability, correctness, and privacy using
real-world datasets. The experimental results show that our
scheme identifies the most influential spreaders with accuracy
from 82% to 99% as the amount of noise varies. Meanwhile, our
scheme requires only a 6-byte platform storage overhead for each
message while maintaining a low messaging latency (< 0.25ms).

I. INTRODUCTION

End-to-end encrypted messaging systems (EEMSs), such
as WhatsApp and iMessage, have been widely deployed in
the real world and serve billions of people nowadays. These
EEMSs provide a strong guarantee for users’ message privacy
since they ensure that only the communication parties (end
users) can access the content of the messages. Unfortunately,
the encrypted messages prevent the platform from moderating
content to manage any abuse of the system [22], such as
misinformation, thus exacerbating the proliferation of online
hate and harassment [48]. As a result, EEMSs raise the tension
between protecting users’ message privacy and preventing
platform abuse [47].

“Reporting-then-Tracing” is a classical paradigm in com-
bating misinformation. It allows a user to report a problematic
message, and then the platform can trace the users who dissem-
inate it. Message franking [34], [20] is a real-world deployed

Message franking Message traceback Source tracing Impact tracing

(RWC’17) (CCS’19) (CCS’21) (Ours)

Reporting user Tracked user(s) Influential spreader(s)

Fig. 1: Industrial and academic efforts in combat misinforma-
tion campaigns for EEMSs.

scheme allowing recipients to report problematic messages and
corresponding senders to the platform. Although supporting
reporting, message franking reveals only the sender whom the
message is directly from. In real social networks, the dissemi-
nation of misinformation typically occurs through forwarding
(or retweeting) rather than its creation [25], [31], [43]. For
instance, misinformation on Twitter can be retweeted by 1000
∼ 100,000 people [52]. Therefore, tracing the dissemination
path of a message is essential for combating misinformation.
Both Brazil [42] and Indian [33] governments are considering
legislation to make EEMSs support traceability. To provide
traceability, Tyagi et al. [50] and Peale et al. [39] proposed
message traceback and source tracing, respectively. The two
concepts differ in tracing policies (shown in Figure 1), i.e.,
which part of the dissemination path is tracked during tracing.

Existing tracing policies lie between two extremes. Mes-
sage traceback reveals all users who disseminate the message,
which allows the platform to reconstruct the entire dissem-
ination path. This will infringe upon the privacy of users
who merely receive or share a message out of concern, as
they do not intentionally propagate misinformation. Source
tracing only reveals the message’s originator to the platform,
which ignores the other users in disseminating the message.
Although source tracing provides a better privacy guarantee, it
incurs a significant loss in traceability and limits its ability to
combat misinformation campaigns. At a high level, traceability
is fundamentally incompatible with (message) privacy since
the platform must know some information (weakening message
privacy) to support traceability. Naturally, an interesting open
problem arises.

“Is there a tracing policy that balances traceability and
privacy, but also provides practical values to EEMSs?”

B Xiaoguo Li is the corresponding author.

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.240980
www.ndss-symposium.org

This paper initiates a new tracing policy, called impact
tracing, which reveals only the influential spreaders of a re-
ported message while preserving the privacy of non-influential
users. Impact tracing is motivated by the laws of message
dissemination that a small group of users (called influential
spreaders) contribute significantly to disseminating the mes-
sages where most users have a marginal impact [18], [17].
In social networks, influential spreaders act as amplifiers of
information dissemination and are distributed on the branches
of the dissemination paths. Identifying influential spreaders can
reveal the backbone of misinformation dissemination, enabling
the platform to conduct targeted interventions [53], [46].

A. Problem Statement

We model the EEMSs by a messaging graph G =
(V,E,M), in which (1) V denotes the set of vertices rep-
resenting users; (2) M denotes the domain of messages; (3)
E ⊆ V ×V ×M denotes the set of edges representing message
sending and forwarding. Then, we introduce several useful
terms as follows (shown in Figure 2).

• Forwarding graph: Gm = (Vm, Em,m) represents the dis-
semination paths of a particular message m, which includes
all the users who sent or received the message.

• Social graph: G = (V,E,M) represents the entire messag-
ing system, which contains all the users and their commu-
nications, where G = ∪m∈MGm.

• Sociogram: Gs = (V s, Es,−) represents the connections
among users, which is obtained from G by merging the
parallel (directed) edges into a single (undirected) edge.

Based on the above definitions, we can formalize traceability
for EEMSs as a subgraph publication algorithm: Given a social
graph G, starting vertex vs, and message m, publishing a set
of vertices V om, such that V om ⊆ Vm. Here, vs represents the
reporting user who triggers the tracing process. Specifically,
in message traceback, V om is equal to the whole vertices set
of Gm, i.e., V om = Vm; in source tracing, V om only contains
the originator who creates the message m. In contrast to
these examples, impact tracing presents a subgraph publication
challenge but exhibits two distinct disparities:

Identifying the influential spreaders. Impact tracing requires
that V om contains the influential spreaders in disseminating the
message m. Although it is natural to assume that influential
users are hubs in social networks, i.e., users who forward a
reported message multiple times, this does not always hold
in reality. For instance, a hub located at the periphery of a
network may contribute little to message dissemination [5],
[51]. The problem of identifying influential spreaders in social
networks is known as the influence maximization problem [26].
In this work, we have adopted k-Shell decomposition [28]
to evaluate vertices’ impact in Gm since it performs better
than other methods when the graph is weakly connected and
originates from a single vertex. Specifically, the k-shell of a
graph is defined as the set of vertices that belong to the k-core
but not to the (k-1)-core, where the k-core is a subgraph such
that every vertex has a degree at least k.

Protecting the non-influential users’ privacy. Ideally, to
protect privacy, impact tracing should prevent the platform
from learning any information about Gm apart from the set

Social graph G Sociogram Gs Forwarding graph Gm

3

Fig. 2: Illustration of graphs. The different colors in G repre-
sent different messages.

V om. Nevertheless, this appears infeasible since the platform
must learn more than V om from the known sociogram Gs. Let
u, v ∈ V om be two influential spreaders that are only connected
by a vertex w ∈ {V s − V om}. The platform can deduce that
w is a non-influential user spreading the message since the
message forwarding must be connected.

Alternatively, we consider differential privacy (DP), a de
facto standard for privacy protection. Specifically, we introduce
noises to Gm to prevent the platform from learning the
presence of an individual in the tracing results. We will provide
a formal DP definition for protecting the non-influential users’
privacy in Section IV-B.

B. Technical Overview

Message franking. Aiming at impact tracing, we begin with a
message franking scheme [34], allowing a recipient to report
a message and its sender. Specifically, it involves two phases:

1) Messaging phase: The sender first generates a message tag
tag ← Fk(m), where k is a randomly chosen tag key
and F is a pseudorandom function. Then, the sender sends
a packet p = (E2EE(m, k), tag) to the platform, where
(m, k) is sent using end-to-end encryption. The platform
stores the tag and transmits the packet to the recipient.

2) Reporting phase: A recipient submits a report as a tuple
(m, k, tag). The platform verifies the report by checking
for the existence of tag in storage, i.e., a membership test
between the message tag and platform storage.

This simple solution achieves two nice security features. First,
tag hides the message m due to the pseudo-randomness of F ;
Second, it provides accountability because tag commits the
message, and the platform binds this tag with the sender in its
storage. Technically, message franking provides an approach
to trace the sender when the platform has the tuple (m, k, tag).
However, it does not provide traceability since the senders
generate the tag keys independently.

Message traceback. To enable traceability, we must allow
the platform to trace all senders and recipients of a reported
message along with the forwarding paths. Therefore, instead of
choosing tag keys randomly, we introduce a novel encryption
chain to link the tag keys on the same forwarding path via
tracing keys. Specifically,

1) Messaging phase: The sender generates the tag key via
ki ← Etki(ki−1), where tki represents the sender’s tracing
key known to the sender and the platform, and ki−1 is the
tag key received from its precursor — namely, the user who
forwards the message to the sender. If the message is a fresh
one, ki−1 (i.e., k0) is randomly chosen by the sender. The

2

k0 ←$ {0, 1}n E k1 E ... E ki

tk1 tk2 tki

sender then generates the message tag via tag ← Fki(m)
and sends the corresponding packet to the platform. The
platform stores the communication parties’ identity (i.e.,
edges in the sociogram Gs) when transmitting the packets.

2) Reporting-then-Tracing phase: Upon receiving (m, ki, tag)
from a reporting recipient, the platform can trace the sender
as the message franking scheme. Moreover, the platform
can recover the previous ki−1 and next tag key ki+1 through
decryption by tki and encryption by tki+1, respectively.
Therefore, starting from the reported user’s ki, the platform
can traverse the sociogram Gs along the encryption chain.
With the tag key ki−1 (or ki+1), the platform calculates
a unique message tag that binds a particular sender in its
storage. Then, the platform checks whether tag exists. If
so, it outputs the corresponding sender who submitted the
tag during the messaging phase. Iteratively, the platform
can find all users who disseminate messages.

Here, the encryption’s security guarantees that the tag keys
look like random strings before reporting, which hides the
message from the tag. Moreover, accountability is also held
because the tracing key binds the two users’ identities corre-
sponding to each edge in the sociogram Gs. Unfortunately,
this scheme does not provide privacy for non-influential users
since it reveals the exact forwarding graph Gm to the platform.

Impact tracing. To protect non-influential users’ privacy, our
main idea is to let the platform learn only a noisy graph
G∗
m during tracing. At a high level, we design the impact

tracing in two steps: (1) designing a fuzzy message traceback
scheme, from which the platform only obtains the noisy graph
G∗
m; and (2) identifying the influential spreaders via a novel

decoding algorithm from G∗
m. In the design, the following

three challenges arise.

C1. How to add noises to Gm without sacrificing security?

Achieving impact tracing is infeasible in a single-server
setting. Traceability, in essence, enables the platform and
reporting recipients to uncover the entire forwarding graph
Gm. In contrast, impact tracing aims to identify only the
influential spreaders within Gm. Relying on the platform or
recipient to hide non-influential users is impractical, as we
cannot prevent collusion between them. On the other hand,
letting the sender obscure Gm compromises accountability,
since it allows malicious senders to manipulate the tracing
result. Consequently, no participant in a single-server setting
can be trusted to obscure non-influential users.

Hence, we introduce a tag server in addition to the platform
for managing the message tags and adding noises in the tracing
phase. Instead of checking the existence of tag in its local
storage (as in message traceback), the platform now queries
the tag server to check whether the tag exists during tracing.
The tag server answers the queries in a randomized response
(RR) manner. Specifically, if tag exists, tag server outputs 1;
otherwise, it returns 1 only with a preset probability ψ, also
called a false positive rate (FPR). This approach results in
the misidentification of a non-existent tag as existing (from

the view of the platform) with FPR ψ. More importantly, it
reveals a noisy graph G∗

m such that Gm ⊆ G∗
m and the false

positives hide the presence of non-influential users in G∗
m. For

example, if ψ = 1 (or 0), it reveals the entire sociogram Gs (or
the exact forwarding graph Gm) to the platform. Moreover, we
will formally show that the above strategy achieves DP privacy
protection for non-influential users in Section IV-B.

C2. How to uncover influential spreaders from G∗
m?

Although false positives safeguard non-influential users’
privacy, they impede the tracking of influential spreaders. In
detail, the tracing result G∗

m contains (1) the users who indeed
disseminated the message (true positives, i.e., {v : v ∈ Vm})
and (2) the users who were misidentified (false positives, i.e.,
{v : v /∈ Vm ∪ v ∈ V s}). One may consider using the k-
shell decomposition to evaluate the users’ impact on the noisy
graph G∗

m. But, if a user v has a high degree in Gs, false
positives overwhelm the influence evaluation, leading to the
misidentification of the user v as influential, even if they never
sent or received the reported message. Therefore, this approach
does not perform well in uncovering the influential spreaders.

Instead, we uncover true positives from G∗
m through a

decoding algorithm that computes a membership value for
each v ∈ G∗

m. This value indicates the posterior probability
that the vertex is indeed a true positive. Our main idea is to
calculate the membership values based on Bayes’ theorem for
each v ∈ G∗

m and then output the vertices with membership
values greater than a certain threshold. Besides, we further
correct the membership values through two observations: (1)
a vertex should have only one (true) precursor, and (2) a vertex
must be true positive if one of its descendants is truly positive.
We refer readers to Section III-C for details.

C3. How to measure the performance of impact tracing?

Like other DP mechanisms, there is a trade-off between
utility and privacy in impact tracing. In detail, the utility of
impact tracing involves traceability and correctness, meaning
that V om should contain as many influential users and as
few false positives as possible. Furthermore, privacy means
that G∗

m should contain sufficient false positives to hide the
true positives. We define three metrics, i.e., the detection
rate, output FPR, and interval FPR, to reflect the traceability,
correctness, and privacy, respectively. Refer to Section V for
a detailed description of the metrics.

We measure the metrics of our design by simulations
on real-world social network datasets. The results demon-
strate that our scheme provides privacy for non-influential
users while achieving traceability on influential spreaders.
In particular, users with less influence will be hidden by
more noise, resulting in better privacy protection. Conversely,
users with greater influence will be more easily identified by
the platform. As the amount of noise varies, the influential
spreaders identified by our scheme are 82% - 99% consistent
with those obtained through the k-shell decomposition of the
actual forwarding graph Gm.

Our contributions. To summarize, in this paper, we:

• introduce a new tracing policy, i.e., impact tracing, for
EEMSs, which balances traceability and the privacy;

3

• propose a fuzzy message traceback scheme that introduces
noises to hide non-influential users and demonstrate that
these noises do not affect identifying influential spreaders;

• formalize its security goals and show it provides ac-
countability while preserving E2EE security. Meanwhile, it
achieves DP protection for non-influential users;

• implement a prototype, benchmark its performance, and
evaluate its traceability, correctness, and privacy with three
well-designed metrics on real-world datasets.

Roadmap. We formulate the models and goals for impact trac-
ing in Section II, followed by its design in Section III. Then,
we present our design’s security and privacy analysis in Section
IV; Section V evaluates our design’s utility and performance
on real-world datasets. Finally, Section VI presents the related
work, and Section VII concludes this paper.

II. MODELS AND GOALS

In this section, we define the models and (non-)goals that
guide the design of our approach.

A. System Model

As shown in Figure 3, the system involves three types
of entities. To enable impact tracing on EEMSs, the system
mainly consists of (1) the messaging phase and (2) the
reporting-then-tracing phase.

• Users. Users play the role of both senders and recipients.
During the messaging phase, the senders submit encrypted
messages and tracing metadata to the platform and the tag
server respectively; the recipients verify the received packets
and reject packets containing malformed tracing metadata.
Furthermore, the recipients can report problematic messages
to the platform. Additionally, the users in a forwarding
graph can be divided into influential and non-influential
users according to their k-shell value.

• Platform. In the messaging phase, the platform transmits
packets from senders to corresponding recipients and the
tag server. In the reporting-then-tracing phase, it receives
reports from the recipients and then traces the influential
spreaders with the help of the tag server.

• Tag server. The tag server logs tracing metadata from users
in the messaging phase and assists the platform in tracking
the influential users in the reporting-then-tracing phase.

B. Threat Model

We assume all user communications pass through the
platform and are properly authenticated by the platform.

• Users. Users are either honest-but-curious or malicious. All
users are curious about the forwarding path of received mes-
sages. A malicious sender may generate malformed tracing
metadata to evade tracing, whereas a malicious recipient
can ignore the verification of tracing metadata. Moreover,
users may collude with each other to manipulate tracing
results so that a non-influential user may be misidentified
as influential.

• Platform. We assume the platform is honest-but-curious and
does not collude with the other participants. In the messag-
ing phase, the platform transmits the packets between users

honestly but attempts to learn the content or forwarding
path of messages from these packets. In the reporting-then-
tracing phase, the platform attempts to identify the non-
influential users. As with the existing designs [54], [50],
the platform can obtain the users’ sociogram.
• Tag server. The tag server is honest-but-curious, which

executes the pre-defined operations but tries to learn infor-
mation about messages from received packets. Moreover, we
assume that the tag server will not collude with the platform,
but it may collude with the users. In practice, this server
can be run by a third-party moderator, such as independent
organizations [10] and national authorities [11]. The setting
of non-colluding two servers is widely used in research [21],
[27] and is moving into practical deployment [1], [14], [19].

C. Design Goals

To enhance practicality, impact tracing should minimize
the impact on the security and performance of the existing
EEMSs. The detailed goals are listed as follows.

Impact tracing. We aim to balance traceability and privacy
with a novel tracing policy that satisfies:

• Traceability. The platform can identify influential spreaders
who disseminate the reported message.
• Privacy. The platform cannot uncover non-influential users

from the tracing result.

Security. The security goals involve two aspects. First, impact
tracing should not weaken the end-to-end security of the
underlying EEMS. Second, impact tracing should provide
accountability against malicious users.

• Platform confidentiality. The platform cannot learn any in-
formation about the content or forwarding path of a message
unless the message is reported.
• Tag server confidentiality. The tag server cannot learn in-

formation about a message’s content, forwarding path, or
connection between users.
• User confidentiality. Users cannot learn any information

about the forwarding path of received messages regardless
of whether the messages are reported or not.
• Accountability. Users cannot generate a message that cannot

be traced, and a group of colluding users cannot manipulate
the tracing results to smear an honest user.

Efficiency. EEMSs are required to process massive messages;
even one extra byte of overhead on each message would sig-
nificantly degrade the performance. Therefore, impact tracing
should be efficient enough. Specifically,

• Messaging latency. Processing tracing metadata should not
significantly increase the latency of messaging.
• Storage. Storing tracing metadata should not incur signifi-

cant storage overhead for all participants.
• Bandwidth. Delivering tracing metadata should not incur

significant bandwidth overhead.

D. Non-goals

Similar to prior works (e.g., [50], [39]), this work has some
fundamentally unavoidable limitations.

4

Avoiding copy-paste. Copy-paste attack is an inherent limi-
tation of any existing tracing scheme for EEMSs. A user can
copy a received message and paste it into the message box
to re-send it as a fresh message instead of using the forward
feature. As a result, the user will be identified as the message’s
originator rather than a forwarder in tracing. Our scheme is
built on the forward feature of EEMSs; thus, it also suffers
from this limitation. To mitigate copy-paste’s negative impact,
an EEMS can simultaneously deploy impact and source trac-
ing. Consequently, both the originator (including any malicious
user who copy-pastes messages) and influential spreaders of
the reported message will be revealed after tracing.

Supporting metadata-private messaging. To avoid meta-
data leakage (e.g., users’ identities), many metadata-private
messaging systems [2], [6] have been proposed to prevent
metadata collection from government agencies or platforms.
Nevertheless, most existing real-world EEMSs (e.g., What-
sApp, iMessage) do not provide metadata privacy since hiding
users’ metadata always incurs high costs [12]. However, the
Signal system introduced and deployed a sealed sender feature
[23] that hides senders’ identity in messaging. Therefore, de-
signing impact tracing schemes for metadata-private messaging
systems remains a future work.

Preventing false reporting. False reporting indicates that a
recipient submits a report that contains an innocent message,
such as harmless memes. Ideally, the platform would verify
whether the reported message is problematic and reject the
invalid reports. Nevertheless, the platform may start tracing
without verification to steal users’ privacy. This problem can
be resolved by integrating impact tracing with a threshold
reporting scheme (e.g., [9], [30]). As a result, the platform
learns tracing metadata if and only if a message is reported
multiple times.

III. IMPACT TRACING

In this section, we detail the design of impact tracing.

A. Preliminaries

Cryptographic primitives. We formalize cryptographic prim-
itives that are relevant to our scheme as follows:

• Fk : {0, 1}x × {0, 1}x → {0, 1}y is a collision-resistant
pseudorandom function, where x and y are the input and
output length, respectively.
• H : {0, 1}∗ → {0, 1}x is a collision-resistant hash function.
• E2EE is the underlying encryption scheme of an EEMS.
• Σ = (Ek,Dk) is a block cipher for the encryption chain.
• Λ = (Enck,Deck) is a symmetric encryption scheme for

encrypting tags. We require Λ satisfies random key robust-
ness (RKR) [16], i.e., for any plaintext m and k ̸= k′,
Pr[Λ.Deck′(Λ.Enck(m)) ̸= ⊥] = negl(1λ), where 1λ is the
security parameter.

Data storages. Our scheme involves three databases. First, the
platform holds two key-value databases DBik and DBnbr, which
store users’ identity keys (Ui, iki) and connections (Ui, Uj)
(i.e., users’ neighbors in the sociogram), respectively. The Ui
and iki are a user’s public identity and secret identity key,
respectively. Furthermore, these key-value databases support

Fig. 3: Workflow of impact tracing. The blue and red lines
represent the messaging and reporting-then-tracing phases.

Add and Query operations that allow the platform to add a key-
value pair and query the value of a key respectively. Second,
the tag server stores a set of message tags in DBtag, which
allows the tag server to check the existence of a tag using the
Exist operation.

B. Fuzzy Message Traceback

The algorithms of our scheme are given in Figure 5, and
the workflow in different phases is presented as follows.

Setup Phase All users register to the platform before messag-
ing, where the platform generates an identity-key pair (Ui, iki)
for each user and stores it in DBik. Moreover, the platform
initializes a secret key psk for deriving keys for the tag server.
The tag server initializes the false positive rate (FPR) ψ that
is used in random response and shares it with the platform.

Messaging Phase This phase includes four steps.

Sending a message. To send a message m to a recipient Uj ,
the sender Ui generates a message packet as follows:

1) Calculate the tracing key tkij ← H(iki||Uj).
2) Generate a tag key kt ← Σ.Etkij (kt−1). If m is a fresh

message, kt−1 ←$ {0, 1}x; otherwise, kt−1 is the tag key
along with a forwarded message.

3) Compute a message tag as tag ← TagGen(m, kt).
4) Encrypt the message tag as ct ← Λ.Encek(tag), where ek

is a randomly chosen ephemeral key.
5) Generate an E2EE ciphertext e← E2EE(m, kt, ek).
6) Send the packet pc = (pid, e, ct) to the platform, where

pid is an unique packet identity.
7) Send the packet ps = (pid, ek) to the tag server.

Processing a message. Once receiving a packet pc, the plat-
form processes it as follows:

1) Record the communication parties (Ui, Uj) in DBnbr, where
the users’ identities Ui and Uj are contained in messaging
metadata.

2) Generate the tracing key tkij ← H(iki||Uj), where iki ←
DBik.query(Ui).

3) Derive dtkij ← DtkDer(tkij , psk) from the tracing key.
4) Transmit the packet p′c = (pid, e, ct) to the recipient Uj .
5) Send the packet p′s = (pid, dtkij , ct) to the tag server.

5

tag′
tag

dtk

h

k

tk

message hash

tag key

tracing key

encryption
chain

Fig. 4: Relations among the tracing metadata.

Receiving a message. Once receiving a packet p′c from the
platform, the recipient Uj verifies it as follows:

1) Decrypt e to (m, kt, ek) via the E2EE.
2) Check whether the same key kt has been received before

(i.e., replicated tag key) and reject the packet if it has.
3) Decrypt the encrypted tag as tag ← Λ.Decek(ct), and reject

the packet if the decryption fails.
4) Compute the message tag as tag∗ ← TagGen(m, kt) and

reject the packet if tag∗ ̸= tag.
5) Store the key kt in client storage for future forwarding.

Storing a tag. The tag server processes packets ps and p′s with
the same pid as follows:

1) Parse ps = (pid, ek) and p′s = (pid, dtkij , ct).
2) Decrypt the encrypted tag as tag ← Λ.Decek(ct) and report

the packets to the platform when decrypting fails.
3) Store the processed message tag tag′ in DBtag, where

tag′ ← TagProc(dtkij , tag).

At a high level (as shown in Figure 4), each processed
tag tag′ is calculated from a hash and PRF, whose key dtk
is derived from the tracing key tk and the message tag tag
binds the tag key and the message. Note that the tag key kt is
transmitted through the underlying E2EE scheme; the PRF’s
pseudorandomness ensures that the message tags leak nothing
about the underlying messages.

Reporting-then-Tracing Phase A recipient Uj can report a
problematic message by submitting the tuple (m, kt, Ui) to
the platform, where Ui is their precursor. Then, the platform
traces the influential spreaders as follows.

1) Execute the Trace algorithm and obtain the noisy graph
G∗
m ← Trace(m, kt, Ui).

2) Identify a set V om of influential spreaders from G∗
m via the

decoding algorithm presented in Section III-C.

Workflow of tracing. We now detail how the Trace algorithm
in Figure 5 produces a noisy graph G∗

m between the platform
and tag server. When the recipient reports a tuple (m, kt, Ui),
Trace starts from the reporter Ui and traverses the sociogram
Gs in a breadth-first search manner. Specifically,

1) Initialize a senders’ set S that only contains the sender Ui
for the first time, and a recipients’ set R that is empty.

2) Find all neighbors of the users in S and R from the
sociogram Gs, where Gs is stored in DBnbr and collected
by the platform in the messaging phase.

3) Compute message tags for all the connections between
users and their neighbors. The platform first computes the
tracing keys of these connections with the users’ identity
keys. And then, the platform recovers:

TagGen(m, k)

h← H(m)

tag ← Fk(h)

return tag

TagProc(dtk, tag)

tag′ ← H(dtk||tag)
return tag′

DtkDer(tk, psk)

dtk ← Σ.Epsk(tk)

return dtk

TagExist(m, k, tk, psk)

// platform generates tag′

tag ← TagGen(m, k)

dtk ← DtkDer(tk, psk)

tag′ ← TagProc(dtk, tag)

// tag server checks its existence

b← DBtag.exist(tag
′)

b′ ← RandResp(b)
return b′

RandResp(b)

if b = 1 then b′ = 1

else : // introduce noises

b′ = 1 with prob. ψ
b′ = 0 with prob. 1− ψ

return b′

Trace(m, kt, Ui)

Init S ← {(kt, Ui)},R← ∅
Init G∗

m ← Ui // G∗
m is initialized to a null graph with vertex Ui

while S ≠ ∅ | R ̸= ∅ :
for (kt, Ui) ∈ S : // backward tracing the senders

{(kt−1, Ui−1)} ← BwdSearch(m, kt, Ui)

G∗
m ← G∗

m ∪ {(Ui−1, Ui,m)} // insert the edge to G∗
m

Init R∗ ← ∅
for (k, U) ∈ S ∪R : // forward tracing the recipients

R′ ← FwdSearch(m, k, U)

R∗ ←R∗ ∪R′

for (k′, U ′) ∈ R′

G∗
m ← G∗

m ∪ {(U,U ′,m)}
R ← R∗;S ← {(kt−1, Ui−1)}

return G∗
m

BwdSearch(m, kt, Uj)

T ← DBnbr.query(Uj)

for Ui ∈ T :

iki ← DBik.query(Ui)

tkij ← H(iki||Uj)

b← TagExist(m, kt, tkij)

if b = 1 then

kt−1 ← Σ.Dtkij (kt)

return {(kt−1, Ui)}
return ∅

FwdSearch(m, kt, Ui)

Init R′ ← ∅
iki ← DBik.query(Ui)

T ← DBnbr.query(Ui)

for Uj ∈ T :

tkij ← H(iki||Uj)

kt+1 ← Σ.Etkij (kt)

b← TagExist(m, kt+1, tkij)

if b = 1 then

R′ ←R′ ∪ {(kt+1, Uj)}
return R′

Fig. 5: Algorithms of the fuzzy traceback scheme.

a) the previous tag keys kt−1 through decryption to trace
the precursors in BwdSearch;

b) the next tag keys kt+1 through encryption to trace the
descendants in FwdSearch.

Finally, with the tracing keys, tag keys, and the reported
message, the platform calculates unique message tags for
these connections (as shown in Figure 4).

4) Check whether these tags exist in the tag server’s storage

6

using the TagExist algorithm. Note that TagExist is an
interactive algorithm between platform and tag server.

5) For the tags that exist in the tag server’s storage, add the
corresponding precursors and descendants to the sets S ′
and R′ respectively, which are initialized to empty sets.

6) If S ′ or R′ is not empty after all these neighbors have
been checked, the next round of loops begins from them;
otherwise, the traceback ends.

The Randomized Response (RR). To prevent the platform
from learning the exact forwarding graph Gm, we let the tag
server answer the tags’ existence in random response (see the
RandResp algorithm). Specifically, for each tag not in DBtag ,
tag server responds ‘yes’ to the platform with probability ψ,
which introduces false positives to the output. Consequently,
the Trace algorithm produces a noisy version G∗

m of Gm.
We formally demonstrate that the RR mechanism achieves DP
privacy protection for tracked users in Section IV-B.
Remark 1 (Tag key reuse). A sender may forward a message
to a recipient more than once. In this case, the sender will
generate the same tag key that already appeared, i.e., tag key
reuse. The recipient will reject the second message because the
same tag key has been received. To resolve this problem, we
only need to introduce a counter w to the tag key generation. w
is initialized to 0 and increments by one when the message is
forwarded to the same recipient. From the second forwarding,
the sender send (k′t, w) instead of kt to the recipient, where
k′t ← H(kt||w). The recipient can verify k′t since it already
obtains kt. When the recipient forwards the received message,
it uses kt first received from that sender to derive subsequent
tag keys. This guarantees that a traceback from the recipient
can be traced to the sender successfully.
Remark 2 (Multiple reports). A problematic message may
be reported multiple times by distinct users, resulting in multi-
ple traces within the same forwarding graph. This situation un-
dermines the privacy protection provided by random responses.
To mitigate this issue, the tag server mandates that the platform
submits a different tag for each tag query. Consequently, the
platform must initiate traceback from previous tracing results
when handling subsequent reports of the same message. Even
if a platform queries a duplicated tag, the tag server can readily
identify this misbehavior by comparing it with prior queries.
Remark 3 (Multi-modal messages). Misinformation is often
disseminated through multi-modal messages, including images
and videos. Our scheme inherently supports such multi-modal
messages by transforming input messages into message tags
before further operations. Specifically, in the TagGen algo-
rithm, users hash the input message before computing the
corresponding tag, and all subsequent operations are performed
on the message hash. Since hash functions are compatible
with any message format, our scheme can seamlessly handle
messages of any format. Consequently, the size of the tracing
metadata is independent of the message size.

C. The Decoding Algorithm

Without considering the non-influential users’ privacy, we
can let the platform obtain the exact forwarding graph Gm =
(Vm, Em,m) during tracing. Naturally, the platform can use
the k-shell decomposition to evaluate the users’ impact on Gm.
However, to protect these users’ privacy, impact tracing lets

the platform only obtain a noisy tracing result. Specifically,
the Trace algorithm traverses the entire sociogram Gs =
(V s, Es,−) (defined in Section I-A), and outputs a noisy
graph G∗

m = (V ∗
m, E

∗
m,m) contains: 1) The users who indeed

disseminated the message (true positives, i.e., {v|v ∈ Vm}),
and 2) The users who were misidentified (false positives, i.e.,
{v|v /∈ Vm ∪ v ∈ V s}). Henceforth, we aim to identify the
influential spreaders in G∗

m.

Certainly, one may consider using the k-shell decompo-
sition directly to identify influential spreaders on the noisy
graph G∗

m. Unfortunately, due to the noises, we found that
the k-shell decomposition performs poorly on G∗

m. Let n(v),
nm(v) be the number of v’s neighbors in Gs and in Gm,
respectively. According to the RR mechanism, the number of
v’s neighbors in G∗

m can be denoted as n∗m(v) = nm(v) + x,
where x ∼ B (n(v)− nm(v), ψ) and B(·, ·) denotes the
binomial distribution. In practice, there is a group of vertices
with large n(v) since the degree distribution of social networks
is similar to the power-law distribution [35]. When n(v) is
large enough, x dominates the value n∗m(v), where x is the
number of false positives in v’s neighbors. Ultimately, this
naive approach would take all false positives into the impact
assessment and misidentify the false positives as influential
ones. Therefore, we need an alternative approach to minimize
the false positives’ effect on the tracing results.

Decode strategy. For each vertex v ∈ V ∗
m, the platform

cannot recover the exact nm(v) from the n∗m(v). Therefore,
our intuitive idea is to calculate a posterior probability µv (also
called membership value in the fuzzy systems [55]) for each
v ∈ G∗

m and then select vertices with posterior probabilities
greater than a certain threshold as the output, i.e., V om.

In detail, our decoding algorithm (shown in Algorithm 1)
includes four steps, where the used notations are defined in
TABLE I. First, since the false positives satisfy the binomial
distribution, we can calculate the posterior probability αv for
each vertex in G∗

m based on Bayes’ theorem [8] (lines 1 - 3).
Second, we know that a vertex should have only one (true)
precursor. Therefore, we can calculate a correction value β1

v
with the backward information (i.e., the red paths in Figure
6a) from G1∗

m (lines 4 - 6). Third, we observe that a vertex
must be true positive if one of its descendants is truly positive.
Therefore, vertices with more descendants are more likely to be
true positives. We can also calculate another correction value

TABLE I: Notations used in the decoding algorithm

Notation Definition

n(v) The number of neighbor of a vertex in Gs

s(v) The number of siblings of a vertex
out(v) The out-degree of a vertex
in(v) The in-degree of a vertex
p(v) The parent vertex of a vertex
c(v) The child vertex of a vertex
ψ The FPR of random response
αv The FPR of the edges that starting at a vertex
βv The true positive rate of a vertex
µv The membership value of a vertex

7

Algorithm 1: Decoding Algorithm

Input : (Gs, ψ,G1∗
m , G

2∗
m)

Output: {(v, µv)|v ∈ Vm}
1 for b ∈ {1, 2} do
2 for v ∈ V b∗m do
3 αbv =∑out(v)

i=0 (i
out(v) ·

(n(v)
i)ψi(1−ψ)n(v)−i∑out(v)

j=0 (n(v)
j)ψj(1−ψ)n(v)−j

);

4 for v ∈ V 1∗
m do

5 if out(v) = 0 then β1
v =

1−α1
p(v)

s(v) ;
6 else β1

v = 1− α1
p(v)(1−max{β1

vi |vi ∈ c(v)});
7 for v ∈ V 2∗

m do
8 if in(v) = 0 ∧ out(v) ̸= 0 then

β2
v = 1−

∏out(v)
i=0 (1− β2

c(v));
9 else if in(v) ̸= 0 ∧ out(v) = 0 then

β2
v = 1− α2

p(v);
10 else if in(v) ̸= 0 ∧ out(v) ≥ 1 then

β2
v = 1− α2

p(v)

∏out(v)
i=0 (1− β2

c(v));
11 for v ∈ V ∗

m do
12 if β1

v ̸= 0 ∧ β2
v ̸= 0 then

µv = 1− (1− β1
v)(1− β2

v);
13 else µv = max{β1

v , β
2
v};

β2
v with the forward information (i.e., the blue paths in Figure

6a) from G2∗
m (lines 7 - 10). Finally, we integrate the above

results to obtain the membership values µv (lines 11 - 13).

A Case Study. Figure 6 provides an example of calculating
µv using our decoding algorithm. First, we compute αv for
the vertices’ that are parents of other vertices (i.e., v2, v4,
and v5 in G∗

m) based on the number n(v) and n∗(v) of
vertices’ neighbors in Gs and G∗

m. Here, αv represents the
posterior probability that an edge is a false positive. Although
v4 has three neighbors in G∗

m, its αv is high since it has
many neighbors in Gs. Therefore, the noise dominates the
value n∗4, and the three out-degrees can all be false positives.
Second, we compute β1

v and β2
v on G1∗

m and G2∗
m from leaves to

root (i.e., dashed line in Figure 6a) respectively, which denote
the FPR of a vertex. Because (v1, v3, v6, v7, v8) are leaves,
their membership value is only determined by the incident
edges, which equals 1−ap(v). Next, β2 and β4 are determined
by their children and incident edges. Specifically, β2

5 = β2
2

since v5 has only one children and no parent in G1∗
m , i.e., the

reporting vertex. Finally, we integrate the values of v2 in step
4, because it exists in G1∗

m and G2∗
m . Meanwhile, the other

vertices’ membership value equals to β1
v or β2

v . The results
show that v2 has the highest membership value in the graph.

IV. PROTOCOL ANALYSIS

In this section, we analyze our proposed scheme and prove
it satisfies impact tracing’s goals for security and privacy.

A. Security Analysis

The security of our scheme includes three aspects: confi-
dentiality, accountability, and deniability.

Confidentiality. We consider three types of confidentiality.

1 2

3

4

5

6

7

8

G2∗
m

G1∗
m

BwdSearch

FwdSearch

Direction of
Calculation

(a) llustration of G1∗
m and G2∗

m

Graph Vertex n(v) n∗(v) αv(%)

G1∗
m v2 50 1 85

G2∗
m

v2 50 2 83
v4 100 3 90
v5 10 1 42

(b) Step 1: Caculate αv

15

79

92

64

17

40

64

10

10

10

Step 2 Step 3 Step 4

83

83 90

90

90

85

42

(c) Step 2-4: Caculate β1
v , β2

v , and µv

Fig. 6: Example of decoding on G∗
m, where ψ = 10%. (c) The

blue and red labels of vertices denote β1
v and β2

v in percentage.
The green labels denote αv of vertices.

Platform confidentiality implies that the platform cannot
know the content and forwarding graph of a message before it
is reported. During the messaging phase, the platform only
observes the ciphertexts of the E2EE and the encryption
Λ. Therefore, the platform confidentiality is reduced to the
semantic security of E2EE and Λ.

Tag server confidentiality ensures that the tag server re-
mains unaware of the messages’ content, regardless of whether
the message is reported. In our design, the tag server receives
the message tags from the sender and the derived tracing key
dtk from the platform. The PRF’s pseudorandomness ensures
these tags reveal nothing to the tag server, and dtk equals to a
random bit string since the psk is only known to the platform
and the block cipher Σ is a PRP.

User confidentiality prevents the recipients from learning
the forwarding path of the received messages. A recipient
receives the ephemeral key, tag key, and message tag in
messaging, where the ephemeral key is a random bit string.
Without the knowledge of other users’ tracing keys (that is
the block cipher’s encryption keys), the recipient cannot link
the tag keys that reflect the users on the forwarding path.
Therefore, user confidentiality is maintained, as none of the
forwarding paths is disclosed to the recipient. The formal
definition is provided in Appendix B, with the proof detailed
in the full version.

Accountability. Accountability prevents malicious users from
manipulating the tracing result to smear an honest user or evade
tracing. Four circumstances are required to be dealt with in our
security analysis. Specifically,

• Identity replacement. Malicious user A1 sends message m
to malicious user A2. Then A2 or A1 successfully reports
the path U1

m→ A2 or A1
m→ U1, where U1 is an honest user

that does not send or receive the message m.
• Message replacement. Honest user U1 first sends message
m to a malicious user A1 and forms a path U1

m→ A1. Then
A1 successfully reports the path U1

m1→ A1, where m1 is
different to the actual message m.
• Edge replacement. Honest user U1 receives a message m

8

from two malicious users A1 and A2. Then, U1 forwards
the message received from A1 to another malicious user A3.
This forms two forwarding paths, i.e., A1

m→ U1
m→ A3 and

A2
m→ U1. Finally, A2 or A3 successfully reports the path

A2
m→ U1

m→ A3, where U1 actually forwards m received
from A1.

• Path partition. Honest user U1 receives a message m from a
malicious user A1 and then forwards it to another malicious
user A2, i.e., A1

m→ U1
m→ A2. The adversary wins when

the traced path is A1
m→ U1 or U1

m→ A2, i.e., the path is
partitioned at the honest user U1.

As shown in Figure 4, the processed message tag tag′

serves as a ‘commitment’ that binds the message, the tag
key, and the tracing key. By carefully analyzing the above
circumstances, we can reduce them to the collision resistance
of the PRF and hash function, the block cipher’s security,
and the encryption’s RKR. First, identity replacement results
in a hash collision since dtk is derived from the tracing
key, which represents the communication parties’ identity and
is controlled by the platform. Second, message replacement
requires finding a PRF collision that outputs the same with
two different input messages. Third, all possible cases in edge
replacement can be reduced to message or identity replace-
ment, unless a collision occurs in the block cipher’s output.
Nevertheless, this collision is impossible because the block
cipher is a permutation. Finally, our scheme is secure against
the path partition attack because the message tag is calculated
or verified by an honest user, which binds the neighboring
users. We provide a detailed definition in Appendix C to
capture this accountability with proof in the full version.

Continuing accountability. In the messaging phase, malicious
senders may send packets that contain malformed tracing
metadata to recipients. Since the tag server stores message
tags before the recipients’ verification, rejecting the malformed
packets creates inconsistent views between the tag server and
the recipients. This inconsistency also breaks accountability,
allowing malicious users to smear an honest user or evade
tracing. We note that this problem has been neglected in
existing schemes [50], [27]. In Appendix A-A, we demonstrate
the problem using Tyagi et al.’s scheme [50], which is of
independent interest.

Letting the platform revoke all the rejected packets is a
possible solution to the above problem. But, this allows a
malicious recipient who rejects all the received packets to
evade tracing in the future. More importantly, the platform
cannot distinguish whether the recipient is malicious in mes-
saging since it cannot verify the tracing metadata without
additional information. Therefore, in the messaging phase, we
must introduce an additional mechanism for verifying rejected
packets, detailed in Appendix A-B. Here, our insight is letting
both the sender and recipient of a rejected packet submit
information to the platform. Because one of the users must
be honest, at least one of two keys from the sender and
recipient can successfully decrypt the packet; otherwise, a
pair of malicious users can evade tracing trivially. With the
decrypted tracing metadata, the platform can redo the tag
verification as the recipient, which allows it to check the
rejected packets’ correctness.

Remark 4. (Deniability) Deniability guarantees only the

platform can confirm the tracing result, i.e., who sent/received
a particular (reported) message. For example, in the real world,
a whistleblower may use EEMSs to communicate with others,
and deniability allows them to deny their activities. Similar to
prior work [49], [50], we achieve deniability by allowing an
entity to forge tracing metadata and messages indistinguishable
from real ones. Specifically, in our scheme, the platform can
forge any user’s message sending/forwarding and receiving
since it holds all the users’ identities and identity keys.

B. Differential Privacy Analysis

We now demonstrate that our scheme provides differential
privacy guarantees for the tracked users, especially the non-
influential users. Specifically, to match the design goals of
impact tracing, we propose a new customized differential
privacy, i.e., individualized asymmetric subtree differential
privacy (IAS-DP).

To accommodate the design goals of impact tracing, IAS-
DP differs from conventional DP [13] in two aspects. First,
individualized DP [24] allows different users to have differ-
ent privacy budgets since impact tracing requires diversified
privacy protection for other users according to their influence.
Conversely, conventional DP requires all the users to share
the same privacy budget, leading to over-protecting influen-
tial spreaders. In our scheme, while the servers choose the
FPR, a user’s privacy budget varies depending on its position
in the forwarding graph, which reflects its impact. Second,
asymmetric DP [45] mitigates the imbalance between false
positives and negatives. In contrast, conventional DP inevitably
introduces two-sided noises (i.e., false positives and negatives).
Specifically, consider a forwarding graph as a directed tree
with the root representing the message originator. Introducing
false negatives in such a tree would prematurely halt traceback,
potentially allowing influential spreaders to escape. Conse-
quently, two-sided noise does not apply to the scenario of
message traceback.

We formalize fuzzy message traceback that lets the plat-
form learn a noisy graph as follows. Given a private social
graph G and a subgraph Gm ∈ G, the algorithm outputs a
noisy graph G∗

m such that Gm ∈ G∗
m. Both the graphs G∗

m
and Gm can be viewed as trees that are rooted in the report
vertex. The differential privacy requires that a vertex in the
input Gm does not affect the final output G∗

m when it has
limited influence in Gm. To capture this requirement in IAS-
DP, we define neighboring graphs as two graphs that differ in
a subtree tree(v). Here, tree(v) is a subtree rooted in a vertex
v that includes all its parents and descendants. For instance,
each user in a forwarding graph is the root of their descendants,
and the messages propagate through paths from the root to
its descendants. Therefore, a user’s influence in spreading a
message can be measured by the size of tree(v). Formally,
we define the subtree-based neighboring graph as follows, and
an example is presented in Figure 7.

Definition 1 (Subtree-based neighboring graph). Given a
graph G = (V,E), we say a graph G′ = (V ′, E′) is a
neighboring graph of G if G ⊕ G′ = tree(v), where G ⊕ G′

denotes the difference between the two graphs.

Now, we define the IAS-DP on two subtree-based neigh-
boring graphs Gm and G′

m that differ only in tree(v).

9

Graph Gm Neighboring Graphs G′
m

Reporting User The Vertex v

Fig. 7: Example of subtree-based neighboring graphs, where
the tree(v) consists of blue vertices and edges.

Definition 2 (εv-individualized asymmetric subtree differ-
ential privacy). A randomized algorithm M is εv-IAS-DP
if given a graph G the following equation holds for any
S ∈ Range(M) and neighboring subgraph pair (Gm, G

′
m),

where G′
m is obtained by removing a subtree tree(v) in Gm.

Pr[M(Gm) = S] ≤ eεv · Pr[M(G′
m) = S], (1)

where εv is the privacy budget for vertex v.

The following theorem formally proves that our scheme
provides DP guarantees for the tracked users.

Theorem 1. The subgraph publication algorithm (i.e., fuzzy
message traceback) satisfies εv-individualized asymmetric sub-
tree differential privacy, where εv = ln(1

ψn), n is the number
of edges in tree(v), and ψ is the FPR of random response.

Proof: Let Gm = (Vm, Em) and G′
m = (V ′

m, E
′
m).

Since G′
m ⊆ Gm and the RR mechanism only introduce false

positives, for any S ∈ Range(M), we have two cases.

• G′
m ⊆ S ⊂ Gm: In this case, the Equation (1) holds because

Pr[M(Gm) = S] = 0.

• G′
m ⊆ Gm ⊆ S: Let S = (V,E), Ẽ′

m = E − E′
m, and

Ẽm = E − Em, then we have

Pr[M(G′
m) = S] =

∏
e∈Ẽ′

m

Pr[e is false positive];

Pr[M(Gm) = S] =
∏
e∈Ẽm

Pr[e is false positive].

Note that Gm and G′
m only differ in tree(v), thus Em −E′

m
denote the edge set in tree(v). We say tree(v) is false positive
if and only if all edges in the tree(v) are false positives, i.e.,
caused by the RR mechanism.

Pr[M(G′
m) = S]

= Pr[M(Gm) = S] ·
∏
e∈Ẽ′

m

Pr[e is false positive]

= Pr[M(Gm) = S] · Pr[tree(v) is false positive].

Let n be the number of edges in tree(v). Each edge e ∈
tree(v) becomes the false positive only if the coin flipped by
the tag server is 1, which has a probability ψ. Then,

Pr[tree(v) is false positive] = ψn.

The above equation holds since the FPR of each edge is
independent. Hence, we have

Pr[M(Gm) = S]

Pr[M(G′
m) = S]

=
Pr[M(Gm) = S]

Pr[M(Gm) = S] · ψn
=

1

ψn
≤ eεv .

Therefore, given the false positive rate ψ, our scheme achieves
differential privacy protection for vertex v with a privacy
budget εv = ln(1

ψn).

Finally, executing a conventional DP algorithm multiple
times on the same input may lead to the composition of the
privacy budget, ultimately diminishing the privacy level. Our
scheme avoids the composition for two reasons. First, the pri-
vacy loss caused by a trace is confined to a specific forwarding
graph, as the forwarding graphs for different messages are
independent. Second, within the same forwarding graph of a
given message, all the edges are traced/queried only once (see
multiple reports in Section III-B). Therefore, we only consider
the privacy budget for one single trace.

V. IMPLEMENTATION AND EVALUATION

We implement our scheme in Rust1 and all experiments are
conducted on a PC with Intel Core i5-8500 CPU @ 3.00GHz
and 32GiB of memory. We evaluate the performance of two
real-world datasets of social networks.

• College IM [36] records 193 days of instant messages on an
online community whose users are college students, which
contains 1,899 vertices and 59,835 edges.
• EU Email [37] records 803 days emails of a research

institution, which contains 986 vertices and 332,334 edges.

A. Implementation Details

We use KECCAK MAC derived from SHAKE256, SHA-3,
AES-128, and AES-GCM-256 to implement PRF, hash func-
tion, block cipher, and symmetric encryption, respectively. Our
implementation of these primitives utilizes the APIs offered
by the Rust Crypto library [38], ensuring compatibility with
existing EEMSs. Moreover, we implement DBik, DBnbr, and
DBtag with Redis that is an in-memory database.

Storage and runtime optimizing. We implement DBtag with a
Bloom filter (BF), which supports efficient membership testing
and storage. To prevent false positives, we set the FPR of BF
to 1.0 × 10−9 (i.e., one-in-a-trillion), making false positives
extremely unlikely. Furthermore, we implement the Trace
algorithm as a breadth-first search (BFS) algorithm, where DB
queries are batched, and the computations are paralleled.

Simulation. To simulate real-world scenarios, we generate the
graphs and execute our scheme as follows. Figure 8 shows a
visual simulation of the EU Email [29] dataset.

1) Simulate the dissemination of a message on the social
network G using the susceptible-infected-recovered (SIR)
model [4] with an infection rate of 0.05 and recovery rate
of 0.6 [40], [41]. This step generates a forwarding graph
Gm of the message.

2) Evaluate the vertices’ influence in the forwarding graph
Gm using the k-shell decomposition, and the results serve
as the reference standard to assess our scheme.

1https://github.com/Ming-bc/impact-tracing

10

https://github.com/Ming-bc/impact-tracing

Social Graph G Forwarding Graph Gm Noisy Graph G∗
m

➋ k-shell ➍ decoding

➊ SIR ➌ Trace

Influence Membership Value Influential Spreaders

➎ threshold

Fig. 8: Illustration of simulation steps and results on the EU
Email dataset. (Top) Blue and red vertex are true and false
positive, respectively. (Bottom) The left and middle graphs
show the influence and membership value of vertices in Gm
and G∗

m, respectively. The red vertices in the right graph are
the output V om of impact tracing.

3) Trace the forwarding graph Gm in the social network G
using our impact tracing scheme, and obtain a noisy graph
G∗
m from the Trace algorithm’s output.

4) Compute the membership value µv of each vertex v in the
graph G∗

m using the decoding algorithm in Section III-C.
5) Identify a set V om of the vertices in the graph G∗

m with mem-
bership value beyond a threshold as influential spreaders.

Parameters. Two parameters dominate the performance:

• Privacy budget εv: determines the overall FPR ψ of the
random response, thereby determining the number of noises
(i.e., the number of false positives in G∗

m) introduced by the
tag server. The relation between the privacy budget εv and
the overall FPR ψ is presented in Theorem 1.

• Output threshold: determines the number of vertices in
the output V om. For example, when the threshold is zero,
V om contains all the vertices in G∗

m.

B. Metrics

We present three useful metrics: detection rate, output FPR,
and interval FPR, which measure impact tracing’s traceability,
correctness, and privacy, respectively.

Traceability. Let ks(v) be the k-shell value of a vertex v in
Gm. We define the detection rate as

detection rate =
|{v : v ∈ V om ∧ ks(v) = k}|
|{v : v ∈ Vm ∧ ks(v) = k}|

.

This measures the percentage of vertices with shell value k
in Gm that is output in V om. Traceability requires that as the
shell value k increases, the detection rate should be as large
as possible, and vice versa. This reflects the goal of revealing

only the influential spreaders while preserving the privacy of
non-influential users.

Correctness. We define output false positive rate (FPR) as

output FPR =
|{v : v ∈ V om ∧ v /∈ Vm}|

|{v : v ∈ V om}|
.

The output FPR measures the percentage of false positives in
the output V om. This metric should be small enough to reflect
the correctness that requires the output V om to contain only true
positives (i.e., actual message forwarders).

Privacy. The decoding algorithm calculates the membership
value µv for each vertices v ∈ V ∗

m. We split the range of µv
into distinct intervals. Let I be one of the intervals. We define
the interval false positive rate (FPR) as

interval FPR =
|{v : v ∈ V ∗

m ∧ v /∈ Vm ∧ uv ∈ I}|
|{v : v ∈ V ∗

m ∧ uv ∈ I}|
.

The interval FPR quantifies the percentage of false positives
to the vertices in G∗

m whose membership values lie within
a specific interval I . The design of the decoding algorithm
implies that vertices with high membership values, such as
(0.99, 1.00], are likely to be influential spreaders. Conversely,
vertices with low membership values (e.g., (0.1, 0.2]) are
typically non-influential users. Hence, (individualized) privacy
for impact tracing requires the interval FPR to be higher for
intervals with lower membership values.

C. Utility and Privacy Analysis

Figure 9, 10, and 11 present our experimental results
on the real-world datasets under the above metrics. In the
experiments, we follow [56] and set the privacy budget of
the users who receive the message only once to εv =
{5.30, 4.60, 3.91, 3.21}, corresponding to the overall FPR ψ =
{0.5%, 1%, 2%, 4%} in random response. Due to page limits,
we present results for the College IM dataset here and defer
results for the EU Email dataset to the full version.

Comparison with k-shell. We begin by comparing our de-
coding algorithm with the naive approach that decodes G∗

m
with the k-shell decomposition. Figure 9a demonstrates the
superiority of our decoding algorithm in minimizing the effect
of false positives. For example, when the privacy budget is 5.3,
the k-shell output contains 8.77% false positives, while ours is
less than 0.1%. Moreover, as shown in Figure 9b, our decoding

5.3 4.6 3.9 3.2
Privacy Budget

0

10

20

30

40

Ou
tp

ut
 F

PR
 (%

)

k-shell
ours

(a) Correctness (lower is better)

5.3 4.6 3.9 3.2
Privacy Budget

50

60

70

80

90

De
te

ct
io

n
Ra

te
 (%

) k-shell
ours

(b) Traceability (higher is better)

Fig. 9: Utility comparison with k-shell decomposition. The k-
shell approach outputs vertices with the highest k-shell value
in G∗

m. The threshold of ours is 100− 5× 10−8.

11

1 2 3 4
Influence (k-shell)

0

50

100

150

200

250

Nu
m

be
r o

f V
er

tic
es 219

185 172
199

(a) Influence distribution

5.3 4.6 3.9 3.2
Privacy Budget

0.0

0.4

0.8

1.2

1.6

2.0

Nu
m

be
r o

f V
er

tic
es

×103

Fuzzy graph
Forward graph
Output

(b) Graph size

99
.99

10
0-5

×10
3

10
0-5

×10
4

10
0-5

×10
5

10
0-5

×10
6

10
0-5

×10
7

10
0-5

×10
8

10
0-5

×10
9

10
0.0

Threshold

0

100

200

300

400

500

Nu
m

be
r o

f V
er

tic
es

Privacy Budget
3.2
3.9

4.6
5.3

(c) Output size

(0.
0,

80
.0]

(80
.0,

 90
.0]

(90
.0,

 95
.0]

(95
.0,

 99
.0]

(99
.0,

 99
.5]

(99
.5,

 99
.9]

(99
.9,

 99
.99

]

(99
.99

, 1
00

]

Membership Value

40

20

0

20

40

60

FP
R

De
vi

at
io

n
(%

)

Closer indicates
 better privacy

Privacy Budget
3.9
4.6

5.3
3.2

(d) FPR variance

(e) Traceability
(f) Correctness (g) Privacy

Fig. 10: Utility and privacy evaluation of impact tracing. (b) The threshold of output is 100 − 5 × 10−8. (e) Left: the overall
FPR is 1%; right: the threshold is 100− 5× 10−4.

algorithm also has better traceability, especially when there is
more noise in G∗

m.

Graph and output size. Figure 10a reports the influence
distribution in Gm with an average of 773 vertices. These ver-
tices are divided into four shells by the k-shell decomposition,
and we say that a vertex located in the k-shell of Gm has k
influence. Figure 10b presents the number of vertices in the for-
warding graph Gm, noisy graph G∗

m, and output V om. It shows
that our scheme outputs approximately 30% of the vertices
in Gm and hides the others with false positives. Furthermore,
Figure 10b and 10c demonstrate that the threshold dominates
the output size instead of the privacy budget since our decoding
algorithm minimizes noise interference when calculating the
membership values.

Traceability. Figure 10e presents how traceability (detection
rate) varies with threshold and privacy budget. First, our
scheme outputs most of the influential spreaders (> 80%) with
the highest k-shell value (i.e., 4-shell vertices). For example,
when the threshold is 100−5×10−4, our scheme identifies the
most influential spreaders from 82% to 99% as the amount of
noise varies. Second, in most cases, our scheme outputs only
a few of the least influential users (< 1%). Here, the least
influential users are the 1-shell vertices of Gm, which contain
all users who either receive or forward the message only once
(i.e., non-influential users with no doubt).

Correctness. Ideally, the output V om should contain no false
positives, i.e., output FPR equals zero. But, V om may contain
false positives because of the additional noises. As shown
in Figure 10f, correctness improves as the threshold and the
privacy budget increase. The optimal correctness appears in
the bottom right corner of the figure, corresponding to the

maximum threshold and privacy budget.

Privacy. Figure 11 shows that the users in Gm with higher
influence always have higher membership values in G∗

m,
indicating that the platform can identify them more easily.
This is consistent with our individualized DP, i.e., different
users have different privacy budgets. Conversely, when all the
users share the same privacy budget, the platform will have the
same probability of identifying users with different influences.
However, this would defeat the goal of traceability. Further-
more, Figure 10g and 11 demonstrate that false positives are
more uniformly distributed on the membership value intervals
when the privacy budget is lower. When considering privacy
only, the platform should not be able to differentiate between
true and false positives based on their membership value.

(0.
0,

85
.0]

(85
.0,

 95
.0]

(95
.0,

 99
.0]

(99
.0,

 99
.9]

(99
.9,

 99
.99

]

(99
.99

, 9
9.9

99
]

(99
.99

9,
10

0.0
]

Membership Value

0

100

200

300

400

500

600

Nu
m

be
r o

f V
er

tic
es

Influence
1-Shell
3-Shell
Noises

2-Shell
4-Shell

(a) Privacy Budget = 5.3

(0.
0,

85
.0]

(85
.0,

 95
.0]

(95
.0,

 99
.0]

(99
.0,

 99
.9]

(99
.9,

 99
.99

]

(99
.99

, 9
9.9

99
]

(99
.99

9,
10

0.0
]

Membership Value

0

100

200

300

400

500

600

Nu
m

be
r o

f V
er

tic
es

Influence
1-Shell
3-Shell
Noises

2-Shell
4-Shell

(b) Privacy Budget = 3.2

Fig. 11: Individualized privacy for the tracked users with
different influences. The noises are false positives in G∗

m.

12

This requires the false positives to be uniformly distributed
across all membership value intervals. Specifically, Figure 10d
presents the variance between the interval FPR and the ideal
FPR of G∗

m, where ideal FPR equals the ratio of false positives
to all vertices in G∗

m. The horizontal line 0 indicates the two
FPRs are perfectly matched; thus, the closer the curves to line
0, the better the privacy.

The trade-off. In summary, utility (that includes correctness
and traceability) and privacy form a dilemma. With suitable
parameters, our scheme can efficiently navigate these prop-
erties’ trade-offs. According to Figure 10, when the privacy
budget = 5.3 and threshold = 100 − 5 × 10−8, our scheme
identifies 84% of the most influential spreaders and no the least
influential users with 99.9% correctness (i.e., less than 0.25
false positives on average). Meanwhile, other users are hidden
by at least 20% false positives. Furthermore, the detection rate
of the most influential spreaders boosts to 95.6% when the
threshold = 100− 5× 10−5.

D. Cost Analysis

Bandwidth and Storage Overhead. We first compare the
overheads between our scheme and other existing schemes in
TABLE II. In our design, the users hold tracing keys while
the server holds the encrypted tracing metadata. Conversely,
a source tracing scheme such as PEB21 lets the users hold
the tracing metadata in end-to-end encrypted ciphertexts while
the platform holds the key. As a result, PEB21 incurs 3.4×
higher bandwidth and 10× client storage than ours, although
eliminating extra platform storage.

Compared to the message traceback scheme TMR19, our
scheme reduces 94% platform, 53% client storage, and 5%
bandwidth overhead. The storage improvement stems from us-
ing the encryption chain and bloom filter. The encryption chain
implicitly links the edges in the same forwarding path, thus
amortizing the costs of identity keys to all the messages. In
contrast, TMR19 employs an unidirectional encrypted pointer
Ck = Ekt(kt−1) to link two consecutive tag keys explicitly.
This introduces an additional storage overhead that is linear
in the number of messages. For instance, to handle the daily
volume of messages on WhatsApp (i.e., 100 billion [44]), our
scheme requires only 0.54 TiB platform storage, while TMR19
needs 9.4 TiB.

Runtime. Next, we analyze the additional latency of delivering
a single message. Given all the cryptographic primitives in
our scheme are symmetric and lightweight, delivering a 1 kB
message spends less than 0.3 ms (send: 13.4 µs; platform
process: 232.4 µs; receive: 13.6 µs) when combined with
the double ratchet algorithm [3]. The only time-consuming
operation in messaging is that the platform needs to query the
DBik for a user’s identity key during processing. Except for
that, all the other operations take less than 10 µs. In addition,
the messaging latency is independent of the message size since
the platform only calculates the hash values of messages during
the messaging phase.

We finally benchmark the runtime of tracing the graphs
generated from the College IM dataset with the FPR ψ = 1%.
The experimental results show that our scheme traces a graph
with 4,000 edges under 13s. Fortunately, tracing is not latency-

TABLE II: Bandwidth and storage per message (byte)

Tracing
Policy Schemes†

Bandwidth Storage

S - P P - R C P

Source
Tracing

PEB21 [39] 256 320 160 -
LRTY22 [30] 243 243 243 -
IAV22 [21] 380 484 380 -

Message
Traceback

TMR19 [50] 96 80 34 104
KTW22 [27] 203 203 16 136

Tracing
Impact Ours 96‡ 72 16 6

S, R, P , C: Sender, recipient, platform, and client.
†: We choose the unlinkable, path and tree traceback scheme in PEB21,
KTW22, and TMR19, respectively;
‡: Packets to the platform and tag server: 72 bytes and 24 bytes.

sensitive work, and it would not be executed frequently. There-
fore, our performance is sufficient for real-world deployment.

VI. RELATED WORKS

Existing works are classified into three categories to solve
the traceability problem in EEMSs.

Tracing policy. Some references aim to balance traceability
and privacy, which is also our focus. Apart from impact tracing,
all existing works fall into message traceback [50], [27] or
source tracing [39], [21], [30], [7], [9]. Message traceback
is impractical in the real world since it over-compromised
users’ privacy. Source tracing adheres more closely to real-
world regulations [42], [33], but it may not work as intended in
real-world scenarios. For instance, consider a user forwarding
a message from another platform, source tracing alone cannot
reliably identify the actual originator. Moreover, restricting the
originator’s actions to prevent misinformation raises doubts
about its effectiveness, as malicious users can easily create
new accounts to disseminate problematic content.

Malicious reporting. In practice, users may intentionally
submit reports with harmless messages, allowing a malicious
platform to trace innocent users. This misuse of reporting
undermines the motivation of traceability. To mitigate this
problem, Liu et al. [30] and Bell [9] et al. proposed fuzzy
and accurate threshold reporting schemes, respectively. These
schemes allow the platform to trace only messages reported
to exceed a (fuzzy) threshold but cannot resist the colluding
between the platform and recipients. Therefore, Bartusek et
al.[7] designed a protocol that restricts the platform to trace a
message only within a blocklist, which preserves users’ privacy
even in the presence of a colluding platform and recipients.

Metadata private. Another line of work aims to enable
traceability on metadata-private messaging systems. Kenny et
al.[27] extended the path traceback scheme [50] to achieve
anonymous path traceback and source tracing. Issa et al.[21]
introduced Hecate, which offers source tracing and message
franking under an anonymous setting. Both schemes rely on a
two-server setting, where Kenny et al. employ an extra server
to store users’ identities; Issa et al. involve an additional mod-
erator to issue anonymous tokens to users before messaging.

13

VII. CONCLUSION AND DISCUSSION

In this paper, we introduced impact tracing to bridge the
gap between traceability proposals and real-world scenarios.
Our impact tracing scheme not only protects the non-influential
users’ privacy but also identifies the influential users using our
novel decoding algorithm. We presented a security analysis of
our design and quantified its privacy level using differential
privacy. Experimental results show that our scheme identifies
the most influential spreaders (> 82%) while avoiding non-
influential spreaders (< 1%) and false positives (< 1%).
Compared to the current state-of-the-art message traceback
scheme [50], our scheme requires 17.3× and 2.1× smaller
platform and client storage respectively.

Future work. Here, we outline two prospective directions:

Misidentification. While noise protects privacy, it can lead
to misidentification, which seems inevitable for impact trac-
ing since the noises are introduced to protect non-influential
users’ privacy. In our scheme, these misidentified users are
still influential, albeit not the most influential ones. We post
an interesting open problem on designing an impact tracing
solution without misidentification.

Group messaging. Due to the ease of sharing messages in
group chat, problematic messages proliferate in it [32]. Our
scheme can be extended for group messaging by treating
group messages as multiple two-party messages at the expense
of linear overheads to the group size. It also remains open
to designing an impact tracing solution that supports group
messaging with sub-linear overheads.

Practical deployment and ethical consideration. From the
technical perspective, existing EEMSs can readily adopt our
scheme. First, our scheme treats the underlying EEMS as a
black box, allowing it to be adopted by any non-anonymous
EEMS. Second, the cryptographic tools utilized in our scheme
are already implemented in EEMSs, such as Signal, eliminat-
ing the need for additional tool development.

However, deploying impact tracing in EEMSs extends
beyond mere technical considerations. Currently, there are two
extremes to deploying content moderation within EEMSs. One
extreme is forbidding all content moderation approaches to
unconditionally protect user privacy, inadvertently allowing
the dissemination of problematic messages. The other ex-
treme permits platforms to trace or detect problematic mes-
sages without any limitations; this capability enables plat-
forms to monitor specific messages, resulting in the risk of
mass surveillance. Our work explores the technical feasibility
of a balanced approach between these extremes. But, it is
imperative to consider additional non-technical factors. For
example, new content moderation legislation may conflict with
existing privacy laws such as the General Data Protection
Regulation (GDPR) [15]. Designing a protocol that complies
with contradictory legal regulations is technically infeasible.
Therefore, we emphasize that any content moderation scheme
must be meticulously evaluated for its ethical implications on
all stakeholders before practical deployment.

ACKNOWLEDGMENTS

The authors thank anonymous reviewers for their construc-
tive reviews. We also thank Peng Wang for his insights on the

design of the decoding algorithm.

This work was supported by the National Key R&D
Program of China under Grant 2022YFB3103500, the
National Natural Science Foundation of China under
Grants U20A20176, 62072062, and 62472056, the Natu-
ral Science Foundation of Chongqing, China, under Grant
CSTB2022NSCQ-MSX0582. In addition, Guomin Yang was
supported by the Lee Kong Chian Fellowship awarded by
Singapore Management University, and Robert H. Deng was
supported by the AXA Research Fund.

REFERENCES

[1] J. Aas and T. Geoghegan, “Introducing isrg prio services for privacy
respecting metrics,” https://blog.mozilla.org/security/2019/06/06/next-st
eps-in-privacy-preserving-telemetry-with-prio, Nov. 2020.

[2] I. Ahmad, Y. Yang, D. Agrawal, A. El Abbadi, and T. Gupta, “Addra:
Metadata-private voice communication over fully untrusted infrastruc-
ture,” in Proc. of USENIX Symposium on Operating Systems Design
and Implementations (OSDI), 2021.

[3] J. Alwen, S. Coretti, and Y. Dodis, “The double ratchet: security
notions, proofs, and modularization for the signal protocol,” in Proc.
of Annual International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT), 2019, pp. 129–158.

[4] R. M. Anderson and R. M. May, Infectious diseases of humans:
dynamics and control. Oxford university press, 1992.

[5] E. Bakshy, I. Rosenn, C. Marlow, and L. Adamic, “The role of social
networks in information diffusion,” in Proc. of International World Wide
Web Conferences (WWW), 2012.

[6] L. Barman, M. Kol, D. Lazar, Y. Gilad, and N. Zeldovich, “Groove:
Flexible metadata-private messaging,” in Proc. of USENIX Symposium
on Operating Systems Design and Implementations (OSDI), 2022.

[7] J. Bartusek, S. Garg, A. Jain, and G. Policharla, “End-to-end secure
messaging with traceability only for illegal content,” in Proc. of
Annual International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT), 2023.

[8] T. Bayes, “Lii. an essay towards solving a problem in the doctrine of
chances. by the late rev. mr. bayes, frs communicated by mr. price, in a
letter to john canton, amfr s,” Philosophical transactions of the Royal
Society of London, no. 53, pp. 370–418, 1763.

[9] C. Bell and S. Eskandarian, “Anonymous complaint aggregation for
secure messaging,” in Proc. of The Annual Privacy Enhancing Tech-
nologies Symposium (PETS), 2024.

[10] O. Board, “How we do our work,” https://www.oversightboard.com/o
ur-work/, 2024.

[11] E. Commission, “The digital services act,” https://eur-lex.europa.eu/le
gal-content/EN/TXT/?uri=celex%3A32022R2065, Oct. 2022.

[12] D. Das, S. Meiser, E. Mohammadi, and A. Kate, “Anonymity trilemma:
Strong anonymity, low bandwidth overhead, low latency-choose two,”
in Proc. of IEEE Symposium on Security and Privacy (S&P), 2018.

[13] C. Dwork, “Differential privacy,” in Proc. of International Colloquium
on Automata, Languages, and Programming (ICALP). Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2006, pp. 1–12.

[14] S. Englehardt, “Next steps in privacy-preserving telemetry with prio,”
https://www.abetterinternet.org/post/introducing-prio-services/, June
2019.

14

https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio
https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio
https://www.oversightboard.com/our-work/
https://www.oversightboard.com/our-work/
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32022R2065
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32022R2065
https://www.abetterinternet.org/post/introducing-prio-services/

[15] C. Europe, “Cdt europe feedback on the belgian presidency’s
proposal on the regulation on child sexual abuse material,”
https://cdt.org/wp-content/uploads/2024/06/May-2024-CDT-Euro
pe-Feedback-on-the-Belgian-Presidencys-compromise-on-the-Regulat
ion-on-Child-Sexual-Abuse-Material.pdf, May. 2024.

[16] P. Farshim, C. Orlandi, and R. Rosie, “Security of symmetric primitives
under incorrect usage of keys,” IACR Transactions on Symmetric
Cryptology, vol. 2017, no. 1, p. 449–473, Mar. 2017.

[17] C. for Countering Digital Hate, “The disinformation dozen: Why
platforms must act on twelve leading online anti-vaxxers,” https://co
unterhate.com/research/the-disinformation-dozen/, Mar. 2021.

[18] S. Frenkel, “The most influential spreader of coronavirus misin-
formation online,” https://www.nytimes.com/2021/07/24/technology/jo
seph-mercola-coronavirus-misinformation-online.html, July 2021.

[19] Google, “Addendum to the analytics in exposure notifications express:
Faq,” https://github.com/google/exposure-notifications-android/blob/ma
ster/doc/enexpress-analytics-faq-addendum.md, Oct. 2021.

[20] P. Grubbs, J. Lu, and T. Ristenpart, “Message franking via committing
authenticated encryption,” in Proc. of Annual International Cryptology
Conference (CRYPTO), 2017.

[21] R. Issa, N. Alhaddad, and M. Varia, “Hecate: abuse reporting in secure
messengers with sealed sender,” in Proc. of Usenix Security Symposium
(Usenix Security), 2022.

[22] C. Jack, “Lexicon of lies: Terms for problematic information,” https:
//datasociety.net/library/lexicon-of-lies/, Aug. 9 2017.

[23] jlund, “Technology preview: Sealed sender for signal,” https://signal.o
rg/blog/sealed-sender/, Oct. 2018.

[24] Z. Jorgensen, T. Yu, and G. Cormode, “Conservative or liberal? person-
alized differential privacy,” in Proc. of IEEE International Conference
on Data Engineering (ICDE), 2015.

[25] J. Kastrenakes, “Whatsapp limits message forwarding in fight
against misinformation,” https://www.theverge.com/2019/1/21/1819145
5/whatsapp-forwarding-limit-five-messages-misinformation-battle, Jan.
21 2019.

[26] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of
influence through a social network,” in Proc. of ACM Knowledge
Discovery and Data Mining (SIGKDD), 2003.

[27] E. Kenney, Q. Tang, and C. Wu, “Anonymous traceback for end-to-end
encryption,” in Proc. of European Symposium on Research in Computer
Security (ESORICS), 2022.

[28] M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E.
Stanley, and H. A. Makse, “Identification of influential spreaders in
complex networks,” Nature physics, vol. 6, no. 11, pp. 888–893, 2010.

[29] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution: Densi-
fication and shrinking diameters,” TKDD, vol. 1, no. 1, p. 2, 2007.

[30] L. Liu, D. S. Roche, A. Theriault, and A. Yerukhimovich, “Fighting fake
news in encrypted messaging with the fuzzy anonymous complaint tally
system (FACTS),” in Proc. of ISOC Network and Distributed System
Security Symposium (NDSS), 2022.

[31] S. Loomba, A. de Figueiredo, S. J. Piatek, K. de Graaf, and H. J.
Larson, “Measuring the impact of covid-19 vaccine misinformation on
vaccination intent in the uk and usa,” Nature human behaviour, vol. 5,
no. 3, pp. 337–348, 2021.

[32] C. Machado, B. Kira, V. Narayanan, B. Kollanyi, and P. Howard,
“A study of misinformation in whatsapp groups with a focus on the
brazilian presidential elections.” in Proc. of International World Wide
Web Conferences (WWW), 2019.

[33] A. Madrigal, “India’s lynching epidemic and the problem with blaming
tech,” https://www.theatlantic.com/technology/archive/2018/09/whatsap
p/571276/, 2018.

[34] J. Millican, “Challenges of E2E encryption in facebook messenger,” in
Proc. of Real World Crypto Symposium (RWC), 2017.

[35] L. Muchnik, S. Pei, L. C. Parra, S. D. Reis, J. S. Andrade Jr, S. Havlin,
and H. A. Makse, “Origins of power-law degree distribution in the
heterogeneity of human activity in social networks,” Scientific reports,
vol. 3, no. 1, p. 1783, 2013.

[36] P. Panzarasa, T. Opsahl, and K. M. Carley, “Patterns and dynamics
of users’ behavior and interaction: Network analysis of an online
community,” JASIST, vol. 60, no. 5, pp. 911–932, 2009.

[37] A. Paranjape, A. R. Benson, and J. Leskovec, “Motifs in temporal
networks,” in Proceedings of the Tenth ACM International Conference
on Web Search and Data Mining (WSDM), 2017, p. 601–610.

[38] A. Pavlov and T. Arcieri, “Rust crypto,” https://github.com/RustCrypto,
2016.

[39] C. Peale, S. Eskandarian, and D. Boneh, “Secure complaint-enabled
source-tracking for encrypted messaging,” in Proc. of ACM Conference
on Computer and Communications Security (CCS), 2021.

[40] G. Resende, P. Melo, J. CS Reis, M. Vasconcelos, J. M. Almeida, and
F. Benevenuto, “Analyzing textual (mis) information shared in whatsapp
groups,” in Proc. of ACM Web Science Conference (WebSci), 2019.

[41] G. Resende, P. Melo, H. Sousa, J. Messias, M. Vasconcelos, J. Almeida,
and F. Benevenuto, “(mis)information dissemination in whatsapp: Gath-
ering, analyzing and countermeasures,” in Proc. of The World Wide Web
Conference (WWW), 2019.

[42] K. Rodriguez and seth schoen, “Faq: Why brazil’s plan to mandate
traceability in private messaging apps will break user’s expectation of
privacy and security,” https://www.eff.org/deeplinks/2020/08/faq-why-
brazils-plan-mandate-traceability-private-messaging-apps-will-break-
users, Aug. 2020.

[43] F. Sharevski, A. Devine, E. Pieroni, and P. Jachim, “Folk models
of misinformation on social media,” Proc. of ISOC Network and
Distributed System Security Symposium (NDSS), 2023.

[44] M. Singh, “Whatsapp is now delivering roughly 100 billion messages
a day,” https://techcrunch.com/2020/10/29/whatsapp-is-now-delivering
-roughly-100-billion-messages-a-day/, Oct. 2020.

[45] S. Takagi, F. Kato, Y. Cao, and M. Yoshikawa, “Asymmetric differential
privacy,” in IEEE Big Data, 2022.

[46] TechCrunch, “Whatsapp’s new limit cuts virality of ‘highly forwarded’
messages by 70%,” https://techcrunch.com/2020/04/27/whatsapps-new-
limit-cuts-virality-of-highly-forwarded-messages-by-70/, April 2020.

[47] D. Thakur, G. Post, M. Knodel, E. Llansó, G. Nojeim, and C. Vogus,
“Outside looking in: Approaches to content moderation in end-to-
end encrypted systems,” https://cdt.org/insights/outside-looking-in-appr
oaches-to-content-moderation-in-end-to-end-encrypted-systems/, Aug.
2021.

[48] K. Thomas, D. Akhawe, M. Bailey, D. Boneh, E. Bursztein, S. Con-
solvo, N. Dell, Z. Durumeric, P. G. Kelley, D. Kumar et al., “Sok: Hate,
harassment, and the changing landscape of online abuse,” in Proc. of
IEEE Symposium on Security and Privacy (S&P), 2021.

[49] N. Tyagi, P. Grubbs, J. Len, I. Miers, and T. Ristenpart, “Asymmetric
message franking: Content moderation for metadata-private end-to-end
encryption,” in Proc. of Annual International Cryptology Conference
(CRYPTO), 2019.

[50] N. Tyagi, I. Miers, and T. Ristenpart, “Traceback for end-to-end
encrypted messaging,” in Proc. of ACM Conference on Computer and
Communications Security (CCS), 2019.

15

https://cdt.org/wp-content/uploads/2024/06/May-2024-CDT-Europe-Feedback-on-the-Belgian-Presidencys-compromise-on-the-Regulation-on-Child-Sexual-Abuse-Material.pdf
https://cdt.org/wp-content/uploads/2024/06/May-2024-CDT-Europe-Feedback-on-the-Belgian-Presidencys-compromise-on-the-Regulation-on-Child-Sexual-Abuse-Material.pdf
https://cdt.org/wp-content/uploads/2024/06/May-2024-CDT-Europe-Feedback-on-the-Belgian-Presidencys-compromise-on-the-Regulation-on-Child-Sexual-Abuse-Material.pdf
https://counterhate.com/research/the-disinformation-dozen/
https://counterhate.com/research/the-disinformation-dozen/
https://www.nytimes.com/2021/07/24/technology/joseph-mercola-coronavirus-misinformation-online.html
https://www.nytimes.com/2021/07/24/technology/joseph-mercola-coronavirus-misinformation-online.html
https://github.com/google/exposure-notifications-android/blob/master/doc/enexpress-analytics-faq-addendum.md
https://github.com/google/exposure-notifications-android/blob/master/doc/enexpress-analytics-faq-addendum.md
https://datasociety.net/library/lexicon-of-lies/
https://datasociety.net/library/lexicon-of-lies/
https://signal.org/blog/sealed-sender/
https://signal.org/blog/sealed-sender/
https://www.theverge.com/2019/1/21/18191455/whatsapp-forwarding-limit-five-messages-misinformation-battle
https://www.theverge.com/2019/1/21/18191455/whatsapp-forwarding-limit-five-messages-misinformation-battle
https://www.theatlantic.com/technology/archive/2018/09/whatsapp/571276/
https://www.theatlantic.com/technology/archive/2018/09/whatsapp/571276/
https://github.com/RustCrypto
https://www.eff.org/deeplinks/2020/08/faq-why-brazils-plan-mandate-traceability-private-messaging-apps-will-break-users
https://www.eff.org/deeplinks/2020/08/faq-why-brazils-plan-mandate-traceability-private-messaging-apps-will-break-users
https://www.eff.org/deeplinks/2020/08/faq-why-brazils-plan-mandate-traceability-private-messaging-apps-will-break-users
https://techcrunch.com/2020/10/29/whatsapp-is-now-delivering-roughly-100-billion-messages-a-day/
https://techcrunch.com/2020/10/29/whatsapp-is-now-delivering-roughly-100-billion-messages-a-day/
https://techcrunch.com/2020/04/27/whatsapps-new-limit-cuts-virality-of-highly-forwarded-messages-by-70/
https://techcrunch.com/2020/04/27/whatsapps-new-limit-cuts-virality-of-highly-forwarded-messages-by-70/
https://cdt.org/insights/outside-looking-in-approaches-to-content-moderation-in-end-to-end-encrypted-systems/
https://cdt.org/insights/outside-looking-in-approaches-to-content-moderation-in-end-to-end-encrypted-systems/

[51] J. Ugander, L. Backstrom, C. Marlow, and J. Kleinberg, “Structural
diversity in social contagion,” PNAS, vol. 109, no. 16, pp. 5962–5966,
2012.

[52] S. Vosoughi, D. Roy, and S. Aral, “The spread of true and false news
online,” Science, vol. 359, no. 6380, pp. 1146–1151, 2018.

[53] WhatsApp, “More changes to forwarding,” https://blog.whatsapp.com/
more-changes-to-forwarding, July. 2019.

[54] ——, “Whatsapp privacy policy,” https://www.whatsapp.com/legal/pri
vacy-policy, Jan. 2021.

[55] L. A. Zadeh, “Fuzzy sets,” Information and control, vol. 8, no. 3, pp.
338–353, 1965.

[56] X. Zhu, V. Y. F. Tan, and X. Xiao, “Blink: Link local differential privacy
in graph neural networks via bayesian estimation,” in Proceedings of
ACM SIGSAC Conference on Computer and Communications Security
(CCS), 2023.

APPENDIX A
CONSISTENT VERIFICATION ON TAGS

In this section, we first analyze the accountability problem
exemplified by the tree traceback scheme proposed by Tyagi
et al. [50] at CCS’19, then present our approach to mitigate
this problem.

A. Analysis of Tyagi et. al.’s Scheme

At a high level, Tyagi et al. follow the framework of
message franking we introduced in Section I-B. The main
difference is that the tag is now a tracing metadata data tmd
that contains the tag and a ciphertext that links the keys on
the same forwarding chain (i.e., encrypt the previous key with
the current key).

Background. We recall the framework of Tyagi et al. with the
necessary details as follows:

1) To send a message m, a sender Ui generates a tag key k
and corresponding tracing metadata tmd. Then, the sender
sends (m, k) and tmd in end-to-end encrypted ciphertext
and plaintext, respectively.

2) Upon receiving a message, the platform processes the tmd
and stores the processed metadata tmd′. It then forwards
encrypted (m, k) and tmd′ to the recipient.

3) Once receiving (m, k, tmd′), the recipient verifies the trac-
ing metadata and rejects the malformed packets.

In the protocol described above, the platform stores all the
processed tracing metadata. This strategy introduces different
views between the platform and recipient when dealing with
packets containing malformed tracing metadata. In particular,
while the recipients promptly reject such malformed packets,
the platform persists in storing and utilizing these malformed
packets for tracing.

Accountability problem. Next, we show how the malformed
packets affect the accountability of Tyagi et al.. Specifically,
we consider three colluding malicious users (A1, A2, A3) and
one honest user U4, where the malicious users attempt to smear
the honest user for receiving a rejected problematic message.

• First, in the messaging phase, the users interact as follows:
1) A1 originates a problematic message m1 and send it to

(A2, A3) along with well-formed tracing metadata tmd1.

2) Upon receiving (m1, tmd1), A2 generates tracing meta-
data tmd2 that corresponds to forwarding m1 to U4.
Then, A2 sends (m2, tmd2) to U4, where m2 is an
innocent message.

3) Once receiving (m2, tmd2), U4 can easily detect that
tmd2 is malformed since it is generated for m1. There-
fore, U4 rejects the packet. Meanwhile, the platform
stores tmd2 in storage since it cannot verify the tracing
metadata and there is no feedback from the recipient U4.

• Second, in the reporting-then-tracing phase, the adversary
A3 reports A1 to the platform for sending problematic
message m1. Then, the platform traces the dissemination
of m1 as follows:
1) Verify A1 indeed sent m1 to A3.
2) Trace to A2 from A1 via forward search.
3) Trace to U4 from A2 since the tracing metadata tmd2 is

a well-formed tracing metadata of m1, and identify U4

as malicious for receiving the problematic message m1.

Obliviously, the above tracing result contradicts the account-
ability defined in Tyagi et al. (i.e., “no colluding set of
adversarial users can frame an honest user as having performed
some action that they did not”) since the malicious users
(A1, A2, A3) successfully smear U4 for receiving the rejected
problematic message m1. In Tyagi et al., this problem stems
from their security model (the SendMal algorithm, Figure
17), where they mark all rejected packets as not received by
users. However, in their system, the packets are already stored
by the platform before the users reject them. Therefore, the
inconsistency between their system and security model causes
this problem.

B. Our Solution

We finally describe our approach that allows the platform
to verify the rejected packets’ correctness and revoke the mal-
formed packets. In detail, to verify and revoke a (malformed)
packet, the entities in impact tracing interact as follows:

1) Once receiving a malformed packet, a recipient Uj submits
a revoke request (pid,mkr) to the platform, where mkr is
the E2EE key. If the packet contains a replicated tag key,
the recipient additionally sends the previous message mr

that has the same tag key to the platform.
2) For a revoking request, the platform processes it as follows:

a) Request the sender Ui to provide corresponding E2EE
key mks of the packet with identity pid.

b) Decrypt the packet (pid,E2EE(m, kt, ek), ct) using
mkr and mks, and revoke the packet if both keys fail
to decrypt.

c) Compute a tag as tag∗ ← TagGen(m, kt) and revoke
the packet if tag∗ ̸= tag, where tag is decrypted from
ct. Note that the RKR guarantees that ct has only one
valid key.

d) Check whether the processed tag tag′ ←
TagProc(dtkij , tag) exists in DBtag, and revoke
the packet if it exists.

e) Send the pid of revoke packets to the tag server.
3) Finally, the tag server deletes the processed tags corre-

sponding to the revoked packet identities from the platform.

Note that the steps (b-d) allow the platform to verify

16

https://blog.whatsapp.com/more-changes-to-forwarding
https://blog.whatsapp.com/more-changes-to-forwarding
https://www.whatsapp.com/legal/privacy-policy
https://www.whatsapp.com/legal/privacy-policy

the correctness of the rejected packet, which is the same as
the tag verification made by the recipient when receiving a
message. This avoids letting the platform distinguish which
one of the communication parties is honest; thus, it guarantees
the correctness of packets in storage.

APPENDIX B
USER CONFIDENTIALITY

User confidentiality ensures that recipients cannot learn
additional information about a message’s forwarding path
from received packets. To capture the implication of user
confidentiality, we define a security game UConfA,bFT in Figure
12. In the game, we consider an adversary A with capabilities
equivalent to both the tag server and recipients, as we allow
the two participants to collude. The adversary’s goal is to
distinguish the tag key from random bit strings. Besides, in
the game, we define three oracles:

• Oik allows A to learn the colluding users’ identity key.
• Odtk allows A to obtain the derived tracing key dtk between

any pair of users, even the non-colluding ones.
• Osend allows A to create communication between two users.

Based on the random value b, this oracle either outputs
random bit strings or real tracing metadata. To prevent trivial
wins, we require the sender Ui to be a non-colluding user;
otherwise,A can compute the message tag and tag key itself.

Definition 3 (User Confidentiality). Let FT be a fuzzy mes-
sage traceback scheme. We say FT achieves user confidentiality
if, for any PPT adversary A, A has a negligible advantage in
UConfA,bFT . Specifically, A’s advantage is defined as:

AdvUConfFT (A) =
∣∣∣Pr[UConfA,1FT = 1

]
− Pr

[
UConfA,0FT = 1

]∣∣∣
Intuitively, a block cipher (i.e., pseudorandom permutation)

Σ’s with a secret tracing key tkij ensures that a tag key k0t is
indistinguishable from a random bit string k1t from A’s view.
The tracing key tkij is derived from the identity key iki of non-
colluding users Unc. Importantly, iki remains unobservable to
the adversary A, as it is generated by the platform and known
only to the sender Ui and the platform itself. Moreover, the
platform’s secret key psk and the PRF’s pseudorandomness
guarantee that A gain no information about tkij from the
derived key dtkij . As a result, the tag key reveals nothing
about the forwarding path of any message to A.

Theorem 2. Let FT be the fuzzy message traceback scheme
(defined in Section III) building on a block cipher Σ and
pseudorandom function F . For any PPT adversary A, there
exist PPT adversaries B and C such that:

AdvUConfFT (A) ≤ AdvprfF (B) + AdvprpΣ (C),

where AdvprfF (B) and AdvprpΣ (C) is the advantage that B and
C breaks the pseudorandomness of F and the security of the
block cipher Σ, respectively.

For a rigorous proof, please see the full version.

APPENDIX C
ACCOUNTABILITY

To capture the goal of accountability, we formalize it within
the game ACTA

FT in Figure 13. In detail, at the beginning of

UConfA,bFT (1
λ)

(psk,Lk)←$ KGen(1λ)

(Uc,Unc)← A
b′ ←$ AOik,dtk,send(1λ)

return b′

Osend(kt−1, Ui, Uj)

if Ui ∈ Unc : return ⊥
if (Ui, kt−1) ∈ Lk : return ⊥
Lk ← Lk ∪ {(Ui, kt−1)}
tkij ← H(Lik[Ui]||Uj)

k0t ← Σ.Etkij (kt−1)

k1t ←$ {0, 1}λ

return kbt

Oik(Ui)

if Ui ∈ Uc : return ⊥
iki ← Lik[Ui]

return iki

Odtk(Ui, Uj)

iki ← Lik[Ui]

tkij ← H(iki, Uj)

dtkij ← DtkDer(tkij , psk)

return dtkij

Fig. 12: Security game for user confidentiality. Uc and Unc
denote the users who collude and do not collude with the tag
server, respectively. Lik and Lk store users’ identity keys and
received tag keys, respectively. The secret key psk and users’
identity key in Lik were randomly generated by the challenger.

the game, A outputs two sets Umal and Uhon, which represent
the malicious users and the honest users, respectively. Note
that this game is static, and we do not allow A to update Umal
and Uhon during the game. As in the real-world scenario, A
obtains the identity keys of malicious users in ACTA

FT , i.e.,
Lmik. Then, we allow A to create communication between two
arbitrary users through two oracles. Specifically,

• OHonSend allows A to create communication as an honest
sender. Note that Lik, Ltag , and Lk record identity keys,
message tags, and received tag keys of users, respectively.
Moreover, Lik and Ltag correspond to DBik and DBtag in
our design, respectively.

• OMalSend allows A to create communication as a malicious
sender, which can input arbitrary tag keys and message tags.
However, when the recipient is honest, OMalSend prevents
this attack by checking whether the input tag and re-
produced tag match. In contrast, a malicious recipient can
omit the tag verification.

In the oracles, the lists Lhik, Ltag , and Lk of honest users
are unobservable to the adversary A. Furthermore, the list
Tq records the actual forwarding graph in the oracle queries,
where each element in Tq is a tuple (U1, U2,m, k, U0, k0).
Here, U1 is the sender, U2 is the recipient, m is the forwarded
message, k is the current tag key, U0 is the precursor from
whom m is received, and k0 is the previous tag key from U0.
If the message is fresh, the tuple is defined by setting U0 = -,
and k0 is sampled from a uniform distribution. Based on the
Ltag and Tq , we can reconstruct the DBtag, and DBnbr as in our
design. Therefore, we can use the Trace algorithm to find all
the forwarding paths of the message m∗, which is submitted
by A for challenging.

We next consider the possible winning cases of the ad-
versary and present the analysis in Figure 14. The task of

17

ACTA
FT,n(1

λ)

Ltag ← ∅, Tq ← ∅
(Uhon,Umal)← A
(m∗, k∗, U∗, U1, U2,m, k1, U0, k0)

← AO(Uhon,Umal,Lm
ik)

Ttr ← Trace(m∗, k∗, U∗)

if (U1, U2,m, k1, U0, k0) ∈ Ttr do

// Identity, message or edge replacement

if (U1, U2,m, k1, U0, k0) /∈ Tq
return 1

// Path partition in backward search

if ((U0, k0) = (-, -))&(U1 ∈ Uhon)
if !IsSrc(U1, U2,m, k1, Tq)

return 1

// Path partition in forward search

if IsLeaf(U2,m, k1, Ttr)&(U2 ∈ Uhon)
if HasFwd(U1, U2,m, k1, Tq)

return 1

return 0

OHonSend(m,U1, U2, k0, U0)

if U1 /∈ Uhon then return ⊥
ik1 ← Lh

ik[U1]; tk12 ← H(ik1||U2)

if (k0, U0) = (-, -)
k0 ←$ {0, 1}n; k ← Etk12(k0)

else k ← Etk12(k0)

tag ← TagGen(m, k, tk12)

dtkij ← DtkDer(tk12, psk)

Ltag ← Ltag ∪ {TagProc(dtkij , tag)}
Lk ← Lk ∪ {(U2, k)}
Tq ← Tq ∪ {(U1, U2,m, k, U0, k0)}
if U2 ∈ Umal

return (k, tag)

return (-, -)

HasFwd(U1, U2,m, k1, T)

for (U ′
1, ∗,m′, ∗, U ′

0, k
′
0) ∈ T do

if (U ′
0, U

′
1,m

′, k′0) = (U1, U2,m, k1)

return true

return false

IsFwd(k1,m, tk12, U1, U2, T)

for (U0, U1,m, k0, ∗, ∗) ∈ T do

k′1 ← Etk12(k0)

if k′1 = k1

return (k0, U0)

return (-, -)

OMalSend(k,m, tagts, tagr, U1, U2)

if U1 /∈ Umal then return ⊥
ik1 ← Lm

ik[U1]; tk12 ← H(ik1||U2)

dtkij ← DtkDer(tk12, psk)

Ltag ← Ltag ∪ {TagProc(dtkij , tagts)}
ˆtag ← TagGen(m, k, tk12)

if (U2 ∈ Uhon)&(((U2, k) ∈ Lk)|(tagr ̸= ˆtag))

return ⊥
Lk ← Lk ∪ {(U2, k)}
Tq ← Tq ∪ {(U1, U2,m, k, -, -)}
(k0, U0)← IsFwd(k,m, tk12, U1, U2, Tq)
if (k0, U0) ̸= (-, -)
Tq ← Tq ∪ {(U1, U2,m, k, U0, k0)}

return (k, tag)

IsLeaf(U1,m, k1, T)

for (∗, ∗,m′, ∗, U ′
0, k

′
0) ∈ T do

if (U ′
0,m

′, k′0) = (U1,m, k1)

return false

return true

IsSrc(U1, U2,m, k1, T)

for (U ′
1, U

′
2,m

′, k′1, U
′
0, k

′
0) ∈ T do

if (U ′
1, U

′
2,m

′, k′1) = (U1, U2,m, k1)

if (U ′
0, k

′
0) ̸= (-, -)

return false

return true

Fig. 13: Security game for accountability. When sending a fresh message, the adversary access the OHonSend oracle as
OHonSend(·, ·, ·, -, -), where (-,-) denotes empty elements. And ∗ is a wildcard symbol when it appears in the elements of Tq .
Ltag and Tq are maintained by the oracles that the adversary cannot observe. The identity keys in Lhik and Lmik were randomly
generated. psk is a secret key generated and maintained by the challenger.



G∗
m ̸⊆ Gm

∧e∈E∗
m
(e ∈ Em) = false→

{
Identity replacement

Message replacement
∧e∈E∗

m
(e ∈ Em) = true→ Edge replacement

G∗
m ⊆ Gm

Gm ̸⊆ G∗
m

{
Partition in hon. user→ Path partition

Partition in mal. user→ Trivial win

Gm ⊆ G∗
m → Both graphs are identical.

Fig. 14: Adversaries’ winning cases of accountability

the adversary is to intentionally manipulate traceback so that
the Trace algorithm’s output G∗

m differs from the (actual)
forwarding graph Gm. We can exhaust all possible winning
cases of the adversary by listing all possible scenarios where
the two graphs differ.

To prevent trivial wins, we do not consider the winning
cases where both sender and recipient are malicious users,
i.e., path partition in two malicious users. A malicious sender
could easily evade tracing when the recipient omits the tag

verification. Nevertheless, we allow two malicious users to
communicate in the game; therefore, a malicious sender can
add arbitrary message tag tag to Ltag . Note that even colluding
users cannot manipulate dtk in tag′ since it is embedded by
the challenger (i.e., platform and tag server in impact tracing).
This prevents the colluding users from smearing an honest
user. Formally, we define the accountability for FT as follows.

Definition 4 (Accountability). The advantage of the adver-
sary in breaking the game of accountability is defined as:

AdvactFT (A) = Pr
[
ACTA

FT = 1
]
.

Theorem 3. Let FT be the fuzzy message traceback scheme
defined in Section III. For any PPT adversary A, there exist
PPT adversaries such that:

|AdvactFT (A)− ψ| ≤ negl(λ),

where ψ is the FPR of random response in FT.

For a rigorous proof, please see the full version.

18

	Introduction
	Problem Statement
	Technical Overview

	Models and Goals
	System Model
	Threat Model
	Design Goals
	Non-goals

	Impact Tracing
	Preliminaries
	Fuzzy Message Traceback
	The Decoding Algorithm

	Protocol Analysis
	Security Analysis
	Differential Privacy Analysis

	Implementation and Evaluation
	Implementation Details
	Metrics
	Utility and Privacy Analysis
	Cost Analysis

	Related Works
	Conclusion and Discussion
	References
	Appendix A: consistent verification on tags
	Analysis of Tyagi et. al.'s Scheme
	Our Solution

	Appendix B: User Confidentiality
	Appendix C: Accountability

