
Poster: Enhancing LLM4Decompile with
Obfuscated Source Code for Optimized Assembly

Ryota Saito∗, Takuya Kataiwa∗, Tetsushi Ohki∗†
∗Shizuoka University, †RIKEN AIP

Email: saito.ryota.23@shizuoka.ac.jp

Abstract—Decompilation is a critical technique in cybersecu-
rity contexts. Recent machine-learning-based approaches have
improved accuracy and readability but struggle with optimized
inputs. We propose a novel method to enhance LLM4Decompile,
an end-to-end Large Language Model-based decompiler, by
leveraging obfuscation techniques for training dataset creation.
Experiments demonstrate the effectiveness and limitations of our
method in improving decompilation accuracy.

I. INTRODUCTION

Decompilation is a fundamental technique used in cyberse-
curity contexts, including malware analysis and vulnerability
research. Existing decompilers widely used in industry, such
as Ghidra and IDA Pro, rely on rule-based approaches to
carry out the decompilation process. However, rule-based
decompilers face two major challenges: (1) the accuracy of
decompilation and (2) the readability of the generated code.

The compilation process leads to the loss of critical infor-
mation from the source code, such as control structures and
symbol names, making accurate decompilation a challenging
task. If decompiled code is functionally accurate, readability
is often poor in many cases due to the inability of recovering
lost information such as symbol names, types, etc. In recent
years, machine-learning-based decompilers have emerged as
promising alternatives. Some models have achieved remark-
ably high accuracy in decompilation tasks. Furthermore, with
regard to readability, they have demonstrated the ability to
address NP-hard problems, such as symbol name inference,
further advancing the capabilities of decompilers.

Among existing approaches, LLM4Decompile [1] stands
out, particularly its variant LLM4Decompile-End, which is
the first to replace an entire decompiler workflow with a
Large Language Model (LLM). Despite some successes, it
still struggles to handle inputs that are optimized by compilers,
making this a critical area for further improvement. To address
these challenges, we propose a novel method that incorporates
obfuscation techniques to enhance the decompilation accu-
racy of LLM4Decompile. By generating obfuscated training
datasets, our approach improves the model’s ability to interpret
optimized assembly code and mitigates existing limitations.

Our contributions can be summarized as follows: (1) We
propose a systematic method for generating obfuscated train-
ing datasets, reducing manual overhead while enhancing data
diversity. (2) We fine-tune LLM4Decompile-End using the
constructed dataset, achieving significant accuracy improve-
ments in optimized assembly code. Fig. 1 is a example of the

Fig. 1 Example Output of Base and Enhanced Models: Comparison of
decompiled outputs from the base model and our model, highlighting
improved symbol resolution and control flow reconstruction.

outpus from base and our model. (3) We identify and analyze
key limitations of the proposed approach, offering insights for
future enhancements in symbol resolution.

II. PROPOSED METHOD

This section presents a method to enhance the decompilation
accuracy of the LLM4Decompile-End model [1]. Our ap-
proach consists of two key components: Dataset Construction
and Fine-Tuning, each tailored to address the limitations of
handling optimized inputs.

A. Dataset Construction

We use Code-to-Code obfuscation to enhance the diversity
of training data without requiring new source code. This
approach eliminates the need for manual dataset creation,
thereby reducing the overall cost of data preparation.
(1) Source Code Collection: We utilize the AnghaBench
dataset [2], which consists of functions written in C collected
from various open-source projects. As one of the largest
datasets available, it is widely used for its diversity and
reliability. This dataset is used to produce LLM4Decompile-
End [1].
(2) Code Obfuscation: This process generates obfuscated C
functions based on predefined obfuscation techniques. Using
Tigress [3], a Code-to-Code obfuscation tool, we obfuscate
the functions in the AnghaBench dataset. Tigress supports
multiple obfuscation methods that are relevant to real-world
scenarios. It is suitable obfuscator for generating diverse func-
tions simulate obfuscated or optimized code in this process.

Model O0 O1 O2 O3 AVG
LLM4Decompile-End-6.7B 68.05 39.51 36.71 37.20 45.37
Our Model 68.29 43.29 44.51 40.85 49.23

TABLE I Re-executability rate on the HumanEval benchmark: O0
˜O3 represent inputs with different levels of compiler optimization.

Model O0 O1 O2 O3 AVG
LLM4Decompile-End-6.7B 19.00 17.69 17.69 17.54 17.98
Our Model 17.18 14.89 14.06 14.14 15.07

TABLE II Re-executability rate on the ExeBench benchmark

(3) Dataset Optimization: Obfuscated C functions pro-
duced by Tigress often include excessive comments and ex-
panded #include statements, increasing file size. We use a
Python script to remove unnecessary comments and compress
#include statements, reducing dataset size and improving
usability.
(4) Compilation to Assembly Code: We compile the opti-
mized dataset using GCC with four optimization levels (O0
to O3). Each function in the dataset is compiled individually,
producing and paired with four assembly codes per function.

B. Fine-Tuning

Using the constructed dataset, fine-tuning is performed
on the LLM4Decompile-End model. The fine-tuning process
allows the model to better generalize to optimized assembly
code, enhancing its ability to decompile accurately across
various optimization levels.

III. EVALUATION AND RESULTS

We evaluate the proposed method by fine-tuning the
LLM4Decompile-End-6.7b model and assessing its per-
formance on open datasets. Our primary goals is to validate
the effectiveness of obfuscation-based dataset augmentation in
improving decompilatioin accuracy for optimized code.
Training data: As described in Section II, the training data
was constructed by obfuscating the AnghaBench dataset by
Tigress. We randomly selected 2% of the files from the
AnghaBench and used them as the training dataset.
Metrics and Evaluation Datasets: We use two widely recog-
nized datasets, HumanEval [4] and ExeBench [5] to evaluate
the model. Both datasets provide pairs of source code and test
cases. We adopt re-executability rate as an evaluation metric.
Re-executability rate refers to the ability of the generated code
to compile successfully and pass provided test cases, ensuring
both syntactic and functional correctness.
Results: Results are shown in Table I and II. Re-executability
rate, especially for optimized inputs got improved in Human-
eval benchmark, on the contrary, accuracy decreased for all
optimization level. Figure 1 illustrates decompiled code ex-
amples (ours and bases).

IV. DISCUSSIONS AND FUTURE PLANS

The improvement observed in HumanEval benchmark in-
dicate that obfuscated datasets effectively emulate compiler
optimization. This emulation enhances the model’s ability to
generalize to optimized assembly code, as evidenced by an

3.86% average. The improvements demonstrate the effective-
ness of obfuscated datasets for inference on optimized inputs,
which is crucial for practical applications.

In contrast, performance on ExeBench benchmark declined
2.91% average. A key distinction between the two datasets
is the presence of external symbols. While HumanEval does
not include external symbols, ExeBench frequently does. The
performance degradation can be attributed to issues with infer-
ring external static symbols. LLMs tend to generate context-
dependent symbol names, which may lead to unresolved
symbol errors during compilation. We conducted preliminary
experiments to count up the each kind of error messages and
confirmed that the fine-tuned model exhibited more compila-
tion errors due to unresolved symbols than the base model.
This indicates that the issue stems from the architecture of
LLM4Decompile rather than the training data.

The findings from this study provide important implications
for the development of LLM-based decompilers. The proposed
method demonstrates that code obfuscation can emulate com-
piler optimizations, improving LLMs’ ability to generalize to
optimized assembly code, as shown in the HumanEval bench-
mark. This highlights the potential of obfuscated datasets to
bridge the gap between non-optimized and optimized binaries.
Future work will address challenges such as handling external
symbols using techniques like Retrieval-Augmented Genera-
tion (RAG) and investigate the impact of various obfuscation
methods on model performance to identify the most effective
strategies.

V. SUMMARY
In this study, we proposed a method to improve the accuracy

of the LLM4Decompile by performing additional fine-tuning
using obfuscated code. Experimental results demonstrated both
the effectiveness and limitation of the proposed method. This
study contributes to advancing practical, end-to-end decompi-
lation by leveraging obfuscation as a form of data augumen-
tation. For future work, we aim to explore solutions such as
RAG for better symbol resolution and to evaluate the impact
of different obfuscation techniques on model performance.

VI. ACKNOWLEDGMENT
This study was supported in part by JST Moonshot JP-

MJMS2215.

REFERENCES

[1] H. Tan et al., “LLM4Decompile: Decompiling binary code with large
language models,” in Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing. Miami, Florida, USA:
Association for Computational Linguistics, Nov. 2024, pp. 3473–3487.

[2] A. F. da Silva et al., “Anghabench: A suite with one million compilable
c benchmarks for code-size reduction,” in Proceedings of the IEEE/ACM
International Symposium on Code Generation and Optimization (CGO).
IEEE, 2021, pp. 378–390.

[3] C. Collberg, “The Tigress C obfuscator,” https://tigress.wtf, Accessed:
2025-01-06.

[4] M. chen et al., “Evaluating large language models trained on code,”
2021. [Online]. Available: https://arxiv.org/abs/2107.03374

[5] Armengol-Estapé et al., “ExeBench: An ML-Scale Dataset of Executable
C Functions.” New York, NY, USA: Association for Computing
Machinery, 2022. [Online]. Available: https://doi.org/10.1145/3520312.
3534867

Poster: Enhancing LLM4Decompile with Obfuscated
Source Code for Optimized Assembly

Ryota Saito Takuya Kataiwa Tetsushi Ohki

Shizuoka University RIKEN AIP

Network and Distributed System Security NDSS 2025

1 1 1

1 2

2

Introduction and Motivation
LLM4Decompile is an End-to-End Large Language Model-based Decompiler.
Input is an assembly code and Output is a source code written in C language.

Evaluation Discussion
For Human-Eval, the model got improved, particularly for optimized inputs
as Table 2. describes.
This suggests that obfuscation may trace the effects of optimization.

Future Work
- Developing mechanisms, such as Retrieval-Augmented Generation

(RAG), to better convey information like relations between symbol
names and addresses for improving LLMs for End-to-End Decompilation.

- Additional experiments will investigate how different obfuscation
techniques impact model performance, aiming to identify methods that
enhance decompilation accuracy.

LLM4Decompile has been struggling to handle optimized input[1] as Table 1.
describes, however in real-world scenarios, input is often optimized.

To address this challenge, we leverage obfuscation techniques for training
dataset creation.

Dataset Collection

Code Obfuscation

Dataset
Optimization

Compilation and
Pairing

Fine-tuning
LLM4Decompile

(1) Utilize AnghaBench, one of the largest dataset
formed by C functions collected from open-source
projects.

(2) Obfuscate collected source code by Tigress,
a Code-to-Code obfuscation tool.

(3) Remove unnecessary comments and compress
expanded #include statements to reduce dataset
size.

(4) Compile each obfuscated function by GCC with
4 optimization level (O0 ~ O3) to get assembly code.

(5) Fine-tune LLM4Decompile with the pairs of
obfuscated source code and assembly code.

Reference
withlarge

the 2024 Conference onEmpirical Methods in Natural Language Processing, Y. Al-Onaizan,M. Bansal, and Y.-
N. Chen, Eds. Miami, Florida, USA: Associationfor Computational Linguistics, Nov. 2024, pp. 3473 3487.
[Online].Available: https://aclanthology.org/2024.emnlp-main.203/

For ExeBench, the overall accuracy declined as Table 3. describes.
This is likely caused by the LLM's context-based inference for external
static symbols, which are not explicitly provided.
The results indicate that additional fine-tuning does not resolve this issue
and may even exacerbate the problem.

Example output below demonstrate the ability of our model to restore code.

Proposed method
We present a method to enhance the accuracy of LLM4Decompile-End.
Proposed method are described as following steps:

float func0(float numbers[], int size) {
float sum = 0;
float avg, msum, mavg;
int i = 0;
for (i = 0; i < size; i++)

sum += numbers[i];
avg = sum / size;
msum = 0;
for (i = 0; i < size; i++)

msum += fabs(numbers[i] -
avg);
return msum / size;

}

Base Model
float func0(float *x, int n) {

int i;
float sum = 0.0;
float mean = 0.0;
float diff = 0.0;
for (i = 0; i < n; i++)

mean += x[i];
mean /= n;
for (i = 0; i < n; i++)

diff += fabs(x[i] - mean);
sum = diff / n;
return sum;

}

Original Code
int func0(char *s, char *t) {

int i, j, k, l, m, n, o, p, q, r,
count;
count = 0;
n = strlen(s);
m = strlen(t);
for (i = 0; i <= n - m; i++) {

for (j = 0; j < m; j++) {
f (s[i + j] != t[j])
break;

}
if (j == m)

count++;
}
return count;

}

Our Model

Compile with O2
optimization-level

Metrix and Evaluation Dataset
Re-executability:
- Model is evaluated by re-executability which is generated code is

compilable and executable as functionally correct.

Evaluation Dataset:
- Two datasets are used for evaluation.
- Human-Eval and ExeBench.

typedef struct TYPE_2__ TYPE_1__;
struct TYPE_2__ {

scalar_t__ InterruptVector;
scalar_t__ MIE;
scalar_t__ PointerBits;
scalar_t__ SCC_Interrupt_Type;

};
TYPE_1__ SCC;
size_t Wire_SCCInterruptRequest;
size_t Wire_VIA1_iA7_SCCwaitrq;
int* Wires;
void SCC_Reset(void) {

Wires[Wire_VIA1_iA7_SCCwaitrq] = 1;
SCC.SCC_Interrupt_Type = 0;
Wires[Wire_SCCInterruptRequest] = 0;
SCC.PointerBits = 0;
SCC.MIE = 0;
SCC.InterruptVector = 0;
SCC_InitChannel(1);
SCC_ResetChannel(0);

}

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

int func0(float numbers[], int size, float threshold) {
 int i, j;

 for (i = 0; i < size; i++) {
 for (j = i + 1; j < size; j++) {
 if (fabs(numbers[i] - numbers[j]) < threshold) {
 return 1;
 }
 }
 }
 return 0;
}

Human-Eval example

ExeBench example

Example of the output below demonstrate symbol resolving issue.

Compile

DeepSeek
Coder

LLM4
Decompile

Our
Model

Obfuscate Compile

Train Train

written in C language.

Decompile

#define NULL ((void*)0)
typedef unsigned long size_t;
typedef long intptr_t;
typedef unsigned long uintptr_t;
typedef long scalar_t__;
typedef int bool;
#define false 0
#define true 1
size_t rightPlow ;
int* servo ;

External Symbol
// Function below is generated by model
void moveRight(int speed) {

motor[rightMotor] = speed;
}

bool; bool; bool;

rightPlow ;
;

Generated Function

This variable name should be
servo as declared globally.

Errors of this type are very common,
and lowering the benchmark of the model.

This study was supported in part
by JST Moonshot JPMJMS2215.

