Poster: Post-Deployment Privacy Enhancement for
Smart Contracts

Tongqi Wang, Jin Wu, Jian Dong
Harbin Institute of Technology, Harbin, China
{tongqi6, wujin, dan} @hit.edu.cn

Abstract—Addressing privacy exposures for post-deployed
smart contracts on the blockchain is challenging due to its
transparent nature. Qur studies reveal that privacy leakage may
persist even after applying state-of-the-art protection methods,
such as zero-knowledge proofs. This work thoroughly character-
izes the privacy risks that persist after contract upgrades aimed
at enhancing privacy. To the best of our knowledge, this is the
first work to highlight the issue of post-upgrade privacy risks.
We propose an approach to identify these risks by analyzing
variable dependencies during complex transaction sequences.
Additionally, we propose a mitigation strategy to trace the
sources of privacy leakages and conceal sensitive information by
manipulating involved variables through transaction sequences.

I. INTRODUCTION

Extensive research efforts have been undertaken to ad-
dress data privacy concerns in Ethereum smart contracts.
The mainstream is the zero-knowledge proof (ZKP)-based
privacy protection approaches [1], [2] (denoted by ZKAPPs),
which does not rely on trusted third parties, is more suitable
for non-interactive blockchain scenarios, and can support a
wider range of applications. In the ZKAPP, privacy protection
involves concealing/encrypting sensitive data and validating
state-correct updates using ZKPs. To put the ZKAPP into
practice, it is imperative to delineate clear strategies for privacy
protection prior to the deployment. However, smart contracts
after deployment may still have privacy vulnerabilities due to
various causes, such as coding defects (e.g., SWC-136) [3] or
emerging privacy risks [4].

A straightforward fix for a deployed contract with privacy
issues is to replace it with an enhanced version using ZKAPP.
However, this leads to the loss of accumulated historical
data and states, causing unexpected losses and inconvenience
for owners and users. Contract upgrading offers a solution
by changing the business logic while preserving the state.
Privacy protections like ZKAPP can be implemented through
upgrading. Despite this, there are fundamental limitations.
ZKAPP encrypts data, but attackers might infer plaintext from
previous public data since the blockchain state is continuous.
Thus, upgraded contracts might still be vulnerable to privacy
leaks. The leakage occurs in unexpected ways due to unpre-
dictable user behavior, complicating the issue. No current work
addresses contract repair for post-deployment privacy issues.

Our research aims to enhance the privacy of deployed
contracts where privacy vulnerabilities are identified post-
deployment. We implement privacy-focused upgrading to
specifically protect already exposed private data and prevent

further leakage. To thoroughly understand post-upgrade pri-
vacy risks (PUPRs), we conduct an extensive study, revealing
that these risks can persist even after applying ZKAPPs
through contract upgrades. For contracts with potential privacy
risks, we propose a strategy to analyze PUPRs by identifying
vulnerable variables that might expose sensitive data. Initially,
we identify these vulnerable variables. Subsequently, we trace
the source of potential PUPRs using ciphertext data depen-
dency analysis. To mitigate PUPRs, we introduce a strategy
to eliminate their source. This involves using a transaction
sequence generator to securely handle sensitive data within the
vulnerable variables, ensuring it remains protected. To validate
our approach, we have developed a prototype, PD-Priv, which
is the first-ever tool designed for post-deployment privacy
enhancement in Ethereum applications.

II. PERSISTENCE OF PUPRS

We first discuss the persistence of potential PUPRs in
upgraded contracts using ZKAPP. When a privacy breach
is found, developers must provide a new contract or patch
with ZKAPP to upgrade the contract. The upgraded contract
moves sensitive data computations to functionality-equivalent
off-chain computations. Besides, sensitive data is changed
from plaintext to ciphertext in new variables. Therefore, all
new ciphertext-type variables have an important property that
everyone can infer the original plaintext of the sensitive data
stored in these variables. As a result, in the new transaction,
the reading and writing of sensitive data affected by these
variables also become insecure, leading to the exposure of the
affected sensitive data. These variables are termed "sources"
of PUPRs. There are three types of PUPRSs, including Reading
Risk, Writing Risk - Leakage, and Writing Risk — Manipulation.

e Reading Risk (denoted by RR) represents a type of PUPR
where the "victim" ciphertext variable to be revealed in
the future is already public revealed.

o Writing Risk - Leakage (denoted by WRL) represents a
type of PUPR where a newly written "victim" ciphertext
variable exposed its sensitive data to public.

o Writing Risk — Manipulation (denoted by WRM) repre-
sents a type of PUPR where newly written "victim" ci-
phertext variable is maliciously manipulated by someone.

III. ELIMINATION OF PUPRS

We propose eliminating PUPRs by identifying potential
PUPRs and their "sources" to protect user information. To

Elimination of Potential PUPRs

Privacy-Focused
Upgrading

@ Ciphertext
Dependency Analysis

Contract Upgrading ® Identification of Upgraded
Potential PUPRS contract
Original . @D . without
i ® Upgrade contract @ Generation of
contract PUPRs

with ZKAPP to Iransaction Sequence TX

support data privacy ® Execution of TX
d

Gj
contract contract
developer user

Fig. 1. Workflow of privacy-focused upgrading supported by PD-Priv.

1 contract Odd_Even{ 22 function start(uint number,i,) {
2 address public admin; 23 require(me == admin);
3 uint public counter; 24
4 uint private sumugpin; 25 SUMygmin += NUMDErdmini
5 mapping(address => uint) private balance[a],; 26}
6 mapping(uint => address) public players; ,)
7 address public winner; 27 function play(uint number,,) {
28
8 function constructor(){ 29 require(me != admin);
9 admin = me; 30 require(counter < 2);
10 } 31 balance[mel,,,. -= 1;
i 32 SUMgpin += NUMbEN,,,;
A0 e Lo M N 33 players[counter] = me;
12 balance[me],,. += uint(msg.value); 34 counter += 1;
13 3} 35 }
14 function transfer(uint amount,,., address to){ 36 function select_winner() {
15 37 require(me == admin);
16 bal = s 38
o balanceg“]el";i amettn 39 if (counter == 2) {
oy TS 40 uint index = SUM, i, % 2
41 winner = players[index];
19 function sell(uint amount) { 42 balance[winner], e, += 2;
20 43 }
21 } 44 counter = 0;
45
46}
Fig. 2. The upgraded contract Odd_Even. The original contract version

disregards the red text.

this end, this work first performs data dependency analysis
to trace ciphertext back to its plaintext. Once a ciphertext
can be connected to a plaintext, a risk, and its "source" are
identified. Eliminating "sources" prevents PUPRs by ensur-
ing sensitive data is not exposed. Since upgraded ciphertext
leaks information, involving privacy parameters that don’t leak
information in computations ensures the resulting ciphertext
remains secure. This work applies a transaction sequence
generator to output a sequence that can eliminate the "sources"
of potential PUPRs, which can be formally proved.

We design a tool PD-Priv to perform privacy-focused up-
grading to contracts with privacy issues. Unlike traditional
contract upgrade, PD-Priv ensures private information appro-
priately protected after upgrades, as illustrated in Fig. 1.

IV. CASE STUDY

In this section, we perform the privacy-focused upgrading
proposed in this work on a contract application (Odd_Even,
as shown in Fig. 2) with the SWC-136 privacy issue'. We
first illustrate three PUPRs on Odd_Even. Then, we show the
elimination of these PUPRs.

In this contract, each user has a private account to store their
token balance, supporting players participating in the game. To
participate, players call the play function, each providing a
number to be added to sum. Whether sum is odd or even will

Publicly evaluated on the Sepolia Testnet: https:/sepolia.etherscan.io/
address/0xb8664b572118716dded6ad2ea5 1be7c4411b5d69.

TABLE I
PUPRS IN THE UPGRADED ODD_EVEN.

Type of PUPRs "Victim" of PUPRs Location of PUPRs

RR SUM g dmin select_winner, line 40
WRL balance,, buy, line 12
WRM SUM g dmin play, line 32
TABLE II

ELIMINATION FOR PUPRS IN THE UPGRADED ODD_EVEN.

Contract Type of " . Transaction Sequence
User PUPRs Source” of PUPRs for Contract User
RR SUM g dmin
admin WRL balance,gmin [transfer, start]
WRM SUM admin
non-admin WRL balance, on — admin [transfer]

determine the winner between the two players. The contract
developer aims to prevent attackers from reading sensitive
data, such as sum and balance, so these data types are
set to private. However, there is a common misconception
that private type variables cannot be read, leading to SWC-136
privacy issues in the original Odd_Even contract.

Once developers become aware of the exposure of
private variables, they upgrade the contract code, as shown
in phase 1 of Fig. 2. In the upgraded version, a variable with
a subscript indicates that its data type has been converted into
ciphertext, with the subscript representing the owner of the
ciphertext’s private key. The transaction sender is denoted by
me. We list the PUPRs in the upgraded Odd_Even contract,
along with their "victim" ciphertext variable and occurrence
locations, as shown in Table I.

For each contract user, PD-Priv analyzes each vulnerable
variable and identifies the "source" of each PUPR. It then
provides a transaction sequence to eliminate the "source", as
shown in Table II. Involved users can eliminate PUPRs by
executing these generated sequences.

V. CONCLUSION

For smart contracts with post-deployment privacy risks, a
mere regular contract upgrade proves to be inadequate. In
this paper, we highlight the persistence of privacy risks even
after such upgrades. Subsequently, we identify and mitigate
potential privacy risks to prevent their continuation.

REFERENCES

[1] S. Steffen, B. Bichsel, M. Gersbach, N. Melchior, P. Tsankov, and
M. Vechev, “zkay: Specifying and enforcing data privacy in smart
contracts,” in Proceedings of the 2019 ACM SIGSAC conference on
computer and communications security, pp. 1759-1776, 2019.

[2] S. Steffen, B. Bichsel, R. Baumgartner, and M. Vechev, “Zeestar: Private
smart contracts by homomorphic encryption and zero-knowledge proofs,”
in 2022 IEEE Symposium on Security and Privacy (SP), pp. 179-197,
IEEE, 2022.

[3] SWC-registry, “Smart contract weakness classification (swc),” 2020.

[4] N. Ivanov, Q. Yan, and A. Kompalli, “Txt: Real-time transaction encap-
sulation for ethereum smart contracts,” IEEE Transactions on Information
Forensics and Security, vol. 18, pp. 1141-1155, 2023.

Post-Deployment Privacy Enhancement for Smart Contracts

Tongqi Wang, Jin Wu, Jian Dong] 'r X
Harbin Institute of Technology -
bER KLY

HARBIN INSTITUTE OF TECHNOLOGY

{tongqi6,wujin,dan}@hit.edu.cn

Privacy issues in the post-deployed smart contracts
Transparency vs. Confidentiality

Privacy issues of deployed contracts contract upgrading

Transparency: all data are revealed public in contracts Fix
Confidentiality: sensitive data should not be exposed

in sealed-bid auction, voting, healthcare, etc

» code defects (e.g., SWC-136)
» emerging privacy risks

Causes {

What happens when contract upgrading encounter privacy issues?
ZKP-based Privacy Enhancement (ZKAPP)

Encrypt sensitive data and validate state-correct updates via ZKP

Contract Upgrading

O V Incorporate new features
» NOT rely on any trusted third party
» NOT require interactive participants
» Support a wider range of Ethereum contract applications

O v Address security vulnerabilities

Features {

O xAddress privacy vulnerabilities

Contract Upgrading + ZKAPP: Privacy risks still persist!

(1) Reading Risk (RR): the "victim" ciphertext variable to be revealed in the future is already public revealed
(2) Writing Risk - Leakage (WRL): a newly written "victim" ciphertext variable exposed its sensitive data to public
(@) Writing Risk - Manipulation (WRM): a newly written "victim" ciphertext variable is maliciously manipulated by someone

Privacy Risks
(PUPRs)

Post-Upgrade {

PD-Priv: Performing privacy-focused upgrading for privacy issues

Elimination of Potential PUPRs

New ciphertext variables:
wherein everyone can infer
plaintext/ciphertext pair

Phasel: Contract Upgrading with ZKAPP
* Transfersensitive data into ciphertexts
* Ensure correctness of ciphertexts via ZKP

Privacy-Focused :
Upgrading (2) Ciphertext
i i Dependency Analysis
(3) Identification of

Contract Upgrading Upgraded

Original Potential PUERS contract | phase?: Elimination of Potential PUPRs of User e " °o
CUI]T["IC ; () Upgrade contract (1) Generation of ‘}tglll;ﬁlt identif
¢ ; p ansaction S . s identify
. with ZKAF I. to Transaction Sequence TX Ciphertext Tl "sources” of PUPRS:
support data privacy 5) Execution of TX
Dependency PUPRs of & may cause
d Analysis generate an user potential PUPRs

contract
developer

contract
& & user Transaction Sequence eliminate

Case Study for repairing a contract with SWC-136 privacy issues
Original Contract Odd_Even with SWC-136 privacy issues

privacy-focused upgrading

1 contract 0dd Even{ 22 function start (uint number) f{ .
2 address public admin; 23 require (me == admin) ; 1) Upgrade Wlth ZKAPP
i i - 24 i, . .
o b b G 5 } _ « Transfer sensitive data from plaintext to ciphertext
4 uint private sum; 5] sum += number ;
i = uf i . 26 . . .
o EERIEEee = Vil pbei L lsos 2) Potential PUPRs in upgraded version
6 mapping (uint => address) public players;
i i . 27 functi | int b o I
/ <CElE8 (G TG 28 unction play (uint number) Type of PUPRs "Victim" of PUPRs Location of PUPRs
8 function constructor () { 29 require(me != admin); RR sum select_winner, line 40
9 admin = me; 30 require (counter < 2);
10 } 31 balance[me] —= 1; WRL balance buy, line 12
32 sum += number ; -
1 function buy () { 33 players[counter] = me; WRM sum play, line 32
12 balance[me] += uint (msg. value) ; 34 counter += 1; L.]
13 3 B) 3) Elimination of PUPRs
14 function transfer (uint amount, address to) { 36 function select_winner () { Contract Type of "g " of PUPRs Transaction Sequence
15 . 37 require(me == admin) ; User PUPRs ouree: 0 s for Contract User
16 balance[me] —= amount; 38 S
17 balance[to] += amount: 39 if (counter == 2) { RR sum
18 } 40 uint index = sum % 2; admin WRL balance [transfer, start]
41 winner = players[index]; WRM sum
19 functi 1l (uint t 42 balance[winner] += 2; -
20 i eoll s s 43 } non-admin WRL balance [transfer]
21] 44 counter = 0; . . : .
45] The complete process of privacy-focused upgrading for Odd_Even is available at

https://sepolia.etherscan.io/address/0xb8664b572118716dded6ad2ea51be7c4411b5d69

