
BULKHEAD: Secure, Scalable, and Efficient Kernel
Compartmentalization with PKS

Yinggang Guo∗†, Zicheng Wang∗, Weiheng Bai†, Qingkai Zeng∗ and Kangjie Lu†
∗State Key Laboratory for Novel Software Technology, Nanjing University, †University of Minnesota

{gyg, wzc}@smail.nju.edu.cn, bai00093@umn.edu, zqk@nju.edu.cn, kjlu@umn.edu

Abstract—The endless stream of vulnerabilities urgently calls
for principled mitigation to confine the effect of exploitation. How-
ever, the monolithic architecture of commodity OS kernels, like the
Linux kernel, allows an attacker to compromise the entire system
by exploiting a vulnerability in any kernel component. Kernel
compartmentalization is a promising approach that follows the
least-privilege principle. However, existing mechanisms struggle
with the trade-off on security, scalability, and performance, given
the challenges stemming from mutual untrustworthiness among
numerous and complex components.

In this paper, we present BULKHEAD, a secure, scalable,
and efficient kernel compartmentalization technique that offers
bi-directional isolation for unlimited compartments. It leverages
Intel’s new hardware feature PKS to isolate data and code into
mutually untrusted compartments and benefits from its fast
compartment switching. With untrust in mind, BULKHEAD
introduces a lightweight in-kernel monitor that enforces multiple
important security invariants, including data integrity, execute-
only memory, and compartment interface integrity. In addition,
it provides a locality-aware two-level scheme that scales to
unlimited compartments. We implement a prototype system on
Linux v6.1 to compartmentalize loadable kernel modules (LKMs).
Extensive evaluation confirms the effectiveness of our approach.
As the system-wide impacts, BULKHEAD incurs an average
performance overhead of 2.44% for real-world applications with
160 compartmentalized LKMs. While focusing on a specific
compartment, ApacheBench tests on ipv6 show an overhead of
less than 2%. Moreover, the performance is almost unaffected by
the number of compartments, which makes it highly scalable.

I. INTRODUCTION

The Operating System (OS) kernel serves as the cornerstone
of system software, with expanding functionality for a diverse
range of user programs and hardware devices. Despite its signif-
icance, the huge codebase which is written in unsafe languages
faces a continual influx of vulnerabilities. Illustratively, the
Linux kernel, a widely utilized OS kernel, has witnessed a
stark increase in Common Vulnerabilities and Exposures (CVE)
reporting. In 2023, the incidence of CVEs surged by over 179%
compared to 2013, cumulatively amounting to 2,814 CVEs over
the decade [1].

Given that complete elimination of vulnerabilities remains
an elusive goal, confining the impact of each vulnerability,
including those yet undetected, is essential for system security.
However, the upsetting fact is that most mainstream OS kernels,
like the Linux kernel, are monolithic for performance and

compatibility reasons, thus lack fault isolation. All kernel
components share the supervisor privileges for data access and
code execution, most of which are irrelevant to their intended
duties. As a result, exploiting a single vulnerability in any
component can potentially compromise the entire system.

A viable solution to this pervasive issue is kernel compart-
mentalization [2, 3], which offers principled and systematic
protection against vulnerabilities through the principle of least
privilege [4]. In this approach, kernel modules are isolated
into separate compartments, with each compartment having
access only to the data and code necessary for its functionality.
Consequently, the impact of an exploited module is constrained,
preventing systemic damage.

In the face of various vulnerabilities and powerful attackers,
the kernel compartmentalization mechanism must achieve the
trifecta of security, scalability, and performance. Particularly, in
order to strictly confine any exploitation within compartment
boundaries, the mechanism should guarantee not only data
access but also control flow transfer. Besides, compartment
interfaces must be well-protected against confused deputy
attacks [5], which confuse a compartment to perform sensitive
operations on behalf of the untrusted caller with malicious
inputs. Scalability is another significant objective. Given the
huge codebase of the OS kernel, fine-grained compartmentaliza-
tion calls for a large number of isolated compartments. Finally,
developers constantly trade off the benefits of protection against
performance overhead. Only efficient mechanisms will bolster
wide adoption in practice.

Unfortunately, existing works fail to fulfill these desirable
objectives. Microkernels [6–9] minimize the attack surface
by moving most kernel components into isolated user pro-
cesses. Although providing strong protection, heavy inter-
process communication (IPC) leads to low performance [8].
The complete redesign of the OS also hinders its general
application. Software fault isolation (SFI)-based approaches [10–
13] establish an isolated domain by instrumenting each memory
access instruction with security checks during compilation
time, which results in significant overhead. Virtualization-
based approaches [14–19] employ a hypervisor to protect
execution domains and can form different memory views with
the extended page tables (EPTs). However, the additional layer
makes the Trusted Computing Base (TCB) more complex.
Running systems in virtual machines (VMs) results in extra
overhead and nested virtualization restrictions. There are also
some efforts [20–23] that utilize various hardware features to
protect the kernel but cannot scale to multiple compartments
because of the hardware limitations.

A more critical problem is that most previous works neglect
the support for bi-directional isolation [25, 26] within the kernel
space. They have to trust the core kernel for management

Network and Distributed System Security (NDSS) Symposium 2025
24-28 February 2025, San Diego, CA, USA
ISBN 979-8-9894372-8-3
https://dx.doi.org/10.14722/ndss.2025.230328
www.ndss-symposium.org

24.6%

6.0%

6.0%

5.8%

4.6%
4.4%

3.6%
2.8%

2.1%

2.1%

37.9%

net

fs

usb

kernel

unclassified

mm

bpf

netfilter

ext4

wireless

others

Fig. 1: Distribution of Linux kernel vulnerabilities reported by
Syzkaller [24]. Only the top 10 subsystems with the most vulner-
abilities are listed for demonstration.

and only enforce one-way access control between the core
kernel and other untrusted components. The untrusted parts
are restricted from accessing resources of the core kernel,
while in the opposite direction, the trusted core kernel can
arbitrarily access other components, leading to the monopoly
over isolation [27]. Unfortunately, our analysis revealed that
about 5.8% of Linux vulnerabilities are found in the core kernel
(Figure 1), which is comparable to notorious subsystems like
ipv6 and netfilter.

In addition to direct exploitation in the core kernel, one-
directional isolation leaves confused deputy attacks as the open
problem [5, 28, 29]. Since the trusted part is unhindered, it can
be confused by malicious inputs to break compartmentalization
on behalf of the untrusted compartment. Therefore, both the
source and the target of cross-compartment interactions should
be validated bi-directionally.

This paper introduces BULKHEAD, a comprehensive
framework for kernel compartmentalization that enforces
bi-directional isolation with minimal performance overhead.
BULKHEAD leverages Intel’s recent hardware feature, Pro-
tection Keys for Supervisor-mode (PKS) [30], in a novel way
to isolate data and code into mutually untrusted compartments.
We exclude the core kernel from the TCB and tag it as well
as other compartments with distinct protection keys (pkeys). A
newly introduced lightweight in-kernel monitor is in charge of
enforcing security invariants, including data integrity, execute-
only memory (XOM), and compartment interface integrity that
defends against confused deputy attacks according to developer-
specified policies flexibly. With a specially designed switch gate
table (SGT) and zero-copy ownership transfer, the compartment
switching is performed securely and efficiently.

Employing PKS in kernel compartmentalization presents
unique challenges due to the privileged environment. First,
the memory access validation of PKS does not work on
execution permissions, leaving the control flow not validated
and unprotected [23]. Second, since all kernel code shares the
privilege of modifying page tables (PTs) and the PKRS register,
PKS-based isolation suffers from pitfalls [31–33] to be bypassed
through PT tampering or instruction abusing. Third, the 4-bit
pkey supports only up to 16 compartments, which is inadequate.
The Linux kernel v6.1 has over 30 million lines of code and
contains 6296 LKMs with the x86_64 generic configuration.
The limited number of compartments makes each compartment
too coarse to confine the impact of vulnerability exploitation.

To address these challenges, on the security hand, BULK-

HEAD introduces a lightweight in-kernel monitor through priv-
ilege separation for invariant enforcement. It restricts all kernel
code pages as XOM, enables diversification schemes such as
Kernel Address Space Layout Randomization (KASLR) [34],
isolates private stacks, and enforces cross-compartment control
flow integrity (CFI). These together substantially mitigate
control flow hijacking. The page table and switch gates
are exclusively controlled by the monitor to prevent PKS-
based isolation from being bypassed. On the scalability hand,
BULKHEAD proposes a locality-aware two-level scheme
to support unlimited compartments. Different from the two-
level compartmentalization in HAKC [2], which combines the
ARM-specific features: Memory Tagging Extension (MTE) and
Pointer Authentication (PA), we group the modules and split
the address space based on the locality of module interactions.
The first level is PKS-based intra-address space isolation, while
the second level is locality-aware inter-address space isolation
with Address Space Identifier (ASID).

We implement a prototype system in Linux v6.1 and
perform automated LKM isolation as a use case. In the case
study, we specify security policies based on the boundary
analysis, shared data analysis, and security check analysis,
then, compartmentalize all 160 LKMs with localmodconfig
supported by our machine to show the scalability. Security
analysis with penetration tests confirms its comprehensive
protection capabilities. Extensive performance evaluation with
both micro-benchmarks and macro-benchmarks presents its effi-
ciency. Specifically, BULKHEAD incurs an average overhead
of only 2.44% on the whole-system benchmarks Phoronix [35]
and ApacheBench [36] tests on the compartmentalized ipv6
module show an overhead of less than 2%.

In summary, this paper makes the following contributions:

• A systematic analysis of kernel compartmentalization
objectives and a secure, scalable, and efficient mechanism
based on PKS that fulfills these objectives.

• A novel in-kernel monitor that supports bi-directional
isolation and enforces multiple security-critical invariants,
including data integrity, execute-only memory, and com-
partment interface integrity.

• A locality-aware two-level compartmentalization scheme
that supports unlimited compartments.

• An implementation of the prototype system1 for automated
LKM isolation and extensive evaluation that demonstrates
its security, scalability, and efficiency.

II. OBJECTIVES FOR KERNEL COMPARTMENTALIZATION

Kernel compartmentalization mechanisms should be char-
acterized by a specific set of objectives, including security,
scalability, performance, and compatibility issues. With a
systematic survey (Table I), we analyze the limitations of related
work and demonstrate how BULKHEAD meets these goals.

A. Kernel Vulnerability Analysis

As inspiration for BULKHEAD, we analyzed all fixed
vulnerabilities reported by Syzkaller [24] - one of the most
popular kernel fuzzing tools developed by Google, with 5201
in total at the time of writing. According to the location of the

1Available at https://github.com/gyg128/BULKHEAD

2

https://github.com/gyg128/BULKHEAD

Security Scalability Performance

Mechanisms bi-directional
isolation

data
protection

control flow
protection

interface
protection

domain
number

domain
switch

data
transfer

Compatibility

seL4 [7] Microkernel No Yes Yes No Unlimited Low Low Heavy redesign
UnderBridge [8] Microkernel+PKU No Yes Yes No 16 High High Heavy redesign
LXFI [13] SFI No Yes Yes Yes Unlimited Low Low Annotations
LVD [18] Virtualization No Yes Yes No 512 High Low Nested Virtualization
KSplit [19] Virtualization No Yes Yes No 512 High Low Nested Virtualization
xMP [37] Virtualization No Yes No No 512 High Low Nested Virtualization
Nested Kernel [20] WP bit No Yes Yes No 2 High High x86-64
SKEE [38] PT switching No Yes Yes No 2 Medium Low ARM
IskiOS [23] PKU No No Yes No 8 High High SMAP/SMEP
HAKC [2] MTE+PA No Yes Yes No Unlimited Medium Medium ARM
CHERI [39] New architecture No Yes Yes Yes Unlimited Medium Medium New architecture
SecureCells [40] New architecture No Yes Yes Yes Unlimited High High New architecture
DOPE [41] PKS No Yes No No 16 High High Intel
BULKHEAD PKS Yes Yes Yes Yes unlimited High High Intel

TABLE I: Systematic analysis of kernel compartmentalization objectives.

patches, we investigate the distribution of vulnerabilities, as
shown in Figure 1. For ease of demonstration, only the top 10
subsystems with the highest number of vulnerabilities are listed.
As we can see, there are about 5.8% of Linux vulnerabilities
found in the core kernel, which ranks fourth. Specifically, the
number of issues from the core kernel is comparable to some
notorious subsystems such as ipv6 and netfilter. Given that
any single vulnerability has the potential to destroy the entire
system, simply trusting the core kernel is highly questionable.

B. Security Objectives

To realize the security goal, a mechanism must enforce
comprehensive protection of the isolated compartments.

1) Bi-directional Isolation: Despite the significant risks
posed by vulnerabilities within the core kernel, most existing
efforts in kernel compartmentalization [2, 18, 19] only perform
one-directional isolation at the boundaries between the core
kernel and other compartments. They grant arbitrary access to
the core kernel and only restrict other compartments due to the
challenge of intra-kernel privilege separation [20]. The reverse
protection is hard because these approaches have to rely on
the core kernel to manage and enforce access control policies.
Besides direct vulnerability exploitation in the core kernel,
the trusted part can also be exploited as a confused deputy,
thereby necessitating a more robust strategy under the mutually
untrusted threat model. Effective compartmentalization must
ensure bi-directional isolation among all compartments and
rigorously validate both the source and the target for each
cross-compartment interaction. Several works have explored
bi-directional protection at kernel-userspace boundaries [25],
hypervisor-VM boundaries [42, 43], and application-enclave
boundaries [26, 44]. While we enforce PKS-based bi-directional
isolation within the kernel space, which breaks the monopoly
of the core kernel without introducing any additional layer.

2) Data Protection: Sensitive data objects in the kernel,
especially privilege-related objects like cred, are critical attack
targets [45]. Kernel compartmentalization must isolate data
into specific compartments and block any illegal access from
irrelevant compartments. Existing works, such as IskiOS [23]
and KCoFI [46], leave sensitive data protection out of consid-
eration and only focus on control flow protection. However,
data-oriented attacks could also indirectly change the control

flow and even escalate the privilege [47]. BULKHEAD
assigns different pkeys to objects of different compartments,
which guarantees the data integrity of each compartment with
hardware-enforced access control.

3) Control Flow Protection: Control flow hijacking is
another major threat to kernel security. While demanding
validity checks for control flow transfer, many kernel isolation
works, such as xMP [37] and DOPE [41], rely on additional
control flow protection mechanisms as assumptions, such
as CFI [46]. Unfortunately, a simple combination of data
protection and control flow protection will lead to significant
performance overhead. As a countermeasure, BULKHEAD
set all kernel code regions as XOM to mitigate code reuse
attacks within compartments. While cross-compartment calls
are guarded by carefully designed switch gates. Although XOM
itself is not a strong defense, existing diversification schemes
such as KASLR and data compartmentalization make memory
disclosure [48] harder to break our protection.

4) Compartment Interface Protection: Compartment inter-
face security is a long-neglected problem. Recent work [5] has
emphasized the seriousness of interface-related vulnerabilities,
which could be used to launch confused deputy attacks.
With malicious inputs, attackers aim to indirectly exploit the
privilege of the confused callee. Most existing works cannot
defend against confused deputy attacks with one-directional
isolation. Weak interfaces seriously reduce or even fully negate
the security guarantee of compartmentalization. LXFI [13]
proposed API integrity to protect kernel API, but it relies on
the programmer’s annotations, which require a lot of manual
effort and are error-prone. CHERI [39] and SecureCells [40]
also discussed interface checks. However, as new hardware
architectures, it is still far from actual adoption in practice.
BULKHEAD introduces compartment interface integrity with
the help of developer-specified policies. With the novel switch
gate table (SGT) protected by the in-kernel monitor, we record
and validate both the source and the target compartment
metadata. This bi-directional validation grants BULKHEAD
the ability to protect compartment interfaces according to
the policies specified by developers. For example, we define
entry/exit points for compartment switches through boundary
analysis and add validations for data transfer based on shared
data and security check analysis.

3

C. Scalability Objectives

1) Scalable for Unlimited Compartments: The security
benefits of compartmentalization depend on the granularity of
the compartments, which is limited by the number of supported
domains. Nested Kernel [20] only constructs two domains
based on the Write Protection (WP) bit. SKEE [38] creates
a separate secure execution environment within the kernel
through PT switching. Memory Protection Key (MPK)-based
approaches suffer from the hardware limitation of 16 pkeys.
Reserving pkey for other purposes will further minimize the
domains available to the kernel [23]. The virtualization-based
solutions [18, 19, 37] support up to 512 EPTs representing
512 different memory views. HAKC [2] proposed a two-level
compartmentalization scheme combining the ARM-specific fea-
tures MTE and PA. Although it theoretically supports unlimited
compartments, HAKC evaluated only two compartments and
got a linear growth of 14%-19% per compartment in overhead,
attributed to the expensive cryptographic operations of PA. As a
comparison, BULKHEAD proposes a locality-aware two-level
compartmentalization scheme combining PKS and multiple
address spaces. In addition to PKS-based intra-address space
isolation, we also leverage locality-aware inter-address space
isolation with ASID. This second level is more compatible
and efficient than HAKC. Since each address space has its
own 16 compartments, we can achieve support for unlimited
compartments by address space switching.

D. Performance Objectives

1) Fast Compartment Switches: Since the kernel serves
a central role in the system, it is extremely sensitive to
performance overhead. Compartment switches are essential
and frequent for interactions, which dominate the performance.
Microkernels [7, 8] suffer from time-consuming IPC. The
inserted security checks for every memory access slow down
the performance of SFI-based approaches [13]. Although the
vmfunc instruction accelerates EPT switching [18, 19, 37], due
to nested paging and I/O virtualization, running systems in
VMs additionally incurs extra overhead [49, 50]. BULKHEAD
benefits from efficient permission validations and switches with
PKS. The hardware-based compartment switch only involves a
specific register update.

2) Zero-copy Data Transfer: Data copying across com-
partments can overwhelm the performance-critical OS kernel.
Unfortunately, PT/EPT switching-based approaches cannot
support secure zero-copy communication across different
memory mapping and require complex synchronization of
shared states [18, 19, 38]. In contrast, tag-based approaches
inherently support zero-copy data transfer. BULKHEAD tags
data with a specific pkey, which enforces single ownership
of objects. As a response to compartment switching, access
from the target compartment will trigger a page fault. Then, the
monitor validates the shared data and just updates its pkey in the
dedicated handler, without copying data across compartments.

E. Compatibility Objectives

1) Compatibility Issues: Besides security, scalability, and
performance, ideal kernel compartmentalization mechanisms
also should be compatible with real-world machines and
complex production environments. Different from related work,

PKEY PERM

0 R/W

1 R/W

2 WD

… …

15 AD

PKEY PERM

0 R/W

1 AD

2 R/W

… …

15 AD

0 1 … 1 0 0 0 0 0

ADWD

PKRS
(PERM)

0 1 … 0 0 0 1 0 0

0 0 0 0 …

0 0 0 1 …

0 0 1 0 …

...

1 1 1 1 …

62nd 59th

CR3

DOM1 DOM2

pkey

Page Tables

Address Space

Default:

pkey 0pkey 2pkey 15 pkey 1

Fig. 2: Working principle of MPK, where WD and AD stand for
write-disable and access-disable permissions, respectively.

BULKHEAD utilizes the emerging hardware feature of the
widely-used Intel architecture. It requires neither heavy code
redesign like the microkernel [7, 8] nor extensive annotations
like LXFI [13]. Moreover, the compartmentalized kernel based
on PKS could be directly used in the cloud environment without
nested virtualization restrictions [18, 19, 37].

III. BACKGROUND

A. Memory Protection Keys

MPK [30] is an Intel hardware feature that enforces per-
thread access control but without requiring PT modification
for domain switching (Figure 2). In addition to the permission
bits (R/W bit and NX bit) in the page table entries (PTE), it
tags pages with a 4-bit pkey (bits [59:62]), which partitions
the address space into at most 16 memory domains. The
permissions of pages with a specific pkey are stored in a
dedicated per-thread register as a 2-bit notation (WD, AD),
where WD means write-disable and AD means access-disable.
The hardware-based access checks incur nearly zero runtime
overhead [8], while permission change is simply done by
updating the register. Since no PT walk or TLB flush is required,
MPK is known for the fast domain switching [51, 52].

According to the User/Supervisor (U/S) bit in the PTE, MPK
has two variants, namely Protection Keys for User-mode (PKU)
and Protection Keys for Supervisor-mode (PKS), using protec-
tion key rights register for user pages (PKRU) and protection
key rights register for supervisor pages (PKRS, i.e., MSR 0x6E1)
respectively. PKU has been explored in depth for intra-process
isolation and has shown outstanding results [51, 52]. Before
PKS was available, several works attempted to utilize PKU
for kernel isolation by setting the User bit of kernel pages,
such as UnderBridge [8] and IskiOS [23]. This unconventional
application requires additional consideration for kernel-user
isolation and is incompatible with other security features
based on the U/S bit, such as Supervisor Mode Access
Prevention (SMAP) and Supervisor Mode Execution Prevention
(SMEP). Multiple untrusted compartments and the privileged
environment also pose challenges to PKU-based kernel isolation,
especially the switch gate design.

The long-awaited feature PKS has recently become available
on 12th Core and 4th Xeon CPUs [30], yet it remains
underexplored in existing works. There are some PKS-based
studies concurrent to BULKHEAD. Among them, KDPM [53]
and DOPE [41] only target kernel data protection, neglecting
other security objectives. MOAT [54] and eBPF-sandbox [55]

4

PKRS

... 1 0 1 0 1 0 0 1 0 0

... 1 0 1 0 0 0 0 1 1 0

... 0 1 0 0 1 0 0 1 1 0

... 0 0 0 1 1 0 0 1 1 0

Core

Monitor

LKM1

LKM2

WD AD

pkey0pkey1pkey2pkey3pkey4
CoreCodeMonitorLKM1LKM2

...
Code

Core Kernel

LKM2

Monitor PT
SGT

LKM1

Fig. 3: The overview of BULKHEAD.

are specific to eBPF program isolation and cannot generalized
to other kernel components. To the best of our knowledge,
BULKHEAD is the first work that achieves comprehensive
kernel compartmentalization with PKS, addressing both security
and scalability challenges systematically as detailed in §V.

IV. THREAT MODEL

We assume that vulnerabilities are present throughout the
kernel, encompassing both the core kernel and LKMs. A non-
root adversary can exploit these to launch various attacks, such
as data-oriented attacks, control flow hijacking, and confused
deputy attacks. The ultimate goal of this potential attacker
is to spread the impact of vulnerabilities and finally take
control of the entire system. Consequently, kernel components
are mutually untrusted and the core kernel is also excluded
from the TCB. We trust the lightweight in-kernel monitor
for security invariant enforcement, and its correctness can
be formally verified. We trust the system developer who
specifies prior compartmentalization policies. However, users
who load compartments and register gates at runtime could
be malicious and their behaviors are validated by the monitor
against the predefined policies. We also assume the secure boot
mechanism [56, 57] and trust the underlying hardware.

We focus on software attacks and do not consider physical
attacks such as cold boot attacks [58] and RawHammer
attacks [59]. Denial-of-service (DoS) and side-channel attacks
like Spectre [60] and Meltdown [61] are also excluded from our
consideration. The defense mechanisms against these attacks are
orthogonal to kernel compartmentalization and can be applied
to protect the system further.

V. BULKHEAD DESIGN

A. Overview

BULKHEAD provides strong protection by adhering to
the principle of least privilege. As shown in Figure 3, the
kernel memory is partitioned and tagged with different pkeys,
and the per-thread PKRS indicates the access permissions for
each compartment. Cross-compartment access is controlled
bi-directionally, thus all compartments, including the core
kernel and the monitor are restricted to accessing only what
is necessary for their operations (§V-B). The data of each
compartment can only be modified by itself. All kernel
code pages are tagged as XOM. It is hard to reuse gadgets
without a readable code layout. While the lightweight in-kernel
monitor (§V-C) serves as a special compartment for security
invariant enforcement (§V-D). Specifically, the page table (PT)
and a novel switch gate table (SGT) are write-protected by the
monitor, and compartment switches are performed securely
and efficiently based on the SGT. Although we take two

LKMs as an example in Figure 3, BULKHEAD incorporates
a locality-aware two-level compartmentalization scheme to
support unlimited compartments (§V-E).

B. PKS-based Bi-directional Isolation

Bi-directional isolation handles mutual distrust through
cross-compartment access control. Each compartment is re-
stricted to accessing only necessary resources, even for the
core kernel and the monitor. As Figure 3 shows, the memory
of each compartment is tagged with a distinct pkey. All kernel
code pages are attached with pkey1 to realize XOM. The default
pkey0 represents the core kernel’s data, while pkey2 is assigned
to the monitor. The PT and SGT are exclusively owned by the
monitor and read-only for other compartments. BULKHEAD
configures the (WD, AD) notations in the per-thread PKRS for bi-
directional access control. The PKRS value uniquely identifies the
current compartment by only one (0, 0) notation which means
full access to memory with the respective pkey. Notations
of other pkeys all have the WD or AD bits set to enforce
the compartmentalization policy. As a result, compartments,
including the core kernel, are mutually untrusted, and no one
can arbitrarily access each other’s memory. Any attempt to
break the access permissions will result in a protection key
violation fault. Compartment switches can only be performed
by switch gates registered in the SGT that alter the PKRS to
disable access to the source compartment and grant access to the
target compartment. Both the source and the target are validated
according to the metadata recorded in the write-protected SGT,
thus mitigating confused deputy attacks.

C. In-kernel Monitor

The lightweight monitor is a special compartment respon-
sible for guaranteeing bi-directional isolation. It manages
critical metadata such as the PT for permission restriction
and the SGT for secure switching. Unlike virtualization-
based monitors[18, 19], BULKHEAD does not rely on an
additional layer and thus breaks the "turtles all the way
down" paradigm. The monitor is constructed through privilege
separation within the same level of the kernel. We protect the
memory resources of the monitor by PKS-based isolation while
securing the instruction and register resources by depriving
other compartments’ privileges.

1) Memory Isolation for In-Kernel Monitor: With the help
of PKS, the monitor memory is isolated from the rest of the
kernel. To be specific, the data part especially the PT and the
SGT is tagged with pkey2, thus write-protected against other
compartments by the WD bit in PKRS. Only the monitor has
the privilege to update these metadata related to access control.
On the other hand, the code part is tagged with pkey1 as XOM
so that attackers cannot reuse the privileged code maliciously.
Note that although the monitor is trusted, it also cannot access
other compartments directly due to bi-directional isolation.

2) Instruction Deprivation: Besides memory resources,
instruction and register resources can also be abused to break
the compartmentalization [62], such as malicious PKRS updates.
Moreover, since x86 does not require instruction alignment,
the unintentional occurrences of privileged instructions, such
as part of a longer instruction or spanning two consecutive
instructions, are also hazardous. BULKHEAD should restrict

5

Instruction
Prefixes Opcode ModR/M SIB Displacement Immediate

Prefixes of
1 byte each
(optional)

1-, 2-, or 3-
byte opcode

1 byte
(if required)

1 byte
(if required)

Address
displacement
of 1, 2, or 4
bytes or none

Immediate
data of
1, 2, or 4
bytes or none

Fig. 4: Intel 64 and IA-32 architectures instruction format.

750f jne 0xf(%rip)
30c0 xor %al,%al

750f jne 0xf(%rip)
90 nop
30c0 xor %al,%al

41bd0f300000 mov $0x300f,%r13d 41bd00300000 mov $0x3000,%r13d
4183c50f add $0xf,%r13d

488b440f30 mov 0x30(%rdi,%rcx,1),%rax

52 push %rdx
4889ca mov %rcx,%rdx
488b441730 mov 0x30(%rdi,%rdx,1),%rax
5a pop %rdx

(a) nop insertion

(c) Data adjustment

(b) Register reassignment

Fig. 5: Some examples of eliminating unintended wrmsr (0x0f30).

other compartments’ behaviors that run with the monitor in the
same privilege level (Ring-0) by instruction deprivation.

Benefiting new advances in binary rewriting [51, 63],
we eliminate privileged instructions in compartments other
than the monitor. At a high level, unintended occurrences
are replaced with functionally equivalent instructions, while
intended occurrences are replaced with switch gates to the
monitor. As a result, only the lightweight monitor has the
capability to execute the security-critical instructions after
validation. Even if attackers attempt to reuse these occurrences
in the monitor, they cannot locate the useful gadgets because
of the read-disable protection of XOM. Specifically, we focus
on three categories of instructions in our prototype. First, the
instruction that changes the value of PKRS, i.e., wrmsr. Second,
instructions that write control registers, i.e., mov-to-CRn. For
example, attackers can forge the page table with a malicious
value of CR3 or disable PKS by clearing the PKS bit in CR4.
Third, instructions that store system registers like IDTR, GDTR,
LDTR, etc. It is notable that malicious interrupts are defended
by the atomic switch gate described in §V-D3 instead of
eliminating the 1-byte interrupt enabling/disabling instruction.

For unintended instructions, we apply different binary
rewriting strategies according to the fields with which the
unintended subsequence overlaps. The Intel 64 and IA-32
architectures instruction encodings are subsets of the format
shown in Figure 4 [30]. An instruction consists of: (1) an
optional instruction prefix, (2) a primary opcode field (up to
three bytes), (3) a ModR/M field that determines the addressing
form and includes a register operand, (4) a SIB (Scale-
Index-Base) field that specifies registers for indirect memory
addressing, (5) a displacement and/or (6) an immediate data
field that specify constant offsets. If an unintended sequence
spans two or more instructions, it could be broken by inserting
a 1-byte nop (0x90) or reordering instructions. Otherwise,
unintended instructions may appear entirely within a longer
instruction. For these cases, we eliminate them by register
reassignment, data adjustment, or replacement with other
functionally equivalent instructions. These strategies are applied
iteratively until there are no unintended instructions. Figure 5

shows some concrete examples of eliminating unintended
occurrences of wrmsr (0x0f30).

For intended instructions, we replace each occurrence with
a switch gate to the monitor and delegate the monitor to execute
the instruction after security validation. The validation of the
switch gate relies on developer-specified policies and is flexible
to perform various checks. In particular, we record rich metadata
on the source and the target as described in §V-D3. Thus, except
for the lightweight monitor protected by XOM, other domains
are deprived of the capability to bypass isolation through
privileged instructions. Although BULKHEAD could benefit
from hardware extensions [62] for instruction deprivation,
binary rewriting offers compatibility with existing hardware.

D. Invariant Enforcement

With intra-kernel privilege separation, the monitor enforces
a series of invariants to fulfill the security objectives: (1) data
integrity that defends data-oriented attacks, (2) execute-only
memory that mitigates control flow hijacking, and (3) compart-
ment interface integrity targets confused deputy attacks.

1) Data Integrity: Data of each compartment can only be
modified by itself. (I1)

BULKHEAD determines the ownership of data according
to the pkey. By assigning different pkeys to different com-
partments in PTEs, the monitor guarantees no compartments
share the same pkey. Since the PTEs contain pkeys as well as
other permission control bits, the page table is a natural prime
target of attackers. To prevent arbitrary tampering, the page
table is read-only for other compartments. All PT updates are
exclusively delegated to the monitor, and only those adhering
to the compartmentalization policy can be performed. With
instruction deprivation, attackers also cannot forge page tables
by malicious CR3 value. As a result, BULKHEAD enforces
PT integrity to support data integrity: the page table can only
be modified by the monitor. (I1.1)

BULKHEAD comprehensively protects the compartment’s
memory, including heap, stack, physmap, and MMIO regions.
For the objects allocated dynamically at runtime, we create
a private heap for each compartment. An intuitive way is to
modify the pkey in the PTE after allocation. However, this
dynamic updating through page walk is expensive. Instead,
during the initialization of a specific compartment, we re-
serve a tagged memory pool for it. Then, the allocators are
modified to use the reserved cache without the overhead of
dynamic tagging. With the private heap, cross-compartment
heap corruption becomes impossible. Similarly, we also provide
private stacks for compartments and switch the stack during
compartment switching. As a result, attackers cannot disturb
other compartments’ stacks to hijack the control flow. Besides,
the direct map of physical memory (physmap) and the memory-
mapped I/O (MMIO) regions are also tagged with pkey. Access
to these areas goes through PKS hardware validation as well.

2) eXecute-Only Memory (XOM): All kernel code cannot
be read or written by anyone. (I2)

XOM is a lightweight but effective control flow protec-
tion [64]. Although PKS does not perform hardware-enforced
checks on execution permission, we set the AD bit in PKRS

6

1 get_metadata(gate_id);

2 verify(source_addr);

3 if (target_pgdir != source_pgdir)

4 load_new_mm_cr3(target_pgdir, target_asid);

5 if (target_pkrs != current_pkrs)

6 loop:

7 write_pkrs(target_pkrs);

8 if (current_pkrs != target_pkrs)

9 goto loop;

10 switch_stack(target_stack);

11 jump(target_addr);

gate id

source target

address

pgdir

asid

pkrs

stack

Fig. 6: The switch gate pseudocode (left) and the metadata format
of a SGT entry (right).

for all kernel code regions to disable any write or read access,
which is required by code injection or code reusing.

With the W
⊕

X policy in the kernel, all executable regions
are not writable, which prevents code injection attacks. While
code reuse attacks (e.g., ROP [65]) highly rely on information
about where and how code has been placed in memory.
Combined with diversification schemes like KASLR, read-
disabling hinders the attacker from finding useful gadgets. As a
special case, a few code pages need dynamic updates at runtime.
For example, the code generated by the BPF Just-In-Time (JIT)
compiler. These update requests are also directed to the monitor.
After validation, BULKHEAD will temporarily grant the
monitor access to these pages. Albeit whole kernel CFI provides
stronger security, it comes at the cost of performance [46, 66].
Besides, constructing a precise global control flow graph (CFG)
for the huge kernel is still challenging [67, 68]. As a trade-
off, we enforce compartment interface integrity for the cross-
compartment call. Cross-compartment CFI and private stack
make XOM offer better security than itself.

3) Compartment Interface Integrity (CII): Compartment
switches must occur at the predefined entry/exit points and
pass data according to security policies. (I3)

Previous work [5, 28, 29] has assessed the serious im-
pact of compartment interface vulnerabilities (CIVs), where
a compartment can be exploited as a confused deputy to
control the execution or corrupt data of other compartments.
Accordingly, we propose CII against these threats on the basis
of bi-directional isolation. First, the control flow is constrained
by the predefined entry/exit points. Second, the shared data is
validated according to security policies.

Secure Switching. BULKHEAD’s monitor maintains a
software SGT inspired by some hardware extensions for secure
domain switching [40, 62]. Different from other user-mode
switch gate designs, such as ERIM [51] and Hodor [52],
the unique challenges of kernel compartmentalization come
from multiple untrusted compartments and the privileged
environment. As shown in Figure 6, the novel SGT contains
informative metadata of all registered gates and directs each
switch to the target address of the legal compartment. Secure
switching implies that all switch gates satisfy the properties
of atomicity, determinism, and exclusivity, which prevent
malicious exploitation of interfaces and thus support CII.

P1. Atomicity: Compartment switches through switch gates
are executed atomically.

Atomicity means that the series of operations shown in
Figure 6 cannot be exploited separately. The switch gate first

AS2

Core
Kernel Monitor

LKM3 LKM4 LKM5

LKM1 LKM2
Allowed LKM Transitions

gate id source target

...

22 LKM1 LKM3

24 LKM2 LKM1

26 LKM3 LKM4

27 LKM4 LKM3

28 LKM5 LKM4

AS1

Fig. 7: An example of compartment transition policies. The core
kernel and the monitor are shared by all address spaces. AS1 contains
LKM1 and LKM2, while AS2 contains LKM3-5. Edges between
compartments are allowable transitions. Transitions with the core
kernel and the monitor are omitted from the table.

uses a registered gate id to retrieve the gate metadata from the
write-protected SGT. According to the metadata, it verifies the
source address and updates CR3 if the source and the target
compartment are in different address spaces (i.e., two-level
compartmentalization described in §V-E). Then, it changes
PKRS to the target value on demand by wrmsr, switches to the
private stack of the target compartment, and finally jumps to
the target address recorded in the SGT. Here the most crucial
step is the PKRS update, which implies the permission transfer.

Attackers can hijack the execution of the switch gate in
two ways: (1) interrupting the sequence, (2) jumping to the
middle of the sequence. First, malicious interrupts after PKRS
updates can make the attacker gain the privilege of the original
target compartment. To prevent this, we update PKRS to the
default restricted value as the core kernel’s privilege at each
interrupt entry so that potentially illegal PKRS will not work
for the interrupt context. Second, since the value of PKRS is
not updated directly by an immediate operand but taken from
the eax register, attackers may jump to just before the wrmsr
instruction with forged eax value. As a countermeasure, we
add a security check after wrmsr to guarantee the updated value
is the same as the metadata in the SGT. If not, we loop back
and update PKRS again, thus making sure the permission can
only be transferred to the appointed compartment.

P2. Determinism: The switch gate behavior is uniquely
determined by the gate id.

Although the switch gate can be called from any com-
partment, its behavior cannot be influenced by attackers. To
perform a compartment switch, the only accepted parameter
is the gate id, and its behavior strictly follows the retrieved
metadata. All gates must be registered first based on transition
policies and do not trust the source or the target compartment.
We also provide an API to register switch gates at runtime
when loading new compartments. The registration requests the
monitor to store metadata in the write-protected SGT. Each
gate entry contains both the source and the target information
as shown in Figure 6, including the address space (pgdir and
ASID), the entry/exit address, the PKRS value, and the private
stack pointer. The entry index is used as a unique gate id. Each
switch gate validates the source compartment information and
atomically switches to the target compartment determined by
the metadata. As a result, there is no chance for attackers to
disturb the switch with compromised input, even payloads on
the stack. The informative metadata guarantees the integrity of
permission transfer and control flow transfer.

7

Figure 7 demonstrates an example of compartment transition
policies. BULKHEAD expects developers to specify flexible
policies according to their requirements. Then allowed switch
gates will be registered into the SGT. For instance, gate 22
allows the transition from LKM1 to LKM3, while the opposite
direction (gate 23) is not allowed. If LKM5 is loaded at runtime
and the user requests the monitor to register switch gates for
it through our API. The monitor will check the gate to be
registered against predefined policies and reject illegal requests.
It guarantees that switch gates from LKM5 to modules other
than LKM4 cannot be registered. As a result, an adversary
cannot abuse the provided API to modify the policy maliciously.

P3. Exclusivity: Compartment switches are exclusively
possible via switch gates.

With bi-directional isolation, the only way to access
resources of other compartments is through secure compartment
switches. Since switch gates are strictly based on the SGT
controlled by the monitor, attackers may attempt to perform
switches in other ways, such as abusing instructions for
PKRS updates. However, thanks to instruction deprivation, all
instructions that can be used to break access control are
validated by the monitor. As a result, switch gates exclusively
guard compartment switches to support CII.

Zero-Copy Ownership Transfer. To achieve secure and
fast communication, BULKHEAD incorporates zero-copy
ownership transfer for sharing data across compartments. The
validation based on policies during ownership transfer thwarts
confused deputy attacks, while zero-copy improves efficiency.

Data copying across compartments is a headache from
multiple aspects. First, simply trusting shared data violates bi-
directional isolation and leads to CIVs. Second, since the Linux
kernel utilizes many tricky programming idioms like sentinel
arrays and recursive structures, the synchronization between
compartments requires complex and error-prone analysis and
marshaling [19]. Lastly, passing large buffers will cause sig-
nificant performance overhead [40]. Unlike PT/EPT switching-
based approaches, PKS-based compartmentalization supports
zero-copy communication due to its tagging mechanism.

BULKHEAD enforces single ownership of objects. As
described in I1 (§V-D1), all kernel data is tagged with a pkey.
Besides, each compartment has its own private heap. At any
time, an object is owned and can be accessed by exactly one
compartment. There are three typical ways to share data: global
variables, cross-compartment function call arguments and return
values. Either way, access from the target compartment will
trigger a page fault first. The dedicated page fault handler allows
the monitor to validate the shared data to avoid confused deputy
attacks. If the shared data conforms to the developer-defined
policy, its pkey will be updated to the target’s, which means
the ownership transfer without data copy. We provide an API
to define the data transfer policy, including the source and
target of shared data and its legal value ranges. So developers
can deploy different compartmentalization policies flexibly and
perform security checks in the page fault handler on demand.

Taking CVE-2022-1015 in Listing 1 as an example,
attr is data shared between nf_tables and other compart-
ments. nft_parse_register parses a register value from the
netlink attribute attr. However, improper reg validation in

1 static int nft_validate_register_load(enum nft_registers
reg, unsigned int len)↪→

2 {
3 if (reg < NFT_REG_1 * NFT_REG_SIZE /

NFT_REG32_SIZE)↪→

4 return -EINVAL;
5 if (len == 0)
6 return -EINVAL;
7 if (reg * NFT_REG32_SIZE + len >

sizeof_field(struct nft_regs, data))↪→

8 /* A large value of reg could overflow the integer
and bypass the check */↪→

9 return -ERANGE;
10 return 0;
11 }
12

13 int nft_parse_register_load(const struct nlattr *attr, u8
*sreg, u32 len)↪→

14 {
15 u32 reg;
16 int err;
17 reg = nft_parse_register(attr);
18 err = nft_validate_register_load(reg, len);
19 ...
20 }
21 EXPORT_SYMBOL_GPL(nft_parse_register_load);

Listing 1: CVE-2022-1015: improper reg validation could lead to
integer overflow in net/netfilter/nf_tables_api.c.

nft_validate_register_load could lead to integer overflow
and thus out-of-bounds write issues. Based on constraints on
reg in nft_parse_register and the patch for this vulnerability,
we add security checks during attr transfer. The dedicated
page fault handler guarantees the register value included in
attr is within legal ranges: NFT_REG_VERDICT...NFT_REG_4 or
NFT_REG32_00...NFT_REG32_15.

E. Two-level Compartmentalization

The Linux kernel contains thousands of LKMs developed
by programmers with varying levels of expertise, requiring fine-
grained compartmentalization to constrain potential vulnerabili-
ties. However, the 4-bit pkey limits the available compartments
to a maximum of 16. Considering that we reserve pkey0 for
the core kernel, pkey1 for XOM, and pkey2 for the monitor,
the number of compartments available for other kernel modules
is further reduced to 13, which cannot satisfy the compelling
need for more isolated compartments.

To fulfill the scalability objective (§II-C), we utilize a two-
level compartmentalization scheme. The first level is PKS-
based intra-address space isolation described in §V-B, while
the second level is locality-aware address space switching
with ASID. We group modules into multiple address spaces
according to the locality of module interactions. With different
memory mapping, each address space has its own 16 pkeys,
thus supporting 16 new compartments.

HAKC [2] proposed a fundamentally different two-level
compartmentalization approach for ARM, which does not work
for BULKHEAD. Its first level is address space coloring via
MTE, while the second level recycles colors through crypto-
graphic hashes based on PA. The Intel architecture does not
feature hardware primitives like PA. In addition, cryptographic
operations are too expensive for frequent compartment switches.
Therefore, we have to design a more compatible and efficient
way to overcome the limitation of few tag bits.

8

CR3pgdir0
ASID0

pgdir1
ASID1

LKM4

LKM3

LKM2

LKM1

...
Monitor

Core Kernel

LKM4

LKM3

LKM2

LKM1

...
Monitor

Core Kernel

PTEs with
pkey0

PTEs with
pkey2

PTEs with
pkey3

PTEs with
pkey4

PTEs with
pkey3

PTEs with
pkey4

Page Global Directory Page Global Directory

Page Table

Page Table Page Table
Shared Private Unmapped

Fig. 8: The illustration of two-level compartmentalization. For
example, LKM1 and LKM2 are isolated within the same address
space through different pkeys, while LKM1 and LKM3 are isolated
in different address spaces and reuse the same pkey.

BULKHEAD takes lessons from existing solutions on the
userspace PKU scalability. Besides hardware extensions [69,
70], these approaches roughly fall into two categories: dynamic
PT modification [71] and multiple address spaces [72, 73]. By
modifying the PTE, the corresponding pkey can be evicted
and then allocated to another domain. It is essentially a
kind of multiplexing and suffers from significant performance
degradation with increasing domains due to TLB flushes
and busy waiting. In contrast, address space switching is an
efficient way to support unlimited domains. Nevertheless, PKU
virtualization approaches [72, 73] all rely on the underlying
kernel for scheduling and management, and thus cannot migrate
to the kernel space directly. MOAT [54] isolated BPF programs
into different address spaces, but universally splitting the
monolithic kernel is still a challenge.

However, we found that scalable kernel compartmentaliza-
tion does not require complex address space splitting, based on
two observations. First, interactions between kernel modules
show a pattern of locality. Although there are thousands of
LKMs in Linux, each module only needs to interact with a
limited number of modules for its functionality. For example,
in Linux kernel v6.1 with x86_64 generic Kconfig, only 54 of
6296 LKMs depend on more than 12 modules, which include
indirect dependencies. Thus we can split the address space
based on module dependencies specified by modules.dep to
reduce address space switches. Notably, the dependencies do
not mean running all dependent modules strictly at the same
time. With more address space switching, we can support
unlimited compartments as a kind of multiplexing, even for
the 54 cases. In Figure 8, we assume that LKM2 depends on
LKM1 and map them in the same address space, while the
unrelated modules like LKM3 and LKM4 can be isolated in
another address space to reuse pkeys.

Second, the Linux kernel employs hierarchical PTs for
memory mapping and we do not have to duplicate all the PTs
for multiple address spaces. Figure 8 shows an example with
two-level PTs. We divide the PTs into the shared and private
parts. Since all modules need to interact with the core kernel
and the monitor, all address spaces share the same mapping of
them. On the other hand, the memory reusing the same pkeys
with other address spaces is private to prevent collision. During
address space switching, we unmap the source space’s private
part and remap the private part of the target. Thanks to the
hierarchical structure, PT updates mainly occur at the low-level

PTs. Thus we can adjust the memory mapping efficiently to
maintain different views. Besides, we attach each address space
with an address space identifier (ASID), also called process
context identifier (PCID) for x86, to avoid TLB flushes as
optimization. The address translation only uses TLB entries
with the same ASID as the current page table base register
(CR3). Specifically, address space switches are also advised by
the monitor based on the SGT. The registered gate entry records
the source and target page global directory addresses (pgdir) as
well as ASIDs (Figure 6). Due to the secure properties of gates,
attackers cannot forge a malicious address space to bypass
isolation. Thus, we realize secure and locality-aware two-level
compartmentalization that supports unlimited compartments.

VI. IMPLEMENTATION

To test the effectiveness of our design, we have implemented
a prototype based on the Linux kernel v6.1, the newest long-
term support (LTS) version when we started this work, and
LLVM version 14.0.0. The BULKHEAD system consists of
a set of kernel patches, a lightweight monitor module, and
LLVM passes for instruction deprivation and automated gate
instrumentation. Since the Linux kernel did not have support
for Intel PKS at the time of writing, we implemented a series of
patches to provide PKS-related API like existing API for PKU,
such as pkey allocation and PKRS updates. This part includes
869 lines of addition and 90 lines of deletion. On the basis of
these APIs, we implemented the in-kernel monitor as a separate
LKM for portability, which only contains 2759 lines of code.
The small codebase makes formal modeling and verification
possible [74], which is one of our ongoing works.

Although BULKHEAD is implemented over Linux for
its open-source nature, we expect the main design principles
like bi-directional isolation and two-level compartmentalization
could also be extended to other commodity OSs with PKS
support. Here we highlight some key points.

PKRS State. BULKHEAD manages the PKRS state by
the monitor. Unlike PKRU, the per-thread PKRS register is
not XSAVE-supported by hardware. Therefore, our software
implementation needs to save and restore its state on context
switches and exceptions. However, attackers could overwrite
the stored PKRS in memory to gain control over the register
indicating access permissions. As a countermeasure, we store
the PKRS state in a specific region write-protected by the monitor,
which ensures that attackers cannot tamper with its value.

Multi-threading Support. BULKHEAD supports multi-
threading securely. Since PKRS is per-thread and its state is write-
protected, the access control inherently supports multi-threading.
Concurrent access to shared data may lead to vulnerabilities,
such as time-of-check to time-of-use (TOCTTOU) attacks. In
response, we enforce exclusive access to shared data through
single ownership, which means that concurrent compartments
other than the owner cannot modify the data.

Write-Protected Page Tables. We reserve a page pool tagged
with the monitor’s pkey for PTs. To solve the page split issue
of the direct map region, the pool remains enough pages to
break down huge pages into the 4 KB size. Then we identify all
kernel functions that allocate or update PTs. For PT allocation,
a wrapper function is added to allocate from the reserved page

9

pool. For PT updates, we insert switch gates to the monitor to
access the PT securely. In order to prevent omissions, we apply
a checker that scans for unprotected PT pages. PTs that are
allocated before BULKHEAD initialization are also caught
by the checker and then tagged with the pkey. As a result, we
guarantee all PTs are write-protected by the monitor.

Private Heap. We implement private heaps to protect
dynamically allocated objects of compartments. Similarly to the
PT, dedicated memory caches with specific pkey are provided
for private object allocation. We extend both the buddy allocator
and the SLAB/SLUB allocator to return objects tagged with
the desired pkey from the caches.

Page Alignment. Since pkeys are associated with PTEs,
BULKHEAD can only protect memory at the page granularity,
which is generally 4KB. Objects may interleave with other
compartments across the page boundaries and lead to imprecise
access control. To prevent this, we force all compartments to
allocate objects from their private heaps. The reserved page
pool ensures the compartment memory is page-aligned.

Data sharing across compartments also poses a challenge.
As described in §V-D3, zero-copy data transfer performs at the
granularity of a page, which means that potentially more data
gets shared and thus increases attack surfaces. One solution is
to include only the objects to be shared on the transferred page.
However, it may waste a lot of memory. As a trade-off between
security and memory overhead, we group shared objects into
different privilege classes according to the source and the target
compartments, then put objects with the same privilege on a
page. For instance, all objects shared between LKM1 and
LKM2 could be gathered on the same page, while objects
shared between LKM1 and LKM3 are located on another page.
With this kind of object grouping, even over-sharing does not
give a compartment access to resources it should not have.

Switch Gate Registration and Instrumentation. Switch gates
are registered in pairs for bi-directional isolation. If a gate id
x represents the entry to a specific compartment, then x+ 1
represents the return, and corresponding SGT entries contain
the exact opposite of source and target information. Thus, the
paired gates enforce CII and thwart ROP-like attacks on cross-
compartment calls. BULKHEAD requires the trusted policy
developers to define a set of legal transitions like Figure 7.
During the initialization, we register two special gates as the
entry and exit of the monitor. After that, the SGT is exclusively
owned by the monitor and all registrations should transfer to it
first. Then, the monitor will check the gate metadata against
the policy and add the validated one to the SGT. Although
users may attempt to register gates at runtime via an API for
newly loaded compartments, these requests are also guarded
by the monitor from violating the prior policy. To perform
registered switches, the insertion of switch gate calls with the
gate id is needed. For usability, we implement an LLVM pass
that automatically inserts switch gate registrations and switch
gate calls at a list of interfaces based on the boundary analysis.

A. Use Case

We choose LKM isolation as the use case of BULKHEAD
for security and practicability reasons. First, LKMs cause the
majority of vulnerabilities as shown in Figure 1. Second, diverse

LKMs provide specialized functionality, which is suitable for
privilege separation. Third, the development conventions make
LKM boundaries relatively clear, and we can benefit from
existing static analysis methods to perform automated isolation
via LLVM passes.

For compartmentalization policy generation, we apply
several analyses on the LLVM intermediate representation
(IR) of the kernel. The LKM’s interfaces and shared data
are identified by KSplit [19] static analysis, while security
checks are specified by a constraint analysis [75]. Specifically,
a boundary analysis will collect all interface functions between
the LKM and other kernel compartments, including exported
symbols, registered function pointers, and interrupt handlers. It
is a bi-directional analysis and the interfaces will be classified
as entries or exits. Then we identify the data accessible from
both sides of the isolation boundaries. This shared data analysis
is performed on the program dependence graph (PDG) built by
SVF [76]. For data validation, we collect constraints on shared
data along the use-define chains from interfaces and generate
security checks for them. With these boundaries, shared data,
and security checks, we can insert switch gates for secure
switching and cross-compartment communication.

Given a specific LKM that needs to be isolated, we first
allocate a pkey and tag its memory with the pkey during the
module initialization. Then we register and insert the LKM
entry/exit gates according to policies before loading it into
the kernel. Different from KSplit, BULKHEAD employs
zero-copy ownership transfer and thus does not need complex
synchronization for data sharing. As a result, we write a simple
LLVM pass instead of a specific interface definition language
(IDL) compiler to realize automated LKM isolation with PKS.

VII. EVALUATION

This section answers the following questions through
comprehensive evaluations of BULKHEAD for security, per-
formance, and scalability:

RQ1: Can BULKHEAD defend against potential attacks under
the proposed threat model (§VII-A)?

RQ2: How much overhead does BULKHEAD introduce to
micro-benchmarks (§VII-B1)?

RQ3: What performance overhead does BULKHEAD impose
on real-world applications (§VII-B2)?

RQ4: Is the performance of BULKHEAD scalable for multiple
compartments (§VII-B3)?

RQ5: What’s the memory overhead of BULKHEAD (§VII-C)?

A. Security Analysis

We assess how BULKHEAD enforces security invariants
I1-I3 (§V-D) against attack vectors under our threat model
for RQ1. Furthermore, to evaluate the effectiveness of BULK-
HEAD in real-world situations, we performed some penetration
tests and investigated real vulnerabilities as case studies.

1) Data-oriented Attacks: Attackers exploiting vulnerabili-
ties within a compartment may attempt to get arbitrary read-and-
write primitive and corrupt data of other compartments. BULK-
HEAD thwarts this threat by tagging compartments’ memory

10

with different pkeys and thus enforces data integrity (I1). The
PKRS indicates the current compartment’s permission and only
allows access to its own data, adhering to the principle of
least privilege. Since the access control by PKRS is thread-local,
BULKHEAD also prevents cross-thread attacks inherently. We
comprehensively isolate all types of kernel memory regions,
including the heap, stack, physmap, and MMIO regions. The
private heap guarantees the single ownership of heap objects,
while the private stack hides the execution context from other
compartments. PKS hardware validation also works on the
physmap and MMIO regions, while malicious direct memory
access (DMA) actions [77] are guarded by IOMMU [20]. With
bi-directional isolation, even vulnerabilities in the core kernel
cannot be exploited to compromise other subsystems.

Attackers may also seek ways to bypass or disable the PKS-
based protection, either tampering with the permission bits in
PTs, or abusing control registers. We block these attempts by
write-protected PTs and instruction deprivation. PT updates and
sensitive instructions can only be performed by the monitor
with validation. Besides, the PKRS state is also exclusively
managed by the monitor. Notably, PKU pitfalls [31–33] like
syscall abuses are under a weaker threat model focusing on
the userspace. The low-level countermeasures we take for the
privileged kernel will make these attacks no sense.

2) Control Flow Hijacking: In addition to data-oriented
attacks, control flow hijacking is another traditional threat to
kernel security. Besides the private stack mentioned above, we
mitigate it broadly in a lightweight but effective way, XOM (I2).
On the basis of the W

⊕
X policy, all kernel code regions are

unwritable and unreadable. Therefore, attackers cannot inject
malicious code directly, and reusing the existing code also
becomes difficult without layout information. With existing
diversification schemes like KASLR and data compartmental-
ization, it is hard to break XOM through memory disclosure.
Instead of expensive whole kernel CFI, we focus on the cross-
compartment calls and enforce CII (I3). The in-kernel monitor
manages the SGT to make switches atomic, deterministic, and
exclusive, which prevents attackers from abusing the gates to
jump to illegal compartments and gain elevated permissions.

3) Confused Deputy Attacks: Compartmentalization faces
a special challenge of confused deputy attacks at the com-
partment interfaces. To address this problem, we highlight
bi-directional isolation under the mutually untrusted threat
model and enforce CII (I3) with the help of developer-specified
policies. Specifically, with distrust in mind, the monitor will
check both the source and the target metadata at interfaces.
Cross-compartment communication is performed in the way of
zero-copy ownership transfer. Any compartmentalization policy
violation will be detected in the page fault handler.

We trust the system developer who specifies prior policies.
Although an adversary may attempt to register malicious switch
gates at runtime for newly loaded compartments, these requests
are also guarded by the monitor from violating the policy.

4) Penetration Tests: We instantiated the above attack
vectors on the LKM isolation use case to test the security
of BULKHEAD. We simulate an attacker to (1) modify the
heap object of other compartments, (2) tamper the PT directly,
(3) forge PTs by mov-to-CR3, (4) update PKRS directly, (5) abuse
the switch gate to hijack control flow, and (6) pass malicious

CVE ID Root Cause Compartment Countermeasures

2023-4147 use-after-free in
net/netfilter/nf_tables_api.c nf_tables

The private heap prevents
the compartment from
corrupting other kernel
objects.

2022-24122 use-after-free in
kernel/ucount.c core kernel

2022-27666 heap out-of-bounds write in
net/ipv6/esp6.c esp6

2022-25636 heap out-of-bounds write in
net/netfilter/nf_dup_netdev.c nf_dup_netdev

2021-22555 heap out-of-bounds write in
net/netfilter/x_tables.c x_tables

2018-5703 heap out-of-bounds write in
net/ipv6/tcp_ipv6.c ipv6

2023-0179 stack buffer overflow in
net/netfilter/nft_payload.c nf_tables The private stack blocks

cross-compartment stack
corruption.2018-13053 integer overflow in

kernel/time/alarmtimer.c core kernel

2022-1015 improper input validation in
net/netfilter/nf_tables_api.c nf_tables

The monitor-enforced
interface checks thwart
confused deputy attacks.

2022-0492 missing authorization in
kernel/cgroup/cgroup-v1.c core kernel

2017-18509 improper input validation
in net/ipv6/ip6mr.c ipv6

TABLE II: Representative Linux kernel CVEs, their root causes, the
located compartment, and the countermeasures of BULKHEAD.

data through interfaces. All attempts are detected by protection
key violation or rejected by the monitor, which shows that
BULKHEAD is immune to these attacks.

5) Real-world Vulnerabilities: To evaluate how BULK-
HEAD mitigates real-world vulnerabilities, we select 11 repre-
sentative Linux kernel CVEs according to the following criteria:
(1) they should contain multiple error types and cover attack
vectors we considered in §VII-A1 - §VII-A3; (2) they should be
distributed in diverse compartments, including the core kernel
and other LKMs; (3) their Proof-of-Concept (PoC) programs
or exploits are available; (4) we prefer recent vulnerabilities
with high severity, i.e., CVSS 3.x rating 7.8 or higher except
for CVE-2018-13053 (3.3) and CVE-2022-1015 (6.6). Table II
illustrates the CVE set with their root causes, the located
compartment, and the countermeasures.

Since the compartment can only access its own objects
tagged with the corresponding pkey, the private heap confines
the damage of both heap use-after-free (UAF) vulnerabilities
like CVE-2023-4147 and heap out-of-bounds (OOB) vulner-
abilities like CVE-2022-27666. Stack buffer overflow (CVE-
2023-0179) or integer overflow (CVE-2018-13053) can be
exploited to corrupt stack variables or tamper with the return
addresses. BULKHEAD mitigates these threats by maintaining
a private stack for each compartment. In general, the data
integrity (I1) blocks any attempts of memory corruption, which
is the dominant threat to the Linux kernel. Vulnerabilities
with insufficient parameter validation lead to confused deputy
attacks, which is a challenge for traditional data protection
techniques [78]. We address this problem through bi-directional
isolation. The in-kernel monitor checks both the source and
the target information during switching to enforce CII (I3).
Thus, only legal parameters can be transferred across com-
partments. For example, BULKHEAD will strictly validate
the input register values of nft_parse_register_load function
to mitigate CVE-2022-1015 (Listing 1). Besides, many listed
vulnerabilities, such as CVE-2021-22555, CVE-2022-1015, and
CVE-2022-25636, may be further exploited to launch ROP
attacks. As a principled countermeasure, XOM (I2) makes it
extremely hard to find usable gadgets. Overall, BULKHEAD
provides comprehensive protection against various kinds of
real-world vulnerabilities to fulfill security objectives (§II-B).

11

B. Performance Evaluation

We first describe our experiment setup. All evaluations
were conducted on a machine with Intel Core i7-12700H CPU,
16 GB memory, and 500GB disk, running Ubuntu-22.04 with
Linux kernel v6.1. Further, we set the kernel to performance
mode and locked the CPU frequency to avoid randomness.

There are five types of configuration: (1) monitor, which
only enables BULKHEAD in-kernel monitor for the PT and
SGT protection; (2) ipv6 with the compartmentalized ipv6
module; (3) ipv6-nft, which isolates ipv6 and nf_tables into
separate compartments; (4) lkm-20, which isolates 20 LKMs
into different address spaces detailed in §VII-B3; (5) lkm-160,
which compartmentalizes all 160 LKMs with localmodconfig
on the experimental machine. We specify compartmentalization
policies for each setting based on the boundary analysis, shared
data analysis, and security check analysis described in §VI-A.

1) Micro-benchmarks: For RQ2, we measure the CPU
cycles of the compartment switch and then use LMbench [79] to
evaluate the latency and bandwidth overhead of BULKHEAD
on micro-operations.

Operation Cost (cycles)

PKRS update by wrmsr 185.31
compartment switch 224.31
com-switch without stack switch 203.96
com-switch with address space switch 523.69
syscall null 293.86
hypercall null 2894.06
vmfunc (EPT switch) 198.82

TABLE III: Cost comparison of BULKHEAD micro-operations.

We list the cost of the compartment switch operations
in Table III. The CPU cycles are measured by the rdtscp
instruction, and we average ten runs of 10000 invocations. A
single PKRS update by wrmsr takes about 185.31 cycles, while a
secure compartment switch through the gate takes 224.31 cycles.
As a reference, the null syscall on the experimental machine
costs 293.86 cycles, and a simple hypercall into the hypervisor
costs 2894.06 cycles. Besides, the PKRS update is even faster
than the vmfunc instruction, which is well-known for its efficient
EPT switch. Considering the security guarantees, virtualization-
based approaches will suffer worse performance overhead due
to nested paging and I/O virtualization. Although the additional
address space switch increases the cost to 523.69 cycles, the
locality-aware two-level compartmentalization scheme makes
this case rarely happen and almost does not affect performance,
which is shown in the following evaluation.

Table IV illustrates the LMbench evaluation results, with
vanilla kernel v6.1 as the baseline. To achieve stable results,
we run each benchmark 100 times and take the average.

The table reveals two main observations. Focusing on
the columns, BULKHEAD introduces negligible overhead
of less than 1% in most benchmarks, except for the process
operations and page faults. The increased runtime overhead
stems from compartment switches with the monitor due to
the PT protection. However, as we will see from the macro-
benchmarks, it does not have a noticeable impact on real-
world applications. While looking at the table by rows, we
can observe that the system-wide micro-benchmark is almost

Benchmarks monitor ipv6 ipv6-nft lkm-20 lkm-160

Latency
syscall null -0.37 -0.28 -0.30 0.09 (4) 0.36 (12)
simple read -2.65 -1.68 -1.42 -1.92 (4) -1.90 (12)
simple write -2.30 -2.34 -2.08 -2.00 (4) -1.58 (12)
simple stat -0.03 0.58 0.05 -0.17 (4) 0.80 (12)
simple fstat 0.22 -0.74 -1.20 -0.74 (4) -0.51 (12)
open/close 0.85 0.87 0.79 0.07 (4) 1.24 (12)
select on fd’s -1.26 -1.20 -1.38 -0.83 (4) -1.18 (12)
select on tcp fd’s -0.64 -0.41 -0.57 -0.30 (4) -0.53 (12)
signal install -0.01 -0.19 0.39 0.50 (4) 0.43 (9)
signal handler -0.21 -0.26 1.53 -1.96 (4) -0.14 (9)
proc fork+exit 26.88 27.10 27.79 27.84 (4) 28.30 (9)
proc fork+exec 15.86 15.80 16.06 15.86 (4) 16.26 (9)
proc shell 14.59 14.47 14.77 14.63 (4) 15.25 (9)
page fault 39.71 39.67 39.76 39.89 (6) 38.64 (9)
pipe latency 0.68 1.09 1.77 1.02 (4) 1.89 (11)
UDP latency 0.96 0.78 1.41 2.50 (4) 3.09 (11)
TCP latency 0.35 0.62 1.31 1.57 (6) 3.54 (11)

Bandwidth
file write bandwidth -1.75 -3.99 -3.57 -2.78 (6) -3.05 (9)
pipe bandwidth 1.42 -0.35 0.77 -0.11 (4) 0.18 (11)
AF_UNIX bandwidth 0.34 0.58 0.23 0.35 (4) 0.23 (11)

TABLE IV: BULKHEAD performance overhead (in % over the
vanilla kernel) on LMbench. The numbers in parentheses represent
the number of compartments traversed for each benchmark.

unaffected by LKM isolation, regardless of the number of
involved compartments. This is because the switches between
LKMs occur rarely on LMbench. Especially, the results of lkm-
20 and lkm-160 show the scalability of BULKHEAD (RQ4). A
few benchmarks perform slightly better than the vanilla kernel
within a reasonable margin of fluctuation. It comes down to
the system noise like improved cache hit rates, which is hard
to avoid as prior works [23, 41, 80] show.

2) Macro-benchmarks: We performed two sets of evalua-
tions to answer RQ3. First, we demonstrate the system-wide
impact of BULKHEAD by running a collection of Phoronix
Test Suites [35]. Then, we zoom in on the performance overhead
of a specific compartment. We select the vulnerable ipv6
module as the target and test it on ApacheBench [36] so that we
can draw a comparison with HAKC - one of the state-of-the-art
kernel compartmentalization approaches.

The Phoronix suites provide a large number of system-
wide tests, from which we select some representative ones
to comprehensively characterize the performance of BULK-
HEAD. Our benchmarks are split into application tests and
stress tests for specific subsystems. The application benchmarks
include nginx (measures sustained requests/second, varying
the number of concurrent connections); phpbench (tests the
PHP interpreter); pybench (tests basic, low-level functions of
Python); povray (3D ray tracing); gnupg (encryption time
with GnuPG). Stress tests include dbench (measures disk
performance via file system calls, varying the number of clients);
postmark (transactions on 500 small files simultaneously);
sysbench (performs CPU and memory tests). Table V shows
the performance overhead compared to the vanilla kernel v6.1.
Nginx incurs 3.57%-7.29% slowdown since the continuous
network packet processing results in frequent compartment
switches. All other benchmarks present negligible overhead
and the average performance overhead with the ipv6 module
compartmentalized is 1.28%.

To further measure the overhead on the isolated ipv6
module. We use ApacheBench to retrieve a 100KB, 1MB,

12

Benchmarks monitor ipv6 ipv6-nft lkm-20 lkm-160

nginx-100 4.88 5.03 6.01 5.70 (7) 7.29 (19)
nginx-200 4.47 4.55 5.54 5.38 (7) 6.54 (19)
nginx-500 3.57 3.68 4.40 4.51 (7) 5.74 (19)
phpbench -0.24 -0.12 -0.44 -0.28 (7) 0.33 (18)
pybench 0.35 0.17 0.43 0.52 (7) 1.37 (18)
povray 0.16 0.57 0.22 0.39 (7) 0.2 (17)
gnupg 0.10 0.01 0.35 0.08 (7) 1.03 (18)
dbench-1 0.19 0.20 0.19 0.04 (7) 0.47 (19)
dbench-48 0.52 1.05 1.73 3.74 (7) 5.61 (19)
dbench-256 0.22 1.22 2.38 1.64 (7) 2.11 (19)
postmark 1.84 0.00 1.14 1.14 (7) 0.39 (18)
sysbench-cpu -0.05 -0.03 -0.04 -0.01 (7) 0.01 (19)
sysbench-mem 0.02 0.26 -0.53 0.53 (7) 0.69 (18)
Average 1.23 1.28 1.64 1.80 (7) 2.44 (18.46)

TABLE V: BULKHEAD performance overhead (in % over the
vanilla kernel) on Phoronix Test Suites. The numbers in parentheses
represent the number of compartments traversed for each benchmark.

net fs usb

nfnetlink nf_conntrack ip_tables overlay typec
nf_defrag_ipv4 nf_nat ip6_tables pstore_zone tps6598x
nf_defrag_ipv6 nf_tables nft_compat ramoops xhci_pci_renesas
ipv6 x_tables nft_nat pstore_blk xhci_pci

TABLE VI: The 20 compartmentalized LKMs from the 3 most
vulnerable subsystems.

and 10MB file 1000 times from a local Apache server through
an ipv6 address. The nf_tables module implements a packet
filtering mechanism within the kernel. Each experiment is
repeated 10 times to avoid randomness. The results normalized
to the vanilla kernel are listed in Figure 9, and the metric of
transfer rate reveals a similar trend to requests/second. We
also show the overhead reported in HAKC for comparison.
The overhead of most settings is around 2%, which is much
better than HAKC. Even with more compartments traversed,
the performance does not show a significant degradation.
Specifically, the lkm-20 setting executes 4 compartments, while
the lkm-160 setting executes 14 compartments. In contrast,
HAKC only evaluated the ipv6 and nf_tables modules.

3) Scalability: One of the major drawbacks of the previous
work is the significant degradation of performance as the
number of isolated domains increases. In particular, HAKC
suffers from a linear growth of 14%-19% per compartment in-
volved in overhead, which makes it impractical. To indicate the
effectiveness of locality-aware two-level compartmentalization
and answer RQ4, we perform two sets of experiments.

lkm-20 selects LKMs listed in Table VI from the 3 most
vulnerable subsystems according to the vulnerability analysis
in §II-A. There are 12 LKMs from net, 4 LKMs from fs, and
4 LKMs from usb. The net LKMs belong to one address space,
while other LKMs belong to the other. lkm-160 extensively
isolate all LKMs supported by the experimental machine
with localmodconfig, 160 compartments in total. We partition
these LKMs into different address spaces according to mod-
ule dependencies, specify compartmentalization policies, and
comprehensively isolate them with BULKHEAD. If a module
depends on more than 12 modules, the dependent modules will
occupy more than one address space and BULKHEAD will
perform address space switching on demand. The evaluation
results in Table IV, Table V, and Figure 9 show that the increase

0.980 0.975 0.986
0.983 0.969 0.978

0.980 0.970 0.978
0.977 0.967 0.964

0.80
0.88

0.98

0.62
0.69 0.72

0

0.2

0.4

0.6

0.8

1

100KB 1MB 10MB

ipv6 ipv6-nft lkm-20 (4) lkm-160 (14) HAKC-ipv6 HAKC-i-n

Fig. 9: BULKHEAD performance overhead normalized to the vanilla
kernel when transferring various sized payloads on ApacheBench
(requests/sec), compared with the overhead of HAKC [2].

0 200 400 600 800 1000
Time Elapsed (s)

1200

1250

1300

1350

1400

1450

Us
ed

 M
em

or
y

(M
By

te
s)

lkm-160-phoronix
vanilla-phoronix
lkm-160-lmbench
vanilla-lmbench

Fig. 10: Memory usage of BULKHEAD when running LMbench
and Phoronix with lkm-160 and the vanilla kernel.

in the number of compartments and address spaces does not
significantly increase overhead, benefiting from our lightweight
switch gates and locality-aware design.

Since not all compartments present are executed, we
recorded the number of compartments actually traversed for
each benchmark to reflect scalability faithfully. The results
reveal several findings. First, each benchmark involves only a
few compartments, which also corroborates our locality-aware
design. Take Phoronix test suites for example, the lkm-20 setting
executes 7 compartments, and the lkm-160 setting executes
18.46 compartments on average. Nevertheless, we have to
prepare a large number of compartments for complex workloads
so as to confine all possible vulnerabilities. Second, the presence
of compartments not involved does not affect performance.
Third, looking at Table IV and Table V by rows, the increase in
the number of traversed compartments only slightly adds to the
overhead. Lastly, the vast majority of compartment transitions
are monitor entries/exits for privileged instruction or critical
objects (e.g., PT) updates, which explains the slight overhead
caused by other traversed compartments. For LMbench, 99.99%
of lkm-20 transitions and 99.75% of lkm-160 transitions are
monitor entries/exits, while for Phoronix, the percentages are
99.82% of lkm-20 transitions and 93.40% of lkm-160 transitions.
Overall, with two-level compartmentalization, we can support
unlimited compartments without sacrificing performance.

C. Memory Overhead

As mentioned in §VI, BULKHEAD groups shared objects
based on privilege, and makes them page-aligned to avoid
over-sharing between compartments. For RQ5, we measure the
memory overhead caused by page alignment. Figure 10 presents

13

the memory usage when running LMbench and Phoronix
with lkm-160 and the vanilla kernel. On average, the memory
overhead is 1.66% for LMbench and 0.63% for Phoronix, which
is negligible for modern systems.

VIII. DISCUSSION

PKS Granularity. BULKHEAD leverages PKS for com-
partmentalization, which only supports page-size granularity.
To prevent privilege escalation caused by over-sharing and
imprecise access control, we group shared objects into different
privilege classes according to the source-target compartments
and make all compartment memory page-aligned. We argue
that the page granularity is already considered fine-grained
for monolithic kernel compartmentalization and is comparable
to other PT/EPT-based efforts [18, 37, 38]. Furthermore,
BULKHEAD allows developers to select specific objects for
additional bound checking during data transfer. Combining SFI
on the basis of PKS-based protection will realize finer isolation
granularity at the cost of performance.

Policy Generation. As a fundamental compartmentalization
mechanism, BULKHEAD can support developer-defined pol-
icy flexibly. The LKM isolation use case deploys a relatively
simple policy based on boundary analysis, shared data analysis,
and security check analysis. More complex policies may further
improve kernel security, but it is still an open problem to
generate compartmentalization policy automatically. Basically,
exploring the optimal policy can be reduced to the Partition
Problem, which is NP-Complete [81]. Some attempts have been
made on bare-metal systems [82, 83]. However, scaling the
complex static analysis to a huge kernel like Linux is extremely
hard. µSCOPE [3] proposed another way based on dynamic
analysis but cannot guarantee the soundness of the result.
Combining static and dynamic analysis for policy generation
is promising [84], and we expect type-based dependence
analysis [78] can provide a practical solution, which is one of
our ongoing works.

Performance Optimization. Though BULKHEAD shows
acceptable overhead even for multiple kernel compartments. Its
performance can be further optimized through some engineering
efforts. One possible option is to eliminate redundant checks
during compartment communication. For example, we can
create a fast path for switches that occurs frequently in a
short term once the two compartments pass the first check and
establish trust for communication temporarily.

IX. RELATED WORK

Microkernels. As opposed to the monolithic architecture,
microkernels [6–9] maintain only the core functionality in
the kernel space to minimize the attack surface. The reduced
codebase facilitates formal verification [7]. More recently,
some efforts even explored the development of microkernels
in safe languages, such as RedLeaf [9] written in Rust.
However, a cost coming with these security benefits is its
low performance, especially the IPC overhead between isolated
components [8]. Besides, the shift from traditional monolithic
kernels to microkernels requires complete system redesign,
while BULKHEAD enhances the monolithic kernel security
with minor engineering effort through compartmentalization.

SFI-based Approaches. Software fault isolation (SFI) [10]
inserts security checks during compilation time to regulate
all accesses within specific domain boundaries. Following
this basic idea, BGI [12] manages an access control list to
isolate Windows drivers. LXFI [13] further enforces kernel
API integrity based on programmers’ annotations. Nevertheless,
the heavy checks impose a significant performance overhead.
What’s worse, as the number of domains increases and cross-
domain interactions become more frequent, the performance of
SFI-based approaches degrades sharply [85]. For example, BGI
induces over 30% throughput loss for isolating many memory
blocks. Benefiting from PKS-based permission validation,
BULKHEAD avoids the significant overhead caused by
software checks.

PT Switching and Virtualization-based Isolation. Since
the page table (PT) is a critical structure in charge of address
translation and permission validation, PT switching is another
well-explored mechanism for isolation. There are several works
using different PTs to construct different memory views for
userspace applications, such as lwC [86] and SMV [87]. While
representative studies for kernel isolation are Nooks [88],
SIDE [89], and SKEE [38], all suffer from significant overhead
caused by updating PT and flushing TLB. With the development
of virtualization technology, researchers further introduced the
hypervisor to facilitate EPT switching and enhance security [14–
19]. In contrast, BULKHEAD does not need the additional
privilege layer as TCB, instead a lightweight in-kernel monitor
enforces comprehensive security invariants.

Hardware-based Isolation. Besides Intel PKS, researchers
have explored various hardware features for isolation [2, 20–
22, 90, 91]. Nested Kernel [20] utilizes the WP (Write-Protect
bit) mechanism of the x86-64 hardware for intra-kernel privilege
separation. Hilps [21] leverages the TxSZ mechanism of
AArch64 to build a secure kernel domain by dynamic virtual
address range adjustment. However, both approaches only
support isolation between two domains. DIKernel [22] enforces
isolation between the core kernel and extensions with the ARM
Memory Domain Access Control mechanism, which has been
deprecated recently. Memory Tagging Extension (MTE) and
Pointer Authentication (PA) are recent features on ARM, which
have been used for in-process compartmentalization [91] and
kernel compartmentalization [2] but show significant perfor-
mance overhead. Works like Mondrix [92], CODOMs [93],
CHERI [39], and SecureCells [40] facilitate compartmentaliza-
tion through newly designed hardware architecture. Compared
to these efforts, BULKHEAD is based on the real available
commodity hardware feature, which is more compatible and
practical. Moreover, it breaks the hardware limitation of PKS
to support unlimited compartments.

Other System Compartmentalization. Compartmentalization
has been explored as a principled defense against the myriad
possible faults in software other than the monolithic kernel.
Wedge [94] splits complex applications into fine-grained, least-
privilege compartments. SOAAP [95] allows programmers to
reason about application compartmentalization using source
code annotations. Glamdring [96] uses annotations and static
analysis to partition applications for SGX. In addition to
user-space applications, there is also a series of works on
compartmentalizing embedded systems [82, 83, 97, 98] and
libOS [99–101]. For instance, ACES [82] enforces developer-

14

specified policies with the MPU hardware feature for embedded
system compartmentalization. EC [83] further provides a
comprehensive and automatic compartmentalization toolchain
for Real-Time Operating Systems (RTOSs) and bare-metal
firmware. FlexOS [99] specializes in the isolation strategy of a
libOS at compilation/deployment time instead of design time,
and enforces strategies with multiple hardware and software
protection mechanisms. In contrast, BULKHEAD targets the
monolithic kernel, which is more challenging due to its large
codebase and privileged environment.

X. CONCLUSION

In this paper, we present BULKHEAD, a secure, scalable,
and efficient kernel compartmentalization approach using a
novel application of PKS. It guarantees bi-directional isolation
between compartments and introduces a lightweight in-kernel
monitor to enforce security-critical invariants, especially com-
partment interface integrity against confused deputy attacks. Be-
sides, a locality-aware two-level scheme can provide unlimited
compartments for scalability. We implement a prototype system
for automated LKM isolation and extensive evaluations show
that BULKHEAD incurs negligible performance overhead on
real-world applications.

ACKNOWLEDGMENT

We sincerely appreciate the anonymous reviewers for their
insightful comments. Authors from Nanjing University were
supported in part by NSFC under Grant Nos. 61772266,
61431008. Yinggang Guo was also partly supported by a
scholarship from the Graduate School of Nanjing University
and by the funding from the University of Minnesota. Weiheng
Bai and Kangjie Lu were supported in part by NSF awards
CNS-1815621, CNS1931208, CNS2045478, CNS-2106771,
and CNS-2154989. Any opinions, findings, conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of NSF.

REFERENCES

[1] SecurityScorecard. (2024, Apr.) Linux kernel vulnerabilities. [Online].
Available: https://www.cvedetails.com/product/47/Linux-Linux-Kernel.
html?vendor_id=33

[2] D. McKee, Y. Giannaris, C. O. Perez, H. Shrobe, M. Payer,
H. Okhravi, and N. Burow, “Preventing kernel hacks with hakc,”
in Proceedings 2022 Network and Distributed System Security
Symposium. NDSS, vol. 22, 2022, pp. 1–17. [Online]. Available:
https://doi.org/10.14722/ndss.2022.24026

[3] N. Roessler, L. Atayde, I. Palmer, D. McKee, J. Pandey, V. P.
Kemerlis, M. Payer, A. Bates, J. M. Smith, A. DeHon, and
N. Dautenhahn, “µscope: A methodology for analyzing least-
privilege compartmentalization in large software artifacts,” in 24th
International Symposium on Research in Attacks, Intrusions and
Defenses, ser. RAID ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 296–311. [Online]. Available:
https://doi.org/10.1145/3471621.3471839

[4] J. H. Saltzer and M. D. Schroeder, “The protection of information
in computer systems,” Proceedings of the IEEE, vol. 63, no. 9,
pp. 1278–1308, 1975. [Online]. Available: https://ieeexplore.ieee.org/
abstract/document/1451869

[5] H. Lefeuvre, V.-A. Bă doiu, Y. Chen, F. Huici, N. Dautenhahn,
and P. Olivier, “Assessing the impact of interface vulnerabilities
in compartmentalized software,” in Proceedings 2023 Network and
Distributed System Security Symposium. Internet Society, 2023.
[Online]. Available: https://doi.org/10.14722%2Fndss.2023.24117

[6] J. Liedtke, “On micro-kernel construction,” in Proceedings of the
Fifteenth ACM Symposium on Operating Systems Principles, ser. SOSP
’95. New York, NY, USA: Association for Computing Machinery, 1995,
p. 237–250. [Online]. Available: https://doi.org/10.1145/224056.224075

[7] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “sel4: formal verification of an os kernel,”
in Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, ser. SOSP ’09. New York, NY, USA: Association
for Computing Machinery, 2009, p. 207–220. [Online]. Available:
https://doi.org/10.1145/1629575.1629596

[8] J. Gu, X. Wu, W. Li, N. Liu, Z. Mi, Y. Xia, and H. Chen, “Harmonizing
performance and isolation in microkernels with efficient intra-kernel
isolation and communication,” in 2020 USENIX Annual Technical
Conference (USENIX ATC 20), 2020, pp. 401–417. [Online]. Available:
https://www.usenix.org/conference/atc20/presentation/gu

[9] V. Narayanan, T. Huang, D. Detweiler, D. Appel, Z. Li, G. Zellweger,
and A. Burtsev, “RedLeaf: Isolation and communication in a safe
operating system,” in 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20). USENIX Association,
Nov. 2020, pp. 21–39. [Online]. Available: https://www.usenix.org/
conference/osdi20/presentation/narayanan-vikram

[10] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham,
“Efficient software-based fault isolation,” SIGOPS Oper. Syst. Rev.,
vol. 27, no. 5, p. 203–216, Dec. 1993. [Online]. Available:
https://doi.org/10.1145/173668.168635

[11] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C.
Necula, “Xfi: Software guards for system address spaces,” in
Proceedings of the 7th Symposium on Operating Systems Design and
Implementation, ser. OSDI ’06. USA: USENIX Association, 2006,
p. 75–88. [Online]. Available: https://www.usenix.org/conference/osdi-
06/xfi-software-guards-system-address-spaces

[12] M. Castro, M. Costa, J.-P. Martin, M. Peinado, P. Akritidis, A. Donnelly,
P. Barham, and R. Black, “Fast byte-granularity software fault
isolation,” in Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles, ser. SOSP ’09. New York, NY,
USA: Association for Computing Machinery, 2009, p. 45–58. [Online].
Available: https://doi.org/10.1145/1629575.1629581

[13] Y. Mao, H. Chen, D. Zhou, X. Wang, N. Zeldovich, and M. F. Kaashoek,
“Software fault isolation with api integrity and multi-principal modules,”
in Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles, ser. SOSP ’11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 115–128. [Online]. Available:
https://doi.org/10.1145/2043556.2043568

[14] X. Xiong, D. Tian, P. Liu et al., “Practical protection
of kernel integrity for commodity os from untrusted
extensions.” in NDSS, vol. 11, 2011. [Online]. Avail-
able: https://www.ndss-symposium.org/ndss2011/practical-protection-
of-kernel-integrity-for-commodity-os-from-untrusted-extensions/

[15] R. Nikolaev and G. Back, “Virtuos: An operating system with kernel
virtualization,” in Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, ser. SOSP ’13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 116–132. [Online].
Available: https://doi.org/10.1145/2517349.2522719

[16] X. Wang, Y. Chen, Z. Wang, Y. Qi, and Y. Zhou, “SecPod:
a framework for virtualization-based security systems,” in 2015
USENIX Annual Technical Conference (USENIX ATC 15). Santa
Clara, CA: USENIX Association, Jul. 2015, pp. 347–360. [Online].
Available: https://www.usenix.org/conference/atc15/technical-session/
presentation/wang-xiaoguang

[17] V. Narayanan, A. Balasubramanian, C. Jacobsen, S. Spall, S. Bauer,
M. Quigley, A. Hussain, A. Younis, J. Shen, M. Bhattacharyya, and
A. Burtsev, “LXDs: Towards isolation of kernel subsystems,” in 2019
USENIX Annual Technical Conference (USENIX ATC 19). Renton,
WA: USENIX Association, Jul. 2019, pp. 269–284. [Online]. Available:
https://www.usenix.org/conference/atc19/presentation/narayanan

[18] V. Narayanan, Y. Huang, G. Tan, T. Jaeger, and A. Burtsev,
“Lightweight kernel isolation with virtualization and vm functions,”
in Proceedings of the 16th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments, ser. VEE ’20. New
York, NY, USA: Association for Computing Machinery, 2020, p.

15

https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
https://doi.org/10.14722/ndss.2022.24026
https://doi.org/10.1145/3471621.3471839
https://ieeexplore.ieee.org/abstract/document/1451869
https://ieeexplore.ieee.org/abstract/document/1451869
https://doi.org/10.14722%2Fndss.2023.24117
https://doi.org/10.1145/224056.224075
https://doi.org/10.1145/1629575.1629596
https://www.usenix.org/conference/atc20/presentation/gu
https://www.usenix.org/conference/osdi20/presentation/narayanan-vikram
https://www.usenix.org/conference/osdi20/presentation/narayanan-vikram
https://doi.org/10.1145/173668.168635
https://www.usenix.org/conference/osdi-06/xfi-software-guards-system-address-spaces
https://www.usenix.org/conference/osdi-06/xfi-software-guards-system-address-spaces
https://doi.org/10.1145/1629575.1629581
https://doi.org/10.1145/2043556.2043568
https://www.ndss-symposium.org/ndss2011/practical-protection-of-kernel-integrity-for-commodity-os-from-untrusted-extensions/
https://www.ndss-symposium.org/ndss2011/practical-protection-of-kernel-integrity-for-commodity-os-from-untrusted-extensions/
https://doi.org/10.1145/2517349.2522719
https://www.usenix.org/conference/atc15/technical-session/presentation/wang-xiaoguang
https://www.usenix.org/conference/atc15/technical-session/presentation/wang-xiaoguang
https://www.usenix.org/conference/atc19/presentation/narayanan

157–171. [Online]. Available: https://doi.org/10.1145/3381052.3381328
[19] Y. Huang, V. Narayanan, D. Detweiler, K. Huang, G. Tan,

T. Jaeger, and A. Burtsev, “KSplit: Automating device driver
isolation,” in 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 22). Carlsbad, CA: USENIX
Association, Jul. 2022, pp. 613–631. [Online]. Available: https:
//www.usenix.org/conference/osdi22/presentation/huang-yongzhe

[20] N. Dautenhahn, T. Kasampalis, W. Dietz, J. Criswell, and V. Adve,
“Nested kernel: An operating system architecture for intra-kernel
privilege separation,” in Proceedings of the Twentieth International
Conference on Architectural Support for Programming Languages
and Operating Systems, 2015, pp. 191–206. [Online]. Available:
https://doi.org/10.1145/2694344.2694386

[21] Y. Cho, D. Kwon, H. Yi, and Y. Paek, “Dynamic virtual address range
adjustment for intra-level privilege separation on arm,” in NDSS, 2017.
[Online]. Available: https://doi.org/10.14722/NDSS.2017.23024

[22] V. J. Manès, D. Jang, C. Ryu, and B. B. Kang, “Domain isolated
kernel: A lightweight sandbox for untrusted kernel extensions,”
Computers & Security, vol. 74, pp. 130–143, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404818300282

[23] S. Gravani, M. Hedayati, J. Criswell, and M. L. Scott, “Fast
intra-kernel isolation and security with iskios,” in Proceedings of
the 24th International Symposium on Research in Attacks, Intrusions
and Defenses, ser. RAID ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 119–134. [Online]. Available:
https://doi.org/10.1145/3471621.3471849

[24] Google. (2024, Apr.) syzbot reported kernel bugs. [Online]. Available:
https://syzkaller.appspot.com/

[25] Y. Li, J. McCune, J. Newsome, A. Perrig, B. Baker, and
W. Drewry, “MiniBox: A Two-Way sandbox for x86 native code,”
in 2014 USENIX Annual Technical Conference (USENIX ATC 14).
Philadelphia, PA: USENIX Association, Jun. 2014, pp. 409–420.
[Online]. Available: https://www.usenix.org/conference/atc14/technical-
sessions/presentation/li_yanlin

[26] Y. Chen, J. Li, G. Xu, Y. Zhou, Z. Wang, C. Wang, and
K. Ren, “SGXLock: Towards efficiently establishing mutual distrust
between host application and enclave for SGX,” in 31st USENIX
Security Symposium (USENIX Security 22). Boston, MA: USENIX
Association, Aug. 2022, pp. 4129–4146. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity22/presentation/chen-yuan

[27] C. Castes, A. Ghosn, N. S. Kalani, Y. Qian, M. Kogias, M. Payer,
and E. Bugnion, “Creating trust by abolishing hierarchies,” in
Proceedings of the 19th Workshop on Hot Topics in Operating
Systems, ser. HOTOS ’23. New York, NY, USA: Association
for Computing Machinery, 2023, p. 231–238. [Online]. Available:
https://doi.org/10.1145/3593856.3595900

[28] Y. Chien, V.-A. Bădoiu, Y. Yang, Y. Huo, K. Kaoudis, H. Lefeuvre,
P. Olivier, and N. Dautenhahn, “Civscope: Analyzing potential memory
corruption bugs in compartment interfaces,” in Proceedings of the 1st
Workshop on Kernel Isolation, Safety and Verification, ser. KISV ’23.
New York, NY, USA: Association for Computing Machinery, 2023, p.
33–40. [Online]. Available: https://doi.org/10.1145/3625275.3625399

[29] A. Burtsev, V. Narayanan, Y. Huang, K. Huang, G. Tan, and T. Jaeger,
“Evolving operating system kernels towards secure kernel-driver
interfaces,” in Proceedings of the 19th Workshop on Hot Topics
in Operating Systems, ser. HOTOS ’23. New York, NY, USA:
Association for Computing Machinery, 2023, p. 166–173. [Online].
Available: https://doi.org/10.1145/3593856.3595914

[30] Intel. (2023, Dec.) Intel 64 and ia-32 architectures software developer
manuals. [Online]. Available: https://www.intel.com/content/www/us/
en/developer/articles/technical/intel-sdm.html

[31] R. J. Connor, T. McDaniel, J. M. Smith, and M. Schuchard, “PKU
pitfalls: Attacks on PKU-based memory isolation systems,” in 29th
USENIX Security Symposium (USENIX Security 20). USENIX
Association, Aug. 2020, pp. 1409–1426. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity20/presentation/connor

[32] A. Voulimeneas, J. Vinck, R. Mechelinck, and S. Volckaert, “You
shall not (by)pass! practical, secure, and fast pku-based sandboxing,”
in Proceedings of the Seventeenth European Conference on Computer
Systems, ser. EuroSys ’22. New York, NY, USA: Association

for Computing Machinery, 2022, p. 266–282. [Online]. Available:
https://doi.org/10.1145/3492321.3519560

[33] D. Schrammel, S. Weiser, R. Sadek, and S. Mangard, “Jenny: Securing
syscalls for PKU-based memory isolation systems,” in 31st USENIX
Security Symposium (USENIX Security 22). Boston, MA: USENIX
Association, Aug. 2022, pp. 936–952. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity22/presentation/schrammel

[34] J. Edge. (2013, Oct.) Kernel address space layout randomization.
[Online]. Available: https://lwn.net/Articles/569635/

[35] P. Media, “Phoronix test suites: Open-Source, Automated Benchmarking,”
https://www.phoronix-test-suite.com/, 2023.

[36] T. A. S. Foundation, “Apache HTTP server benchmarking tool,” https:
//httpd.apache.org/docs/2.4/programs/ab.html, 2023.

[37] S. Proskurin, M. Momeu, S. Ghavamnia, V. P. Kemerlis, and
M. Polychronakis, “xmp: Selective memory protection for kernel
and user space,” in 2020 IEEE Symposium on Security and
Privacy (SP), 2020, pp. 563–577. [Online]. Available: https:
//ieeexplore.ieee.org/abstract/document/9152671

[38] A. M. Azab, K. Swidowski, R. Bhutkar, J. Ma, W. Shen, R. Wang,
and P. Ning, “Skee: A lightweight secure kernel-level execution
environment for arm,” in NDSS, vol. 16, 2016, pp. 21–24. [Online].
Available: https://doi.org/10.14722/NDSS.2016.23009

[39] R. N. Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. Anderson,
D. Chisnall, N. Dave, B. Davis, K. Gudka, B. Laurie, S. J. Murdoch,
R. Norton, M. Roe, S. Son, and M. Vadera, “Cheri: A hybrid capability-
system architecture for scalable software compartmentalization,” in
2015 IEEE Symposium on Security and Privacy, 2015, pp. 20–37.
[Online]. Available: https://doi.org/10.1109/SP.2015.9

[40] A. Bhattacharyya, F. Hofhammer, Y. Li, S. Gupta, A. Sánchez Marín,
B. Falsafi, and M. Payer, “Securecells: A secure compartmentalized
architecture,” in 44th IEEE Symposium on Security and Privacy.
Los Alamitos, CA, USA: IEEE Computer Society, may 2023, pp.
2921–2939. [Online]. Available: https://doi.ieeecomputersociety.org/10.
1109/SP46215.2023.00125

[41] L. Maar, M. Schwarzl, F. Rauscher, D. Gruss, and S. Mangard, “Dope:
Domain protection enforcement with pks,” in Proceedings of the 39th
Annual Computer Security Applications Conference, ser. ACSAC ’23.
New York, NY, USA: Association for Computing Machinery, 2023, p.
662–676. [Online]. Available: https://doi.org/10.1145/3627106.3627113

[42] S.-W. Li, J. S. Koh, and J. Nieh, “Protecting cloud virtual machines
from hypervisor and host operating system exploits,” in 28th USENIX
Security Symposium (USENIX Security 19). Santa Clara, CA: USENIX
Association, Aug. 2019, pp. 1357–1374. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity19/presentation/li-shih-wei

[43] Z. Mi, D. Li, H. Chen, B. Zang, and H. Guan, “(mostly) exitless
VM protection from untrusted hypervisor through disaggregated
nested virtualization,” in 29th USENIX Security Symposium (USENIX
Security 20). USENIX Association, Aug. 2020, pp. 1695–1712.
[Online]. Available: https://www.usenix.org/conference/usenixsecurity20/
presentation/mi

[44] J. Park, S. Kang, S. Lee, T. Kim, J. Park, Y. Kwon, and J. Huh,
“Hardware hardened sandbox enclaves for trusted serverless computing,”
ACM Trans. Archit. Code Optim., nov 2023, just Accepted. [Online].
Available: https://doi.org/10.1145/3632954

[45] Z. Lin, Y. Wu, and X. Xing, “Dirtycred: Escalating privilege in linux
kernel,” in Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 1963–1976.
[Online]. Available: https://doi.org/10.1145/3548606.3560585

[46] J. Criswell, N. Dautenhahn, and V. Adve, “Kcofi: Complete control-flow
integrity for commodity operating system kernels,” in 2014 IEEE
Symposium on Security and Privacy, 2014, pp. 292–307. [Online].
Available: https://doi.org/10.1109/SP.2014.26

[47] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and
Z. Liang, “Data-oriented programming: On the expressiveness
of non-control data attacks,” in 2016 IEEE Symposium on
Security and Privacy (SP), 2016, pp. 969–986. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/7546545

[48] J. Gionta, W. Enck, and P. Larsen, “Preventing kernel code-
reuse attacks through disclosure resistant code diversification,”

16

https://doi.org/10.1145/3381052.3381328
https://www.usenix.org/conference/osdi22/presentation/huang-yongzhe
https://www.usenix.org/conference/osdi22/presentation/huang-yongzhe
https://doi.org/10.1145/2694344.2694386
https://doi.org/10.14722/NDSS.2017.23024
https://www.sciencedirect.com/science/article/pii/S0167404818300282
https://doi.org/10.1145/3471621.3471849
https://syzkaller.appspot.com/
https://www.usenix.org/conference/atc14/technical-sessions/presentation/li_yanlin
https://www.usenix.org/conference/atc14/technical-sessions/presentation/li_yanlin
https://www.usenix.org/conference/usenixsecurity22/presentation/chen-yuan
https://www.usenix.org/conference/usenixsecurity22/presentation/chen-yuan
https://doi.org/10.1145/3593856.3595900
https://doi.org/10.1145/3625275.3625399
https://doi.org/10.1145/3593856.3595914
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.usenix.org/conference/usenixsecurity20/presentation/connor
https://www.usenix.org/conference/usenixsecurity20/presentation/connor
https://doi.org/10.1145/3492321.3519560
https://www.usenix.org/conference/usenixsecurity22/presentation/schrammel
https://www.usenix.org/conference/usenixsecurity22/presentation/schrammel
https://lwn.net/Articles/569635/
https://www.phoronix-test-suite.com/
https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://ieeexplore.ieee.org/abstract/document/9152671
https://ieeexplore.ieee.org/abstract/document/9152671
https://doi.org/10.14722/NDSS.2016.23009
https://doi.org/10.1109/SP.2015.9
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.00125
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.00125
https://doi.org/10.1145/3627106.3627113
https://www.usenix.org/conference/usenixsecurity19/presentation/li-shih-wei
https://www.usenix.org/conference/usenixsecurity19/presentation/li-shih-wei
https://www.usenix.org/conference/usenixsecurity20/presentation/mi
https://www.usenix.org/conference/usenixsecurity20/presentation/mi
https://doi.org/10.1145/3632954
https://doi.org/10.1145/3548606.3560585
https://doi.org/10.1109/SP.2014.26
https://ieeexplore.ieee.org/abstract/document/7546545

in 2016 IEEE Conference on Communications and Network
Security (CNS), 2016, pp. 189–197. [Online]. Available: https:
//ieeexplore.ieee.org/abstract/document/7860485

[49] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated
performance comparison of virtual machines and linux containers,”
in 2015 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), 2015, pp. 171–172. [Online]. Available:
https://ieeexplore.ieee.org/servlet/opac?punumber=7093633

[50] V. van Rijn and J. S. Rellermeyer, “A fresh look at the architecture and
performance of contemporary isolation platforms,” in Proceedings of
the 22nd International Middleware Conference, ser. Middleware ’21.
New York, NY, USA: Association for Computing Machinery, 2021, p.
323–335. [Online]. Available: https://doi.org/10.1145/3464298.3493404

[51] A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, M. Sammler,
P. Druschel, and D. Garg, “ERIM: Secure, efficient in-process isolation
with protection keys (MPK),” in 28th USENIX Security Symposium
(USENIX Security 19). Santa Clara, CA: USENIX Association, Aug.
2019, pp. 1221–1238. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity19/presentation/vahldiek-oberwagner

[52] M. Hedayati, S. Gravani, E. Johnson, J. Criswell, M. L. Scott,
K. Shen, and M. Marty, “Hodor:{Intra-Process} isolation for {High-
Throughput} data plane libraries,” in 2019 USENIX Annual Technical
Conference (USENIX ATC 19), 2019, pp. 489–504. [Online]. Available:
https://www.usenix.org/conference/atc19/presentation/hedayati

[53] H. Kuzuno and T. Yamauchi, “Kdpm: Kernel data protection mechanism
using a memory protection key,” in Advances in Information and
Computer Security. Cham: Springer International Publishing, 2022, pp.
66–84. [Online]. Available: https://doi.org/10.1007/978-3-031-15255-
9_4

[54] H. Lu, S. Wang, Y. Wu, W. He, and F. Zhang, “MOAT:
Towards safe BPF kernel extension,” in 33rd USENIX Security
Symposium (USENIX Security 24). Philadelphia, PA: USENIX
Association, Aug. 2024, pp. 1153–1170. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity24/presentation/lu-hongyi

[55] H. LI, J.-Y. GU, Y.-B. XIA, B.-Y. ZANG, and H.-B. CHEN, “Memory
isolation mechanism of ebpf based on pks hardware feature,” Journal
of Software, vol. 34, no. 12, p. 5921, 2023. [Online]. Available:
https://www.jos.org.cn/josen/article/abstract/6762

[56] G. E. Suh, D. Clarke, B. Gassend, M. Van Dijk, and S. Devadas,
“Aegis: Architecture for tamper-evident and tamper-resistant processing,”
in ACM International Conference on Supercomputing 25th Anniversary
Volume, 2003, pp. 357–368. [Online]. Available: https://doi.org/10.1145/
782814.782838

[57] R. Wilkins and B. Richardson, “Uefi secure boot in modern computer
security solutions,” in UEFI forum, 2013, pp. 1–10. [Online]. Available:
https://api.semanticscholar.org/CorpusID:14326971

[58] S. F. Yitbarek, M. T. Aga, R. Das, and T. Austin, “Cold boot attacks are
still hot: Security analysis of memory scramblers in modern processors,”
in 2017 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2017, pp. 313–324. [Online]. Available:
https://doi.org/10.1109/HPCA.2017.10

[59] O. Mutlu and J. S. Kim, “Rowhammer: A retrospective,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 39, no. 8, pp. 1555–1571, 2019. [Online]. Available:
https://doi.org/10.1109/TCAD.2019.2915318

[60] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in 2019
IEEE Symposium on Security and Privacy (SP), 2019, pp. 1–19.
[Online]. Available: https://doi.org/10.1109/SP.2019.00002

[61] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in Proceedings
of the 27th USENIX Conference on Security Symposium, ser. SEC’18.
USA: USENIX Association, 2018, p. 973–990. [Online]. Available:
https://doi.org/10.1145/3357033

[62] S. Fan, Z. Hua, Y. Xia, H. Chen, and B. Zang, “Isa-grid:
Architecture of fine-grained privilege control for instructions and
registers,” in Proceedings of the 50th Annual International Symposium
on Computer Architecture, ser. ISCA ’23. New York, NY, USA:

Association for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3579371.3589050

[63] C. Wu, M. Xie, Z. Wang, Y. Zhang, K. Lu, X. Zhang, Y. Lai, Y. Kang,
M. Yang, and T. Li, “Dancing with wolves: An intra-process isolation
technique with privileged hardware,” IEEE Transactions on Dependable
and Secure Computing, vol. 20, no. 3, pp. 1959–1978, 2023. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/9760152

[64] M. Pomonis, T. Petsios, A. D. Keromytis, M. Polychronakis, and
V. P. Kemerlis, “Kernel protection against just-in-time code reuse,”
ACM Trans. Priv. Secur., vol. 22, no. 1, jan 2019. [Online]. Available:
https://doi.org/10.1145/3277592

[65] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented
programming: Systems, languages, and applications,” ACM Trans.
Inf. Syst. Secur., vol. 15, no. 1, mar 2012. [Online]. Available:
https://doi.org/10.1145/2133375.2133377

[66] J. Li, X. Tong, F. Zhang, and J. Ma, “Fine-cfi: Fine-grained
control-flow integrity for operating system kernels,” IEEE Transactions
on Information Forensics and Security, vol. 13, no. 6, pp. 1535–1550,
2018. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/
8269390

[67] K. Lu and H. Hu, “Where does it go? refining indirect-call
targets with multi-layer type analysis,” in Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’19. New York, NY, USA: Association for
Computing Machinery, 2019, p. 1867–1881. [Online]. Available:
https://doi.org/10.1145/3319535.3354244

[68] M. Bauer, I. Grishchenko, and C. Rossow, “Typro: Forward cfi
for c-style indirect function calls using type propagation,” in
Proceedings of the 38th Annual Computer Security Applications
Conference, ser. ACSAC ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 346–360. [Online]. Available:
https://doi.org/10.1145/3564625.3564627

[69] D. Schrammel, S. Weiser, S. Steinegger, M. Schwarzl, M. Schwarz,
S. Mangard, and D. Gruss, “Donky: Domain keys – efficient
In-Process isolation for RISC-V and x86,” in 29th USENIX Security
Symposium (USENIX Security 20). USENIX Association, Aug. 2020,
pp. 1677–1694. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity20/presentation/schrammel

[70] Y. Xu, C. Ye, Y. Solihin, and X. Shen, “Hardware-based domain
virtualization for intra-process isolation of persistent memory objects,”
in 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA), 2020, pp. 680–692. [Online]. Available:
https://doi.org/10.1109/ISCA45697.2020.00062

[71] S. Park, S. Lee, W. Xu, H. Moon, and T. Kim, “libmpk: Software
abstraction for intel memory protection keys (intel MPK),” in 2019
USENIX Annual Technical Conference (USENIX ATC 19). Renton,
WA: USENIX Association, Jul. 2019, pp. 241–254. [Online]. Available:
https://www.usenix.org/conference/atc19/presentation/park-soyeon

[72] J. Gu, H. Li, W. Li, Y. Xia, and H. Chen, “EPK: Scalable
and efficient memory protection keys,” in 2022 USENIX Annual
Technical Conference (USENIX ATC 22). Carlsbad, CA: USENIX
Association, Jul. 2022, pp. 609–624. [Online]. Available: https:
//www.usenix.org/conference/atc22/presentation/gu-jinyu

[73] Z. Yuan, S. Hong, R. Chang, Y. Zhou, W. Shen, and K. Ren,
“Vdom: Fast and unlimited virtual domains on multiple architectures,”
in Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems, Volume 2, ser. ASPLOS 2023. New York, NY, USA:
Association for Computing Machinery, 2023, p. 905–919. [Online].
Available: https://doi.org/10.1145/3575693.3575735

[74] Y. Guo, Z. Wang, B. Zhong, and Q. Zeng, “Formal modeling and security
analysis for intra-level privilege separation,” in Proceedings of the 38th
Annual Computer Security Applications Conference, ser. ACSAC ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
88–101. [Online]. Available: https://doi.org/10.1145/3564625.3567984

[75] K. Lu, A. Pakki, and Q. Wu, “Detecting Missing-Check bugs
via semantic- and Context-Aware criticalness and constraints
inferences,” in 28th USENIX Security Symposium (USENIX Security
19). Santa Clara, CA: USENIX Association, Aug. 2019, pp.
1769–1786. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity19/presentation/lu

17

https://ieeexplore.ieee.org/abstract/document/7860485
https://ieeexplore.ieee.org/abstract/document/7860485
https://ieeexplore.ieee.org/servlet/opac?punumber=7093633
https://doi.org/10.1145/3464298.3493404
https://www.usenix.org/conference/usenixsecurity19/presentation/vahldiek-oberwagner
https://www.usenix.org/conference/usenixsecurity19/presentation/vahldiek-oberwagner
https://www.usenix.org/conference/atc19/presentation/hedayati
https://doi.org/10.1007/978-3-031-15255-9_4
https://doi.org/10.1007/978-3-031-15255-9_4
https://www.usenix.org/conference/usenixsecurity24/presentation/lu-hongyi
https://www.usenix.org/conference/usenixsecurity24/presentation/lu-hongyi
https://www.jos.org.cn/josen/article/abstract/6762
https://doi.org/10.1145/782814.782838
https://doi.org/10.1145/782814.782838
https://api.semanticscholar.org/CorpusID:14326971
https://doi.org/10.1109/HPCA.2017.10
https://doi.org/10.1109/TCAD.2019.2915318
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1145/3357033
https://doi.org/10.1145/3579371.3589050
https://ieeexplore.ieee.org/abstract/document/9760152
https://doi.org/10.1145/3277592
https://doi.org/10.1145/2133375.2133377
https://ieeexplore.ieee.org/abstract/document/8269390
https://ieeexplore.ieee.org/abstract/document/8269390
https://doi.org/10.1145/3319535.3354244
https://doi.org/10.1145/3564625.3564627
https://www.usenix.org/conference/usenixsecurity20/presentation/schrammel
https://www.usenix.org/conference/usenixsecurity20/presentation/schrammel
https://doi.org/10.1109/ISCA45697.2020.00062
https://www.usenix.org/conference/atc19/presentation/park-soyeon
https://www.usenix.org/conference/atc22/presentation/gu-jinyu
https://www.usenix.org/conference/atc22/presentation/gu-jinyu
https://doi.org/10.1145/3575693.3575735
https://doi.org/10.1145/3564625.3567984
https://www.usenix.org/conference/usenixsecurity19/presentation/lu
https://www.usenix.org/conference/usenixsecurity19/presentation/lu

[76] Y. Sui and J. Xue, “Svf: Interprocedural static value-flow analysis in
llvm,” in Proceedings of the 25th International Conference on Compiler
Construction, ser. CC 2016. New York, NY, USA: Association
for Computing Machinery, 2016, p. 265–266. [Online]. Available:
https://doi.org/10.1145/2892208.2892235

[77] J.-J. Bai, T. Li, K. Lu, and S.-M. Hu, “Static detection of unsafe
DMA accesses in device drivers,” in 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, Aug. 2021, pp.
1629–1645. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity21/presentation/bai

[78] K. Lu, “Practical program modularization with type-based dependence
analysis,” in 2023 IEEE Symposium on Security and Privacy (SP).
Los Alamitos, CA, USA: IEEE Computer Society, may 2023, pp.
1610–1624. [Online]. Available: https://doi.ieeecomputersociety.org/10.
1109/SP46215.2023.00092

[79] L. W. McVoy, C. Staelin et al., “lmbench: Portable tools for
performance analysis.” in USENIX annual technical conference.
San Diego, CA, USA, 1996, pp. 279–294. [Online]. Avail-
able: https://www.usenix.org/conference/usenix-1996-annual-technical-
conference/lmbench-portable-tools-performance-analysis

[80] E. van der Kouwe, G. Heiser, D. Andriesse, H. Bos, and C. Giuffrida,
“Sok: Benchmarking flaws in systems security,” in 2019 IEEE
European Symposium on Security and Privacy (EuroS&P), 2019,
pp. 310–325. [Online]. Available: https://ieeexplore.ieee.org/abstract/
document/8806739

[81] E. D. Demaine, S. Hohenberger, and D. Liben-Nowell, “Tetris
is hard, even to approximate,” in Computing and Combinatorics,
T. Warnow and B. Zhu, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003, pp. 351–363. [Online]. Available: https:
//erikdemaine.org/papers/Tetris_TR2002/

[82] A. A. Clements, N. S. Almakhdhub, S. Bagchi, and M. Payer,
“ACES: Automatic compartments for embedded systems,” in 27th
USENIX Security Symposium (USENIX Security 18). Baltimore, MD:
USENIX Association, Aug. 2018, pp. 65–82. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity18/presentation/clements

[83] A. Khan, D. Xu, and D. J. Tian, “Ec: Embedded systems
compartmentalization via intra-kernel isolation,” in 2023 IEEE
Symposium on Security and Privacy (SP), 2023, pp. 2990–3007.
[Online]. Available: https://ieeexplore.ieee.org/document/10179285

[84] C. P. Ortega, “Flexc: Flexible compartmentalization
through automatic policy generation,” Master’s thesis, Mas-
sachusetts Institute of Technology, 2022. [Online]. Avail-
able: https://dspace.mit.edu/bitstream/handle/1721.1/144506/Ortega-
cortegap-meng-eecs-2022-thesis.pdf?sequence=1

[85] D. Sehr, R. Muth, C. Biffle, V. Khimenko, E. Pasko,
K. Schimpf, B. Yee, and B. Chen, “Adapting software fault
isolation to contemporary cpu architectures,” in Proceedings
of the 19th USENIX Conference on Security, ser. USENIX
Security’10. USA: USENIX Association, 2010, p. 1. [Online].
Available: https://www.usenix.org/conference/usenixsecurity10/adapting-
software-fault-isolation-contemporary-cpu-architectures

[86] J. Litton, A. Vahldiek-Oberwagner, E. Elnikety, D. Garg,
B. Bhattacharjee, and P. Druschel, “Light-Weight contexts: An
OS abstraction for safety and performance,” in 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
16). Savannah, GA: USENIX Association, Nov. 2016, pp. 49–64.
[Online]. Available: https://www.usenix.org/conference/osdi16/technical-
sessions/presentation/litton

[87] T. C.-H. Hsu, K. Hoffman, P. Eugster, and M. Payer, “Enforcing
least privilege memory views for multithreaded applications,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 393–405. [Online].
Available: https://doi.org/10.1145/2976749.2978327

[88] M. M. Swift, B. N. Bershad, and H. M. Levy, “Improving the
reliability of commodity operating systems,” SIGOPS Oper. Syst.
Rev., vol. 37, no. 5, p. 207–222, oct 2003. [Online]. Available:
https://doi.org/10.1145/1165389.945466

[89] Y. Sun and T.-c. Chiueh, “Side: Isolated and efficient execution
of unmodified device drivers,” in 2013 43rd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),

2013, pp. 1–12. [Online]. Available: https://doi.org/10.1109/DSN.2013.
6575348

[90] J. Seo, J. You, Y. Cho, Y. Cho, D. Kwon, and Y. Paek, “Sfitag: Efficient
software fault isolation with memory tagging for arm kernel extensions,”
in Proceedings of the 2023 ACM Asia Conference on Computer and
Communications Security, ser. ASIA CCS ’23. New York, NY, USA:
Association for Computing Machinery, 2023, p. 469–480. [Online].
Available: https://doi.org/10.1145/3579856.3590341

[91] K. Dinh Duy, K. Cho, T. Noh, and H. Lee, “Capacity: Cryptographically-
enforced in-process capabilities for modern arm architectures,” in
Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’23. New York, NY, USA:
Association for Computing Machinery, 2023, p. 874–888. [Online].
Available: https://doi.org/10.1145/3576915.3623079

[92] E. Witchel, J. Rhee, and K. Asanović, “Mondrix: Memory isolation
for linux using mondriaan memory protection,” in Proceedings of the
twentieth ACM symposium on Operating systems principles, 2005, pp.
31–44. [Online]. Available: https://doi.org/10.1145/1095810.1095814

[93] L. Vilanova, M. Ben-Yehuda, N. Navarro, Y. Etsion, and M. Valero,
“Codoms: Protecting software with code-centric memory domains,” in
Proceeding of the 41st Annual International Symposium on Computer
Architecuture, ser. ISCA ’14. IEEE Press, 2014, p. 469–480. [Online].
Available: https://dl.acm.org/doi/abs/10.1145/2678373.2665741

[94] A. Bittau, P. Marchenko, M. Handley, and B. Karp, “Wedge: Splitting
applications into reduced-privilege compartments,” in Proceedings
of the 5th USENIX Symposium on Networked Systems Design and
Implementation, ser. NSDI’08. USA: USENIX Association, 2008, p.
309–322. [Online]. Available: https://www.usenix.org/conference/nsdi-
08/wedge-splitting-applications-reduced-privilege-compartments

[95] K. Gudka, R. N. Watson, J. Anderson, D. Chisnall, B. Davis,
B. Laurie, I. Marinos, P. G. Neumann, and A. Richardson, “Clean
application compartmentalization with soaap,” in Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’15. New York, NY, USA: Association for
Computing Machinery, 2015, p. 1016–1031. [Online]. Available:
https://doi.org/10.1145/2810103.2813611

[96] J. Lind, C. Priebe, D. Muthukumaran, D. O’Keeffe, P.-L. Aublin,
F. Kelbert, T. Reiher, D. Goltzsche, D. Eyers, R. Kapitza, C. Fetzer, and
P. Pietzuch, “Glamdring: Automatic application partitioning for intel
SGX,” in 2017 USENIX Annual Technical Conference (USENIX ATC
17). Santa Clara, CA: USENIX Association, Jul. 2017, pp. 285–298.
[Online]. Available: https://www.usenix.org/conference/atc17/technical-
sessions/presentation/lind

[97] X. Zhou, J. Li, W. Zhang, Y. Zhou, W. Shen, and K. Ren, “Opec:
operation-based security isolation for bare-metal embedded systems,”
in Proceedings of the Seventeenth European Conference on Computer
Systems, ser. EuroSys ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 317–333. [Online]. Available:
https://doi.org/10.1145/3492321.3519573

[98] A. Khan, D. Xu, and D. J. Tian, “Low-cost privilege separation with
compile time compartmentalization for embedded systems,” in 2023
IEEE Symposium on Security and Privacy (SP), 2023, pp. 3008–3025.
[Online]. Available: https://doi.org/10.1109/SP46215.2023.10179388

[99] H. Lefeuvre, V.-A. Bădoiu, A. Jung, S. L. Teodorescu, S. Rauch,
F. Huici, C. Raiciu, and P. Olivier, “Flexos: Towards flexible os
isolation,” in Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 467–482. [Online]. Available:
https://doi.org/10.1145/3503222.3507759

[100] M. Sung, P. Olivier, S. Lankes, and B. Ravindran, “Intra-unikernel
isolation with intel memory protection keys,” in Proceedings of the
16th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, 2020, pp. 143–156. [Online]. Available:
https://doi.org/10.1145/3381052.3381326

[101] V. A. Sartakov, L. Vilanova, and P. Pietzuch, “Cubicleos: a library os
with software componentisation for practical isolation,” in Proceedings
of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’21.
New York, NY, USA: Association for Computing Machinery, 2021, p.
546–558. [Online]. Available: https://doi.org/10.1145/3445814.3446731

18

https://doi.org/10.1145/2892208.2892235
https://www.usenix.org/conference/usenixsecurity21/presentation/bai
https://www.usenix.org/conference/usenixsecurity21/presentation/bai
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.00092
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.00092
https://www.usenix.org/conference/usenix-1996-annual-technical-conference/lmbench-portable-tools-performance-analysis
https://www.usenix.org/conference/usenix-1996-annual-technical-conference/lmbench-portable-tools-performance-analysis
https://ieeexplore.ieee.org/abstract/document/8806739
https://ieeexplore.ieee.org/abstract/document/8806739
https://erikdemaine.org/papers/Tetris_TR2002/
https://erikdemaine.org/papers/Tetris_TR2002/
https://www.usenix.org/conference/usenixsecurity18/presentation/clements
https://www.usenix.org/conference/usenixsecurity18/presentation/clements
https://ieeexplore.ieee.org/document/10179285
https://dspace.mit.edu/bitstream/handle/1721.1/144506/Ortega-cortegap-meng-eecs-2022-thesis.pdf?sequence=1
https://dspace.mit.edu/bitstream/handle/1721.1/144506/Ortega-cortegap-meng-eecs-2022-thesis.pdf?sequence=1
https://www.usenix.org/conference/usenixsecurity10/adapting-software-fault-isolation-contemporary-cpu-architectures
https://www.usenix.org/conference/usenixsecurity10/adapting-software-fault-isolation-contemporary-cpu-architectures
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/litton
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/litton
https://doi.org/10.1145/2976749.2978327
https://doi.org/10.1145/1165389.945466
https://doi.org/10.1109/DSN.2013.6575348
https://doi.org/10.1109/DSN.2013.6575348
https://doi.org/10.1145/3579856.3590341
https://doi.org/10.1145/3576915.3623079
https://doi.org/10.1145/1095810.1095814
https://dl.acm.org/doi/abs/10.1145/2678373.2665741
https://www.usenix.org/conference/nsdi-08/wedge-splitting-applications-reduced-privilege-compartments
https://www.usenix.org/conference/nsdi-08/wedge-splitting-applications-reduced-privilege-compartments
https://doi.org/10.1145/2810103.2813611
https://www.usenix.org/conference/atc17/technical-sessions/presentation/lind
https://www.usenix.org/conference/atc17/technical-sessions/presentation/lind
https://doi.org/10.1145/3492321.3519573
https://doi.org/10.1109/SP46215.2023.10179388
https://doi.org/10.1145/3503222.3507759
https://doi.org/10.1145/3381052.3381326
https://doi.org/10.1145/3445814.3446731

	Introduction
	Objectives For Kernel Compartmentalization
	Kernel Vulnerability Analysis
	Security Objectives
	Bi-directional Isolation
	Data Protection
	Control Flow Protection
	Compartment Interface Protection

	Scalability Objectives
	Scalable for Unlimited Compartments

	Performance Objectives
	Fast Compartment Switches
	Zero-copy Data Transfer

	Compatibility Objectives
	Compatibility Issues

	Background
	Memory Protection Keys

	Threat Model
	BULKHEAD Design
	Overview
	PKS-based Bi-directional Isolation
	In-kernel Monitor
	Memory Isolation for In-Kernel Monitor
	Instruction Deprivation

	Invariant Enforcement
	Data Integrity
	eXecute-Only Memory (XOM)
	Compartment Interface Integrity (CII)

	Two-level Compartmentalization

	Implementation
	Use Case

	Evaluation
	Security Analysis
	Data-oriented Attacks
	Control Flow Hijacking
	Confused Deputy Attacks
	Penetration Tests
	Real-world Vulnerabilities

	Performance Evaluation
	Micro-benchmarks
	Macro-benchmarks
	Scalability

	Memory Overhead

	Discussion
	Related Work
	Conclusion

