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University of Novi Sad
nikolic.dusan@uns.ac.rs

Patrick Zielinski
New York University

patrick.z@nyu.edu

David Greisen
Open Law Library

dgreisen@openlawlib.org

BJ Ard
University of Wisconsin–Madison

bj.ard@wisc.edu

Justin Cappos
New York University

jcappos@nyu.edu

[1]–[4]. Many of these sites lack essential safeguards such as
cryptographic signatures, checksums, timestamps, versioning,
or audit mechanisms. They also provide no way for mirrors
or users to independently verify that the content they access
matches what was originally published. As a result, a single
server-side mistake or an attack such as ransomware or account
compromise can silently alter the legal record, leaving courts,
citizens, and businesses with no way to validate what the law
originally said.

At the same time, digital access to the law has become
essential. From renewing a driver license to filing taxes, citi-
zens increasingly expect digital access to government services
and legal information. Yet digital law repositories, which serve
millions of daily requests, still lag far behind modern software-
update systems in integrity and security, which routinely use
cryptographic signatures, version tracking, and multi-party
trust models to prevent tampering [5]–[7].

A. Motivation

Legal systems must preserve not just the current version
of the law, but also its precise wording at past points in
time, as courts often rely on historical texts to interpret or
apply precedent. [8], [9]. By comparison, most other fields do
not demand this level of historical precision or permanence.
Academic papers and books are generally static once pub-
lished, and prior versions are rarely cited or preserved. Even
source code repositories such as Git, [10] only weakly enforce
the ordering of commits to different branches [11]. Legal
documents, by contrast, are living texts—frequently updated,
with past versions retaining legal significance.

The Uniform Electronic Legal Material Act (UELMA) [12],
enacted in over 20 U.S. states, formalizes many of these
concerns. It affirms that electronic legal materials must carry
the same trust as their physical counterparts and remain
verifiable and accessible over time. Taken together, these legal,
institutional, and technical realities make the ability to retrieve
and verify every prior version of a legal document not just
desirable, but foundational.
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I. INTRODUCTION

Legal documents govern nearly every aspect of modern
life. The written law is, in effect, the operating system of
society. Yet in 2025, most laws are still published on paper,
and their digital versions are often hosted on aging websites
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Requirement 1: Version Authenticity and Access

The current and all historical versions of legal doc-
uments must remain accessible and cryptographi-
cally authenticatable, together with the legally relevant
date(s) for which each state is valid.

Moreover, government-maintained legal repositories are at-
tractive targets for cyber threats and consequences of tamper-
ing can be severe. Attacks on these systems could undermine
the legal process, reduce public confidence in its fairness
and transparency, and ultimately threaten the foundations of
democratic governance. Notable examples include the 2007
cyber attacks on Estonia and the 2008 attacks on the country
of Georgia, both of which disrupted digital infrastructure— in-
cluding legal databases and critical government services [13],
[14]. More recently, ransomware attacks on public institutions,
such as the 2021 attack on the Washington, D.C. Metropolitan
Police Department, have raised concerns about the security of
sensitive government-managed content [15].

In addition to external threats, there is the risk that institu-
tions responsible for publishing or preserving legal materials
could alter content after publication—either unintentionally,
due to pressure, or perhaps because of a malicious insider
who is bribed to change the law. This risk is not limited to the
original publisher. Third parties, such as archives, libraries, or
distributed institutions tasked with mirroring legal repositories,
may also be subject to internal failures, external compromise,
or political influence over time. Governments have histori-
cally altered records to shape public perception—not only in
authoritarian regimes, but also in more subtle forms within
democracies [16]–[19].

Requirement 2: Tamper Evidence and Institutional
Independence

Legal documents must be verifiably protected against
unauthorized modification. Their integrity must remain
provable without relying on the ongoing trustworthi-
ness of any individual publisher, mirror, or hosting
institution.

Even the most secure archiving system will fail in practice
if it cannot be used and maintained by its intended users.
Legal publishers, librarians, and other staff who manage
law repositories are often not technical specialists. A system
intended to protect legal materials must therefore be designed
with usability as a central concern. The process of publishing
new documents, signing metadata, rotating cryptographic keys,
or pulling and verifying updates should be straightforward and
well-documented. If these tasks require following a fragile
sequence of steps or understanding technical details, users
might avoid performing them. Security best practices such as
key rotation may be delayed or skipped if they are perceived
as too complex to complete without assistance. Institutions
that mirror or archive legal content should be able to set up

their environments with minimal overhead. When errors occur,
the system must provide clear, actionable diagnostics that help
users understand and resolve the issue.

Requirement 3: Usability and Operational Clarity

All core operations, including publishing updates, ver-
ifying authenticity, managing signing keys, and diag-
nosing validation failures, must be simple enough for
non-technical users to perform reliably.

B. Our Contributions

To meet the challenges outlined above, we developed The
Archive Framework (TAF), a system for securing digital
repositories that store official legal materials. TAF ensures
archival integrity by combining two popular and widely used
systems: The Update Framework (TUF) [20] and Git, and
integrating a reliable, signed notion of time together with
domain-specific legal functionality.

It is important to note that, although TAF builds on concepts
from both Git and TUF, its security properties go well beyond
a simple sum of the guarantees provided by the two systems.
Git offers a Merkle-tree structure and preserves historical
versions, but its security model is weak. History can be
rewritten, commits can be removed, branches can be moved
to unrelated points in the graph, and a malicious server can
present different users with different versions of the commit
history [11]. TUF addresses a complementary problem by
securing softdate metadata and ensuring that users obtain
the correct latest version. It protects against attacks such as
rollback, freeze, mix-and-match, but it does so only for the
current state. TUF does not authenticate the evolution of a
repository over time and cannot prevent reordering, deletion,
or rewriting of older states.

By combining Git and TUF in a way that attaches TUF-
style authenticity to each point in Git’s version sequence, TAF
produces a linked chain of signed, ordered states. In doing
so, TAF binds Git’s structure of ordered versions with TUF’s
authenticatable metadata to create a tamper-evident timeline
of all past states. Any attempt to remove, alter, reorder, or
insert earlier states becomes detectable, as it breaks the chain
of linked and authenticatable records. Likewise, attempts to
spoof or replace content are prevented, since producing a valid
state requires generating the corresponding correctly signed
metadata. This construction directly addresses the limitations
of both Git and TUF described above and provides the
properties needed to securely maintain the historical record
of the law.

On top of the authenticatable sequence of states, TAF
layers a temporal component that links each snapshot of the
entire corpus of the law with its relevant legal dates. In legal
practice, a single law may carry multiple such dates—its
enactment date, its effective date, and the dates on which later
amendments altered it. Practitioners often need not only the
historical text but also the version that was perceived to be
in force at the time an event occurred. Because statutes are
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frequently republished, corrected, or codified after the fact,
”what the law was in 2020” may differ depending on which
publication was available then. TAF captures this directly:
a legally relevant date may correspond to multiple signed
snapshots, each reflecting how the law was understood and
published at different points in time. Because these dates are
part of the signed metadata, TAF enables authenticatable tem-
poral queries that neither Git, nor TUF, nor existing archival
frameworks support.

Furthermore, TAF builds the technical foundation for a
decentralized network of trustworthy institutions, such as
libraries and archives, to mirror and validate legal repositories
in a tamper-evident manner. To reduce operational complexity,
TAF includes tooling such as a command-line interface, Git
hooks, and clear error reporting to support safe use and key
management with minimal technical effort.

TAF is already securing the legislative histories of four-
teen U.S. jurisdictions, including Washington, D.C. (https:
//code.dccouncil.gov), the City of San Mateo (https://law.
cityofsanmateo.org), the City of Baltimore (https://codes.
baltimorecity.gov), and the State of Maryland (https://regs.
maryland.gov).

The rest of the paper is structured as follows. Section III
formalizes the security objectives of TAF and presents its
threat model, grounded in real-world legislative workflows.
Section IV and Section V describe the design and imple-
mentation of TAF. Section VI evaluates TAF across multiple
deployments, demonstrating its scalability, performance, and
ability to detect high-impact threats.

II. BACKGROUND

TAF builds on two well-established technologies: Git, a
distributed version control system used to track and retrieve
historical revisions of legal content, and TUF, a metadata
signing system originally developed to secure software updates
against key or server compromise. On top of that, TAF treats
time as signed data rather than as an authority: deployments
attach law-related dates to each authenticated state, allowing
queries by date against these signed fields. his section briefly
reviews each foundation, highlighting the capabilities TAF
inherits and the unique functionality it adds.

A. Version Control Integration

Long-term legal preservation depends on more than stor-
ing the latest version of legal documents, since courts and
legislatures may rely on the exact wording of past texts (see
Section I). Therefore, a trustworthy legal repository must retain
not only the current revision, but also every prior revision in
a form that can be independently retrieved and verified.

Achieving this requires an append-only history to prevent
silent changes, a content-addressable structure that links each
revision to its exact contents and predecessors, and robust
support for retrieving historical states by identifier. In practice,
lightweight branching is also valuable, as it allows jurisdic-
tions to stage edits before publication without affecting the
authoritative record. While other version control systems could

meet these needs, TAF currently uses Git due to its widespread
adoption, mature tooling, and established presence in public-
sector projects [21]–[26]. Using Git also allows jurisdictions
to reuse existing hosting services such as GitHub or internal
servers, avoiding the need to deploy new infrastructure.

Git by itself is not a preservation or security solution.
Repository history can be rewritten, hosting accounts may be
compromised, and Git continues to rely on SHA-1 by default,
despite known collision vulnerabilities [27]. While a transition
to SHA-256 is underway, existing repositories cannot be seam-
lessly migrated without breaking commit identifiers, limiting
the applicability of this transition for legal archives. TAF
addresses these limitations by layering TUF over Git: each
repository state is cryptographically signed, and deployments
are encouraged to require a threshold of signatures from
independent keys. This preserves Git’s convenience while
adding the integrity and long-term verifiability required for
legal materials.

B. The Update Framework (TUF)

TUF is a security framework designed to protect soft-
ware update mechanisms against key compromise and other
repository-level attacks [28]–[32]. It supports a range of
update models and provides tooling that integrates easily into
both new and existing deployments. TUF has been adopted
by major organizations, including IBM, VMware, Microsoft,
Docker, Cloudflare, Google, and Amazon [32]–[36], and has
graduated from the Cloud Native Computing Foundation.

TUF secures updates by attaching cryptographically ver-
ifiable metadata to each repository state. This metadata in-
cludes trusted signing keys, file hashes, version numbers, and
expiration dates. Clients use this information to verify both
the integrity and freshness of update files before applying
them. Different metadata files serve distinct purposes and are
signed by separate roles. In TUF, a role is a defined set
of responsibilities and corresponding signing keys used to
produce or validate a specific type of metadata. This separation
of responsibilities [37], combined with threshold signing for
critical roles [31], [37] and support for role delegation [30],
[31], [37], ensures resilience even in the face of key compro-
mise or infrastructure failure. For example, the root role in
most deployments requires a signature threshold (e.g., 3 out
of 6), with the corresponding keys stored offline on hardware
devices such as YubiKeys. Delegation enables selective trust
without requiring key sharing, a principle well established in
distributed systems [38]–[48].

While TUF supports a wide variety of deployment sce-
narios, it is designed to validate only the latest version of
a repository. Specifically, TUF considers old metadata to be a
replay or freeze attack and thus intentionally prevents it from
being validated. This makes it unsuitable for workflows that
depend on the ability to retrieve and verify the state of a
repository at a specific point in time (as is required in the
legal domain). TUF also assumes continuous communication
with a repository. If the original publisher becomes unavail-
able, clients have no standard mechanism to authenticate the
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repository’s content. This requirement renders TUF unsuitable
for archival of legal documents. Finally, TUF assumes a level
of technical proficiency typical of software engineering teams,
which does not always hold in legal publishing environments.

III. THREAT MODEL

Digital law repositories are an unusually attractive target:
a single silent edit can alter how statutes are interpreted. Yet
the publishers and archivists who manage this content often
lack deep security expertise. Before presenting our concrete
design, we therefore formalize the security objectives, assets,
assumptions, and adversaries that guide TAF. This section first
outlines the long-term goals and trusted components, then
enumerates realistic attacker classes and the specific threats
they pose. The subsequent design and evaluation sections map
each countermeasure back to these threats.

Goals. TAF is designed to ensure the integrity and availabil-
ity of legal materials over time. A single undetected change
today can shape court rulings for years, so long-term integrity
and verifiable provenance are essential for Requirements 1
and 2. Concretely, TAF must preserve the integrity of every
revision and provide cryptographically verifiable provenance
that does not depend on the ongoing availability or trust-
worthiness of the original publisher. It must also ensure that
published legal texts remain accessible and verifiable for at
least a decade, with the current reliance on Git’s integrity
mechanisms limiting stronger guarantees. Content must remain
independently accessible and provable if and when the original
publisher ceases operation.

Assets & Stakeholders. Four primary asset types underpin
these goals. A1 refers to the legal documents themselves,
along with any associated multimedia or presentation-layer
assets. A2 includes the TUF metadata and revision history that
record and authenticate changes over time. A3 encompasses all
signing keys defined by TUF. A4 consists of update logs and
backup copies maintained by independent institutions, such
as libraries or archives, to support long-term verification and
recovery. Safeguarding A1 and A2 directly supports Require-
ment 1, while protecting A3 and A4 enforces Requirement 2.
Because the people who manage these assets are usually legal
or archival staff rather than security engineers, their workflows
must satisfy the usability mandate in Requirement 3. The
direct stakeholders are government publishers, preservation
institutions and end-users who rely on access to accurate and
verifiable legal texts.

Trust Assumptions. TAF is designed to limit the number of
components that must be trusted over extended timeframes. If
the most important keys are stored offline on hardware-backed
devices and protected by multi-party signing thresholds, the
risk of compromise is low. The underlying storage layer
provided by the version control system is expected to offer
decade-scale integrity guarantees. The chosen cryptographic
primitives (RSA-4096, Ed25519, and SHA-256) are consid-
ered secure for at least ten years. All other components,
including hosting infrastructure and online keys, are treated
as potentially fallible or adversarial.

Adversary Classes & Capabilities. We distinguish three at-
tacker classes, ordered by increasing likelihood but varying in
scope and mode of access. The nation-state adversary (Adv-1)
has the ability to compel or compromise major infrastructure
providers, such as cloud platforms or DNS authorities, and
can observe or manipulate network traffic at scale. However,
they are assumed to lack access to offline signing keys. The
insider adversary (Adv-2) includes rogue publisher employees
with signing privileges, or external attackers who compromise
an employee’s account, machine, or physical environment.
This adversary may gain access to a single signing device,
such as a YubiKey, and can perform targeted tampering from
within the publication pipeline. The external attacker (Adv-
3) exploits supply-chain vulnerabilities in platforms such as
GitHub, CI/CD infrastructure, or application servers to gain
limited control over hosted repositories or build systems.

Adv-1 most directly threatens Requirement 2 (tamper evi-
dence), Adv-2 challenges both Requirements 2 and 3 by tar-
geting institutional independence and key-management work-
flows, and Adv-3 endangers Requirement 1 by attempting to
corrupt specific revisions. All adversaries are assumed capa-
ble of observing, modifying, replaying, or dropping network
traffic.

Threat Enumeration. We distill the full STRIDE analysis
into the six highest-impact threats affecting TAF, summarized
in Table I.

Out-of-Scope. TAF does not harden user accounts or host-
ing platforms; it assumes those layers may be breached and
concentrates on detecting unauthorized content and preventing
clients from applying malicious updates. For example, a com-
promised account or signing key may lead to the publication of
an invalid repository state, but such tampering will be rejected
unless the metadata meets the configured signing thresholds.
Large-scale denial-of-service attacks that block all network
access remain out of scope, as do cryptanalytic breaks of
RSA-4096 or Ed25519 before 2035. Section VIII discusses
migration paths for those eventualities.

IV. SYSTEM DESIGN

TAF is designed to ensure the integrity and long-term
verifiability of digital repositories containing legal documents
and any associated assets a publisher may require, such as
presentation files or auxiliary metadata. This section explains
how these guarantees are supported over longer timeframes
and covers: (1) the structure of TAF repositories, (2) the
mechanisms that enable decentralized preservation and inde-
pendent verification across institutions, and (3) the update and
verification components, along with the tooling that helps non-
technical users maintain system integrity.

A. TAF Repository Layout

TAF distinguishes between two types of repositories: target
repositories, which store legal documents and associated as-
sets, and authentication repositories, which define and verify
the valid state of those repositories.TAF does not restrict how
content is organized, letting publishers structure repositories as
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TABLE I: Summary of Key Threats and Mitigations

ID Threat Description Mitigation Strategy

TM-1 Malicious updates by
an adversary who gains
access to a repository
hosting account or the
publisher’s machine
(Adv-1, S/T)

Updates must be signed by trusted
parties; out-of-band verification is
performed by independent institu-
tions

TM-2 An earlier version of
the law is reintroduced
to hide or undo recent
changes (Adv-2, R)

All valid versions of the law are
cryptographically pinned

TM-3 Theft of a single
signing key used to
authorize updates
(Adv-2, R)

Critical updates require multiple
signatures; keys can be revoked
and replaced

TM-4 The original publisher
becomes unavailable or
abandons the system
(Adv-1, D)

Trusted institutions mirror the
law and verify consistency across
repositories

TM-5 Exposure of unpub-
lished drafts or signing
keys by a corrupt
employee (Adv-2, I)

Multiple keys are required for up-
dates; sensitive keys can be stored
offline and rotated if needed

TM-6 Compromise of online
components in the
publishing process to
inject unauthorized
or malicious content
(Adv-3, E)

Updates must be signed using
offline keys; online systems in-
volved in publishing cannot autho-
rize changes

TM-7 Temporal deception via
as-of-date mislabeling
(Adv-1/Adv-2/Adv-3,
S/T/R)

Signed temporal fields in tar-
gets; strict commit-by-commit val-
idation; monotonic snapshot/times-
tamp checks; mirror update logs
detect post-hoc rewrites

needed. The authentication repository contains cryptograph-
ically signed data describing the expected states of each
associated target repository over time.

Each authentication repository is both a fully compliant
TUF repository and is maintained under version control. This
repository type was introduced to address the limitations of
relying solely on Git or hosting platforms like GitHub for
integrity. Legal documents are high-value assets, and the sys-
tems responsible for storing or managing them must withstand
threats such as compromised accounts, stolen credentials, or
unauthorized changes—threats explored further in Section III.

While TAF includes the standard TUF metadata files and
follows the TUF specification for how target files are handled
and signed, it imposes additional requirements on the structure
and semantics of target files to support legal archiving. Ad-
ditionally, TAF strongly encourages the use of offline keys
for high-privilege roles, following TUF best practices for
minimizing the impact of key compromise.

To determine which target repositories to validate and
download, each authentication repository includes a spe-
cial target file called repositories.json. Each repository is
referenced using a namespace/name format, where the

namespace typically corresponds to the jurisdiction or gov-
ernment body responsible for publication—for example,
dccouncil/law-xml. This structure helps distinguish be-
tween repositories in multi-jurisdiction deployments. These
human-readable identifiers do not authenticate the publisher;
repository provenance must still be established through out-
of-band mechanisms discussed later. The file is signed using
a threshold of signatures, with keys ideally stored on separate
hardware devices, ensuring that no single key compromise can
authorize malicious repository updates.

Another target file expected by TAF is mirrors.json, which
defines where the repositories are hosted. Because this file is
signed, it reduces the risk of redirect-based attacks or acci-
dental use of unofficial sources. Publishers may also include
fallback locations to ensure availability if the primary host
becomes unreachable.

For each target repository listed in repositories.json, there is
a corresponding target file that records the most recent valid
state of that repository. This includes an immutable identifier
for the repository state, typically a commit hash, and the
associated branch if applicable. Because a repository state is
considered valid only when its identifier appears in signed
metadata, updating a target repository must be coupled with
updating the corresponding target file and signing the update
with a threshold of signatures. Moreover, the authentication
repository is version-controlled, meaning that its history estab-
lishes a cryptographically verifiable record of which repository
states were considered valid over time.

Storing only an immutable identifier for each repository
state serves an important purpose: it avoids treating every
individual file in a target repository as a separate TUF target.
This design delegates responsibility for internal structure and
file-level integrity to the underlying storage layer (Git), which
is particularly important for repositories containing large vol-
umes of content, such as the DC Council’s multi-gigabyte legal
text repository with tens of thousands of files [49]. Tracking
individual files in TUF metadata would introduce significant
performance and maintenance overhead.

Target files may also include publisher-defined temporal
metadata, such as effective dates, enactment dates, or pub-
lication timestamps (see Figure 1). When present, these

Fig. 1: Per-repository trust linkage. A delegated role in the
authentication repository signs a targets file that records the
state of a target repository.

timestamps are signed alongside the rest of the metadata. In
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real-world deployments, this practice allows clients to retrieve
the law as it was understood on a specific date.

Furthermore, TAF supports delegation of target roles, a fea-
ture inherited from TUF that allows signing responsibilities to
be assigned to distinct roles. This lets organizations distribute
signing authority according to operational responsibilities;
for example, one role may handle updates to legal texts
while another signs changes to presentation-layer assets (see
Figure 2). Delegation also improves security by limiting the
scope of each key and reducing the impact of a compromise.

Fig. 2: The top-level targets role delegates trust to other
roles for each target repository. Delegated roles sign metadata
binding target files to specific commit hashes.

B. Interlinking Authentication Repositories

Each publisher using TAF typically maintains a set of
repositories, including an authentication repository and one
or more associated target repositories.This setup works for
distributing their legal materials securely in the near term, but
if there is only a single official copy of these repositories, or
even if multiple redundant copies exist but are all maintained
by the same entity, such a setup is unlikely to stand the test of
time. With time, there is also the risk of the original publishing
entity abandoning the repository or acting maliciously, for
example under external pressure. To mitigate these risks, TAF
supports the establishment of a broader network of trustworthy
institutions, such as law libraries and archives, each of which
maintains its own copy of repositories published by others.

TAF reuses the existing structure of authentication reposi-
tories to support this functionality. Specifically, it introduces a
special target file called dependencies.json, which lists external
authentication repositories in the same namespace/name
format used in repositories.json. The URLs for these reposi-
tories are resolved using the same mirrors.json mechanism.

Each entry in dependencies.json includes an identifier cor-
responding to a verified state of the referenced authentication
repository. Because namespace identifiers in TAF are not
cryptographically bound to real-world identities, consumers
must perform an out-of-band verification to ensure that the
repository was actually published by the intended institution
and not spoofed by an attacker. This process typically in-
volves coordinating with the original publisher to confirm the
repository’s authenticity and establish a known-good starting
point. Once this trust is bootstrapped, all subsequent repository

states are validated using signed metadata recorded in the
authentication repository. The mechanics of this validation are
described in the next subsection.

In addition to dependencies.json, each referenced authenti-
cation repository has its own associated target file that records
the validated states retrieved during previous updates. This es-
tablishes a cryptographically verifiable log of cross-repository
validation events. Maintaining this log allows mirrors to record
which repository states they validated at the time of update and
detect if the publisher later removed or rewrote part of their
authentication history. However, if multiple institutions mirror
the same repository and later disagree about its contents,
it may not be possible to automatically determine which
version is correct. A government could pressure all domestic
publishers and hosting entities to alter history, while a foreign
mirror, beyond that government’s reach, may preserve the
authentic record.

Several architectural decisions described in this and the
previous subsection address key threats outlined in Table I.
Rollbacks (TM-2) are prevented by identifying valid repository
states using immutable commit hashes. Single-key compro-
mise (TM-3) and infrastructure attacks (TM-6) are mitigated
through threshold signatures and offline key storage. Unau-
thorized updates (TM-1) and publisher disappearance (TM-
4) are addressed through signed metadata and the use of
independently maintained backup copies. The impact of leaked
keys or premature publication of draft content (TM-5) is
reduced through delegated roles, key rotation, and multi-party
signing.

C. Update Process

The updater is TAF’s core component that ties the system
together. Its job is to securely clone each authentication
repository, along with all referenced authentication and target
repositories, onto the user’s local machine. Each time the
updater runs, it checks for changes and performs validation
before applying updates to local copies. Validation ensures
that the information recorded in the authentication repository
matches the actual state of each associated repository. This is
TAF’s main mechanism for detecting unauthorized changes.

Every update cycle begins by validating the authentication
repository itself. Since this repository contains data about
the expected state of all associated target repositories, and
potentially other authentication repositories, it must be trusted
before any further validation can proceed. Each authentication
repository is expected to be a valid TUF repository at every
revision. To ensure this, the updater performs sequential vali-
dation: rather than checking only the latest metadata, it verifies
the entire range of new revisions one by one. If any revision
in the update range fails validation, the updater halts and
retains only the last known valid revision. The actual validation
between two revisions follows the TUF specification [50]. It
checks whether metadata files are properly signed, version
numbers increase correctly, and target files are valid according
to the signed metadata.
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Once the authentication repository has been validated, the
next step is to verify each referenced target repository using the
TUF metadata and target files whose validity was confirmed
in the previous step. The validation of target repositories
involves checking whether the recorded state identifiers (such
as commit hashes) in the target files match the actual state
of each target repository. The overall workflow is depicted in
Figure 3.

To avoid re-validating the entire repository history on each
run, the updater records the last successfully verified state of
each repository in a local configuration file. This file is treated
as untrusted and is always verified against the current state
of the repositories before resuming from that point. If any
discrepancies are found, the updater falls back to validating
the full history from the beginning.

If the authentication repository references additional authen-
tication repositories, each one is validated recursively using the
same procedure: first verifying the authentication repository
itself, then checking its associated target repositories. The
updater also verifies that the referenced repository includes
the known valid state that was designated during initial out-
of-band verification. If this state is not present, the update fails.
For every successful update to a referenced authentication
repository, a corresponding target file is created or updated
in the referencing repository to record the revisions that were
pulled and verified. This forms a signed update log, akin to a
transparency log, allowing future verifiers to trace and audit
the sequence of updates.

Fig. 3: Updater workflow in TAF. The updater validates the
authentication repository and all referenced target repositories,
checking both remote and local consistency and aborting on
the first mismatch.

Although the update process is conceptually straightfor-
ward, real-world use introduces several complications. In the

best case, all remote repositories provide valid, up-to-date
metadata and the local clones remain unchanged since the
previous updater run. In practice, however, users may make
manual changes during regular publishing workflows. This
may happen due to urgency, automation scripts, or lack of
awareness. Users might also apply updates locally without
running the updater, revert changes, delete history, or update a
single repository in isolation. They may also commit changes
without pushing them. These actions can leave repositories in
divergent or inconsistent states.

TAF’s updater is designed to detect and repair such incon-
sistencies by comparing the local state of each repository to the
expected state recorded in the last validated signed metadata.
If local changes are found that do not match verified history,
such as unpushed commits, missing updates, or unauthorized
rewrites, the updater halts and reports the discrepancy. An
optional flag enables automatic repair by removing unverified
commits and restoring the repository to its last valid state.

While the updater can detect and resolve inconsistencies
within a single environment, reconciling conflicting repository
states across multiple institutions is a much harder problem.
As discussed in the previous section, a coordinated rewrite,
possibly under external pressure, could lead to a majority of
actors hosting a modified version of history. In such cases, the
updater cannot determine which version is correct, and conflict
resolution is outside the scope of the current system. Finally,
to reduce the risk of introducing invalid updates during routine
use, TAF installs a pre-push Git hook in each authentication
repository. If validation fails, the push is rejected.

D. Temporal Fields and Timeline Semantics

TAF target files can include publisher-defined temporal
metadata, such as effective or applicability dates, which are
signed alongside the rest of the TUF metadata. This allows
clients to answer as-of-date queries (for example, “what was
the law on January 1, 2023?”) by identifying the latest repos-
itory state whose signed temporal fields indicate legal validity
on that date. These dates are defined outside TAF, typically by
the codification process, which determines which timeline each
repository state belongs to. TAF itself records the branch field
in the target metadata, enabling the preservation of multiple
legal timelines within the same repository. Future-dated builds
are committed to separate branches and remain inactive until
their effective date arrives. A continuous integration (CI)
process evaluates the local time policy at each execution and
merges the future-dated branch into the canonical branch only
when the date is reached. TAF does not include a secure time
oracle for determining the current time. Instead, it assumes that
the deployment environment provides time input, and defining
a secure time-source interface is deferred to future work.

Temporal enforcement: When a future-dated state becomes
canonical is determined by the deployment’s CI policy. TAF
verifies whatever state the publisher has designated as valid,
including its signed temporal fields.
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E. Tooling for Repository Management

Even with a robust updater, the system would offer limited
value if those responsible for publishing the law or maintaining
repositories found it difficult to keep them in a valid state
during regular updates or key rotations. To address this, TAF
provides a command-line interface (CLI). Through this CLI,
users can run the updater, which emits clear, actionable error
messages when validation fails. For example, highlighting mis-
matches such as “expected commit A, but found commit B”. In
addition to validation, the CLI supports all core maintenance
operations on the authentication repository, including updating
expiration dates, resigning metadata, rotating keys, managing
roles, and registering new repositories. These tools are de-
signed to satisfy Requirement 3 (Usability and Operational
Clarity), ensuring that users can maintain secure repositories
without needing deep technical expertise.

For more advanced use cases, TAF also provides a Python
API that enables developers to integrate authentication repos-
itory management into external systems. For instance, a pub-
lishing entity may use the API to automatically update TUF
metadata as part of their own law publishing pipeline.

F. Security Argument

TAF provides authenticity, integrity, and verifiable history
for all repositories it manages. This subsection states the as-
sumptions under which these guarantees hold and summarizes
why they follow from the system design.

Assumptions and authenticity guarantees. TAF assumes
a trust-on-first-use model: each hosting institution performs
an out-of-band check to obtain a known-good initial state of
a publisher’s authentication repository before adding it to the
set of repositories it mirrors. (for example, by coordinating
directly with the publisher or verifying DNS records under
the publisher’s control). Publishing a bare commit hash on a
website is not sufficient to rule out a spoofed repository. Third
parties that clone publishers directly must perform the same
check, whereas cloning from an institution that has already
done so only requires cross-checking the recorded trusted state.
We also assume that multiple copies of each repository exist in
practice, including offline backups, and that the cryptographic
algorithms used by TUF and the Git hash functions remain
secure on a decade time scale; extending protection beyond
that horizon is left to future work.

Once an initial state is trusted, later states are verified using
signed TUF metadata and target files that bind specific commit
hashes. The updater validates each new revision in sequence.
Any attempt to introduce unauthenticated content or rewrite a
previously validated state produces a mismatch in signatures,
version numbers, or commit identifiers and causes validation
to fail. Attempts to remove newer content are also detectable:
a previously validated offline copy reveals that the remote
repository is missing commits that were authenticated earlier,
and hosting institutions maintaining their own validated update
records can detect the same discrepancy.

Cross-repository security. For dependencies on other au-
thentication repositories, the same argument applies. A refer-

encing repository records validated states of external reposi-
tories in its own signed target files. Any attempt to rewrite or
remove part of a dependent repository’s authentication history
produces an observable inconsistency.

Under these assumptions, TAF preserves the long-term
verifiability and integrity of repository contents for as long
as the assumptions hold, with Git providing the limiting time
horizon.

Long-term validity of signatures. TUF already supports
algorithm agility: deployments can rotate keys and adopt
stronger algorithms over time, while historical signatures
remain valid as long as their primitives are still secure.
In TAF, once a past state has been authenticated, it stays
verifiable even as newer configurations evolve. Our goal is
to maintain cryptographic strength on decade-scale horizons,
with operators expected to migrate to newer schemes through
routine key rotation when older primitives weaken. TAF is also
among the first real-world deployments to adopt post-quantum
signature schemes.

V. IMPLEMENTATION

TAF is implemented in Python and currently supports Git
as its only version control backend. The system is structured
around core components that represent Git repositories, TUF
repositories, and authentication repositories that incorporate
both. These components form the foundation for the updater,
a programmatic API, and a command-line interface (CLI)
designed for both technical and non-technical users. TAF is
already deployed in 14 jurisdictions, including city, state, and
tribal governments.

Git operations are handled via pygit2, and TUF
repositories are implemented in accordance with the full
TUF specification using python- tuf, including meta-
data management, role delegation, and signature verifica-
tion. Signing operations can be performed using hardware-
backed keys (YubiKeys), with YubiKey support provided via
yubikey-manager, although users may choose to use
software-based keys for specific roles depending on opera-
tional needs or threat models.

TAF operates at the repository level and is agnostic to any
document-level electronic signature format used for individual
statutes or regulations. In practice, jurisdictions that already
rely on advanced or qualified e-signatures (for example,
PAdES [51]–[54] for signed PDFs) can layer those schemes
on top of TAF’s metadata, treating repository signatures as
complementary provenance for the underlying documents.

To simplify setup for non-technical users, each TAF release
includes self-contained executables that bundle the system
with a Python interpreter. These packages are built and pub-
lished through a continuous integration pipeline, which also
produces a PyPI package.

The codebase is extensively tested, with unit tests covering
core components such as TUF logic and Git operations, and
integration tests validating the updater, API, and CLI across
a range of valid and invalid repository states. All tests run
through continuous integration on every push. The updater
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has been optimized through parallel cloning, incremental val-
idation, and an option to validate authentication repositories
independently when full verification is not needed.

A long-term archive is only as strong as its signing keys,
which can age out, be misplaced, or be exposed during staff
turnover. To keep the repository trustworthy after such events,
TAF makes key rotation routine: a single CLI command
replaces an old key, updates metadata, and ensures clients
accept the change without disruption. By turning a risky
security task into simple maintenance, TAF closes the ”single
key theft”” threat (TM-3) and allows non-technical staff to
recover quickly from compromise or expiry.

In parallel, TAF’s integration with version control is de-
signed for long-term flexibility. Although Git is currently the
only supported backend, all Git-specific logic is encapsulated
in a single module. This allows the version control layer to
be replaced with minimal changes to the updater or metadata
logic, as long as the alternative system supports core concepts
such as state identification, revision history traversal, access to
file contents at a specific revision, and cryptographic integrity
guarantees for stored content. Git’s ongoing SHA-1 to SHA-
256 transition, and its lack of canonical repository semantics,
meaning the inability to determine whether two repositories
represent the same complete and trusted history, remain limi-
tations, revisited in Section VIII.

VI. EVALUATION

Because TAF is used on real-world repositories, we chose
to use them instead of demo ones created specifically for the
paper. Before evaluating TAF, we consulted with our IRB
for approval. Our IRB office determined that this project is
not one that constitutes human-subjects research and does not
require IRB review as our work did not involve human subjects
research as defined by 45 CFR 46.102(e) [55].

We evaluate TAF along three dimensions that correspond
directly to the threat scenarios defined in Section III: (1)
detection of unauthorized or tampered updates (TM-1 to TM-
3), (2) resilience to publisher or mirror failure (TM-4), (3)
confidentiality and protection of the publishing pipeline (TM-
5 and TM-6) as well as protection against temporal deception
in as-of-date queries (TM-7).

A. Security Analysis

TAF defends against attacks common in Git-based distribu-
tion systems, with a security model specifically focused on the
long-term authenticity and availability requirements of digital
legal materials. TAF’s threat model considers several potential
attacks that could compromise the repositories or the signing
infrastructure.

To aid in understanding the threat scenarios considered
and the corresponding TAF behaviors, Table II summarizes
the attacker capabilities, their attempted actions, the resulting
system behavior, and whether the attack would be detected
by the TAF updater. This overview provides context for the
detailed examples that follow.

One common scenario is the compromise of a publisher’s
hosting platform account or development machine (TM-1 in
Table I). If an attacker pushes commits directly to a target
repository without updating the authentication metadata, the
updater does not attempt to pull new data. However, if it
detects unrecorded changes, it raises an error and retains
the last authenticated state. Listing 1 shows the single-line
message a client sees in this situation.

Listing 1: Updater output on unexpected target commits
Target repository mohicanlaw/law-html does not

allow unauthenticated commits,
but contains commit(s) 2648

aef6db9bacb6c5ce8de49b3015492eb9e0c3
on branch publication/2025-02-20

When the attacker also modifies the corresponding tar-
gets/*.json file (“Target + targets file”), the update is still
blocked because the signatures in that file no longer match
the hashes recorded in snapshot.json. A more sophisticated
adversary might edit every metadata file (“All metadata files”),
but without the necessary private keys the signature-threshold
check fails and the updater halts.

If snapshot and timestamp keys are stolen (“Snapshot /
timestamp keys”), an attacker can attempt a rollback or freeze
attack by serving older metadata. In practice this fails because
TAF validates commits strictly monotonically and verifies that
file hashes never regress; the version or hash mismatch is
caught immediately.

We also emulated a coordinated force-push that deletes
authenticated commits from both authentication and target
repositories (“Consistent force-push”). A fresh clone appears
valid, but any client that had already advanced beyond the
removed commit detects the missing hash on its next validation
pass and raises an error until the publisher restores the history.

The only scenario that escapes automatic detection is a full
compromise of all signing keys with enough key material to
satisfy every role’s threshold (“Full key compromise”). We
note, however, that such an attack requires physical or coercive
access to multiple hardware tokens distributed across different
custodians, a bar significantly higher than typical software
update systems.

Across all tested rows in Table II, the updater either (i)
leaves clients on a known-good state or (ii) aborts before any
unauthenticated content can be applied. No silent acceptance
or partial rollback was observed.

B. Usability and Operational Robustness

Beyond protecting against intentional attacks, TAF also aims
to minimize accidental mistakes during the publishing process.
It is not uncommon for maintainers to make unintended
changes that leave a repository in an invalid state. To reduce
this risk, the TAF updater installs a pre-push Git hook
whenever an authentication repository is cloned. This hook
runs a complete validation check before allowing any push.
While an attacker could bypass this hook, its presence helps
eliminate the vast majority of accidental errors that would
otherwise invalidate the repository.
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TABLE II: Evaluated threat scenarios and updater behavior. TM-1 through TM-6 correspond to the threat model in Section III.
“Detected” indicates that the updater halts with an error.

Threat Adversary action Updater outcome Detected

TM-1 Compromised account or machine with push permission. Attacker commits directly
to a target repository.

Updater does not pull target
changes; metadata unchanged.

Yes

TM-1 Compromised account or machine with push permission. Attacker commits to a target
repository and updates the corresponding targets/*.json target file.

Signatures fail verification; up-
date rejected.

Yes

TM-1 Compromised account or machine with push permission; attacker understands TUF
structure. Attacker commits to a target repository and edits targets, snapshot,
and timestamp.

Fails signature threshold check;
update rejected.

Yes

TM-2 Machine or account with force-push permission compromised. Attacker removes
commits consistently across target and authentication repositories.

Fresh clone validates; exist-
ing clones raise error until re-
paired.

Partial

TM-3,
TM 6

Partial infrastructure compromise leaks snapshot and timestamp keys; attacker can
also push to repositories. Attacker serves outdated metadata to induce rollback or
freeze.

Version/hash mismatch
detected; update rejected.

Yes

TM-5 Full compromise of signing infrastructure and repositories; attacker controls thresh-
old keys for all roles. Attacker signs and pushes a malicious update that meets the
signature threshold.

Updater accepts; no alarm
raised.

No

TM-7 Adversary edits the temporal fields in the signed target file to mislabel the as of date. Commit-by-commit validation
finds the mismatch. Snapshot
and timestamp checks fail. Up-
date rejected.

Yes

Although not a security concern, one of the most common
problems publishers encounter in practice is the accumulation
of unintended or temporary commits in their local repositories.
This often happens during testing, or day-to-day use of the
repositories, when a publisher may commit changes locally
without intending to publish them. When the updater is run
in this state, it raises a validation error because the local
repository diverges from the authenticated state recorded in
the metadata. They might also manually update individual
repositories without running the updater, which can leave the
system in an overall invalid state.

To address this without requiring manual intervention or a
full re-clone, TAF supports a --force flag. When invoked,
the updater will forcibly align the repository with the most
recent validated state, and then apply any available updates.
The option provides a safe recovery path for publishers who
are aware of the inconsistency and intend to proceed. This sig-
nificantly improves operational robustness while maintaining
the integrity guarantees required for secure publication.

C. Performance

This subsection quantifies the runtime cost of TAF ’s updater
and answers four questions:

(i) How long does a worst-case “fresh clone + full history
validation” take on real deployments? (ii) How does that
cost scale with the number of authenticated commits and
target repositories? (iii) What is the overhead of day-to-day
incremental updates once a repository already exists on disk?
(iv) How portable is performance across operating systems and
commodity hardware?

We present measurements from five production instances,
derive asymptotic behavior (O(T ) +O(N) vs. O(∆N)), and
discuss OS-level variations observed in the field.

Experimental set-up. All benchmarks ran on a bare-metal
workstation with an Intel Core i7-14700K (20 cores, 28
threads, 33 MiB L3, 5.6 GHz turbo), 32 GiB DDR4-3200,
and a Samsung 990 PRO 1 TB PCIe 4.0 NVMe SSD. No
virtualization was used. Hyper-Threading and Turbo Boost
were left enabled. Repositories resided on the same NVMe
volume, eliminating I/O interference. The updater uses one
worker per CPU core by default.

Workloads. We selected five real deployments covering
295–3346 authenticated commits. For each repository we
measured (i) clone + validate wall time (taf repo clone),
and (ii) pure validation time, obtained by subtracting Git
transfer time. Target repository commit counts are reported
to show dataset scale, although only commits referenced in
authentication metadata are validated.

TABLE III: End-to-end cloning and validation performance of
the TAF updater.

Jurisdiction Auth Clone Val. Thpt. Targets
Cmts. (s) (s) (c/s) Cmts.†

cityofsanmateo/law 3346 60.3 20.8 160.9 5958
sanipueblo/law 2336 37.4 14.8 157.8 4742
mohicanlaw/law 643 13.6 3.9 165.3 592
DCCouncil/law 582 230.0 3.6 163.9 1241
tmchippewa/law 295 11.4 2.1 142.5 523
†Total commits across all target repositories.

Complexity. Let N be the number of authentication com-
mits since the last trusted state and T the size of Git ob-
jects transferred. The first invocation (clone) is therefore
O(T )+O(N), dominated in practice by network and storage
I/O for T . Table III captures this worst-case path. Subsequent
incremental runs skip Git transfer and resume validation from
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last_validated_commit, making cost strictly O(∆N),
where ∆N ≪ N in routine operation. Empirically, San Mateo
updates that add a single commit complete in < 300 ms,
comparable to git pull. This keeps publication latency low
while retaining full cryptographic auditability.

Results. Table III shows that authentication commit vali-
dation sustains roughly 150–165 commits/s across the entire
range of repository sizes. City of San Mateo, the largest
deployment, validates 3346 commits in 20.8 s. Extrapolated
linearly, a 50 000 commit archive would finish in about 5
minutes. Clone time is dominated by Git object transfer and
scales with raw repository size. For example, DC Council hosts
sizable HTML and XML assets, so transfer inflates updater
time to 230 s, even though validation itself completes in 3.6s.
Once repositories are cached locally, subsequent incremental
runs validate only new commits as noted above.

Scalability and portability. Because validation cost grows
linearly with N and is parallel across repositories, throughput
improves with core count. Peak memory stayed below 250
MB RSS even for the largest workload. OS variation. Our
measurements use Linux; production deployments show that
the identical workload on Windows incurs a 1.5–2× slowdown
due to pygit2 file-system overhead and less aggressive mmap
caching on NTFS. The asymptotic behavior is unchanged,
but operators targeting Windows servers should provision
proportionally faster storage or longer maintenance windows.

Take-away. The updater’s first clone path is bounded by
network I/O. Pure validation is fast, linear, and parallelizable.
Even on commodity hardware, and despite slower pygit2
performance on Windows, TAF accommodates updating leg-
islative histories without disrupting daily publication schedules
or over burdening archival mirrors.

D. Deployment Experience

TAF has been deployed across 14 publishers, including
Washington, D.C. and the City of San Mateo. Washington,
D.C. began working with our team in 2017 to modernize the
preparation and publication of its statutes, and the District’s
subsequent adoption of UELMA created a formal requirement
for long-term verifiability. This prompted the development of
TAF in 2019 as an open-source framework for secure legal
publication. An IMLS-backed rollout at the National Indian
Law Library has brought eight tribal governments online since
2020, and a statewide deployment for Maryland is currently
underway. Together, these deployments mean that TAF has
been thoroughly battle-tested under real-world conditions. In
the following discussion, we use ”users” to refer to the
publishing staff who operate TAF within their organizations.

In all deployments, TAF has been integrated into the ex-
isting publication workflows of the publishing entities. When
publishers first begin using TAF, they complete a one-time
setup that includes configuring the authentication repository.
As part of their normal publishing pipeline, publishers generate
updated XML, HTML, and other output formats and commit
these changes to their repositories. TAF does not replace this
process. Instead, it acts as the final step in the pipeline and

does so with minimal exposure of its inner workings. When
ready to publish updates, users are prompted to insert signing
YubiKeys, and TAF handles the rest.

The observations below summarize how users perceived
TAF in practice and how its design aligned with their existing
mental models.

To begin with, all users participated in training sessions
introducing TAF. Some initial feedback reflected assumptions
carried over from previous systems. Several publishers were
hesitant to grant broader repository access, since in their earlier
workflows database access usually implied write access. Once
they understood that TAF restricts modifications to signed
updates and that read access cannot alter content, they became
comfortable allowing broader visibility into their repositories.

The permanence of history was also a shift. Publishers were
accustomed to systems where mistakes could be silently edited
or overwritten. With TAF, corrections appear as new signed
commits rather than deletions. Once this was framed as an
archival requirement, users generally viewed it as a benefit. If
a version of the law was published as official, even for a single
day, it was still official for that period, and erasing it due to an
unintentional error would be misleading—a perspective TAF
helped publishers adopt.

Publishers also appreciated being able to check whether
two copies of a repository are identical or if one is lagging
behind. Authenticated clones and detection of missing history
or rewrites clarified which copy is authoritative, addressing a
long-standing operational pain point. Preparing to adopt TAF
led several publishers to review decades of materials, during
which they identified and corrected issues such as missing
paragraphs and incorrect enumerations dating back to the
1970s.

Additionally, TAF is being trial-integrated into public library
kiosks to provide citizens with verifiable offline access to
current and historical versions of the law. These deployments
will introduce a new class of users outside the publishing
entities, and feedback from public-facing installations is not
yet available.

VII. RELATED WORK

Numerous systems have tackled the problem of securely
storing and distributing digital content, but none fully ad-
dress the combined needs of long-term preservation, ver-
ifiable provenance, and time-based access required in the
legal domain. Traditional digital preservation tools emphasize
durability and redundancy, but lack cryptographic guarantees
or mechanisms to authenticate content provenance. In contrast,
other systems built on TUF prioritize fast updates and short-
term integrity, without preserving verifiable history. Notably,
no prior system supports cryptographically verifiable retrieval
of a corpus as it existed at a given point in time. This section
reviews both categories and provides a detailed comparison
with TAF in the context of archival tools, along with an
overview of related TUF-based efforts.
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A. Existing Digital-Archiving Solutions

LOCKSS (Lots of Copies Keep Stuff Safe) [56] is a long-
standing digital preservation system originally built around
a peer-to-peer polling protocol among mutually distrusting
nodes. Content is ingested through web crawling and auto-
mated content registration based on publisher input [57]. Suc-
cessive crawls may capture multiple copies of the same URL,
but LOCKSS does not track or relate these as meaningful
versions of a specific document. LOCKSS 2.x introduces a
substantial architectural rework that simplifies deployment and
improves local fixity checking, but neither version of LOCKSS
authenticates ingested content against a trusted origin.

DSpace is a widely adopted open-source repository plat-
form to manage and preserve digital content [58]. Content
is organized into items, each comprising multiple bitstreams
(files) and associated metadata. Ingest is performed by au-
thorized users through a web interface, command-line tools,
or API-based deposit protocols. While multiple versions of
a digital item can be represented as separate items and
manually linked via metadata, DSpace does not provide native
version tracking. For preservation, it computes and stores per-
bitstream checksums in its internal database and includes a
fixity checking task to detect local corruption. However, it does
not establish provenance for ingested content, like LOCKSS.

Archivematica is an open-source tool for packaging content
into archival formats, typically used with external backends
such as LOCKSS or cloud object stores [59]. It performs
format validation and embeds checksums for fixity checking,
but does not establish cryptographic provenance or tamper-
evident history. Preservica is a proprietary platform offering
ingest and fixity checking, but its internal mechanisms are not
openly auditable [60]. As neither system provides a standalone
preservation solution with open and integrated guarantees, we
exclude them from closer comparison.

B. Other TUF-Based Systems with Related Goals

Repository Service for TUF (RSTUF). RSTUF is an open-
source project that streamlines TUF deployment and update
workflows via a microservice backend [61]. It improves us-
ability for systems adopting TUF but is not designed for long-
term preservation or full-history validation, focusing instead,
like TUF, on the secure delivery of the latest update.

gittuf [62]. gittuf is a security layer for Git repositories
that enables the definition and application of a write access
control policy for Git repositories. gittuf’s metadata is based
on that of TUF, but has some additional extensions compared
to that of the TUF standard. While seemingly related to TAF,
gittuf applies TUF-like policies to a git repository while TAF
stores historical TUF metadata (and secure time information)
in a git repository. Put differently, gittuf focuses on improving
the security of a git repository by applying a limited set of
TUF policies (revolving around the targets role), thus it is
inherently geared for rapid, repeated releases where policy
checks involve only the current policy at that moment. In
contrast, TAF contains what is effectively a series of full TUF
repositories (all four TUF roles) and time metadata. Thus TAF

is more suited for periodic releases of information that needs
more robust protection against tampering.

C. Comparison with Related Systems

Table IV compares TAF to archival and TUF-based systems
across five core properties relevant to legal publishing. We
include Git and TUF, along with derived tools like RSTUF
and gittuf, to illustrate which relevant properties they support.
However, these tools are not designed as standalone archival
systems and do not meet the full requirements for long-term
archival integrity. Our primary comparison centers on archival
systems, LOCKSS and DSpace.

TABLE IV: A comparison of various systems and TAF across
core properties: 1⃝ Retrieving and authenticating past states,
2⃝ Cryptographic provenance , 3⃝ Support for authenticated
as-of- date queries), 4⃝ Decentralized validation of indepentent
mirrors, 5⃝ Repo-compromise resilience.

System 1⃝ 2⃝ 3⃝ 4⃝ 5⃝ Domain

LOCKSS Y N N P P Archiving
DSpace P N N N N Archiving
Git P N N N N Version control
TUF P Y N P P Software updates
RSTUF N Y N N P Software
gittuf Y Y N N P Source code
TAF Y Y Y Y Y Legal documents

Y = Yes, N = No, P = Partial

Archival systems vary in how they conceptualize preserva-
tion, including what counts as trustworthy storage and which
aspects of content and history they aim to preserve. Both
LOCKSS and DSpace focus on long-term access to individual
files. While DSpace organizes items into collections, and
both systems retain multiple instances over time, they do not
automatically relate these as meaningful, linked versions or
maintain a coherent, cryptographically verifiable repository-
wide state. These designs implicitly assume infrequent updates
or that the latest version is sufficient for most users. In contrast,
TAF models the archive as a sequence of signed, linked
snapshots, enabling authenticated, time-bounded queries over
the entire repository.

Both systems treat ingestion as the starting point of trust.
Once content is ingested, its integrity is protected, but the
correctness of the ingested version is assumed rather than
verified. DSpace and LOCKSS rely on basic access control,
so a single compromised admin can alter the archive. As
discussed above, TAF requires not just repository access but
a quorum of valid signatures.

An additional pillar of long-term preservation is the ex-
istence of multiple independently verifiable mirrors. But
majority-based repair assumes honest nodes—an unrealistic
guarantee in adversarial legal settings. TAF also aims to
involve a network of institutions, but resolving disagreements
among them remains an open challenge. DSpace offers no
comparable mechanism for cross institutional validation.
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D. Performance and Deployment Comparison

To complement our security analysis we evaluated the
performance and deployment characteristics of TAF compared
to DSpace and LOCKSS. Due to fundamental differences
between the tools not all aspects are directly comparable. In
particular TAF performs full-state cryptographic validation at
download time whereas DSpace and LOCKSS do not reverify
integrity upon retrieval. As a result metrics like download time
and validation behavior reflect fundamentally different models
and are not directly comparable. We therefore focus on ingest
performance and setup complexity.

We benchmarked ingest performance using the current ver-
sion of a medium-sized legal repository from the City of San
Mateo (56,890 files, 601.7MB). All tests were run on a modern
Linux laptop. For LOCKSS, we hosted the files via Python’s
HTTP server to enable crawling (adding a slight overhead of
0.1s per request). Ingest took just under two days ( 3s per file).
For DSpace, we followed its item-based model by grouping 5
related files (e.g., multiple formats of a law) into 11,325 items,
which were imported via the CLI in approximately 5 hours.
With TAF, ingestion involves committing and pushing content
to a set of Git repositories. A pre-push validation hook runs
when pushing to the authentication repository, and the entire
process completes in under 5 minutes.

System Input Time Notes

TAF 56,890 files <5 min Git clone + validate
DSpace 11,325 items ∼5 h Grouped import via CLI
LOCKSS 56,890 files ∼2 days HTTP crawl

TABLE V: Ingest performance for 56,890-file dataset on a
Linux laptop (20 cores, 512GB SSD, 16GB RAM).

The results are summarized in Table V and demonstrate that
existing tools are not optimized for injecting large numbers of
granular items, a design choice preferred in this context as
it enables precise change tracking and efficient retrieval of
individual legal documents and their respective versions.

Additionally, we note that both LOCKSS and DSpace
require substantially more involved installation and configura-
tion, often involving multiple dependent services, orchestration
frameworks, or manual setup steps not required for TAF.

VIII. LIMITATIONS AND FUTURE WORK

Git object hashes. Git still stores objects under SHA-1,
which now carries practical collision risk. Since Git v2.29 the
core tool can create repositories that use the stronger SHA-
256 hash format [63]. Converting a large legislative history,
however, would break every existing commit identifier. For
the deployments studied in this paper we continue to serve
SHA-1 repositories while monitoring the field for real-world
pre-image attacks; a controlled transition will be scheduled
once SHA-256 repositories are widely supported by hosting
platforms and tooling.

Cryptographic agility. NIST recommends moving to
quantum-resistant primitives by 2035. Git currently recognizes

only SHA-1 and SHA-256, so future moves to SHA-512/256
or a post-quantum hash will require upstream changes fol-
lowed by a one-time re-signing of authentication metadata.
TAF’s repository abstraction isolates most hash handling,
making such a migration a bounded engineering task rather
than a redesign.

Publisher-defined dates. In current deployments, a contin-
uous integration (CI) process or scheduled task merges future-
dated branches into the canonical timeline once the effective
date is reached, according to the publisher’s policy. While TAF
does not currently enforce time authenticity, the introduction
of a pluggable time-source interface—such as authenticated
network time or multi-party time attestations—is left as future
work. This limitation does not compromise the verifiability
of signed temporal assertions already embedded in the target
metadata.

Long-term horizon. Present deployments target a ten-year
audit window, matching hardware refresh cycles for the host-
ing jurisdictions. Extending that guarantee to several decades
will require periodic cryptographic upgrades and packaging
the verifier toolchain itself in a signed, self-contained bundle.
Work on that “century profile” is under way.

Ongoing engineering. Two prototypes are in progress: (i) a
usability study of key rotation and rollback recovery performed
by non-technical clerks and (ii) a pilot integration of in-toto
with TAF so that the entire legislative build pipeline—from
raw source files to the signed, published state—carries end-
to-end supply-chain provenance [64]. These enhancements are
incremental and do not affect the security claims evaluated in
this paper.

IX. CONCLUSION

Access to trustworthy law is a cornerstone of any mod-
ern democracy, yet the tools traditionally used for software
and data security have rarely been applied to legal texts.
The Archive Framework (TAF) bridges that gap. By com-
bining Git’s proven version-control semantics with TUF’s
compromise-resilient metadata, TAF turns every statutory re-
vision into a cryptographically and independently verifiable
record. Publishers gain a familiar workflow for drafting and re-
leasing amendments; libraries and archives gain a lightweight
mechanism for mirroring and auditing entire legal corpora; and
end-users, from judges to researchers, gain confidence that the
statute they see today will match the one cited years from now.

TAF’s design addresses three persistent challenges in this
domain. First, it guarantees long-term authenticity without
relying on any single host or cloud provider, making it
robust to political change or infrastructure failure. Second, it
offers tamper evidence and rapid key-revocation workflows so
that even highly resourced adversaries cannot silently rewrite
history. Third, it packages these guarantees behind a CLI
and API tailored for clerks and archivists rather than security
engineers, easing real-world adoption.

Early deployments across fourteen jurisdictions show that
the system scales from small municipal codes to multi-
gigabyte state registries with no changes to core logic. While
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limitations remain, most notably Git’s evolving hash functions
and the need for post-quantum cryptographic agility, TAF
provides a concrete, practical path forward. Work on auto-
mated hash migration, divergence-resolution protocols, and
formal verification will extend its protective horizon from
years to decades and ultimately to the century-scale timelines
demanded by the legal domain.

TAF demonstrates that the security principles long used to
safeguard software updates can and should be applied to the
law, turning digital statutes into durable, self-authenticating
public records.
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APPENDIX A
ARTIFACT APPENDIX

This artifact appendix contains information on the artifact
evaluation for The Archive Framework (TAF).

A. Description & Requirements

1) How to access: The artifact for TAF is made up of two
parts: the source code for TAF itself, and the scripts which run
the experiments for TAF. We have provided two methods to
obtain the necessary files. Note that the evaluation, by default,
installs TAF from PyPI, but you may manually install TAF
from source if you so wish. from here:

Option I, Zenodo
If you wish to obtain the permanently-available copy of

the evaluation, it is available on Zenodo: https://zenodo.org/
records/17819921.

There are two .zip folders: one for the source
code of TAF, and one for the evaluation scripts, titled
taf-ndss-eval.

Option II - GitHub
Should you wish to use GitHub instead, you must

clone the evaluation repository at https://github.com/renatav/
taf-ndss-eval.

TAF’s source code is available at https://github.com/
openlawlibrary/taf/releases/tag/v0.36.0, should you wish to
build from or examine the source.

2) Hardware dependencies: None.
3) Software dependencies: You must install Python 3.8 to

3.12 on your machine, as well as the pip package manager.
4) Benchmarks: None.

B. Artifact Installation & Configuration

We provide two options for getting the evaluation set up: a
Dockerfile and manual installation instructions.

Option A, Docker
The evaluation repository contains a Dockerfile. Simply

run the following commands to build and load the Docker
container. You do not need to set up a virtual environment or
install any packages with this method.

Run the following commands:

1) docker build -t taf-ndss-eval .
2) docker run -it taf-ndss-eval

The scripts will be in the current directory of the Docker
container when started.

Option B, Manual Installation
After you install a supported Python version (see above),

follow these steps to ready the artifact evaluation:

1) Create a new Python virtual environment and activate it.
2) Install TAF by running pip install

taf==0.36.0.

C. Experiment Workflow

We have packaged each experiment as its own Python file.
Each script will walk through the commands that are being run
and display the results to the screen. Due to the relative paths
used in the evaluation scripts, you must be in the scripts/
directory when invoking the security scripts and in the
performance/ directory when invoking the performance
scripts.

D. Major Claims

• (C1): TAF prevents unauthorized repository updates from
deceiving clients. Experiments E1 through E7 demonstate
this.

• (C2): Unsigned, outdated, or rollback metadata is de-
tected and rejected by TAF. Experiments E3, E5, and
demonstrate this.

• (C3): Rollback and replay attacks are prevented through
version checks. Experiments E4 through E6 demonstrate
this.

• (C4): TAF withstands even partial key compromise, pre-
venting bypassing threshold signing requirements. Exper-
iment E7 demonstrates this.

• (C5): TAF is performant and scales with repository size.
Experiment E8 demonstrates this.

E. Evaluation

1) Experiment (E1): [Malicious Update to Target Reposi-
tory Only] [5 human-minutes]

[Preparation]
Ensure that the prerequisites for the evaluation are installed.

[Execution]
Run python3 run.py --scenario 1.

[Results]
In this experiment, an attacker compromises the credentials
of a target repository, gaining commit and push access but
not control over the authentication repository. They push a
malicious update to law-html.

When the user runs the updater with default settings, no
new commits are fetched because the authentication repository
remains unchanged. The publisher runs the updater with a full
check and detects the malicious commit, receiving a validation
error.

2) Experiment (E2): [Malicious Commit + Authentication
Repo Modified (No Signatures)] [5 human-minutes]

[Preparation]
Ensure that the prerequisites for the evaluation are installed.

[Execution]
Run python3 run.py --scenario 2.

[Results]
In this experiment, an attacker obtains credentials that allow
commit and push access to both a target and the authentication
repository, but does not have access to any metadata signing
keys. The attacker modifies law-html and pushes a mali-
cious update, then manually updates the file recording the last
valid commit for that target repository in the authentication
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repository and pushes the change. They do not update or sign
the corresponding TUF metadata.

When the user or publisher later runs the updater, it detects
that the authentication repository has changed and fetches
the new metadata. Validation fails because the updates are
unsigned, and the user’s local repository remains unchanged.

3) Experiment (E3): [Malicious Commit + Metadata Mod-
ified (Unsigned)] [5 human-minutes]

[Preparation]
Ensure that the prerequisites for the evaluation are installed.

[Execution]
Run python3 run.py --scenario 3.

[Results]
In this experiment, an attacker obtains credentials that grant
commit and push access to both the target and authenti-
cation repositories, but has not compromised any metadata
signing keys. The attacker modifies law-html and pushes
a malicious update. They then update the file recording the
last valid commit for that target and correctly update the
TUF metadata (the attacker is familiar with TUF), but cannot
produce valid signatures of those updates. The attacker pushes
these unsigned changes to the authentication repository.

When the user or publisher runs the updater with default set-
tings, the updater detects the authentication repository update
and fetches the incoming changes for validation. Validation
fails because the metadata updates are unsigned, and the user’s
local repository remains unchanged.

4) Experiment (E4): [Repository Rollback via Force Push]
[5 human-minutes]

[Preparation]
Ensure that the prerequisites for the evaluation are installed.

[Execution]
Run python3 run.py --scenario 4.

[Results]
In this experiment, an attacker obtains credentials that grant
commit and push access to both the target and authentication
repositories, but does not possess any metadata signing keys.
The attacker reverts all repositories to a previous commit and
force-pushes the branches, attempting to make an outdated
version appear current.

When the user or publisher runs the updater with default
settings, the updater detects that the top commit of the remote
authentication repository is not present in the local history and
halts the update. This prevents the rollback attack from being
accepted as a valid state.

5) Experiment (E5): [Metadata Reuse from Older Signed
Commit] [5 human-minutes]

[Preparation]
Ensure that the prerequisites for the evaluation are installed.

[Execution]
Run python3 run.py --scenario 5.

[Results]
In this experiment, the attacker gains push access to the
authentication repository but does not have access to any meta-
data signing keys. Instead of creating new unsigned metadata,
the attacker restores metadata from a previous commit that

still contains valid signatures, attempting to make an older
repository state appear current.

When the user or publisher runs the updater with default
settings, the updater detects that the fetched metadata has a
lower version number than the previously validated metadata.
The update is rejected, and the rollback to an older repository
state is successfully prevented.

6) Experiment (E6): [Publisher Pulls Invalid Update, Then
Publishes Signed Metadata] [5 human-minutes]

[Preparation]
Ensure that the prerequisites for the evaluation are installed.

[Execution]
Run python3 run.py --scenario 6.

[Results]
In this experiment, an attacker pushes a malicious but invalid
update, similar to the one in Scenario 2. The publisher, without
using TAF for validation, recklessly pulls these changes and
subsequently creates and pushes a new valid, signed update.

When the user later runs the updater with default settings,
the updater detects the new commits and begins validation
from the oldest one. Because validation fails on the earlier
invalid commit, the process halts even though the newest
commit is valid.

7) Experiment (E7): [Compromised Snapshot + Timestamp
Keys and Partial Root] [5 human-minutes]

[Preparation]
Ensure that the prerequisites for the evaluation are installed.

[Execution]
Run python3 run.py --scenario 7.

[Results]
In this experiment, the attacker gains commit and push access
to the authentication repository and compromises the snapshot
and timestamp keys, both of which have a signing threshold
of 1, as well as one of the root keys. They add their own
targets signing key and use the compromised root key to sign
the root, snapshot, and timestamp metadata. Root, however,
has a signing threshold greater than one.

When the user runs the updater with default settings, vali-
dation fails because the root metadata is signed with only one
key. This prevents the partially compromised root from being
accepted and blocks the malicious update.

8) Experiment (E8): [Runtime Performance Evaluation] [5
human-minutes]: This experiment simulates TAF operations
and the performance impact they have on various repositories.

[Preparation]
Ensure that the prerequisites for the evaluation are installed.

[Execution]
Run python -m run.py, inside the performance di-
rectory.

[Results]
This experiment’s results summarize how each partner reposi-
tory performs relative to the baseline. The tests were conducted
on a machine more powerful than an average laptop, so slower
performance should be expected on less capable hardware.
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