
Limitless Scalability: A High-Throughput and
Replica-Agnostic BFT Consensus

Chenyu Zhang
Tianjin University

chenyu zhang@tju.edu.cn

Xiulong Liu∗

Tianjin University
xiulong liu@tju.edu.cn

Hao Xu
Tianjin University
hao xu@tju.edu.cn

Haochen Ren
Tianjin University

haochen ren@tju.edu.cn

Muhammad Shahzad
North Carolina State University

mshahza@ncsu.edu

Guyue Liu
Peking University

guyue.liu@gmail.com

Keqiu Li
Tianjin University
keqiu@tju.edu.cn

Abstract—Traditional Byzantine Fault Tolerance (BFT) con-
sensus protocols adopt a star topology with a leader to handle
all message transmission, causing performance to degrade rapidly
as replicas grow. Recently, many studies have sought to improve
scalability by exploring multi-layer topology (e.g., tree structures)
to reduce the leader’s fanout. However, these approaches either
depend on a polynomial fanout to preserve fault tolerance or
are constrained by the impact of topology depth on throughput,
ultimately leading to only modest scalability gains. To this
end, we propose Tide, the first leader-based BFT protocol that
maintains robust performance as replica count grows, which
is enabled by our design of logarithmic-fanout topology and
high-parallel pipelining. Tide utilizes redundant connections as a
key insight in topology, reducing fanout without compromising
resilience. Tide further introduces a novel pipelining where inter-
layer interactions dynamically determine the degree of proposal
parallelism, thereby decoupling throughput from topology depth.
Real-world experiments with 100 cloud servers demonstrate that
as the replica count scales from 100 to 1,000, state-of-the-art
protocols experience a 65% to 90% decrease in throughput and
a 50× increase in latency. In contrast, Tide maintains a replica-
agnostic high throughput of around 50ktps, over 5x higher than
others, while its latency remains at 0.3s-0.4s.

I. INTRODUCTION

Byzantine Fault Tolerance (BFT) consensus [14], [56], [22]
is widely utilized in distributed systems, particularly in the
rapidly evolving blockchain ecosystem [12], [49], [5], [29].
BFT protocols ensure state consistency across N replicas, but
their performance degrades significantly as the replica count
grows, posing a major scalability challenge [7]. Traditional
leader-based BFT protocols [54], [48], [32] employ a star
topology, where a single leader communicates directly with
all N replicas. As a result, the leader handles most of the
communication load, while the other replicas have limited

*Xiulong Liu is the corresponding author.

communication responsibilities. This indicates that utilizing
idle replicas to balance the communication load across the
system may offer opportunities for performance improvement.
To this end, a recent line of work [31], [43], [36], [51],
[24], [53], [11], [37] has adopted multi-layer communication
topologies, where intermediate replicas relay messages on
behalf of the leader, thereby reducing the leader’s fanout.
Despite this benefit, such designs introduce two key issues
that must be addressed.

Firstly, a smaller fanout requires involving more replicas
as relays, which amplifies the impact of Byzantine faults.
Therefore, the fanout must remain sufficiently large (e.g., poly-
nomial in N) to meet fault tolerance requirements. Kauri [43],
Omniledger [36], and Motor [35] utilize a tree topology in
which Byzantine replicas can affect all replicas within the sub-
tree. Therefore, they can only employ a three-layer tree with a
fanout of O(

√
N), yet it still fails to operate under N/3 Byzan-

tine faults. Crackle [51], [52] addresses this issue by frequently
rotating the

√
N replicas in the middle layer, but forming

each QC (Quorum Certificate) incurs O(
√
N) communication

steps. Committee consensus protocols such as Algorand [24],
and [55], [39], as well as hierarchical consensus protocols like
ORION [53] and [3], [38], make stronger security assumptions
by requiring that the fraction of Byzantine replicas within each
committee (or cluster) remains below a fixed threshold. This
allows consensus to be achieved with a smaller fanout but
significantly compromises fault tolerance. Tendermint [11] and
Gosig [37] adopt gossip-based topologies [46], which reduce
the fanout of block dissemination to O(logN). Nevertheless,
the load for vote collection remains O(N), since gossip
operates as a unidirectional broadcast protocol.

Secondly, increasing the topology depth lengthens the mes-
sage propagation path in a consensus round, which in turn
increases the round latency and ultimately reduces the system
throughput. In HotStuff with a star topology, a consensus
round, from the leader’s proposal generation to the collection
of the corresponding QC, completes in just two communi-
cation steps. In comparison, protocols that employ a multi-
layer topology with depth d require 2d communication steps
to complete a consensus round. If we naively adopt the pro-

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240101
www.ndss-symposium.org

TABLE I: Comparison of Existing Protocols.

Protocol
Communication Topology Proposal Pipelining

Fanout N/3 Fault Depth Comm. Complexity Throughput Responsive Comm. Steps
Tolerance per Block Independent of Depth Vote Collection per QC

HotStuff [54] O(N) ✓ 1 O(N) Yes ✓ O(1)
Hermes [31] O(N) ✓ 2 O(c1N)* Yes ✓ O(1)

Omniledger [36] O(
√
N) × 2 O(N) No × O(1)

Kauri [43] O(
√
N) × 2 O(N) Weak × O(1)

Crackle [51] O(
√
N) ✓ 2 O(N) Yes × O(

√
N)

Algorand [24] c2* × 2 O(N) Yes ✓ O(1)
ORION [53] c3* × 2 O(N) Yes ✓ O(1)
Tendermint [11] O(logN) / O(N)** ✓ O(logN) / 1 O(N logN) No ✓ O(logN)
Gosig [37] O(logN) / O(N)** ✓ O(logN) / 1 O(N logN) No ✓ O(logN)
Tide(this paper) O(logN) ✓ O(logN) O(N logN) Yes ✓ O(logN)

* c1, c2, c3 are system parameters related to security.
** For gossip-based protocols, the fanout for block broadcast is O(logN), while vote collection still requires O(N), and its depth remains 1.

posal pipelining from star-based protocols such as HotStuff,
where the next round starts after completing the previous
one, then even though a multi-layer topology reduces fanout,
its additional layers increase the per-round latency, and thus
may fail to improve throughput. Kauri [43] was the first to
recognize this problem in tree-based topologies and proposed
to improve proposal parallelism to mitigate the impact of
topology depth on throughput. By pre-measuring network
parameters, Kauri provides a solution that is well-suited for
highly static environments. In contrast to Kauri, gossip-based
protocols [11], [37] exhibit suboptimal performance in prac-
tice, as their throughput heavily depends on the topology
depth; increasing depth significantly degrades throughput. This
is because the randomized propagation prevents proposals
from being disseminated in a stable and parallel manner,
forcing the leader to wait for responses to a proposal from
all replicas before issuing the next one. Ultimately, Gossip is
a randomized, one-way broadcast protocol, which renders it
unsuitable for vote-driven BFT consensus.

TABLE I summarizes the characteristics of existing proto-
cols in terms of communication topology and pipelining, as
discussed above. It can be observed that none of these pro-
tocols simultaneously achieve a logarithmic fanout topology
and the pipelining design whose throughput is independent
of topology depth. Consequently, their performance degrades
rapidly with scale, resulting in poor scalability.

In this paper, we propose Tide, the first leader-based BFT
protocol that sustains high performance regardless of the
number of replicas by eliminating the polynomial fanout and
depth-induced throughput degradation inherent in prior multi-
layer designs. Specifically, Tide constructs a topology with
logarithmic fanout while tolerating N/3 Byzantine faults,
and employs a highly parallel proposal pipelining that makes
throughput independent of topology depth.

Tide introduces a novel topology (left part of Fig. 1) that
combines redundant inter-layer links for strong fault tolerance
with geometrically expanding layers to ensure logarithmic
fanout. Like tree structures, we organize replicas into multiple
layers, where each layer contains κ times more replicas
than the previous one. This geometric growth balances the
communication load and keeps the fanout per replica small.
Unlike traditional trees, however, each replica connects to ρ

replicas in the upper layer (instead of just one), improving
its likelihood of staying connected to the root (leader) despite
Byzantine failures. Under this model (§ III-A), we qualitatively
analyze how to select the ρ connections to maximize the
probability that a replica remains connected to the leader, and
derive the construction of the Tide Graph accordingly (§ III-B).
Furthermore, we quantitatively prove that with κ = 2 and
ρ = log3 N + c(ε) (c(ε) is a constant independent of N), the
Tide Graph achieves the same level of availability as the star
topology, i.e., tolerating up to f = N/3 Byzantine faults with
fanout = ρ · κ = O(logN) (§ III-C).

Building on the topology, Tide introduces a novel pipelining
(right part of Fig. 1) where inter-layer interactions dynami-
cally adjust the proposal parallelism, effectively decoupling
throughput from topology depth. To enable parallel processing
of multiple proposals within a multi-layer topology, rather
than following HotStuff’s approach of completing a consensus
round of the previous proposal before moving to the next, Tide
pioneers a QC-driven agreement approach (§ IV-B). Replicas
maintain only three QC-related variables locally and do not
track the phases (e.g., lock, commit) of individual proposals,
thereby eliminating dependencies between proposals. Simulta-
neously, we design a passive cascade workflow (§ IV-C) that
dynamically determines the frequency of parallel proposals
based on inter-layer message exchanges. The replica passively
waits for messages, triggering a fire-and-forget action upon
reception, which generates response messages that further
cascade to trigger actions in replicas across adjacent layers.
This design ensures replicas (including the leader) base their
decisions only on messages from neighbors.

For scalability evaluation, we performed large-scale real
deployments with 100 cloud servers, comparing Tide against
three state-of-the-art protocols: HotStuff [54], Kauri [43], and
Crackle [51]. The results demonstrate that as the replica count
increased from 100 to 1,000, the throughput of other ap-
proaches dropped significantly: HotStuff declined from 12.8k
to 0.7k tps, Kauri from 20k to 2k tps, and Crackle from 28k
to 10k tps – corresponding to a reduction of 65% to 90%,
while the latency increased by up to 50×. In contrast, Tide can
maintain a high throughput of around 50ktps with fluctuations
of less than 10%, and the latency only experiences a slight
increase, from 0.3s to 0.4s.

2

committed

QC
|𝑉2| = 6

|𝑉3| = 12

|𝑉4| = 24

Highly-parallel Pipelining

𝑏4𝑏0 𝑏1 𝑏2 𝑏3 𝑏5

Logarithmic-fanout Topology

𝑁 = 43
𝑓𝑎𝑛𝑜𝑢𝑡 = 6 = 𝑂 log𝑁 𝑏6

vote for 𝑏2
vote for 𝑏3
vote for 𝑏5

Leader at 𝑏6
latestQC

lockedQC

𝑞𝑐3
𝑞𝑐0

⊥

𝑞𝑐3
𝑞𝑐1

𝑞𝑐0

…

Fig. 1: Overall architecture diagram of Tide. In the topology on the left, when ρ = 3 < log3 N,κ = 2, the fanout = ρ · κ = 6
In the pipelining on the right, after the leader sends b5 to its 4 successors, once receives a vote for b5 (together with vote for
b2, b3 forming qc2, qc3), it proceeds to broadcast b6, carrying the latest QC (qc3).

Overall, the core contribution of Tide is achieving limit-
less scalability in BFT consensus, sustaining near-constant
performance regardless of the number of replicas, thanks
to its logarithmic fanout topology and highly parallelized
pipeline. Specifically, the advantages of Tide over the prior
arts are four-fold: (i) compared with [54], [43], [51], [31],
Tide achieves logarithmic fanout, ensuring the communication
load of replicas remains almost unaffected by increases in
the replica count; (ii) Compared with [43], [11], [37], Tide
achieves throughput that is independent of topology depth,
thereby allowing parallel proposals to be driven at the maximal
rate supported by the system. (iii) compared with [43], [24],
[53], Tide achieves N/3 Byzantine fault tolerance while using
low fanout, ensuring that resilience is not compromised; and
(iv) compared with [43], [51], Tide achieves responsiveness,
reducing reliance on strong network assumptions.

II. PRELIMINARIES

A. System Model

We describe the system model adopted by Tide, including
the Byzantine fault model, partial synchrony assumption, and
the setup for aggregated signature schemes.

Byzantine Fault Model. Our basic system model addresses
the classical State Machine Replication (SMR) [44], [8] prob-
lem. We assume there are N replicas, denoted as R =
{r1, r2, . . . , rN}, with at most F Byzantine faulty [19] repli-
cas, where N = 3F + 1, and the actual number of Byzantine
replicas is f (f ≤ F). All Byzantine replicas can behave
arbitrarily without restrictions, while other correct replicas
strictly adhere to the protocol.

Partial Synchrony Assumption. We use the partial synchrony
assumption [21], where after an unknown bounded Global
Stabilization Time (GST), messages are delivered within a
known bounded time ∆. This means consensus progresses
when the network is stable long enough, but consensus liveness
isn’t guaranteed if it fluctuates significantly (asynchronous).
Similar assumptions [41] also ensure consensus liveness.

Aggregated Signature Setup. We assume a public key infras-
tructure (PKI) where each replica ri possesses a private-public
key pair (ski, pki), with pki being public. For a message m,
ri can use ski to generate a signature σi(m), which can be
verified by pki. Based on signature schemes like BLS [9]
or Schnorr [45], multiple signatures can be aggregated into
a single compact signature to reduce bandwidth overhead.

B. Tide’s Architectural Distinction

We consider a standard BFT setting with clients and repli-
cas. Clients submit transactions to replicas, and replicas run
the consensus protocol to order and commit these transactions,
typically by grouping them into blocks. The correctness of a
BFT protocol is specified as follows:

• Safety: If b and b′ are conflicting blocks, then they cannot
be both committed, each by a correct replica.

• Liveness: If a transaction tx is submitted to all correct
replicas, then all correct replicas will eventually commit
the transaction tx.

Traditional PBFT-family protocols are typically designed
under a star topology, where the leader of each view (i.e.,
epoch) directly communicates with all replicas and performs
all coordination. Decades of research [11], [48], [32], [40],
[54] have refined protocol logic, for example, reducing the
number of commit phases, simplifying view change, or opti-
mizing leader replacement. These efforts improve efficiency
within the same architectural model but leave the underlying
communication structure unchanged. In contrast, our work
focuses not on modifying protocol rules, but on lifting ex-
isting BFT protocols to a scalable multi-layer topology, which
requires redesigning communication patterns and proposal
pipelining. Given its simplicity, we instantiate our design on
HotStuff, but the architecture is protocol-agnostic and can be
applied to other BFT protocols with minimal changes.

Tide does not alter the core design of HotStuff, including
its three-phase commit, two-phase locking, and safety guar-
antees. Instead, its novelty lies in rearchitecting HotStuff’s
workflow onto a hierarchical log-fanout topology, enabling

3

concurrent processing of multiple proposals while preserv-
ing all original correctness properties. To fully exploit this
topology, Tide introduces a custom pipelining that is topology-
aware, adaptive, and responsive. While Kauri can also combine
pipelining with a hierarchical topology, its design depends on
pre-measured environmental parameters (e.g., RTT, proposal
processing time), assumes homogeneous latency, and relies
on timers, making it fragile and non-responsive to dynamic
network changes. In contrast, Tide’s pipeline is entirely event-
driven: replicas progress proposals purely upon message ar-
rivals, without any timers, allowing automatic adjustment of
concurrency levels under varying conditions. Therefore, Tide
achieves high throughput independent of network depth while
maintaining full responsiveness (see Table I and § IV-B).

C. Topology Availability

Redesigning the communication topology requires careful
consideration of how its connectivity impacts liveness. In a
star topology, this requirement is trivial: a correct leader can
always directly reach all correct replicas. In a multi-layer
topology, however, even if the leader is correct, its messages
must traverse intermediate replicas. Faults on these routing
paths can prevent proposals or votes from reaching a quorum,
causing progress to stall despite a correct leader. Thus, liveness
in such settings depends not only on the leader but on whether
the communication topology itself remains connected in a
way that allows quorum formation. To capture this more
general requirement, we introduce a topology-centric notion,
available, which characterizes whether a given view’s com-
munication structure is sufficiently connected for consensus
to make progress. Intuitively, consensus can advance if and
only if the topology for that view is available.

Definition 1 (Available). A communication topology for view
v is said to be available if the leader in view v is correct
and can successfully establish communication via the topology
with at least Q = N − F correct replicas. We refer to the
probability that a randomly selected view is available as the
availability of the topology.

For any given topology, higher availability is naturally
desirable. However, there is a theoretical upper bound given
by the probability that the leader is correct, which equals
N−f
N , assuming the leader is uniformly selected at random

from all replicas. A smaller fanout restricts the leader’s
communication to fewer replicas, making it challenging to
guarantee availability under higher fault thresholds. Therefore,
this work aims to achieve availability close to the theoretical
upper bound N−f

N , despite using only logarithmic fanout—a
significant step toward improving scalability without compro-
mising fault tolerance. Formally, for any 0 < ε ≤ 1, our design
achieves availability at least N−f

N (1 − ε) with a fanout of
O(logN)+c(ε), where c(ε) is a constant depending solely on
the desired security level ε, as shown in § III-C. For example,
as shown in Table II, when ε = 1/9, c(ε) = 2; and when
ε = 1/27, c(ε) = 4. This is independent of the values of N ,
f , and other parameters.

III. LOGARITHMIC-FANOUT TOPOLOGY

In this section, we introduce a logarithmic-fanout com-
munication topology while tolerating N/3 Byzantine faults.
We begin by constructing a topology model that formalizes
the layering of replicas and their in-degree and out-degree.
Based on this model, we derive the optimal interconnection
strategy and propose a corresponding topology construction
algorithm. Finally, we analyze the availability of our topology
and show that it achieves the availability of N−f

N (1 − ε) for
any 0 < ε ≤ 1 with ρ = O(logN)+c(ε), comparable to N−f

N
for the star topology, which is the most connected structure in
leader-based consensus systems.

A. Topology Model

We choose a structured topology as the foundation of our
design, as it better addresses the scalability and efficiency
challenges inherent in randomized topologies. Although ran-
domized communication schemes such as Gossip [46] can
reduce the leader’s fanout to O(logN), they lack deterministic
message propagation paths, making it difficult to coordinate
efficient proposal pipelining. Consequently, the proposal pace
remains influenced by the entire network and cannot fully
leverage the low fanout. In contrast, structured topologies de-
fine fixed propagation paths within a view, enabling predictable
communication and allowing the proposal pace to be matched
with the local fanout in the pipelining.

However, constructing such a topology introduces a core
challenge: reducing fanout while preserving resilience. In a
structured topology, a replica can influence all of its neighbors,
amplifying the disruptive influence of Byzantine faults. Thus,
the smaller the fanout, the more susceptible the system is to
Byzantine attacks, which may prevent the leader from reaching
enough correct replicas. For instance, in a star topology with
fanout of N , communication remains unaffected by non-leader
Byzantine replicas, as progress only depends on whether the
leader is correct or not. Conversely, in a tree topology, a single
Byzantine replica in an upper layer can affect all replicas in
its subtree, isolating them from the leader.

In practice, all replicas are typically assigned randomly to
a predefined topology for each view, and consensus proceeds
depending on where the Byzantine replicas are placed. For
each view, we randomly shuffle the replica set R into a per-
mutation Rp = [rp1

, rp2
, . . . , rpN

] using a globally consistent
random seed. For replica rpi , we map it to a vertex vi in the
graph, i.e., rpi ←→ vi. Through this one-to-one mapping, we
obtain a vertex set V = {v1, v2, . . . , vN}, where the number
of vertices is N , with f randomly distributed fault vertices.
We focus on how to establish edges between vertices in V,
forming a low-degree, highly connected graph.

We organize replicas into multiple layers, and use the set
Vi to represent the vertices in the i-th layer. The first layer
contains a single vertex (|V1| = 1) as the graph’s root,
corresponding to the leader. To reduce the fanout, we perform
an exponential layering, where |Vi| = |Vi−1| · κ for i > 2. In
terms of edge connections, we only allow connections to be
established between adjacent layers. To enhance availability,

4

(a) v in ELG (b) v in ELG′

Fig. 2: v in ELG′ has more predecessors at every layer.

for ∀v ∈ Vi, there can be at most ρ predecessor vertices
in Vi−1 connected to v. Therefore, the in-degree of each
vertex is at most ρ, and the out-degree (fanout) is at most
ρκ. We investigate how to achieve maximum availability with
the minimum fanout in this model. The formal constraints are
given as follows:

Definition 2 (EP). We denote the exponential partition of ver-
tex set V = {v1, v2, . . . , vN} as EP(V) = {V1,V2, . . . ,Vd},
where d = |EP(V)| = ⌈logκ

(N−1)(κ−1)
ρκ + 1⌉, and

|Vi| =


1 (i = 1)
ρκi−1 (1 < i < d)

N −
∑d−1

j=1 |Vj | (i = d)

For simplicity, we assign the vertices in V sequentially to Vi ∈
EP(V), i.e., Vi = {vsi , vsi+1, ..., vei}, where si = ei−1 +
1(i > 1), ei − si + 1 = |Vi| and for special s1 = 1. We call
the single vertex v1 ∈ V1 as the root.

Definition 3 (ELG). We denote the exponential layering graph
as ELG = ⟨EP(V),E⟩, where E is the set of edges. The di-
rected edge from vertex u to vertex v is denoted as (u, v) ∈ E.
We use Pred(v) = {u|(u, v) ∈ E}, Succ(v) = {w|(v, w) ∈
E} to represent the predecessor and successor sets of a vertex
v. ELG graph satisfies that for ∀ Vi ∈ EP(V) ∀v ∈ Vi:

|Pred(v)| ≤ ρ ∧ Pred(v) ⊆ Vi−1(i > 1)

∧ | Succ(v)| ≤ ρκ ∧ Succ(v) ⊆ Vi+1(i < d)

For simplicity, if there is a mapping F : V → P(V) (such as
Pred), we use the multi-order mapping F0(v) = {v},F1(v) =
F(v), and for x > 1, Fx(v) =

⋃
u∈Fx−1(v)

F(u).

B. Topology Construction

The ELG graph only specifies the layering of vertices and
their degrees (ρκ). We now explore how to construct the
edge connections to maximize availability. Starting from the
fundamental properties of the ELG graph, we will derive the
characteristics that a availability-optimized connection scheme
should possess. Finally, we present the construction of the Tide
Graph (Definition 6) and prove that it satisfies the desired
properties. Due to space constraints, some formal proofs
are placed in the Appendix. We strive to provide intuitive
explanations and illustrations in the main text.

First, we begin the analysis from a single vertex. For a
vertex v in ELG, if there exists a path from the root to
it such that all vertices along the path are not faulty, we

say that v is reachable, and denote the probability of this
event as reachability. Consider the following scenario: two
predecessors u1 and u2 of v have a common predecessor
w, as shown in Fig. 2a, and if w is not reachable, it will
simultaneously affect both u1 and u2, thereby impacting v.
Conversely, if u1 and u2 have no common predecessors, as
shown in Fig. 2b, the reachability of v will be higher, since v
has more paths to the leader. Therefore, the fewer the common
predecessors between the predecessors of v, or in other words,
the more predecessors v has at each layer, the higher its
reachability will be, as proved in Theorem 4.

To maximize the reachability of each vertex and thereby
enhance the availability of the topology, each vertex should be
connected to the maximum theoretical number of predecessors
at each layer. For ∀v ∈ Vi, the number of its predecessors
can grow exponentially by the factor ρ during the upward
connection process, but it cannot exceed the total number of
vertices at that layer. Thus, in the (i−1)-th layer, the maximum
number of predecessors it can have is min(ρl, |Vi−l|). We
donate the property that every vertex has the maximum number
of predecessors at every layer as MPRED:

Definition 4 (MPRED). For an ELG, we refer to the follow-
ing property as MPRED:

∀i ∀v ∈ Vi ∀l < i (|Predl(v)| = min(ρl, |Vi−l|))

If an ELG does not satisfy MPRED, an alternative edge
connection set must exist that increases the reachability for
at least one vertex. In other words, there must exist another
graph ELG′, in which there exists a vertex u such that the
reachability of u in ELG′ is higher than in ELG, as proved
in Theorem 5.

However, MPRED is a bottom-up property, which means
achieving this property during a top-down connection process
is difficult. Therefore, we introduce a symmetric property,
MSUCC, which means that every vertex has the maximum
number of successors at every layer.

Definition 5 (MSUCC). For an ELG, we refer to the follow-
ing property as MSUCC:

∀i ∀v ∈ Vi ∀l ≤ d− i (|Succl(v)| = min((ρ · κ)l, |Vi+l|))

These two symmetric properties, MPRED and MSUCC,
both represent the establishment of connections between a
vertex and as many other vertices as possible. Therefore,
they are essentially equivalent, as proven in Theorem 6. So
we only need to focus on how to satisfy MSUCC when
constructing the topology. Unlike MPRED, MSUCC is a top-
down property so that we can ensure each layer maintains
the maximum number of successors during the top-down
connection process, ultimately achieving MSUCC.

Supposing graph ELG satisfies MSUCC, it means that for
∀v ∈ Vi, the successors of v at any layer do not overlap
(| Succl(v)| = (ρ · κ)l) until their total number fully occupies
an entire layer (|Succl(v)| = |Vi+l|). Since there are always
connections between adjacent layers, if | Succl(v)| = |Vi+l|,
then it must follow that | Succl+1(v)| = |Vi+l+1|. Therefore,

5

𝑉𝑖+1
…

… … 𝑉𝑖

…

… …

…… …

𝜌 groups

𝜌𝜅 vertices

𝜅𝑖−1 vertices

𝜅𝑖−1 groups

Fig. 3: Construction of the Tide Graph

we primarily focus on how to ensure | Succl(v)| = (ρ · κ)l
when (ρ · κ)l < |Vi+l|. To achieve this, when expanding
the successors of v downward, we only need to maintain the
following two properties to ensure that v has no overlapping
successors at each layer: (1) All of its successors at each layer
are contiguous. (2) The successors of contiguous vertices are
completely distinct.

Finally, our design is as follows: for two adjacent layers Vi

and Vi+1, we divide the vertices in Vi into ρ groups and the
vertices in Vi+1 into k groups. Subsequently, we connect the
x-th vertex in each group of Vi to the x-th group in Vi+1,
as shown in Fig. 3. As a result, all vertices within the same
group in Vi have distinct successors, while the successors of
each individual vertex are contiguous. This satisfies properties
(1) and (2) and ensures that the same properties hold at every
subsequent layer, ultimately achieving MSUCC, as proven in
Theorem 9. The formal definition is as follows:

Definition 6 (TG). We refer to a graph ELG = ⟨EP(V),E⟩
as a Tide Graph, denoted as TG = ⟨EP(V),E⟩, if it satisfies:
for ∀vx ∈ Vi ∀vy ∈ Vi+1

(vx, vy) ∈ E ⇐⇒ (x− si) mod κi−1 = ⌊y − si+1

ρκ
⌋

C. Analysis of Availability

Although we have proven that the construction of TG
satisfies the optimal property, this does not necessarily imply
that its overall availability is sufficiently high. Therefore, we
conduct a probabilistic estimation analysis to evaluate its
availability. In our calculations, we will use some approxi-
mations, ultimately deriving an estimation formula, denoted as
P̂TG(N, f,Q, ρ, κ), which reflects the influence of five param-
eters on availability. Furthermore, we prove that when κ = 2
and ρ = log3 N+log1/3 ε (fanout = ρ ·κ), P̂TG ≥ N−f

N (1−ε)
for any 0 < ε ≤ 1, indicating that the availability of the TG
is on the same order of magnitude as that of a star topology
in the worst case.

In large-scale samples, the difference between sampling
with or without replacement is negligible [42]. Therefore,
we approximate the probability of a vertex being faulty as
p̂f = f

N , and assume it’s independent between vertices.
Since TG satisfies the MPRED property, the predecessors of
vertices expand rapidly upwards. Therefore, we assume that
the reachability of a vertex primarily depends on whether all

(a) Impact of ρ (b) Impact of κ

(c) Impact of N (d) Impact of f

Fig. 4: Estimated Values vs. Experimental Results.

the vertices in its first-order predecessors are faulty. Excluding
the effect of whether the vertex itself is faulty, we assume
that a vertex is reachable if not all of its first-order prede-
cessors are faulty. The probability of this event is denoted
as p̂a = 1 − p̂ρf . Furthermore, by observing the connection
structure of TG, we can see that the vertices in each layer are
divided into groups of size s = ρκ. The predecessors of the
vertices within each group are identical, thus their reachability
is deterministically related. Therefore, when the root vertex
can connect to x vertices, it is connected to x/s groups.
Additionally, since the probability of a vertex being faulty is
p̂f , x/(s · (1− p̂f)) groups need to be connected in order to
reach x non-faulty vertices. We assume that each group has
reachability p̂a and that the reachability of different groups is
independent, because the predecessors of any two groups have
minimal overlap, which significantly reduces the likelihood
of correlated failures. Consistently, the resulting probabilistic
estimates match our experimental observations. The number
of groups the root can connect to thus becomes a binomial
distribution problem, where the probability of connecting to i
groups is p̂ia ·(1− p̂ia)

N
s −i. As mentioned earlier, to connect to

Q non-faulty vertices, at least Q/(s · (1− p̂f)) groups need
to be connected. Finally, we obtain the calculation method
for P̂TG: with the condition that the root is not faulty, the
probability of connecting to Q/(s · (1− p̂f)) ≤ i ≤ N/s
groups of vertices, i.e.,

P̂TG = (1− p̂f) ·
N/s∑

i=Q/(s·(1−p̂f))

(N
s

i

)
p̂ia · (1− p̂a)

N
s −i

=
N − f

N

N
ρκ∑

i= QN
ρκ(N−f)

(N
ρκ

i

)
(1− (

f

N
)ρ)i((

f

N
)ρ)

N
ρκ−i

We validate the accuracy of our estimation through Monte
Carlo simulation. As shown in Fig. 4, the blue line represents
the estimated probability calculated using the formula, while

6

the red line shows the results obtained from 100 million
simulation experiments. We use N = 1000, f = 333, Q =
667, ρ = 4, κ = 2 as default values and vary one parameter at
a time to observe its impact. The experimental results show
that our estimation is very accurate.

We now proceed to relax the expression in order to obtain
a tractable lower bound. Noting that the formula contains a
cumulative summation, we scale it by taking only the last
term at i = N

ρκ , which gives:

P̂TG ≥
N − f

N
(1− (

f

N
)ρ)

N
ρκ

Equality in the above inequality holds if and only if f = F as
Q = N−F , which corresponds to the worst-case scenario with
N/3 Byzantine faults, and the system achieves its minimum
availability. Based on the Maclaurin expansion of (1−x)α with
0 ≤ x ≤ 1, α > 0, we have (1 − x)α ≥ 1 − αx. Substituting
x = (f

N)ρ and α = N
ρκ , we obtain:

P̂TG ≥
N − f

N
(1− (

f

N
)ρ · N

ρκ
)

To further simplify, we use the setting in BFT, i.e., N = 3F+1
and f ≤ F , which gives:

P̂TG ≥
N − f

N
(1− (

F

N
)ρ · N

ρκ
) ≥ N − f

N
(1− (

1

3
)ρ · N

ρκ
)

Now, the estimation formula becomes very clear: the in-
fluence of N is linear, κ has an inverse proportional effect,
and ρ has an exponential impact. The degree of TG is ρκ,
which determines the performance of the graph. While κ has
a smaller impact on the probability, its effect on the graph’s
degree is similar to that of ρ. Therefore, we select it as the
smallest usable constant, i.e., κ = 2. Next, for any 0 < ε ≤ 1,
we can choose ρ = log3 N + log 1

3
ε to ensure that P̂TG is

sufficiently large:

P̂TG(N, f ≤ F,Q = N − F, ρ = log3 N + log 1
3
ε, κ = 2)

≥ N − f

N
(1− (

1

3
)
log3 N+log 1

3
ε · N

ρκ
)

=
N − f

N
(1− ε

N
· N
ρκ

) =
N − f

N
(1− ε

ρκ
) >

N − f

N
(1− ε)

We note that the scaling step uses the inequality ρκ ≥ 1,
and the relaxation becomes looser as ρ increases. Therefore, it
suffices to choose ρ < log3 N + log 1

3
ε to ensure that P̂TG >

N−f
N (1 − ε). TABLE II reports the minimum ρ required for

a given ε, under N = 100 and N = 1000. The results show
that even when N = 1000, choosing ρ = 6 ≈ log3 N already
ensures a TG availability of P̂TG = 0.596, which is close
to the star topology’s 0.66. If higher availability is desired,
it suffices to increase ρ by a small constant. For practical
parameter selection, one can substitute the known system
parameters (e.g., κ = 2, N = 100, F = 33, Q = 67) into
the estimated availability equation and incrementally increase
ρ until P̂TG > N−F

N (1 − ε). As shown in Table II, for
ε = 0.2, ρ = 4 satisfies this condition, corresponding to a total
fanout of κρ = 8 and an availability of 0.583 > 2

3 (1− 0.2) =

TABLE II: The minimum ρ required for a given ε to satisfy
P̂TG > N−F

N (1− ε), under N = 100 and N = 1000.

ε 1/3 1/5 1/9 1/27 1/81 1/100 1/243 1/1000
1− ε 0.667 0.8 0.889 0.963 0.988 0.99 0.996 0.999

log1/3 ε 1 1.465 2 3 4 4.192 5 6.288
N−F
N

(1− ε) 0.444 0.533 0.593 0.642 0.658 0.660 0.664 0.666

N = 100 and log3 N ≈ 4.192
log 1

3

ε
N

5.192 5.657 6.192 7.192 8.192 8.384 9.192 10.480
ρ 4 4 5 6 6 7 7 8

P̂TG 0.581 0.581 0.644 0.663 0.663 0.666 0.666 0.666

N = 1000 and log3 N ≈ 6.287
log 1

3

ε
N

7.288 7.753 8.288 9.288 10.288 10.480 11.288 12.575
ρ 6 6 6 7 8 8 9 10

P̂TG 0.596 0.596 0.596 0.646 0.661 0.661 0.665 0.666

0.533. In other words, the topology achieves more than 80% of
the availability of a star topology—the highest achievable level
under the same system parameters. It is worth emphasizing that
ε and N are independent variables. The parameter ε reflects
the security level, i.e., how close the achieved availability
is to that of a star topology. According to our theoretical
analysis, increasing ρ by only a constant amount is sufficient
to compensate for an exponential decrease in ε. For example,
when ε decreases from 1

9 to 1
27 , a threefold tightening of the

availability gap, ρ only needs to increase by 1 to maintain the
required security property.

In summary, setting ρ = O(logN) and κ = 2, which results
in a fanout of ρκ = O(logN), suffices to ensure that the
availability of the topology in Tide reaches the same level
as that of the star topology. This demonstrates that we can
achieve logarithmic fanout without sacrificing the N/3 fault
tolerance guarantee.

D. Practicality and Security Discussion

We now analyze the complexity of constructing the topology
in practice. Although the topology may appear intricate, it only
increases local computation without affecting communication
complexity. In a star-based topology, for any view v, all
replicas obtain a globally consistent random seed seedv ,
used to select the leader. This randomness can be produced
by a simple pseudorandom generator [27] or by a stronger
source such as a distributed randomness beacon [16] or a
Rabin dealer [34], ensuring globally verifiable and unbiased
randomness. Replicas can derive seedv before entering view
v, allowing them to locally determine their communication
partners with only O(1) computation, effectively forming a
simple star-shaped topology. In contrast, in our design, each
replica ri performs O(N) local computation before entering
view v to derive a permutation from seedv , which determines
its position in the multi-layer topology without requiring addi-
tional communication. Importantly, the shape of the topology
does not need to be recomputed for every view, as it depends
only on the fixed parameters N , ρ, and κ. It can be constructed
once during system initialization with a cost of O(ρκN).
Overall, the topology construction introduces only O(N) local

7

computation per view, a negligible cost in practice, since N
is typically at most a few thousand.

Next, we discuss the potential security risks introduced by
our multi-layer topology. While Byzantine attacks targeting
non-leader replicas may influence consensus progress, we
show that our topology preserves security comparable to that
of a star topology. First, the communication topology does
not affect safety: it only determines communication paths and
does not change the commit rule. In the worst case, it may
delay progress but cannot violate safety. Second, regarding
liveness, we have shown earlier that the availability of our
topology matches that of a star topology when Byzantine
replicas are randomly distributed. This is ensured by assuming
static Byzantine faults (consistent with most BFT protocols)
and by randomly placing replicas in the topology for each
view. Even under dynamic Byzantine attacks, a replica remains
unaffected unless all of its ρ predecessors are simultaneously
compromised. Even if such an attack succeeds, it only disrupts
the current view by causing a timeout; the topology is rebuilt in
the next view, rendering the attack ineffective. If an adversary
were powerful enough to compromise ρ replicas in every
view, directly attacking the leader would be an even simpler
and more effective approach—one that no consensus protocol
can prevent. Overall, although Tide introduces slightly higher
security risks than HotStuff, these do not compromise safety
and only minimally affect liveness.

IV. HIGHLY-PARALLEL PIPELINING

In this section, we introduce Tide’s proposal pipelining,
emphasizing the key differences from HotStuff and the ad-
ditional considerations imposed by our multi-layer topology.
Unlike HotStuff, Tide employs a QC-driven workflow to
enable parallel processing of multiple proposals. As a trade-
off, each view must be sufficiently long to allow messages
to fully propagate through the multi-layer topology, ensuring
that all correct replicas can participate in the pipeline. To
achieve responsive and adaptive message propagation, we
design a passive cascade workflow that dynamically adjusts the
frequency of parallel proposals based on inter-layer message
exchanges. Finally, we provide proofs of safety and liveness,
extending HotStuff’s guarantees to account for our topology
and pipelining.

A. Data Structures

View&Seq. Like most previous works, we use view, an
auto-increment positive integer, as the fundamental unit for
advancing consensus. For a given view, all replicas can obtain
a globally consistent topology (refer to § III), with the root
of the topology serving as the leader. In a view, the leader
can generate multiple proposals, distinguished by the sequence
number seq. All data types, including block, vote, and qc, use
a pair of ⟨view, seq⟩ to identify their temporal order. 1

1For such two objects, obj1 and obj2, if they satisfy obj1.view >
obj2.view or obj1.view = obj2.view ∧ obj1.seq > obj2.seq, we say
that obj1 is more recent than obj2.

latestQC

lockedQC

committedQC

𝑞𝑐1 𝑞𝑐1 𝑞𝑐3 𝑞𝑐3 𝑞𝑐4 𝑞𝑐5𝑞𝑐0

𝑏1 𝑏2 𝑏3 𝑏4 𝑏5 𝑏6 𝑏7

𝑞𝑐1 𝑞𝑐3 𝑞𝑐4 𝑞𝑐5

𝑞𝑐1

𝑞𝑐1

𝑞𝑐3𝑞𝑐3

𝑞𝑐1

𝑏0

𝑞𝑐0

𝑞𝑐0

𝑞𝑐0

Certification

Sequentiality

View Change

Fig. 5: QC-Driven Agreement of Tide.

Block. A block serves as an input proposal to the consensus
system, denoted as block = ⟨view, seq, parent, qc, tx set⟩.
The blocks form a chain structure, indexed by a unique
parent. If block1 is a direct or indirect parent of block2, we
refer to block1 as an ancestor of block2. block.qc refers to a
quorum certificate for an ancestor block. The txset maintains
an ordered set of transactions, representing the full payload of
the proposal.
Aggregated Vote. av = ⟨block, signature, replicas⟩ repre-
sents the aggregation of votes from all replicas in the set
av.replicas for the voting object av.block, and av.signature
represents the aggregated signature, which remains of constant
size. The view and seq of av are inherited from av.block. We
group multiple av in a map for propagation, using av.block
as the key, and denote it as avm.
Quorum Certificate. When the number of voters in an
aggregated vote av exceeds the quorum size Q, we term it
a Quorum Certificate (QC), denoted as qc. This implies that
a sufficient number of votes have been cast for av.block,
forming an undeniable authentication.
State Variables. Each replica ri locally stores three spe-
cial QCs, which are key factors in the consensus process:
latestQC, lockedQC, and committedQC, representing the
latest progress, the locked position, and the committed block,
respectively. In addition, localAVM represents all buffered
votes that the replica has not yet forwarded locally, and
latestBlock is the latest block received by the replica.

B. QC-driven Agreement

Previous works have employed a phase-driven approach,
where the progress of consensus is determined by the phase
a proposal has reached. In this model, the role of the QC is
limited to advancing a proposal to the next phase. However,
this design introduces a critical bottleneck in pipelined proto-
cols: the next proposal must wait for the QC of the previous
proposal before it can be initiated, resulting in prolonged
intervals between consecutive proposals and causing replicas
to remain idle. To address this issue, we propose a novel QC-
driven agreement that only tracks the progress of consensus
by maintaining the states of three QCs: latestQC, lockedQC,
and committedQC, as illustrated in Fig. 5. Similar to tradi-
tional designs, a block still requires a three-hop QC to be
committed. However, a fresh proposal only needs to include
the latest QC known to the leader (e.g., in Fig. 5, block
b3 carries qc1). This design eliminates the rigid constraint

8

Algorithm 1 QC-driven Agreement (for replica ri)

1: function PROPOSALRULE()
2: view ← curV iew, curSeq ← curSeq + 1
3: parent← latestBlock, qc← latestQC
4: return ⟨view, curSeq, parent, qc, txSet⟩
5: end function
6: function VOTERULE(block)
7: if lockedQC.block is an ancestor of block
8: or block.qc is more recent than lockedQC
9: then return true else return false

10: end function
11: function ADVANCERULE(qc)
12: // Receives new qc: one-hop qc
13: if qc is more recent than latestQC
14: then latestQC ← qc else return
15: // Lock rule: two-hop qc
16: if latestQC.view == latestQC.block.qc.view then
17: lockedQC ← latestQC.block.qc
18: else return
19: // Commit rule: three-hop qc
20: if lockedQC.view == lockedQC.block.qc.view :
21: commitedQC ← lockedQC.block.qc
22: commit commitedQC.block and all its ancestors
23: end function

between consecutive proposals, enabling unrestricted parallel
processing of proposals. We describe the QC-driven agreement
using three core rules in detail, as illustrated in Algorithm 1.

Proposal Rule. A fresh block inherits from the current
latestBlock and carries the latestQC, with the sequence
curSeq+1. In this way, the leader generates a chain of blocks
within a single view, with their seq increasing sequentially.
Each block carries the latest QC, enabling rapid multi-hop
QC propagation to advance consensus.

Vote Rule. When receiving a new block, it is necessary to
determine whether to vote for it. Suppose the block inherits
from lockedQC.block, it indicates that the block is consistent
with the current locked state and complies with safety rules,
thus it can be voted for. Besides, if the block carries a QC that
is more recent than the local lockedQC, it implies that other
replicas have formed a conflict QC without the participation
of ri. This indicates that the number of correct replicas locked
on the same path with lockedQC is less than F +1, thus, the
locked path of ri is deprecated, and it can vote for the block
on a new path, thereby ensuring liveness.

Advance Rule. Upon receiving a new qc, the local latestQC
is updated first. Then, if the latestQC forms a two-hop within
the current view, the lockedQC is updated. The corresponding
block can be committed if the latestQC forms a three-hop
within the current view. Since we ensure that the newly gen-
erated block always carries the latest QC, the local updates to
all QC states are linearly incremental, allowing the consensus
to progress step by step.

Algorithm 2 Passive Cascade Workflow (for replica ri)

1: ▷ Network Message Triggered
2: procedure PROCESSBLOCK(block)
3: if block has been received then return
4: ADVANCERULE(block.qc)
5: if ¬ VOTERULE(block) then return
6: latestBlock ← block
7: PROCESSAVM(ri vote for block)
8: send localAVM to all predecessors // Feedback Vote
9: localAVM = ⊥

10: send block to all successors // Distribute Block
11: end procedure
12: procedure PROCESSAVM(avm)
13: localAVM ←MergeAVM(localAVM, avm)
14: if ri is not Leader then return
15: newQC ← GETQCFROMAVM(localAVM)
16: ADVANCERULE(newQC)
17: if received votes for latestBlock then
18: newBlock ← PROPOSALRULE()
19: PROCESSBLOCK(newBlock)
20: end procedure
21: ▷ Local Timer Triggered
22: procedure PROCESSTIMEOUT()
23: // Enter View Change
24: curV iew = curV iew + 1, curSeq = 0
25: Get Topology for curV iew
26: // Send newV iew message
27: Send ⟨curV iew, ri, latestQC⟩ to Leader in curV iew
28: if ri is Leader for curV iew
29: wait for Q newV iew messages
30: AdvanceRule(newV iew.latestQC)
31: goto line 18 // Generate first block for curV iew
32: end procedure

C. Passive Cascade Workflow

Ensuring security while parallelizing proposal generation is
only the first step. The timing of when the leader generates
the next proposal, how replicas forward the proposal, and how
votes are collected are equally important issues, as they will
determine the final performance. We design a passive cascade
workflow that enables the frequency of parallel proposals to
adaptively match the fanout of the multi-layer topology. The
replica passively waits for messages, triggering a fire-and-
forget action upon reception, which generates response mes-
sages that further cascade to trigger actions in replicas across
adjacent layers. This ensures that replicas make decisions
based solely on messages from neighbors, making throughput
independent of topology depth. Specifically, each replica only
requires two procedures to handle all incoming blocks and
votes (avm) messages from the network, and one additional
procedure to handle local timeout, as shown in Algorithm 2.
Among these, only the View Change (Line 23 in Algorithm
2) is triggered by a timer, which ensures that our pipelining
remains responsive.

9

Process Block. When replica ri receives a block from a
predecessor replica, it first checks if the block has been
previously received. Given that ri has multiple predecessors,
receiving the same block from different predecessors multiple
times is normal, but ri only processes it the first time. If it
is a new block, it indicates progress at higher-level replicas,
prompting ri to advance. At this point, ri sends its buffered
votes localAVM to all its predecessors, and broadcasts this
new block to all its successors.

Process AVM. When ri receives a set of votes avm, it first
merges avm with its localAVM . If ri is the leader, it checks
whether a new QC has been generated in localAVM , thereby
advancing the consensus. At the same time, if votes for the
latestBlock from other replicas are received, a new block will
be generated, which serves as the source of all blocks.

Process Timeout. Considering that we are using a partially
synchronous model, we assume that each replica has a timer.
If the latestQC is not updated within a time interval ∆, a
view change will be triggered. Replica ri enters the next view
and sends a newV iew message to the next leader, which
includes the latestQC recorded by ri. As the new leader,
upon receiving Q newV iew messages, the leader gathers the
latestQC and initiates the new view.

D. Safety and Liveness

Theorem 1. (Safety) If b and b′ are conflicting blocks, then
they cannot be both committed, each by a correct replica.

Proof. Unlike HotStuff, Tide allows multiple proposals to
occur in parallel within the same view. To maintain safety in
this setting, we assign a unique seq number to each proposal
within a view, which totally orders the proposals. For each pair
(view, seq), at most one QC can be generated, since forming
a QC requires 2F + 1 votes and each correct replica can cast
at most one vote for a given (view, seq). This ensures that
conflicting QCs cannot arise for the same sequence number,
and thus the possibility of conflicting commits due to parallel
proposals is prevented.

Without loss of generality, we can assume that b is commit-
ted by a correct replica and focus on discussing the following
two cases. Case (1): b.view = b′.view ∧ b.seq ≤ b′.seq.
Among the ancestor blocks (include itself) of b′, there must
exist a block b∗ such that b∗.seq = b.seq, and b∗ conflicts with
b. If b gets a valid QC, it indicates that at least F + 1 correct
replicas have voted for it. Therefore, at most F byzantine
replicas and the remaining F correct replicas could vote for
b∗, making it impossible to produce a QC for b∗. Therefore,
b∗ and its descendant blocks cannot be committed. Case (2):
b.view < b′.view. If at the end of b.view, b is committed by
at least one correct replica, it implies that at least F+1 correct
replicas have their lockedQC.block as a descendant of b, and
they will not vote for any block that conflicts with b. After
this point, no new QC can be generated for any block that
conflicts with b. Therefore, in b′.view, no conflicting block
can be committed.

Lemma 2. After GST, there exists a bounded time period Tf

such that if all correct replicas remain in view v during Tf

and the topology for view v is available, then a decision is
reached.

Proof. At any given moment, for any correct replica, if
Algorithm 1 line 17 is executed such that qc∗ becomes its
lockedQC, then there must be F + 1 correct replicas that
have voted for qc∗, which implies that Algorithm 1, line 14
has also been executed. Therefore, the latestQC of these F+1
replicas will certainly be more recent than qc∗, and at least
one of them will be received by the new leader in view v, as
the leader needs to collect Q newV iew messages. As a result,
once the leader derives the most recent QC from all newV iew
messages and proposes block b, the logical condition in line 8
of Algorithm 1 will always be satisfied, prompting all replicas
to vote for b.

Since we use a more complex topology, we must prove
that blocks can be disseminated and votes can be collected
when the communication topology is available. First, among
the leader’s successors, there is at least one available replica,
denoted as r∗. After the leader sends a block b to r∗, r∗

will vote for b and return the vote to the leader. Once the
leader receives this vote, the next block will be proposed.
By continuously repeating this process, the leader will keep
proposing blocks and disseminating them. From the perspec-
tive of block distribution, since any replica will immediately
forward a received block to all of its successor replicas, the
blocks proposed by the leader are guaranteed to be delivered
to all available replicas. From the perspective of vote propa-
gation, since a replica will forward all collected votes to its
predecessor replicas upon receiving a new block, any vote
will eventually be relayed back to the leader, driven by the
continuous flow of block messages. In summary, unlike most
other works that rely on time-based waiting within multi-layer
topologies, we use block messages as the driving force. This
ensures the distribution of blocks and the propagation of votes,
ultimately guaranteeing the responsiveness of consensus.

Theorem 3. (Liveness) If a transaction tx is submitted to
all correct replicas, then all correct replicas will eventually
commit the transaction tx.

Proof. Using a view-synchronization mechanism [10], or a
simpler approach in PBFT [14] and HotStuff [54], where expo-
nential back-off is used to adjust timeouts, we can ensure that
all correct replicas will eventually have at least any bounded
time period Tf overlap within the same view. On the other
hand, given that an available topology exists, traversing all
possible topologies will eventually yield an available one. In
practice, selecting a topology at random is sufficient: according
to the analysis in Section III-C, the probability of choosing an
available topology is at least N−F

N (1 − ε). At this point, the
conditions of Lemma 2 are satisfied, and the correct leader
will include the transaction tx in a block, ensuring that all
correct replicas eventually commit tx.

10

V. OPTIMIZATION & SIMULATION

In this section, we introduce two practical optimizations.
The first is to achieve improved resilience by utilizing idle
replicas in the bottom layer without increasing fanout. The
second is to achieve adaptive resilience by dynamically ad-
justing fanout based on the actual number of Byzantine faults.

Improved Resilience. There is a load imbalance in the topol-
ogy introduced earlier, with the bottom-layer replicas largely
idle. In the topology, all vertices have the same in-degree,
which is ρ, but their out-degrees vary. The out-degree of
vertices in the bottom layer (Vd) is 0, while the out-degree of
other replicas is ρκ. When κ = 2, the number of bottom-layer
vertices is N/2, which indicates potential for improvement.

We introduce an additional redundancy parameter α, which
indicates the number of times each replica appears in the
topology. α ranges from 1 to κ. When α = 1, it represents
the topology structure we discussed earlier. When α is greater
than 1, we attach the replicas that appear multiple times to
the bottom layer of the topology. When α > 1, we attach
the repeatedly occurring replicas to an additional layer below
the bottom layer. Since we use exponential layering, this
additional layer can accommodate at most (κ−1) ·N vertices.
Since each replica appears α times, their in-degree increases
from ρ to ρα, while the maximum out-degree remains ρκ.
The advantage of this method is that it does not require
modifying the topology construction algorithm; only the input
needs to be adjusted. In Section III-B, we generate one
random permutation of R to construct the topology. Now,
we generate α random sequences. The j-th (1 ≤ j ≤ α)
sequence is denoted as Rj

p = [rjp1
, rjp2

, . . . , rjpN
]. Use mapping

rjpi
←→ v(j−1)∗N+i to get vertex set V = {v1, v2, . . . , vαN}.

Adaptive Resilience. The larger the redundancy parameters ρ
and α, the stronger the fault tolerance of the topology. How-
ever, this also increases the actual communication volume, as
each replica forwards messages to ρ targets. During the actual
operation of the system, only the actual number of Byzantine
replicas f , is uncertain, which in turn affects the availability
of the topology. Therefore, our approach is to dynamically
adjust the topology parameters during system operation based
on the actual consensus success rate. Using hypothesis testing,
such as the Z-test[42], we can estimate the current topology’s
availability (donated as PTG) by statistically analyzing the
availability frequency of the topology over a past period
(reflected by whether consensus can progress). For example,
we can set the confidence threshold to 90%, aiming to adjust
PTG to lie between 0.5 and 0.8. If we believe that PTG < 0.5,
we increase the parameters; if we believe that PTG > 0.8, we
decrease the parameters.

Due to the minimal impact of the parameter κ on PTG but
its significant influence on communication complexity, we do
not adjust κ; this paper defaults to using κ = 2. The impact
of ρ is greater than that of α, so we prioritize adjusting α.
Meanwhile, both ρ and α have clear upper and lower bounds,
specifically 1 ≤ ρ ≤ log3 N and 1 ≤ α ≤ κ. When the
parameters take the lower bound, the topology is a simple κ-

Fig. 6: The availability for different topologies, with varying
numbers of Byzantine replicas. On the vertical axis, different
parameters are represented in the form Tide-ρ(α). For exam-
ple, Tide-3(2) represents ρ = 3, α = 2.

ary tree; while the upper bound of the parameters is derived
in III-C, ensuring the availability. Our specific rules are as
follows. When increasing the parameters, if ρ = log3 N , we
do nothing; else if α = κ, we adjust ρ = ρ+1 and reset α = 1;
else we adjust α = α+1. When decreasing the parameters, if
ρ = α = 1, we do nothing; else if α = 1, we adjust ρ = ρ−1
and reset α = κ; else we adjust α = α− 1.

Simulation For Availability. We evaluate different values of
ρ, α, and f to observe the effects of the two optimizations. As
shown in Fig. 6, we plot a heatmap where the values represent
the availability statistically recorded in 1,000,000 simulation
experiments. We select a fixed N = 1000 as an example,
where the horizontal axis represents f , and the vertical axis
represents different topologies. The first row represents the star
topology, exemplified by HotStuff. It is the simplest topology,
and its availability (donated as PHS) is the highest, as it is
only dependent on whether the leader is a Byzantine replica.
As f increases, PHS = N−f

N decreases linearly. This is the
theoretical upper bound for all topologies. The second row
represents the tree topology, exemplified by Kauri, which has
poor resilience. The availability of Kauri (donated as PKA)
decreases rapidly as f increases. When f = 266, PKA is only
0.01, which can be considered negligible. The remaining rows
show the performance of Tide under different parameters. For
a fixed ρ, a larger α significantly enhances the resilience of
the Tide topology. For example, when f = 266, ρ = 2, and
α = 1, PTG = 0.16, whereas for α = 2, PTG = 0.73. At the
same time, for relatively small f , only small values of ρ and
α are required to ensure the availability of the topology. For
example, when f = 333, ρ = 4 and α = 2 are required to
ensure PTG ≥ 0.5, whereas for f = 299, ρ = 2 and α = 2
are sufficient.

VI. IMPLEMENTATION & EVALUATION

We implemented Tide and conducted evaluations across
several aspects. Experimental results showed that Tide’s per-
formance was almost unaffected by the number of replicas,
effectively overcoming the scalability bottleneck.

11

Implementation. We implemented Tide2, HotStuff[54],
Kauri[43], and Crackle[51] using the Go language with 5000
lines of code. Our implementation is built on top of the open-
source Bamboo framework3 [23], which provides a general
benchmarking environment for Chained-BFT consensus. We
implemented aggregated signatures based on the BLS12-381,
which is also used by Ethereum. To conduct large-scale
experiments, we implemented comprehensive Bash scripts to
facilitate batch control of the servers. The experiments were
conducted on 100 cloud servers within a local area network,
each equipped with 8 CPUs (Intel(R) Xeon(R) Gold 6278C
@ 2.60GHz) and 16 GiB of memory, running Ubuntu 20.04,
and we used Netem [28] to introduce control over network
round-trip time (RTT).
Setup. We primarily focus on the following five parameters,
with their default values set as: the number of replicas N
is 100, the number of Byzantine faults f is 0, the block
size (number of transactions) is 400, the payload size of a
transaction is 128 bytes, and the RTT between replicas is 10
ms. Each time, we vary one of these parameters to explore its
impact on performance.
Metrics. We use two key metrics to evaluate performance:
throughput (ktps), which measures the number of kilo-
transactions committed per second, and latency (ms), which
represents the average time taken from transaction generation
to commitment. Due to the significant differences in perfor-
mance metrics under different parameters, the y-axis is on a
logarithmic scale.
Evaluation of Scalability. We first conducted an evaluation
of scalability separately for small-scale (N ≤ 100) and large-
scale (N ≥ 100) scenarios as shown in Fig. 7 and Fig. 8.
To demonstrate the impact of pipelining on performance, we
implement a variant of Tide, Tide-NP, which adopts the same
logarithmic fanout topology (§ III) but lacks the highly-parallel
pipelining design (§ IV). Tide-NP employs a pipeline directly
adapted from HotStuff, where the leader broadcasts a proposal,
waits for a quorum of votes, and then proceeds to the next. As
a result, its throughput is affected by the depth of the topology.

As the number of replicas increases, the throughput of other
protocols experiences a significant decline, while Tide is only
minimally affected. When N = 100, Tide’s throughput reaches
54ktps, more than twice that of the other protocols. As N
increases from 100 to 1000, Tide’s throughput decreases by
less than 10%, while other protocols experience a decline of
65%-90%, making Tide’s throughput more than 5 times higher
than that of the other protocols. This significant performance
advantage stems from differences in topology and pipeline
design. HotStuff uses a star topology with O(N) fanout,
causing throughput to drop quickly as N increases. Kauri and
Crackle adopt tree topologies with O(

√
N) fanout, offering

better scalability. However, Kauri’s pipeline parallelism relies
on prior profiling and is less effective than Crackle. Tide fur-
ther reduces fanout to O(logN) and employs a highly-parallel

2https://github.com/glimmerzcy/Tide-Public
3https://github.com/gitferry/bamboo

25 50 75 100
Replicas

1010

100100

Th
ro

ug
hp

ut
 (k

tp
s)

25 50 75 100
Replicas

100

30

300

La
te

nc
y

(m
s)

Tide Tide-NP Crackle Kauri HotStuff

Fig. 7: Performance in Samll-Scale(N ≤ 100)

250 500 750 1000
Replicas

1

10

100

Th
ro

ug
hp

ut
 (k

tp
s)

250 500 750 1000
Replicas

100

1000

La
te

nc
y

(m
s)

Tide Tide-NP Crackle Kauri HotStuff

Fig. 8: Performance in Large-Scale(N ≥ 100)

pipeline, enabling it to maintain high throughput even at large
scales. Despite using an O(logN) fanout, Tide-NP suffers
from low throughput because it lacks parallel pipelining. Each
proposal must go through logN communication steps before
the leader can collect votes, resulting in significant latency
caused by the depth of the topology.

Meanwhile, Tide’s latency also remains largely stable, in-
creasing only from 0.3s to 0.4s, as shown in Fig. 8, while the
latency of other protocols increased by more than 10 times.
The latency of Tide is primarily dictated by the logarithmic
depth of its communication topology. Since logN grows
slowly, the increase in latency is marginal when N increases
from 100 to 1000. However, when N < 100, the growth of
logN is relatively faster, so Tide does not exhibit a latency
advantage in this regime, as shown in Figure 7.

In summary, Tide demonstrates remarkable stability in terms
of both throughput and latency, overcoming the performance
limitations imposed by the leader bottleneck. In contrast, Tide-
NP exhibits significantly lower performance, illustrating that
a low fanout alone is insufficient. If throughput is constrained
by the depth of the communication topology, overall system
performance can degrade, which is also a common issue in
gossip-based protocols [11], [37].

Evaluation of Resilience. We secondly conducted an evalua-
tion of resilience, testing performance under different Byzan-
tine numbers. We selected N = 100 and N = 400 for
comparison and conducted two sets of experiments. In each
set, the number of Byzantine replicas was increased from 0 to
N/3, as shown in Fig. 9 and 10. Kauri, due to its tree topol-
ogy, suffers from crashes as the number of Byzantine faults
increases, failing to maintain a usable topology. Although
Crackle addresses the resilience issue of tree topology by
using intermediate-layer rotation, allowing it to operate with

12

0 11 22 33
Byzantine number

10

30

70
Th

ro
ug

hp
ut

 (k
tp

s)

0 11 22 33
Byzantine number

100

1000

300

La
te

nc
y

(m
s)

Tide Crackle Kauri HotStuff

Fig. 9: Impact of Byzantine Faults (N = 100)

0 44 89 133
Byzantine number

1

10

100

Th
ro

ug
hp

ut
 (k

tp
s)

0 44 89 133
Byzantine number

1000

10000

La
te

nc
y

(m
s)

Tide Crackle Kauri HotStuff

Fig. 10: Impact of Byzantine Faults (N = 400)

0 25 50 75 100 125 150 175 200
Time (s)

0

20

40

Th
ro

ug
hp

ut
 (k

tp
s)

Byzantine Attack

Tide-A Tide-S Crackle Kauri HotStuff

Fig. 11: Throughput under Byzantine Attack

f = N/3, its performance remains low. Since Crackle lacks
responsiveness, as the number of Byzantine faults increases,
more voting collections rely on timers, which leads to a
decrease in performance. When f = N/3, Crackle’s through-
put is nearly identical to that of HotStuff. In comparison,
Tide is only minimally affected by the number of Byzantine
faults, with performance decreasing by less than 20%, as Tide
requires at most O(logN) fanout. Although HotStuff has a low
absolute performance, it is almost unaffected by the number
of Byzantine faults due to its star topology, which provides
the best resilience. The experiments show that both Kauri
and Crackle have fragile resilience to Byzantine faults, while
HotStuff exhibits low performance. Only Tide maintains high
performance across different environments.

Evaluation of Adaptive Resilience. Section V introduces
adaptive resilience by dynamically adjusting the fanout in
Tide. We evaluate this using sudden Byzantine attacks, and
the results are shown in Fig. 11. Tide-A represents Tide with
adaptive resilience, where the parameters ρ and α are dy-
namically adjusted during runtime. Tide-S, on the other hand,
uses static parameters to ensure maximum fault tolerance,
with ρ = 4 ≈ log3100, α = 1. The system starts with

0 50 100 150 200 250 300
Time (s)

0

20

40

Th
ro

ug
hp

ut
 (k

tp
s)

RTT=10msRTT=20ms RTT=20ms

Tide Crackle Kauri HotStuff

Fig. 12: Throughput under Network Fluctuation

25 50 75 100
RTT (ms)

1

10

100

Th
ro

ug
hp

ut
 (k

tp
s)

25 50 75 100
RTT (ms)

100

1000

10000

La
te

nc
y

(m
s)

Tide Crackle Kauri HotStuff

Fig. 13: Impact of RTT

zero Byzantine faults, and Tide-A’s throughput is significantly
higher than Tide-S, as it operates with a smaller fanout. At the
100th second, 11 random Byzantine faults were injected. After
a few seconds of performance fluctuation, Tide-A adjusted
to the appropriate parameters (ρ = 3) and maintained a
performance slightly higher than Tide-S. Although Tide-S’s
performance is slightly lower, it maintains higher stability,
being almost unaffected by the Byzantine attack.

Evaluation of Responsiveness. Responsiveness reflects the
system’s ability to advance consensus in line with the actual
network delay RTT. In protocols without responsiveness, such
as Kauri and Crackle, replicas rely on a preset ∆ to drive
consensus, preventing performance improvements when the
network conditions improve. We set the number of Byzantine
faults to 11, and through the silence of Byzantine replicas, the
non-responsive voting collection in the protocol is affected.
As shown in Fig. 12, we start the system with an RTT of
20ms, and adjust the RTT to 10ms between 100s and 200s.
As the actual RTT decreased, the throughput of both HotStuff
and Tide approximately doubled, whereas Kauri and Crackle
remained largely unaffected.

Impact of RTT. RTT is one of the key factors influencing
the performance of consensus protocols. We conducted an
experiment where RTT was varied from 10ms to 100ms, as
shown in Fig. 13. The results show that Crackle’s latency is
most affected by RTT, as its communication steps per QC scale
with

√
N , which is designed to enhance resilience. In terms

of throughput, the performance of all four protocols decreases
as RTT increases. Tide and Kauri, due to their smaller fanout,
experience a more moderate decline.

13

VII. RELATED WORK

As the first practical BFT protocol, PBFT[14] adopts a
leader-based paradigm, in which a designated replica is re-
sponsible for coordinating proposal and commitment in each
consensus round. While this design simplifies coordination,
it inevitably introduces a performance bottleneck and load
imbalance, as the leader becomes the central point of both
computation and communication. To mitigate these issues, a
line of research has focused on restructuring the communica-
tion topology and building pipelined execution schemes that
align with the underlying topology, allowing non-leader repli-
cas to share part of the leader’s workload and thereby enhance
scalability. Along this line, the proposed Tide protocol is the
first to reduce the workload of all replicas to a logarithmic
level, making system performance almost independent of the
number of replicas.

Works such as Kauri [43] and [36], [15], [35] utilize the
tree topology to reduce fanout in which Byzantine replicas
can affect all replicas within the subtree. Therefore, they can
only use a three-layer tree with the fanout

√
N to reduce the

impact of Byzantine replicas. However, it is still difficult for
the system to tolerate N/3 faults. Crackle [51] addresses this
issue by frequently rotating the

√
N replicas in the middle

layer, but increases the Communication Steps per QC to
O(
√
N). In terms of the pipelining, Kauri [43] and Crackle

[51] are unable to achieve responsive vote collection. As
long as one Byzantine replica does not return its vote, the
consensus can only proceed according to the pre-set timer’s
value (∆). Hermes[31] addresses leader resource limitations
by introducing a forwarding layer with c replicas, reducing
the leader’s fanout to c. However, each forwarding replica has
a fanout of N , becoming a new bottleneck. Tendermint [11],
Gosig [37], and TSBFT [50] use the Gossip algorithm [46] to
achieve proposal broadcasting with logarithmic fanout. Gossip
addresses the fault tolerance issue when fanout is small by us-
ing randomized multi-round propagation. However, due to its
randomness, message propagation becomes uncontrollable and
unpredictable. As a result, the leader cannot deterministically
know the progress of the current proposal’s propagation. The
leader must wait until all replicas have received the proposal
before sending the next one. This ultimately leads to the
proposal pace being dependent on all replicas rather than just
the fanout. Therefore, although its fanout appears to be very
small, in practice, it is not fully utilized.

More recently, an alternative line of research has explored
multi-leader and leaderless paradigms, where multiple replicas
concurrently propose and confirm blocks to overcome the in-
herent limitations of single-leader designs. Some studies [47],
[26], [2] achieve moderate performance gains by introducing
multiple leaders, each running its own consensus instance.
However, this approach introduces significant challenges, such
as transaction duplication and difficulties in maintaining a con-
sistent global order. In contrast, DAG-based [18], [33], [17],
[30] and ACS-based [41], [25], [20], [57] protocols enable
all replicas to participate equally and concurrently in driving

consensus, thereby fully utilizing system-wide resources, con-
ceptually similar to how Tide achieves balanced participation
within a single-leader framework. Nevertheless, most of these
protocols were originally designed for asynchronous networks
rather than the partially synchronous setting considered in this
work. As a result, they typically incur higher communication
complexity and latency due to their reliance on costly primi-
tives such as Reliable Broadcast [1] and Common Coin [13],
and they often require large batch sizes (e.g., O(n log n)) to
amortize cryptographic overhead. Concurrent with our work,
Mysticeti [6] and Shoal++ [4] further optimize DAG-based
designs for partially synchronous settings, demonstrating im-
pressive performance improvements. Furthermore, inspired
by the separation of transaction dissemination and ordering
introduced in Narwhal [18], Tide can be naturally integrated
with DAG-based approaches.

VIII. CONCLUSION

Tide is the first to overcome the scalability bottleneck of
the leader-based BFT protocols, with performance invariance
to replica count. We construct a robust communication topol-
ogy that can tolerate N/3 Byzantine faults with a fanout
of O(logN). Meanwhile, we design an efficient proposal
pipelining, making the throughput independent of the depth
of the topology. Furthermore, we implement two practical
optimizations that further reduce communication complexity.
Finally, we conducted large-scale experiments with up to 1000
replicas. The results show that the performance of Tide is
almost unaffected by the number of replicas. With Tide, the
scale of replicas no longer limits BFT consensus.

ACKNOWLEDGEMENT

This work is supported by the National Natural Sci-
ence Foundation of China under Grant Nos. 62372324 and
62502338, the China Postdoctoral Science Foundation under
Grant Number 2025M771566, and the Postdoctoral Fellowship
Program of China Postdoctoral Science Foundation under
Grant Number GZB20250403.

REFERENCES

[1] Nicolas Alhaddad, Sourav Das, Sisi Duan, Ling Ren, Mayank Varia,
Zhuolun Xiang, and Haibin Zhang. Balanced byzantine reliable broad-
cast with near-optimal communication and improved computation. In
Proc. of the ACM PODC, pages 399–417, 2022.

[2] Salem Alqahtani and Murat Demirbas. Bigbft: A multileader byzantine
fault tolerance protocol for high throughput. In Proc. of the IEEE
IPCCC, pages 1–10, 2021.

[3] Mohammad Javad Amiri, Ziliang Lai, Liana Patel, Boon Thau Loo,
Eric Lo, and Wenchao Zhou. Saguaro: An edge computing-enabled
hierarchical permissioned blockchain. In Proc. of the IEEE ICDE, pages
259–272, 2023.

[4] Balaji Arun, Zekun Li, Florian Suri-Payer, Sourav Das, and Alexander
Spiegelman. Shoal++: High throughput dag bft can be fast and robust!
In Proc. of the USENIX NSDI, pages 813–826, 2025.

[5] Diem Association. The diem blockchain, 2020. https://developers.diem.
com/docs/technical-papers/the-diem-blockchain-paper/.

[6] Kushal Babel, Andrey Chursin, George Danezis, Anastasios Kichidis,
Lefteris Kokoris-Kogias, Arun Koshy, Alberto Sonnino, and Mingwei
Tian. Mysticeti: Reaching the limits of latency with uncertified dags. In
Proc. of the ISOC NDSS, 2025.

14

[7] Christian Berger, Signe Schwarz-Rüsch, Arne Vogel, Kai Bleeke, Le-
ander Jehl, Hans P Reiser, and Rüdiger Kapitza. Sok: Scalability
techniques for bft consensus. In Proc. of the IEEE ICBC, pages 1–
18, 2023.

[8] Alysson Bessani, João Sousa, and Eduardo EP Alchieri. State machine
replication for the masses with bft-smart. In Proc. of the IEEE/IFIP
DSN, pages 355–362, 2014.

[9] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the
weil pairing. In Proc. of the Springer Asiacrypt, pages 514–532, 2001.

[10] Manuel Bravo, Gregory Chockler, and Alexey Gotsman. Making
byzantine consensus live. Springer Distributed Computing, 35(6):503–
532, 2022.

[11] Ethan Buchman. Tendermint: Byzantine fault tolerance in the age of
blockchains. PhD thesis, University of Guelph, 2016.

[12] Christian Cachin et al. Architecture of the hyperledger blockchain fabric.
In Proc. of the ACM DCCL, volume 310, pages 1–4, 2016.

[13] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles
in constantipole: practical asynchronous byzantine agreement using
cryptography. In Proc. of the ACM PODC, pages 123–132, 2000.

[14] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance.
In Proc. of the USENIX OSDI, pages 173–186, 1999.

[15] Aleksey Charapko, Ailidani Ailijiang, and Murat Demirbas. Pigpaxos:
Devouring the communication bottlenecks in distributed consensus. In
Proc. of the ACM SIGMOD, pages 235–247, 2021.

[16] Kevin Choi, Aathira Manoj, and Joseph Bonneau. Sok: Distributed
randomness beacons. In Proc. of the IEEE S&P, pages 75–92, 2023.

[17] Xiaohai Dai, Chaozheng Ding, Hai Jin, Julian Loss, and Ling Ren.
Ipotane: Achieving the best of all worlds in asynchronous bft. IACR
Cryptol. ePrint Arch., 2024.

[18] George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and Alexan-
der Spiegelman. Narwhal and tusk: a dag-based mempool and efficient
bft consensus. In Proc. of the Eurosys, pages 34–50, 2022.

[19] Kevin Driscoll, Brendan Hall, Håkan Sivencrona, and Phil Zumsteg.
Byzantine fault tolerance, from theory to reality. In Proc. of the Springer
SAFECOMP, pages 235–248, 2003.

[20] Sisi Duan, Michael K Reiter, and Haibin Zhang. Beat: Asynchronous
bft made practical. In Proc. of the ACM CCS, pages 2028–2041, 2018.

[21] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the
presence of partial synchrony. ACM Journal of the ACM, 35(2):288–323,
1988.

[22] Liaoliao Feng, Xiang Fu, Huaimin Wang, Keming Wang, Peichang Shi,
Feng Jiang, and Moheng Lin. From pbft to the present: a thorough
overview of blockchain consensus protocols. Springer Science China
Information Sciences, 69(1):111102, 2026.

[23] Fangyu Gai, Ali Farahbakhsh, Jianyu Niu, Chen Feng, Ivan Beschast-
nikh, and Hao Duan. Dissecting the performance of chained-bft. In
Proc. of the IEEE ICDCS, pages 595–606, 2021.

[24] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nick-
olai Zeldovich. Algorand: Scaling byzantine agreements for cryptocur-
rencies. In Proc. of the ACM SOSP, pages 51–68, 2017.

[25] Bingyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng
Zhang. Dumbo: Faster asynchronous bft protocols. In Proc. of the
ACM CCS, pages 803–818, 2020.

[26] Suyash Gupta, Jelle Hellings, and Mohammad Sadoghi. Rcc: Resilient
concurrent consensus for high-throughput secure transaction processing.
In Proc. of the IEEE ICDE, pages 1392–1403, 2021.

[27] Johan Håstad, Russell Impagliazzo, Leonid A Levin, and Michael Luby.
A pseudorandom generator from any one-way function. SIAM Journal
on Computing, 28(4):1364–1396, 1999.

[28] Stephen Hemminger et al. Network emulation with netem. In Proc. of
the Linux conf au, volume 5, page 2005, 2005.

[29] Dengcheng Hu, Jianrong Wang, Xiulong Liu, Hao Xu, Xujing Wu,
Muhammad Shahzad, Guyue Liu, and Keqiu Li. Ladder: A convergence-
based structured {DAG} blockchain for high throughput and low latency.
In Proc. of the USENIX NSDI, pages 779–794, 2025.

[30] Yi Hua, Xiulong Liu, Hao Xu, Chenyu Zhang, Licheng Wang, and Keqiu
Li. Fastdag: A low-latency and parallel wave-execution consensus with
a double-layer dag. In Proc. of the Springer NPC, pages 88–100, 2025.

[31] Mohammad M Jalalzai, Chen Feng, Costas Busch, Golden G Richard,
and Jianyu Niu. The hermes bft for blockchains. IEEE Transactions on
Dependable and Secure Computing, 19(6):3971–3986, 2021.

[32] Mohammad M Jalalzai, Jianyu Niu, Chen Feng, and Fangyu Gai.
Fast-hotstuff: A fast and resilient hotstuff protocol. arXiv preprint
arXiv:2010.11454, 2020.

[33] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander
Spiegelman. All you need is dag. In Proc. of the ACM PODC, pages
165–175, 2021.

[34] John Kelsey, Luı́s TAN Brandão, Rene Peralta, and Harold Booth.
A reference for randomness beacons: Format and protocol version 2.
Technical report, National Institute of Standards and Technology, 2019.

[35] Eleftherios Kokoris-Kogias. Robust and scalable consensus for sharded
distributed ledgers. Cryptology ePrint Archive, 2019.

[36] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas
Gailly, Ewa Syta, and Bryan Ford. Omniledger: A secure, scale-out,
decentralized ledger via sharding. In Proc. of the IEEE S&P, pages
583–598, 2018.

[37] Peilun Li, Guosai Wang, Xiaoqi Chen, Fan Long, and Wei Xu. Gosig:
A scalable and high-performance byzantine consensus for consortium
blockchains. In Proc. of the ACM SoCC, pages 223–237, 2020.

[38] Wenyu Li, Chenglin Feng, Lei Zhang, Hao Xu, Bin Cao, and Muham-
mad Ali Imran. A scalable multi-layer pbft consensus for blockchain.
IEEE Transactions on Parallel and Distributed Systems, 32(5):1146–
1160, 2020.

[39] Xiulong Liu, Zhiyuan Zheng, Hao Xu, Zhelin Liang, Gaowei Shi,
Chenyu Zhang, and Keqiu Li. Enabling consistent sensing data sharing
among iot edge servers via lightweight consensus. IEEE Transactions
on Computers, 2025.

[40] Dahlia Malkhi and Kartik Nayak. Hotstuff-2: Optimal two-phase
responsive bft. Cryptology ePrint Archive, 2023.

[41] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The
honey badger of bft protocols. In Proc. of the ACM CCS, pages 31–42,
2016.

[42] David S Moore and George P McCabe. Introduction to the practice of
statistics. WH Freeman/Times Books/Henry Holt & Co, 1989.

[43] Ray Neiheiser, Miguel Matos, and Luı́s Rodrigues. Kauri: Scalable bft
consensus with pipelined tree-based dissemination and aggregation. In
Proc. of the ACM SOSP, pages 35–48, 2021.

[44] Fred B Schneider. Implementing fault-tolerant services using the state
machine approach: A tutorial. ACM Computing Surveys, 22(4):299–319,
1990.

[45] Claus-Peter Schnorr. Efficient signature generation by smart cards.
Springer Journal of Cryptology, 4:161–174, 1991.

[46] Devavrat Shah et al. Gossip algorithms. Foundations and Trends® in
Networking, 3(1):1–125, 2009.

[47] Chrysoula Stathakopoulou, Tudor David, and Marko Vukolic. Mir-bft:
High-throughput bft for blockchains. arXiv preprint arXiv:1906.05552,
92, 2019.

[48] Xiao Sui, Sisi Duan, and Haibin Zhang. Marlin: Two-phase bft with
linearity. In Proc. of the IEEE/IFIP DSN, pages 54–66, 2022.

[49] Harmony Team. Harmony technical whitepaper, 2019. https://harmony.
one/whitepaper.pdf.

[50] Junfeng Tian, Jin Tian, and Hongwei Xu. Tsbft: A scalable and efficient
leaderless byzantine consensus for consortium blockchain. Elsevier
Computer Networks, 222:109541, 2023.

[51] Hao Xu, Xiulong Liu, Chenyu Zhang, Wenbin Wang, Jianrong Wang,
and Keqiu Li. Crackle: A fast sector-based bft consensus with sublinear
communication complexity. In Proc. of the IEEE INFOCOM, 2024.

[52] Hao Xu, Chenyu Zhang, Xiulong Liu, Yiran Lv, Shiyu Gan, Liehuang
Zhu, and Keqiu Li. A fast and practical sector-based bft consensus with
sublinear communication complexity. ieee transactions on networking.
IEEE Transactions on Networking, 2026.

[53] Wassim Yahyaoui, Jeremie Decouchant, Marcus Völp, and Joachim
Bruneau-Queyreix. Tolerating disasters with hierarchical consensus. In
Proc. of the IEEE INFOCOM, 2024.

[54] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and
Ittai Abraham. Hotstuff: Bft consensus with linearity and responsiveness.
In Proc. of the ACM PODC, pages 347–356, 2019.

[55] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. Rapidchain:
Scaling blockchain via full sharding. In Proc. of the ACM CCS, pages
931–948, 2018.

[56] Gengrui Zhang, Fei Pan, Yunhao Mao, Sofia Tijanic, Michael Dang’ana,
Shashank Motepalli, Shiquan Zhang, and Hans-Arno Jacobsen. Reach-
ing consensus in the byzantine empire: A comprehensive review of bft
consensus algorithms. ACM Computing Surveys, 56(5):1–41, 2024.

[57] Haibin Zhang and Sisi Duan. Pace: Fully parallelizable bft from
reproposable byzantine agreement. In Proc. of the ACM CCS, pages
3151–3164, 2022.

15

APPENDIX

We provide several proofs to help illustrate the properties
of the topology discussed in the main text.

A. Properties of the ELG

We use the sample space Ω to represent there are f
randomly chosen faulty vertices out of N total vertices. We
use the event NF(v) to denote that vertex v is not faulty. If
there exists a path from the root v1 to v such that all vertices
along the path are not faulty, we say that vertex v is reachable,
and this event is denoted as RV(v).

Theorem 4. The more predecessors vertex v ∈ Vl has at every
layer (such as v in Fig. 2), the larger P (RV(v)) becomes, i.e.,
for ELG and ELG′, ∀i < l ∀U ⊆ Predl−i(v) holds:

U ⊆ Pred′l−i(v) ∧ PredS(U) ⊆ Pred′S(U)

=⇒ P(RV′(v)) ≥ P(RV(v))

Proof. First, we define some random variables and events. We
use the event A(U, V) to represent that all vertices in U are
non-faulty, and the other vertices are faulty, i.e.,

A(U, V) = (
⋂
u∈U

NF(u)) ∩ (
⋂

u∈V−U

NF(u))

We use RVS(V) to represent that at least one vertex in the
set V is reachable, i.e.,

RVS(V) =
⋃
v∈V

RV(v)

For a set SVi consisting of vertices from the same layer Vi

(SVi ⊆ Vi), the following relationship holds:

RVS(SVi) =
⋃

U∈P(SVi)

A(U, SVi) ∩ RVS(PredS(U)) (i > 1)

We use the random variable NFS(ω, V) to represent the
number of non-faulty vertices in a set. We limit the number of
faulty vertices at each layer to f1, f2, . . . , fd(d = |EP(V)|),
such that the events of faulty vertices at each layer are
independent. We denote this condition as Ωf1,f2,...,fd , and all
subsequent probability calculations will be performed under
this condition, i.e.,

Ωf1,f2,...,fd = (

d⋂
i=0

NFS(ω, Vi) = |Vi| − fi) ∩ (
∑

fi = f)

Under this condition, whether a vertex in a given
layer is faulty is independent of whether other lay-
ers are reachable. Therefore, P(A(U, SVi)|Ωf1,f2,...,fd) and
P(NFS(PredS(U))|Ωf1,f2,...,fd) are independent probabili-
ties. Therefore, we obtain the following probability equality:

P(RVS(SVi)|Ωf1,f2,...,fd))(i > 1)

=
∑

U∈P(SVi)

(P(A(U, SVi)|Ωf1,f2,...,fd) ·

P(RVS(PredS(U))|Ωf1,f2,...,fd))

At this point, we have obtained a formula for calculat-
ing the reachability of a set. Although it is not possi-
ble to directly compute probabilities from it, we can iden-
tify some meaningful relationships. The first part of the
formula P(A(U, SVi)|Ωf1,f2,...,fd) depends solely on the
size of SVi, meaning that the larger the enumerated set,
the better when calculating probabilities. The second part
P(NFS(PredS(U))|Ωf1,f2,...,fd) directly depends on the size
of the predecessor set of U , indicating that a larger number of
predecessors is advantageous. Thus, we prove the following
relationship using mathematical induction:

∀i < l ∀SVi ⊆ Predl−i(v) =⇒
P(RV′

S(SVl)|Ωf1,f2,...,fd) ≥ P(NFS(SVl)|Ωf1,f2,...,fd)

First, for i = 1, if SV1 = {v1}:

P(RV′
S({v1})|Ωf1,f2,...,fd) = P(NFS({v1})|Ωf1,f2,...,fd)

= P(RV(v1)|Ωf1,f2,...,fd) = P(NF(v1)|Ωf1,f2,...,fd) =
1− f1

1

Else, if SV1 = ∅:

P(RV′
S({v1})|Ωf1,f2,...,fd) = P(NFS({v1})|Ωf1,f2,...,fd) = 0

Second, suppose for i:

P(RV′
S(SVi)|Ωf1,f2,...,fd) ≥ P(NFS(SVi)|Ωf1,f2,...,fd)

Then, for i+ 1:

∀U ∈P(SVi+1) ∧ PredS(U) ⊆ Pred′S(U) ⊆ Vi

=⇒ P(RV′
S(Pred

′
S(U))|Ωf1,f2,...,fd)

≥ P(NFS(PredS(U))|Ωf1,f2,...,fd)

=⇒ P(RV′
S(SVi+1)|Ωf1,f2,...,fd)

≥ P(NFS(SVi+1)|Ωf1,f2,...,fd)

Finally, for SVl = {v}, we get:

P(RV′
S({v})|Ωf1,f2,...,fd) ≥ P(NFS({v})|Ωf1,f2,...,fd)

At the same time, the following equation clearly holds:

P(RV(v)) = P(NFS({v}))

=
∑

Ωf1,f2,...,fd
⊆Ω

P(NFS({v})|Ωf1,f2,...,fd) · P(Ωf1,f2,...,fd)

Therefore:

P(RV′(v)) ≥ P(RV(v))

Theorem 5.

(ELG =⇒ ¬MPRED)

=⇒ ∃ELG′∃u s.t. P(RV′(u)) > P(RV(u))

Proof. We plan to identify the vertices that violate MPRED
and then construct a better graph. Since ELG does not satisfy
MPRED, there must exist a vertex u as the first vertex to
violate this property. That is, the vertices in the first a layers
satisfy the MPRED condition, while u satisfies the condition

16

up to the b-th order predecessors, but fails to do so in the
(b+ 1)-th, i.e., ∃u ∈ Va ∃b < a such that:

∀i < a ∀v ∈ Vi ∀l < i |Predl(v)| = min(ρl, |Vi−l|)
∧ ∀l ≤ b |Predl(u)| = min(ρl, |Va−l|)
∧ |Predb+1(u)| < min(ρb+1, |Va−b−1|)

Our goal is to swap some edges related to u in E, to form
a new graph ELG′ = ⟨EP(V),E′⟩, such that P(RV′(u)) >
P(RV(u)).

Since |Predb(u)| reaches the maximum, but |Predb+1(u)|
does not. There must exist two vertices wb

1, w
b
2 ∈ Predb(u)

that share at least one common predecessor wb+1
1 ∈

Predb+1(u), thereby disrupting the upward extension of the
predecessors of u, and at least one vertex wb+1

2 ∈ Va−b−1 is
not in Predb+1(u), i.e., ∃wb

1, w
b
2 ∈ Predb(u) ∃wb+1

1 , wb+1
2 ∈

Va−b−1 such that:

wb+1
1 ∈ (Pred(wb

1) ∩ Pred(wb
2))

wb+1
2 ∈ (Va−b−1 \ Pred(b+1(u))

And we donated the predecessor of wb+1
1 and wb+1

2 as:

Pred(wb+1
j) = {wb+2

j,i | 1 ≤ i ≤ ρ} (1 ≤ j ≤ 2)

For any wb+2
1,i , its successors cannot all lie within Predb+1(u).

Otherwise, there must ∃w1 ∈ Pred(u) such that Predb(u1) <
ρb. A rigorous proof is provided in the appendix. We donated
these vertices as wb+1

1,i , i.e., for ∀wb+2
1,i (1 ≤ i ≤ ρ):

∃wb+1
1,i ∈ Succ(wb+2

1,i) =⇒ wb+1
1,i /∈ Predb+1(u)

We construct the following edge set: E1 ⊆ E represents
the current connection scheme. By swapping some of the
connections, we obtain E′

1 ⊆ E′, such that the predecessors
of wb+1

2 and wb+1
1 are exactly the same.

E1 = {(wb+2
1,i , wb+1

1,i), (wb+2
2,i , wb+1

2) | 1 ≤ i ≤ ρ}
E′

1 = {(wb+2
1,i , wb+1

2), (wb+2
2,i , wb+1

1,i) | 1 ≤ i ≤ ρ}

Next, we construct the following edge set E2 ⊆ E, E′
2 ⊆ E′

to make wb+1
2 a predecessor of u by connecting it to wb

2.

E2 = {(wb+1
1 , wb

2), (w
b+1
2 , wb

3)},
E′

2 = {(wb+1
2 , wb

2), (w
b+1
1 , wb

3)}

Formally, the relationship between E′ and E is as follows:

E′ = (E \ (E1 ∪ E2)) ∪ (E′
1 ∪ E′

2)

In the new graph ELG′ = ⟨EP(V),E′⟩, the number of
paths from u to the root has obviously increased, which
implies that the reachability also increases. In E, both wb

1 and
wb

2 are connected to wb+1
1 , and whether they are connected

depends entirely on wb+1
1 . In E′, wb

1 and wb
2 are connected to

wb+1
1 and wb+1

2 respectively, and their predecessors are exactly
the same. Specifically, in the event RV(u), any path passing
through (wb+1

1 , wb
2) can be mapped to a path passing through

(wb+1
2 , wb

2) in RV′(u). However, under the new connection
set, when both wb

1 and wb
2 are usable, the reachability of any

vertex in wb+1
1 or wb+1

2 allows them to connect to higher
layers, which is not the case in ELG. That is, RV′(u) contains
more usable paths than RV(u), in the case:

NF(wb
1) ∩NF(wb

2) ∩NF(wb+1
2) ∩NF(wb+2

2)

In summary, we construct a better graph ELG′ = ⟨EP(V),E′⟩,
such that P(RV′(u)) > P(RV(u)).

Theorem 6.

MSUCC =⇒ MPRED

Proof. Proving the original proposition is equivalent to prov-
ing its contrapositive. Therefore, we start with the contrapos-
itive of MPRED:

¬ MPRED ≡∃i ∃v ∈ Vi ∃l < i(|Predl(v)| < min(ρl, |Vi−l|))

To express concisely, let’s assume ∃i ∃v ∈ Vi ∃l < i such
that |Predl(v)| < min(ρl, |Vi−l|), and then proceed with the
proof. Noting the presence of the min symbol, we divide the
proof into two cases.
Case 1. First, consider the case when ρl < |Vi−l|. It can be
proven that ∃u ∈ Predl(v) for which ¬MSUCC holds. All
successors of any u ∈ Predl(v) must be disjoint, but in this
situation they necessarily intersect; otherwise the predecessors
of v would not be insufficient. Let l′ be the last layer in which
v has a full set of predecessors. In this layer, there must exist
two parent nodes that point to the same successor. Therefore,
there exists a vertex u ∈ Predl(v) such that Succl(u) < (ρ ·
κ)l. Since |Vi| = |Vi−l| · κl, we have (ρ · κ)l < |Vi|, which
implies | Succl(u)| < min

(
(ρ · κ)l, |Vi|

)
.

Case 2: ρl > |Vi−l|. Second, when ρl > |Vi−l|, it can be
proven that there ∃u ∈ (Vi−l−Predl(v)) such that ¬MSUCC
holds. Since u /∈ Predl(v), we have v /∈ Succl(u). Because
v ∈ |Vi|, it follows that | Succl(u)| < |Vi|. At this point, since
(ρ · κ)l > |Vi|, we obtain | Succl(u)| < min

(
(ρ · κ)l, |Vi|

)
.

Combining the proofs of both cases, we have demonstrated
the validity of the contrapositive of the original proposition,
which is equivalent to proving the original proposition.

¬ MPRED =⇒ ¬ MSUCC

B. Properties of the TG

By observing the Definition 6 of the Tide Graph, we can see
that there is some continuity in the properties of the vertices.
As shown in Fig. 14, two consecutive blue vertices in Vi

have consecutive successors; similarly, two consecutive green
vertices also have consecutive successors, if we treat Vi+1 as
a circular layer. We define this continuity as:

Definition 7. (CC) For a subset U ⊆ Vi , if U satisfies the
following property, we say that U is congruently contiguous
in Vi, denoted as CC(U,Vi):

∃p1, p2,..., p|U | =⇒ U = {vp1
, vp2

, ..., vp|U|}
∧ px − si + 1 ≡ px+1 − si mod κi−1(1 ≤ x < |U |)

17

𝑉𝑖+1

… … 𝑉𝑖

…

𝜌 groups

𝜌𝜅 vertices

𝜅𝑖−1 vertices

𝜅𝑖−1 groups

…

…

… … …

Fig. 14: The continuity of the Tide Graph

For a TG, there are two important properties of CC, proved
in Lemma 7 and Lemma 8, namely:

CC(U,Vi) =⇒ CC(SuccS(U),Vi+1)

CC(U,Vi) =⇒ | SuccS(U)| = min(|U | ∗ ρκ, |Vi+1|)

Lemma 7. For TG =< EP(V),E >, the following property
holds:

CC(U, Vi) =⇒ CC(SuccS(U), Vi+1)

Proof. By Definition 6, the successor vertices of a vertex vpx

in U can be represented as:

Succ(vpx) = {vpx,y | px,y = bx ∗ ρκ+ si+1 + y,

bx = (px − si) mod κi−1, 0 ≤ y < ρκ}

First, we only consider a single vertex vpx
in U :

px,y + 1 = px,y+1(0 ≤ y < ρκ− 1)

=⇒ px,y − si+1 + 1 ≡ px,y+1 − si+1 mod κi

=⇒ CC(Succ(vpx), Vi+1)

Furthermore, we prove that the successors of two adjacent
vertices vpx

and vpx+1
in U are congruently contiguous:

bx + 1 ≡ bx+1 mod κi−1

=⇒ (bx ∗ ρκ+ ρκ− 1) + 1 ≡ bx+1 ∗ ρκ+ 0 mod κi

=⇒ px,ρκ−1 − si+1 + 1 ≡ px+1,0 − si+1 mod κi

=⇒ CC(Succ(vpx) ∪ Succ(vpx+1), Vi+1)

Therefore, the following sequence ensures that SuccS(U)
satisfies the property of being congruently contiguous:

p1,0, p1,1, ..., p1,ρκ−1, ..., px,y, ..., p|U |,0, p|U |,1, ..., p|U |,ρκ−1

Lemma 8. For TG =< EP(V),E >, the following property
holds:

CC(U, Vi) =⇒ | SuccS(U)| = min(|U | ∗ ρκ, |Vi+1|)

Proof. This lemma means that when U is congruently contigu-
ous in Vi, its set of successor vertices can reach a maximum
value, which is the minimum between |U | × ρκ and |Vi+1|.

The choice of this minimum value depends on the relationship
between |U | and κi−1, so we prove this in two cases.

Case 1: |U | < κi−1. For any two distinct vertices in U ,
it can be proven that their sets of successors have an empty
intersection:

∀vpe
, vpf

∈ U(f > e) ∧ f − e < |U |
=⇒ f − e < κi−1 ∧ pe − si + (f − e) ≡ pf − si mod κi−1

=⇒ pe − si ̸≡ pf − si mod κi−1

=⇒ Succ(vpe
) ∩ Succ(vpf

) = ∅

=⇒ | SuccS(U)| =
∑
v∈U

| Succ(v)| = |U | ∗ ρκ

Case 2: |U | ≥ κi−1. In this case, all vertices in Vi+1 are
successors of U . This is equivalent to proving that for any
vy ∈ Vi+1, vy ∈ SuccS(U).

∀vy ∈ Vi+1 ∧ CC(U, Vi)

=⇒ ∃vpx
∈ U s.t. (px − si) mod κi−1 = ⌊y − si+1

ρκ
⌋

=⇒ vy ∈ SuccS(U) =⇒ | SuccS(U)| = |Vi+1|

Based on this, we ultimately provide proof that TG satisfies
MSUCC, which also implies that it satisfies MPRED.

Theorem 9.

TG =⇒ MSUCC

Proof. Our approach is to prove, for ∀i∀v ∈ Vi, using
the transitivity of properties (Lemma 7, 8) related to CC
(Definition 7), that the successors of v at each layer satisfy
the MSUCC principle through mathematical induction. For
the zero-order successors of v, it is evident that:

CC(Succ0(v),Vi) ∧ | Succ0(v)| = min((ρκ)0, |Vi|)

Next, we assume that the l-th order successors of v satisfy:

CC(Succl(v),Vi+l) ∧ | Succl(v)| = min((ρκ)l, |Vi+l|)

Since SuccS(Succ
l(v)) = Succl+1(v), we can deduce that the

(l + 1)-th order successors of v satisfy:

CC(Succl(v),Vi+l)

=⇒ CC(Succl+1(v),Vi+l+1)

∧ | Succl+1(v)| = min(| Succl(v)| ∗ ρκ, |Vi+l+1|)
= min((ρκ)l+1, |Vi+l+1|)

18

