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Abstract—Despite the billions of dollars invested in the threat
intelligence (TI) ecosystem—a globally distributed network of
security vendors and altruists who drive critical cybersecurity
operations—we lack an understanding of how it functions,
including its dynamics and vulnerabilities. To fill that void, we
propose a novel measurement framework that tracks binaries
as they traverse the ecosystem by monitoring for watermarked
network Indicators of Compromise (IoCs). By analyzing each
stage of the propagation chain of submitted TI (submission,
extraction, sharing, and disruption), we uncover an ecosystem
where dissemination almost always leads to the disruption of
threats, but vendors who selectively share the TI they extract
limit the ecosystem’s utility. Further, we find that attempts to
curtail threats are often slowed by ‘bottleneck’ vendors delaying
the sharing of TI by hours to days.

Critically, we identify several threats to the ecosystem’s supply
chain, some of which are presently exploited in the wild.
Unnecessary active probing by vendors, shallow extraction of
dropped files, and easy-to-predict sandbox environment finger-
prints all threaten the health of the ecosystem. To address these
issues, we provide actionable recommendations for vendors and
practitioners that improve the safety of the TI supply chain,
including detection signatures for known abuse patterns. We col-
laborated with vendors through a responsible disclosure process,
gaining insight into the operational constraints underlying these
weaknesses. Finally, we provide a set of ethical best practices for
researchers actively measuring the threat intelligence ecosystem.

I. INTRODUCTION

Threat intelligence (TI) involves the process of gathering,
analyzing, and utilizing information about cyber threats to
improve the security of an organization [1]. The TI market
is rapidly expanding and is projected to surpass $15 billion
by 2026 [2]. This growth is driven by the increasing demand
for high-quality data that enables organizations to react better
to emerging threats. The globally distributed vendors and indi-
vidual contributors within the ecosystem generate a wide and
intricate web of indicators derived from analyzing malicious
artifacts such as binaries, phishing websites, and emails [3].
The sharing in this ecosystem is driven by a combination of al-
truism and commercial agreements, and ultimately TI is shared
with defenders. For these defenders, navigation and assessment
of TI dataset quality and relevance are pressing challenges [4].

Researchers and practitioners have explored various aspects
of the threat intelligence ecosystem to better understand its
sources, sharing, and implementations [5]-[10]. Although
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prior work has demonstrated how TI can be extracted and
measured, fundamental gaps remain in our understanding of
the ecosystem’s topology, supply chain, and threat surface.
Limited to passive and locally scoped datasets, existing studies
fail to capture the global dynamics of indicator of compromise
(IoC) propagation and the nuances of TI sharing or timeliness.
To address these shortcomings, we adopt an active measure-
ment approach that examines real-time interactions among
antivirus engines, sandboxes, TI platforms, and blocklisting
services, enabling us to reconstruct the ecosystem’s topology
and assess detection delays. This method also reveals the
behaviors of closed-source vendors, broadening visibility
into otherwise opaque areas of the ecosystem. Further, our
findings highlight ongoing adversarial exploitation, where we
identified over 800 binaries uploaded to VirusTotal embedding
sandbox-specific IPs or URLs within a 90-day window in
early 2025. These artifacts show that adversaries deliberately
employ evasion strategies targeting known TI infrastructure.

Our novel measurement framework leverages active
probing to trace IoCs across the global TI ecosystem. We
design and submit benign yet suspicious binaries to 30
security vendors—spanning antivirus engines, sandboxes,
and TI platforms—each embedded with custom file-dropping
and provenance-tracking mechanisms. The framework
allows us to observe the analysis and sharing of IoCs
through submission, sandbox analysis, sharing, blocking, and
takedown. Our approach reveals previously unreported vendor
behaviors and sharing relationships, including those related
to vendors without open data feeds. To further characterize
ecosystem actors, we introduce a clustering technique that
fingerprints entities based on their network and system-level
responses. Crucially, our work addresses ethical concerns
often neglected in earlier studies by explicitly accounting
for human deception, resource overhead, and privacy. We
consider three research questions (RQs):

« RQ1 [Propagation]: How do security vendors differ
in their ability to analyze malware and share extracted
indicators of compromise (IoCs) across the ecosystem?

« RQ2 [Disruption]: How do differences in analysis and
sharing affect the speed and effectiveness with which ven-
dors block IoCs or take down (or suspend) infrastructure?

« RQ3 [Evasion]: How are adversaries exploiting gaps in
analysis, sharing, or disruption, and what strategies can
improve the ecosystem’s resilience against such evasions?

Our study reveals a stratified structure in the TT ecosystem
that directly impacts IoC sharing and response times. While
sandbox analysis occurs rapidly and is widespread (performed



by 67% of vendors), only 17% of vendors share the extracted
TI, and only two of the 30 vendors contributed to downstream
domain takedowns, highlighting a gap between TI extraction,
sharing, and action (RQ1). We identify four central ‘nexus’
vendors that heavily enrich and redistribute TI, serving as
aggregation points for the broader ecosystem. Most other
vendors consume or extract intelligence but do not reshare,
creating dependency bottlenecks and potential single points
of failure. We further find that network [oCs are reshared far
more frequently than binaries. In some cases, domain lookups
were 20X more prevalent than dynamic analysis executions.
Although IoCs are typically extracted within seconds, we
observe that sharing delays—often hours to days—propagate
across the supply chain, increasing time-to-block or suspend
by up to 20% (RQ2). By simulating adversarial evasion
tactics against our measurements using known sandbox
blocklists, we find that while central nexus vendors are
rarely bypassed, evasions can reduce the number of vendors
receiving extracted TI by 25%, indicating that these tactics
can degrade TI coverage across the ecosystem (RQ3).
Finally, we discovered striking evidence of adversaries
actively attempting to evade sandboxes via fingerprinting tech-
niques and show that insufficient diversification of sandbox fin-
gerprints puts vendors at risk for these evasive tactics. We com-
municated our findings to 30 security vendors through a re-
sponsible disclosure process. Through this effort, we provided
vendors with recommendations and detection rules for reduc-
ing their exposure to the weaknesses discovered in our work.
In summary, the contributions of our paper are as follows:

1) Understanding the TI supply chain. We introduce
a novel, data-driven methodology for measuring the
behaviors and relationships that drive the TI supply
chain, enabling quantitative analysis of its completeness,
coverage, timeliness, and information-sharing dynamics.
Using telemetry collected from over 60 vendors, we
find that domains are shared far more frequently than
malware binaries, a disparity that may hinder coordinated
detection engineering and remediation efforts.

2) Assessing Fingerprints. We systematically measure the
diversity and reuse of sandbox fingerprints across non-
premium vendors, finding that most expose themselves
to evasion and vendor attribution attacks by relying on
uniform and predictable environments.

3) Adversarial tactics and community recommendations.
We identify real-world malware samples exploiting
systemic weaknesses in the TI ecosystem, with observed
abuse persisting as recently as June 2025. Building on
these findings, we provide practical recommendations
and detection signatures to help vendors and operators
mitigate such abuses. Finally, we outline ethical
guidelines for future researchers conducting active
probing of TI infrastructures to ensure responsible and
transparent experimentation.

II. BACKGROUND & RELATED WORK
A. Background — Threat Intelligence

Broadly, threat intelligence (TI) comes in operational,
strategic, and tactical forms. Operational and strategic TI

sources typically include high-level findings related to
attacker behaviors, trends, and attribution. We primarily
focus on data-driven tactical TI, which includes indicators of
compromise (IoCs), including binaries, file hashes, domains,
IPs, and URLs. Defenders use these IoCs for detection,
incident response, and threat hunting.

The TI ecosystem contains many organizations, including
vendors, operators, researchers, and adversaries. Vendors are
commercial or non-profit security organizations that extract
and share TI. In addition, vendors can use this TI for detection
engineering and for disrupting adversaries’ campaigns. Oper-
ators (or practitioners) are the beneficiaries of the enrichment,
sharing, and detections provided by TI. They use threat
intelligence in operational environments, including security
monitoring, forensic analysis, and attribution, and lawful
takedowns. In contrast to vendors, operators are concerned
with protecting a network or investigating a specific threat.
Operators may offer security products and services, but are
not directly involved in the production of threat intelligence.
However, in performing their tasks, operators may generate
relevant data. Operators can include security teams within an
organization, a managed security service provider (MSSP),
a forensic law firm, or law enforcement. Researchers study
the ecosystem for the purpose of discovering and minimizing
threats. They differ from vendors in that they do not offer
services or products that are directly used by customers.

B. Related work

Studies related to TI sharing can be broadly grouped into
four categories: sharing practices and barriers, evaluation and
quality assessment of feeds, usage of TI platforms in research,
and methods for indicator extraction and automated analysis.

Sharing between organizations. Existing studies have
explored the benefits and challenges associated with TI
sharing among organizations. The barriers identified include
trust in upstream sources, privacy concerns, and organizational
readiness [3], [10]-[12]. Adoption of TI within organizations
has been linked to factors such as organizational size, resource
availability, and the financial cost of acquiring commercial
feeds [13], [14]. Sauerwein et al. [9] highlighted informal and
ad-hoc processes that organizations often use in sourcing and
utilizing TI, which can lead to inconsistent threat responses.
In contrast, our work actively tracks the end-to-end flow of TI
from extraction to disruption. We explicitly address privacy
concerns and integrate provenance tracking to improve our
understanding of TI sharing relationships.

Assessment of TI Feeds. Researchers have proposed metrics
and approaches to evaluate the quality and usefulness of
TI feeds. Evaluations include assessments of IoC labeling
accuracy, indicator timeliness and shelf life, and correlations
among different TI sources [7], [8], [15]-[21]. Bouwman
et al. [6] demonstrated differences between commercial and
open-source TI feeds in terms of overlap, coverage, and
timeliness, while Kuhrer et al. [5] showed limited coverage of
public blocklists. Our approach differs by actively measuring
the TI supply chain to observe real-time generation and
propagation of IoCs, allowing us to assess the ecosystem’s
resilience against manipulation and evasion tactics directly.



Usage of TI platforms. Public TI platforms, such as
VirusTotal, have become central to many security workflows.
Researchers often rely on these platforms to obtain detection
verdicts and malware sandbox analysis reports for evasive
samples [22], [23]. Prior evaluations of these sandboxes
provide insight into the static signatures [24], [25] and
behaviors [26] present in dynamic analysis environments.

IoC extract and analysis. Automated methods for IoC
extraction employ graph mining, natural language processing,
and various machine learning techniques [27]-[29]. Machine
learning models have also been proposed for assessing
indicator relevance and automatic blocking or takedown of
malicious domains [30], [31]. Recent studies have identified
vulnerabilities in automated domain-blocking systems, demon-
strating susceptibility to evasion and poisoning attacks, some
of which can be mitigated by adversarial training [31], [32].

Our work. Prior studies of TI platforms [24], [25] have
primarily analyzed sandbox environments in isolation, with a
key theme of identifying static or behavioral fingerprints that
malware may exploit for evasion. Our work differs in several
important ways. We repurpose these fingerprints to conduct
active, ecosystem-scale measurements of vendor practices and
relationships, extending the scope of analysis beyond isolated
sandbox evasion. We introduce a novel telemetry mechanism
that uses watermarked indicators of compromise that serve
as provenance trails that trace how binaries propagate across
the ecosystem. Finally, we provide empirical evidence that
fingerprint-based evasion is not merely a theoretical concern,
documenting concrete cases where cybercriminals actively
exploit these weaknesses.

Additionally, our study extends prior assessments of various
TI feeds, largely centering on IoCs associated with known
malware samples (e.g., STIX objects [21] and network-level
IoCs [7], [8], [15]-[20]). In contrast, our provenance-based
methodology enables active inference of vendor-to-vendor
sharing relationships, revealing the underlying structure of
information exchange within the TI ecosystem. This capability
allows practitioners to identify propagation bottlenecks and
can be used to attribute controlled data leaks. Furthermore,
our active measurement framework captures the downstream
operational effects of TI sharing, including firewall-level
blocking and registrar takedowns, providing visibility into
how shared intelligence translates into concrete defensive
actions. Finally, unlike all these works, we differentiate
between the sharing of derived threat intelligence (e.g.,
network IoCs and file hashes) and the exchange of full binary
artifacts, the latter offering deeper insight into the threat’s
behavior and enabling richer downstream analysis.

III. MEASUREMENT METHODOLOGY

Measuring the lifecycle of threat intelligence in near
real-time is challenging. In what follows, we outline three
requirements for conducting such a study, as well as the
design choices we made to facilitate a sound analysis thereof.

To address our three research questions on propagation,
disruption, and evasion, we examine three key attributes of
the threat intelligence ecosystem: (a) Extraction, which refers
to how threat intelligence is generated from binaries through

sandbox analysis; (b) Communities, which capture how IoCs
are shared and propagated among ecosystem participants; and
(¢) Timeliness, which concerns how quickly vendors extract,
classify, and act on intelligence.

We study the extraction attribute by examining the number
of distinct sandboxes used by a vendor as well as the depth
to which a submission is analyzed. A vendor who analyzes
both a binary and its dropped files is considered more
comprehensive (deeper analysis) than one who does not.
For the community attribute, we deduce sharing channels
using a novel method for tracking binaries and their IoCs.
By incorporating a provenance trail that creates unique
binaries and IoCs, we can learn with whom vendors share
information. We measure the connectivity of sub-communities
using graph metrics to infer relationships. The constructed
provenance trail enables us to study 1oCs timeliness, or delays
in analysis and sharing. Moreover, we actively check open
source intelligence and blocklists for the IoCs to measure the
time vendors take to act on intelligence that is gathered.

Requirement I: Fingerprinting Analysis Tools. Security ven-
dors often analyze binaries using a diverse set of tools
across multiple environments (e.g., varying operating systems,
virtual memory configurations, or network setups). These
environment-dependent analyses produce threat intelligence
that we characterize as the extraction attribute of the TI
ecosystem. Relying solely on network-level features to identify
a vendor would obscure important aspects of their extraction
tactics (such as shared tools and the use of cloud infrastruc-
ture or proxies). To capture these nuances, our measurement
pipeline must record high-signal fingerprints of the sandbox
environment, enabling accurate attribution and deeper insight
into vendor-specific analysis behavior.

Requirement II: Adaptive Intelligence Tracking. Security
vendors frequently share threat intelligence that was ei-
ther generated in-house or aggregated from external sources,
whether free or commercial. However, this sharing is often
selective in that vendors may disclose only certain binaries
or limit sharing to the network indicators produced during
execution. During dynamic analysis, a vendor might execute
a binary multiple times across different environments or using
varied toolchains, yielding diverse outputs. In some cases, a
vendor may share extracted indicators with another vendor,
who then investigates those indicators without ever possessing
the original binary. As a result, for an external network
observer, it becomes infeasible to distinguish between the
sharing of binaries and the sharing of derivative indicators.
This ambiguity highlights the need for a robust measurement
pipeline capable of tracking threat intelligence as it flows
across vendors and analysis stages.

Requirement IIl: Triggering Malicious Verdicts. Security
vendors often implement filtering mechanisms to ensure their
feeds provide useful data [3], [33]. For an indicator to be
included in a feed, it is reasonable to assume that the binary
associated with the indicator must first be perceived as ma-
licious. Hence, the binaries used in the study must induce
suspicious behavior that would trigger malicious verdicts.



A. Design

To meet these requirements, we designed the measurement
pipeline depicted in Figure 1. Our design consists of a
Generator and an Observer. The Generator automatically
produces binaries that, when executed, create unique indicators
that can be tracked remotely and passively by the Observer.
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Fig. 1: Measurement Pipeline. The Generator creates binaries
(Rockets) and deploys them. The Observer monitors for analysis
emissions from Rockets and their payloads (Satellites).
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1) Generator: In the spirit of information discovery
terminology, our Generator creates a unique binary referred to
as a Rocket. The binary is a defanged (i.e., modified so that it
is non-harmful) program with suspicious behavior. When the
Rocket is executed, it emits a unique domain name indicator
containing encoded information about the specific sandbox
environment. Then, the Rocket generates a modified copy of
itself and stores (or drops) this copy on the host. The dropped
binary is called the Satellite. Together, the Rocket and Satellite
allow us to track the sharing of the binaries and their IoCs.

To ensure that an observer can disambiguate executions
of the binaries from lookups of IoCs, we leverage HTTP
as the primary signaling channel. We implement different
modules for the aforementioned requirements: (1) a recursive
method that uniquely tracks binaries as they traverse the
ecosystem. Randomly generated IDs are assigned to each
execution. Additionally, the Rocket drops a copy of itself.
This new ‘Satellite’ is uniquely connected to the Rocket.
(2) a privacy-preserving module that collects features of the
analysis environment where the binary is run, hashes each
attribute, and encodes the resulting fingerprint as part of
the domain name. (3) a defanged keylogging behavior that
mimics basic malware capabilities. This is designed to induce
automated detections, blocking, and takedown techniques.

Our system fingerprint consists of three features selected
based on a pilot experiment aimed at validating prior
studies [24], [34]. In that pilot, we profiled a handful of
sandboxes using 16 features described in these works, but
ultimately settled on three features based on high mutual
information, robustness, and privacy considerations. Specifics
of the pilot are in Appendix A. Unlike prior work, we took
steps to protect any information that we deemed potentially
sensitive among the information collected by the Rocket.

The system shares the hashed fingerprint with the
Observer server via a simple HTTP request, where the
execution information is encoded in the domain name.
However, encoding the fingerprint in a domain name is not
straightforward and requires careful analysis to address several
practical issues. First, the DNS protocol limits queries to 253
characters. Secondly, although a fully qualified DNS name
can be up to 253 characters in length, a given subdomain
is limited to 63 characters. Thirdly, the case-insensitivity of
domain names constrains our encoding strategy. To ensure we
can track sharing to a reasonable depth, we limit our labels
to the 36 alphanumeric characters ([a—z0-91). Specifically,
the Satellite generates a domain name for each execution
in the format (b | enHyl...|e1H1), where b is the ID of
the binary that we initially submitted to the vendor, ¢; is a
randomly generated string identifying a distinct execution of
the binary, H; is a sandbox fingerprint.

Conceptually, this mechanism can be viewed as a type of
provenance tracking. We encode information in subdomain
labels based on an incremental chained mechanism similar to
hash chain approaches used to provide tamper-evident [35]
logs in the domain of computer forensics [36]. Specifically, we
opted for a low overhead approach where the trail is simply
the concatenation of multiple execution IDs and fingerprints
from a binary’s provenance trail. Each fingerprint (H;) is
itself the concatenation of the hashed values of the sandbox’s
system manufacturer, RAM, and OS install date information.
These features are a subset of features used in prior work [24]
that performed well in a pilot experiment and are not overly
privacy-exposing. The feature selection process is discussed
further in Appendix A. By design, tracking is restricted to a
maximum depth of 5; no new Satellites are dropped beyond
that level (this is to prevent infinite loops of executions that
might occur after the binary is submitted to a vendor).

Whenever the rocket is executed, it issues an HTTP
request, which will first resolve the domain using DNS. If
the resolution is successful, the Rocket sends an HTTP GET
request (with a custom User-Agent header) to the resolved IP
containing the fingerprint as both a URI and a subdomain.
Finally, the Rocket drops (but does not execute) a Satellite file
on the host. When executed, Satellites have the same defanged
behavior as the Rocket. Crucially, the new Satellite contains
the fingerprint and unique ID of its parent, which are appended
to the DNS hostname. This enables us to track the sharing of
dropped binaries when they are executed by another vendor.

2) Observer: We deploy Emission Sensors for each
registered domain. Those sensors record emissions received
from the binaries. Each sensor runs a DNS authority and an
HTTP server. The DNS authority responds to all queries for
the registered domain, including all subdomain labels. The
HTTP server logs the time, host, user-agent, method, URI,
and body for all requests, and returns a 502 response. The
sensors use separate IPv4 addresses for DNS and HTTP.
These sensors are open to the internet and exposed to scanners
and miscellaneous internet noise.

To measure timeliness, the Observer also implements an IoC
Probe that queries several TI sources for the binaries’ IoCs.
The probe serves as a proxy for inferring how quickly security
vendors put the threat intelligence into practice. We actively



check if (/) the domains or IP addresses have been added to
Google Safe Browsing or FireHol lists, (2) the domains have
been blocked by Quad9, Google, Cloudflare, or Palo Alto
DNS Security, or (3) if the domains, IPs, or related hashes,
appear in the databases of VirusTotal or AlienVault Open
Threat Exchange (OTX)'. If so, the related IoCs are saved
along with the number of detections, the assigned AV labels,
when available. We also inspect (4) the feed of a well-known
commercial threat intelligence vendor with whom we have a
contractual arrangement. This vendor’s feeds include hashes,
domains, URLs, and IP addresses that are deemed malicious.

An example of emissions is shown on the left-hand side
of Table I. We return to how vendor labels (in the right-hand
side) are assigned in Section III-C.

B. Sourcing security vendors

We started with VirusTotal, a platform that aggregates
verdicts from numerous antivirus and sandbox vendors. From
this collection of antivirus vendors, we included 20 vendors
that have a dedicated web portal for submitting binaries.
We then examined the 18 sandboxes that VirusTotal uses.
However, we could not utilize any of them because they either
required a commercial license, vetted trial via sales team, or
the service is not publicly available. To find other reputable
sandbox services, we turned to search engines and used spe-
cific keywords (e.g., ‘malware sandbox, ‘malware detector,’
‘dynamic binary analysis’). That search led to security articles
that listed a number of commercial and open source sandboxes.
We also examined the contents of a popular malware analysis
GitHub repository [37]. Through this process, we identified 15
new vendors, most of which met our criteria (freely available
and no human in the loop for registration). We included five
additional well-known vendors given our prior knowledge. The
full list of 40 vendors considered in this paper is in Table XI.

Although there is no agreed upon categorization in the
literature, we group vendors based on their primary functions:

o Threat intelligence (TI) platforms produce, aggregate,
and share threat intelligence from multiple sources. Ex-
amples include VirusTotal and MalwareBazaar.

o Antivirus companies provide commercial tools that use
threat intelligence. They also produce threat intelligence
by analyzing specific types of threats (e.g., malware,
phishing). Examples include Kaspersky and Sophos.

« Malware sandbox services offer services that produce
threat intelligence associated with malicious binaries.
Examples include HybridAnalysis and Any.Run.

The explicit distinction we make here is that TI Platforms
and Antivirus vendors utilize sandbox technologies, but sand-
boxes are not their core technology offering. In contrast, Sand-
box services offer dynamic malware analysis as their product.

C. Labeling vendors

Uploading a binary to a single vendor leads to numerous
executions, some of which are spawned by a diverse set of
other vendors. To label vendors, we employed a three-step
process combining vendor dynamic analysis reports, expert

'Now LevelBlue OTX. We use the former name due to its higher
recognition within the security community.

rules, and unsupervised clustering. This approach generates
labels for known vendors using dynamic analysis reports and
human labeling, then generates labels for external vendors
using an ML-based technique. Specifically, we assign vendor
labels to system and network (AS country and organization)
fingerprint tuples collected from the Observer logs. To limit
reputational harm and disclosure of potentially private
inter-vendor relationships, we generate pseudonyms for each
vendor (e.g., INT-AV-1 for an antivirus) and refer only
to these in the results. The order of the labels is given by
the total number of executions observed after submissions to
each vendor (see Table II).
The overall process is as follows:

Step 1: Dynamic analysis reports. Whenever possible,
we gathered dynamic analysis reports from vendors. These
reports contain information collected during binary execution
in a sandbox, including the domain names that it queried.
Because we encode a uniquely generated execution ID (€)
in the subdomain, we can directly link the execution to the
vendor who produced the dynamic analysis report. Twelve of
the sandbox and TI vendors to whom we submitted a Rocket
produced such reports, which allowed us to link 122 (25%
of) executions unequivocally to their originating vendor.

Step 2: Collaborative hand-labeling. To link the remaining
executions with their respective vendors, two Ph.D. students,
both with experience in threat hunting, collaboratively an-
alyzed the remaining logs. Each student was given a list
of vendors with any HTTP emissions observed and their
associated Observer logs, which included each execution’s
system and network fingerprints and fingerprint trail (if one
exists). They were instructed to annotate as many executions
as possible with their associated vendor given this informa-
tion and any available internet sources (e.g., VirusTotal or
AS metadata [38]), but to leave executions unlabeled when
uncertain. To do this, the students constructed boolean rules,
which are logical conjunctions that identify a vendor based on
its system and network fingerprint. These boolean rules were
then applied to label fingerprints, and therefore, executions.
For example, the following rule identifies Polaris Security (a
fictional company) by matching either the full sandbox finger-
print or the AS organization name. H = f;_3 are the system’s
hashed manufacturer, RAM, and OS install date, respectively.

(fl:“iy” A f2:“v’7 A f3: “pkq”) \ IPorg:“Polaris Security LLC”

During the first stage, the students worked independently
without sharing results to compose rules which, when
applied, provided labels for 56 fingerprints corresponding to
381 executions. Cohen’s Kappa score [39] for the independent
labeling was 0.87. Afterwards, the researchers collaboratively
resolved the disagreements. There were no instances where
they disagreed on the identity of a labeled fingerprint,
only cases where either researcher left a label blank. The
disagreements fell into one of two categories: typos (1/7),
and overly specific assumptions about the network fingerprint
(6/7). The researchers quickly agreed on updated signatures
that resolved their minor discrepancies. In total, 55% of
executions were labeled by either dynamic analysis reports
or collaborative hand-labeling.



TABLE I: Example of observer log entries. The left-hand side of the table contains observed executions (£) and IoC probes (Q),
including signatures encoded in the hostname (binary ID b, reversed execution history containing execution IDs (e;), system fingerprints
H;), and the requesting client’s IP. The right-hand side shows analysis of the logs. The logs are divided into two chains of execution trails.

Chain & | (b| enHnl...lexH1) Client  Observer Binary Type Vendor
t1 i||gr64jgbphb 34.1.0.0/16 HTTP Rocket Lo} INT-TI-3
1 to | il |p7zy5fbpxd|qré4jgbphb 41.42.00/16  HTTP Satellite Al g  EXT-DE-1
t3 i| |szbgjgbphb |p7zy5fbpxd|qr64jgbphb 34.1.0.0/16 HTTP Satellite A2 Lol INT-TI-3
ta | i||8£5beasgad 84.52.0.0/16 HTTP Rocket o) INT-SB-1
2 ts i| | 4bgdjgbphb | 8f5beasgad 34.1.0.0/16 HTTP Satellite B1 Lo INT-TI-3
te i| |4bgdjgbphb | 8f5beasgad 123.5.0.0/16 DNS Satellite B1 Q EXT-NZ-1

Step 3: Clustering external vendors. Numerous dynamic
analysis executions originated from vendors to whom we did
not submit binaries. To label these vendors, we applied an
unsupervised learning approach to cluster similar executions
together. Two sandboxes are deemed similar if they share a
subset of system features (RAM, CPU manufacturer, and OS
install date) and network features (organization and country,
derived from their autonomous systems).

Our clustering method (Algorithm 1 in Appendix B) works
by partitioning a set of fingerprints into clusters sharing
similar system and network fingerprints. The clusters are
assembled agglomeratively. In each iteration, fingerprint
clusters with a minimum distance between fingerprints less
than a predefined threshold are merged. We use the normalized
Hamming distance (i.e., the proportion of features that differ
between two fingerprints). The distance between two clusters
is determined by finding the smallest distance between two
fingerprints, one from each cluster. To find the max-distance
threshold §, we evaluated the performance of every possible
choice of ¢ on clustering the hand-labeled ground truth.

We derive the label names from the network attributes
and assign them to the clusters. For example, a client’s
IP originates from a Tor exit nodes [40] or VPNs [41] is
assigned a cluster label of EXT-TOR-1 or EXT-VPN-1. In
all other cases, we used the AS country to generate labels
(e.g., EXT-RU-1). If a cluster contains executions from
multiple countries, the cluster is labeled by a majority vote
with ties broken randomly.

Lllustrative Example: Table 1 shows the outcome of a
submission to a vendor. The Rocket was executed twice,
generating two executions (at ¢; and t4). In Chain 1, two
Satellites (A1 and A2) are executed sequentially. Interestingly,
INT-TI-3 is the origin of the execution at ¢; and t3, but not
to. We can therefore infer that EXT-DE-2 received Satellite
Al from EXT-TI-3, executed it (thus generating Satellite
A2), and then shared Satellite A2 back to EXT-TI-3.
We call this a cyclic relationship. Chain 2 begins with
INT-SB-1 executing the Rocket, then INT-TI-3 executing
its corresponding Satellite (B1). Later, an IP address in New
Zealand probes the domain name generated by B1, indicating
that INT-TI-3 has shared B1’s corresponding domain IoC.

IV. RESULTS
A. Experiment setup

We answered the three research questions by submitting
Rocket binaries to the 30 vendors shown in Table XI while the
Observer monitored for watermarked IoCs. We implemented

the DNS server using gdnsd that runs as an authority for
each domain. The IP address allocated by the cloud service
provider was vetted for residual trust by checking historical
blocklists [42]. The servers were hosted in the DigitalOcean
North American region. We coordinated with DigitalOcean
and used Namecheap as our registrar for the experiments.

We registered a total of nine domains. Given that our
findings rely on security vendors having no prior observations
of the IoCs [43], [44], we opted for domains in a TLD that
became available in 2017 and only chose domains with no
prior registrations in DNS zonefiles or WHOIS databases.
To avoid any cross-contamination between experiments, we
reserved three domains per vendor category.

Filtering aberrant data. DNS and HTTP server logs contain
noise from Internet scans, crawls, or attacks. To ensure that
we do not use such data in our analyses, we distinguish these
unsolicited requests from binary executions with a unique
HTTP User-Agent and Host header. That said, we only
received HTTP requests for 88% of executions observed in
DNS, possibly due to network failures or outbound firewall
rules in the sandboxes. We focus on the HTTP logs when
studying sharing dynamics, unless noted otherwise.

B. Data collection and clustering

To answer the above research questions, we conducted a
measurement (referred to hereafter as Experiment I) where
we submitted unique Rockets to 30 vendors. The Observer
recorded the telemetry it received, from which we generated
a set of labeled clusters.

1) Telemetry: We grouped the 170 unique system and
network fingerprints observed in Experiment I into 62
clusters. We hand labeled 19 clusters for known vendors,
and the remaining 43 were generated by the clustering
algorithm discussed in Section III-C. We annotated the 43
external (EXT-) clusters with geographic/network information
(i.e., country, continent, or known VPN/Tor/Cloud IP). We
emphasize that our geographical observations about a cluster
are artifacts of the network’s location, not necessarily the
vendor’s locale. Table II summarizes the telemetry observed
in Experiment I. In total, we observed 1,033 total executions
from 21 of the 30 Rockets. We observed executions for
submissions to all the sandboxes, 8/10 of the TI platforms,
and 8/10 of the antivirus portals. Two of the Rockets were
observed only in the DNS logs. On average, submissions
to TI Platforms led to 61 executions per vendor, far higher
than the number of executions seen in antivirus and sandbox
submissions. In addition, executions from Rockets submitted



TABLE II: Summary of results. Submissions resulting in executions
observed only in DNS are marked by an * symbol.

Submitted Vendor  Execs. ASNs Countries
HTTP DNS HTTP DNS
INT-AV-1 84 27 24 1 10
w INT-AV-2 36 5 3 1 1
% INT-AV-3 4 2 4 2 2
£ INT-AV-4 2 2 1 1 1
& INT-AV-5 1 1 1 1 1
5 INT-AV-6 1 1 1 1 1
INT-AV-7 1 1 1 1 1
INT-AV-8% 1 0 1 0 1
INT-SB-1 102 37 30 11 10
% INT-SB-2 3 2 2 2 2
% INT-SB-3 2 2 1 1 2
£ INT-SB-4 2 1 1 1 1
§ INT-SB-5 1 1 1 1 1
©2  INT-SB-6 1 1 1 1 1
INT-SB-7% 1 0 1 0 1
E INT-TI-1 507 89 48 36 23
= INT-TI-2 235 5 36 19 14
& INT-TI-3 45 16 14 7 5
n—f INT-TI-4 2 2 2 2 2
= INT-TI-5 1 1 1 1 1
&= INT-TI-6 1 1 1 1 1

TABLE III: Evaluation for clustering algorithms. Results from
cross-validation on hand-labeled executions.

Aleorithm Dataset CV AMI

g Train Val  Test | Bestd
Agglomerative 088 0.85 0.86 2/5
DBSCAN [45] 0.83 0.81 0.73 2/5
OPTICS [46] 081 083 0.74 2/5

to TI Platforms resulted in a greater geographic diversity of
executions than to Antivirus or Sandboxes.

Only 17/21 Rockets were executed by the vendor to
which they were originally submitted—the exceptions are
INT-TI-1, which only aggregates sandbox results from
other vendors, and INT-TI-2. Dynamic analysis is a feature
of INT-TI-2, but our Experiment I binary was not executed
(although binaries in subsequent experiments were). We
verified this finding by inspecting the Rocket’s report on
INT-TI-2’s website, which confirmed that the binary was
uploaded but not executed.

2) Clustering evaluation: We evaluated the quality of the
vendor labels generated by Algorithm 1 by benchmarking
them against 89/267 fingerprints derived from dynamic
analysis or collaborative labeling (see Section III-C). We
selected hyperparameters for each clustering algorithm by
optimizing over five-fold cross-validation stratified over the
12 out of 20 vendors with three or more unique fingerprints.
We add vendors with fewer than three fingerprints to the test
set. The results are shown in Table III.

We primarily evaluated our results using the adjusted
mutual-information index (AMI), which quantifies the
agreement between predicted clusters and ground truth labels
while accounting for chance. Compared to similar metrics,
AMI works well when measuring imbalanced, few-datapoint
clusters [47]. Across all models, § = 2/5, which groups
executions sharing at least three features into the same cluster,
maximized the AMI and outperformed random guessing by

5-6x in the validation and test sets. This indicates that
while sandboxes from different vendors might coincidentally
share one type of feature, it is less likely that they overlap
across three dimensions. Of the three clustering approaches
we evaluated, agglomerative clustering yielded the highest
validation AMI and is therefore used throughout the rest of
the paper to cluster executions.

Among the errors, we identified six instances of over-
clustering (one vendor is separated into two clusters), but no
instances of under-clustering (multiple vendors are included
in one cluster). Over-clustering is the result of a vendor’s
sandboxes differing in at least three fingerprints, which
indicates that a vendor at least partially mitigates basic
profiling techniques. The presence of over-clustering is a
sign of a healthy ecosystem. INT-TI-3’s fingerprints were
overclustered the most frequently and were spread across six
clusters. Overall, this is likely because INT-TI-3 aggregates
the results of numerous dynamic analysis engines, each of
which use different configurations and networks. We also
found evidence of over-clustering in the external vendor set.
For example, two vendors had similar system fingerprints,
but their ASes were slightly different (but clearly related to
the same corporate entity). Such naming inconsistencies are
prevalent within the AS ecosystem [48].

While increasing the distance metric beyond § = 2/5
improved over-clustering, it introduced under-clustering. This
under-clustering typically occurred when multiple vendors
shared common attributes, such as the same AS country or
RAM configurations, which led to distinct vendors being
incorrectly merged. In addition to maximizing AMI, our
choice of 6 = 2/5 maximizes vendor disambiguation while
avoiding inadvertently merging vendors. Thus, our results
approximate an upper bound on the number of vendors.

C. IoC propagation: Extraction and Sharing phases

To answer RQ1 (comparing members of the TI ecosystem
in their processing of IoCs), we analyze two key phases of an
IoC’s Propagation Chain (Figure 2): Extraction and Sharing.

Disruption
(Blocking/
Takedown)

| 30 20 \

# submissions reaching phase

Fig. 2: Phases of an IoC’s Propagation Chain

Extraction: Our analysis begins in the extraction phase,
where vendors dynamically analyze submitted binaries to
extract IoCs. Dynamic analysis is widespread: 20 of the 30
Rockets we submitted were eventually analyzed, and the
first analyses almost always occurred within 30 minutes. 7
of the 10 unanalyzed Rockets were uploaded to antivirus
vendors, indicating that Sandboxes and TI Platforms vendors
are typically capable of IoC extraction.

Vendors vary in their processes for thwarting sandbox
profiling and evasion. Figure 3 shows that most vendors
generally have three or fewer unique system fingerprints.
Additionally, most vendors do not vary their AS organization
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Fig. 3: Vendor analysis tactics. Figure shows depth and diversity
of fingerprints for different vendor types.

or country, even if they do vary their system fingerprints—
some examples are shown in Table IV. Vendors who mitigate
both system and network fingerprints become difficult to
evade—a high degree of fingerprint diversification from
INT-TI-3 led to our algorithm over-clustering it.

We also found that web search engines’ indexing of
dynamic analysis reports sometimes allow us to learn more
about external vendors. For example, of the 16 IPs associated
with EXT-DE-1, four were referenced in IoC reports hosted
on a public threat feed website, whose homepage explains
how they collect publicly available malware samples and run
them in a sandbox. This shows how even when a vendor
lacks a public submission portal, its extraction and sharing of
TI from public sources can reveal its identity.

While most vendors executed the Rocket, we found
evidence suggesting that many vendors do not analyze
dropped files recursively. That is, most vendors only execute
the Rocket, but not any satellites. This is shown in Figure 3,
where the maximum analysis depth of a cluster is the length
of the longest unbroken chain of executions related to a
vendor as determined by the provenance trail.

Takeaway: The use of environmental keying by
malware [49] underscores the limitations of single-
environment analysis. Vendors that execute samples
across diverse environments are more likely to uncover
hidden or conditional behaviors, leading to higher-
fidelity IoC extraction. Likewise, the trend toward
multi-stage attacks [50] highlights the need to analyze
not just initial payloads but also the full execution
chain, including all dropped artifacts. Vendors that re-
construct these chains provide a deeper understanding
of the malware’s lifecycle and enhance the complete-
ness of threat intelligence.

TABLE IV: System and network fingerprints. Fingerprints are f;
= ram, fo = sysManufacturer, and f3 = installDate.

System Network
Cluster fi f: fs Total | Country Org
EXT-DE-1 3 28 55 56 1 9
EXT-VPN-2 1 1 1 1 19 28
INT-TI-3 6 22 7 23 4 5
INT-AV-1 3 1 13 13 1 1
INT-AV-2 1 1 3 3 2 10

TABLE V: Node degrees in vendor sharing graph.

Cluster In-degree  Out-degree
INT-AV-1 4 14
INT-AV-2 5 0
INT-AV-7 2 0
INT-AV-5 6 0
INT-AV-6 3 0
INT-AV-12 1 0
INT-AV-3 0 1
INT-SB-5 1 0
INT-SB-1 1 17
INT-SB-4 5 0
INT-SB-6 2 0
INT-SB-3 1 0
INT-SB-2 0 1
INT-TI-1 0 37
INT-TI-3 5 16
INT-TI-2 0 15
INT-TI-5 1 0
INT-TI-4 0 2

Sharing: Next, we examine sharing of IoCs, which
occurred following 16% of the submissions. Figure 4
shows how Rockets uploaded to one vendor spread to
other vendors, where they are then re-analyzed to extract
additional information. Vendors either act as producers,
consumers, or both, as shown by their in- and out-degrees in
Table V. Unsurprisingly, TI platforms generally have a high
out-degree, indicating sharing with numerous other vendors.
Antivirus providers rarely share, with the exception of one
antivirus provider who consistently re-submitted Rockets to
INT-TI-3. Similarly, only 1/6 sandbox vendors shared,
which indicates a gap between the public-facing TI uploaded
to popular sandboxes and their dispersion via TI platforms.

The high amount of sharing surrounding popular TI
platforms positions them as central members of their sharing
communities. We refer to these vendors as nexus vendors, and
define them as vendors in the sharing graph with non-zero
in- and out-degrees—i.e., they both consume binaries from a
third-party vendor and share new binaries with other vendors.
Although INT-TI-1 does not meet this criteria, we also
identify it as a nexus vendor as the company operates a
publicly available crowdsourced threat feed. Information on its
website references the fact that many samples are uploaded
by both automated and human sources on a daily basis.
Outbound sharing from a nexus vendor is typically facilitated
‘as-a-service’ by free or paid APIs (e.g., VirusTotal’s popular
file stream service or Malware Bazaar’s API). Inbound
sharing with a nexus vendor stems from an attempt to share
a binary with the wider community, or as a side effect of a
vendor seeking additional intelligence about a binary (e.g.,
learning about malicious convictions or related IoCs).

Many relationships between intelligence producers, sharers,
and consumers in this ecosystem are asymmetric: there
is a clear distinction between vendors who are primarily
intelligence producers (low in-degree, high out-degree),
redistributors (high in-degree, high out-degree), and consumers
(high in-degree, low out-degree). This relationship is shown
in Table V when the in-degree and the out-degree differ. In
general, Antivirus vendors consume more than they share.
Sandboxes generally do not share either, even though sandbox
reports for our submissions are all publicly accessible.
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Fig. 4: Sharing relationships. Rows represent vendors to which we submitted a binary.

single source are omitted.

Takeaway: Although few vendors independently per-
form deep, recursive analysis of dropped binaries
(Figure 3), such analysis often emerges through cyclic
inter-vendor relationships. In these cycles, one vendor
analyzes an initial sample (the Rocket), extracts a
dropped file (a Satellite), and another vendor subse-
quently analyzes and shares that file. This emergent
form of distributed analysis enables broader IoC ex-
traction by uncovering behaviors that may be hidden
in isolated environments—particularly those relying on
sandbox evasion. However, this decentralized approach
also fragments visibility: parent-child relationships be-
tween binaries often get lost across vendors, impeding
threat correlation, hunting, and attribution.

D. Propagation of network IoCs

To fully answer RQ1, we now turn to an analysis of the
differences between the sharing of binaries versus the sharing
of domain or URL IoCs. Recall that our design allows us to
distinguish between those cases due to several factors. First,
both the domain and the URL contacted by our binary include
a unique format containing the binary ID, the system finger-
print, and the provenance trail. Second, we distinguish between
IoC lookups and emissions from the execution of a binary
using a unique user agent. Third, we distinguish between
domain and URL IoCs based on the presence of the URI.

1) Sharing: The received telemetry shows that domain
indicators are shared more frequently than the actual binaries.
Moreover, several Antivirus and Sandbox vendors do not
share binaries but do share IoCs. Like with binaries, much of
this sharing is facilitated by nexus vendors. Table VI shows
how six vendors share domain IoCs with nexus vendors
INT-TI-3 and INT-TI-2, who make them available on
their public-facing platforms. Moreover, we found evidence of

External vendors that executed a binary from a
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Fig. 5: Binary sharing velocity. This figure shows the number of

clusters executing Rocket binaries for the first time.

data stratification in the ecosystem, where 1oCs are selectively
shared with downstream vendors—six vendors appear to
share domain indicators with nexuses, but only four also
share URL IoCs. Further, more than 50% of the indicators
produced by each vendor remain unshared.

2) Sharing velocity: We now examine timeliness, or
the speed with which participants actively probe network
IoCs after they are first generated by a Rocket or Satellite
(Figure 6). Unlike the short lifecycle of binary sharing
processes (Figure 5), probes to domain IoCs are more frequent
and continue to occur weeks after the domain was generated.



In some extreme cases where IoCs are shared widely via nexus
vendors, we observed more than 100 lookups/day for an IoC
for the first week—more than 20x the number of dynamic
analysis executions observed during the same timeframe.
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Fig. 6: Domain IoC probes. Figure shows probes over time grouped
by the cluster executing each binary.

TABLE VI: IoCs shared with nexus vendors. As gathered from
the VirusTotal and AlienVault OTX APIs.

Cluster All Execs. INT-TI-3 INT-TI-2

Domains  URLs Domains
INT-AV-2 213 16 0 12
INT-TI-3 110 45 33 11
INT-AV-1 15 1 0 1
EXT-DE-1 83 6 5 0
EXT-TOR-1 19 2 0 0
EXT-CN-1 6 1 0 0

E. Disruption

To answer RQ2, we consider three categories of actions
that disrupt adversaries’ use of IoCs: blocking on commercial
platforms, blocking on free platforms, and domain takedown.
Table VII shows that free/commercial blocking typically oc-
curs within hours after sharing, while takedown occurs around
10 days after sharing. Domain takedown is a more serious form
of disruption than blocking, and therefore extra scrutiny (either
by human or an automated system [30], [51]) is required.

Interestingly, although many disrupted domains are
shared with many vendors, a Student’s t-test [52] found no
statistically meaningful correlation (p > 0.05) between the
number of URL detections reported by VirusTotal partner
vendors and the eventual blocking or takedown of those
domains (Table VII). Even more strikingly, despite an average
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of 27.5 vendors identifying the associated binary as malicious,
the corresponding URLs receive only about three malicious
verdicts on average. Detection coverage is even more sparse at
the domain level, averaging around one detection per domain.

TABLE VII: Domain blocking and suspension
Duration before action #VT

DNS OSINT  Takedown | detections

=TI Platform | @ (1h) @ (10d) 3

£ Antivirus @ (2d) @) @) 5

= Sandbox @ (1d) O 1

a  TI Platform | © (13h) © (1h) O 1

£ Antivirus @) @) © (11d) 2

= Sandbox @ (8d) 1

¢TI Platform @ (1Ih) @ (9d) 1

£ Antivirus @) @) @ (11d) 2

= Sandbox O @) @ (8d) 1

© - Blocked O - No Action Taken (90 days out)

As TI traverses the ecosystem, the processing time from
each vendor introduces a propagation delay, which can delay
the blocking or takedown of an IoC (RQ2). This delay is
shown in Figure 5 and partially explains the gap between
binary submission and detection. For example, INT-AV-1
appears to share with a nexus vendor only after around two
days, which causes a burst in executions and ultimately,
takedown in 2/3 experiments. INT-TI-3 also has a small
propagation delay of around one hour, leading to the lower
bound for blocking on the commercial DNS provider. More
generally, while sandbox and sharing processes begin seconds
after production, executions continue to increase—around 50%
of the total executions occurred after three days, primarily
due to cyclic submissions to nexus vendors.

Case Study: To showcase how threat intelligence
propagates and results in disruption, we examined one
submission which led to a domain takedown. Figure 7 shows
how one Rocket submitted to a TI vendor was shared,
resulting in the blocking and takedown of its communicating
Observer domain. Our registrar publicly attributed the
domain’s takedown to inclusion on this blocklist. We found
evidence of a related Satellite’s SHA256 hash also in this
blocklist, implying that this vendor extracted the domain from
this Satellite. This is consistent with prior work [51], which
also identified this registrar and blocklist provider as popular
takedown/sinkholing services.

Takeaway: Disruption depends on several factors,
including extraction quality, sharing completeness,
and timeliness. We found that suspension by registrars
occurs between 8-11 days, while blocking by DNS
firewalls and recursive resolvers often occurs within 24
hours. Further, disruption depends on the cooperation
of multiple vendors in an IoC’s Propagation Chain.
Delaying TI sharing can provide a vendor with feed
exclusivity [4] but can prolong widespread blocking
and domain takedown.

E. Impact of obfuscation
One troubling finding from Experiment I was the fact
that most vendors did not analyze the dropped Satellites,
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Fig. 7: Case study. Each blue circle depicts an execution or action
taken on a Rocket (R) or Satellite (numbered).

which could enable adversaries to evade sandboxes (RQ3)
through packing. To gain deeper insights into this behavior,
we conducted a separate measurement (Experiment II) with
a setup similar to the previous one, but with the exception
that the Rocket is packed with encryption and compression
using the UPX packing algorithm. When the packed binary
is executed, it decrypts the Rocket and drops it onto the file
system. Like the first experiment, the dropped binary is not
automatically executed. The packer also generates network
emissions that indicate that it has been executed.
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Fig. 8: Packed binaries. Comparison of binary executions between
Expts. I and II.

Unfortunately, packed Rockets were executed 35% less
than unpacked ones (Figure 8), despite being convicted more
often by VirusTotal vendors (Table VIII). To assess whether
vendors were convicting files based on the presence of the
packer or the actual content of the dropped payload, we
conducted a final measurement (Experiment III), where the
same packing algorithm was used to encrypt and compress
the popular WinRAR compression utility.

We found that the anomalous nature of packed files makes
the outer shell more toxic. VirusTotal also labeled the submit-
ted binaries in Experiment II/III as ‘droppers’ due to the use of
the UPX packing algorithm, while the Rocket in Experiment I
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TABLE VIII: VirusTotal detections. Antivirus detections for the
binaries submitted to vendor portals (72 total detectors).

Detections Analyses
Submitted to I o 1 I I I
INT-AV-1 35 37 40 2 3 2
INT-SB-1 32 36 38 1 1 3
INT-SB-6 - - 33 - - 1
INT-TI-1 33 37 34| 114 114 117
INT-TI-2 34 37 38 1 1 3
INT-TI-3 31 32 31 1 2 1

was not tagged as a dropper (despite the fact that Rockets drop
Satellites!). Instead, Experiment I was tagged only as a ‘key-
logger’. Conversely, the Experiment II packer was not tagged
as a keylogger, despite it containing a packed keylogger.

Takeaway: These variations in detection rates
highlight how vendors differ in their conviction
criteria, and that the results of recursive analyses
are generally not leveraged, indicating a gap in
vendors’ processes. The fact that 85% of antiviruses
and 57% of sandboxes did not execute the packed
Rocket suggests that the responsibility of recursively
executing binaries falls onto the users of submission
portals or threat feeds. Unfortunately, recipients of
IoC feeds are often disallowed from performing
further extraction that may produce active egress
traffic. Additionally, because threat investigators are
forced to manually link relationships and behaviors of
the packers, Rockets, and Satellites, it becomes easy
to miss the full picture of a campaign and its TTPs.

G. Adversarial tactics in the wild

1) Evidence of abuse: To answer RQ3, we found evidence
of fingerprint-based evasion using VirusTotal’s Retrohunt
feature, which allows users to search the past 90 days of
file uploads using YARA signatures. YARA is a widely used
schema for matching combinations of string and byte patterns
in arbitrary files. To identify malware attempting to evade
sandbox detection, we crafted a YARA rule that matched
all files containing each of the top three IPs observed in
our experiments [53]. Presence of these IPs in a file likely
indicates an evasion attempt. The search found 874 matches,
95% of which were first uploaded between March and June
2025. Nearly 98% of the matches were Windows or Python-
based, but some were written in JavaScript (4 samples) and
Java (2 samples). This suggests that the evasion technique
may be employed in cross-platform attacks.

To better understand the threat objectives associated with
the samples, we used malware family labels provided by
VirusTotal and further enriched them using two automated
labeling tools: AVClass2 [54] and ClarAVy [55]. This analysis
revealed that the two most common malware families are
well-known open-source information stealers that explicitly
advertise anti-sandbox capabilities. Examining their source
code [56], [57], we found that both families use nearly
identical sets of blocklisted IP addresses to evade analysis
(98% overlap). One author attributes this list to an external



anti-VM blocklist project maintained on GitHub [58]. Both
families detect broad system and network fingerprints,
including PC names, usernames, and MAC addresses.

We also discovered five threat reports published between
April 2023 and December 2024 that include a list of IP
addresses that, when identified by the malware, halts its
execution. All five of these lists overlapped exactly with
the open source anti-VM blocklist. Digging deeper, we
found further reporting [59] that claims that a 2024 stealer
variant downloads the IP evasion list directly from GitHub,
indicating a shift from hard-coding blocklisted IPs to
dynamically loading them. By running a 90-day Retrohunt
scan, we identified 34 files referencing the list’s URL, mostly
Python scripts and Windows executables.

Cluster #1Ps  Prop. Prop. downstream  Avg. life (days)
INT-TI-3 4 0.11 0.52 725
INT-AV-2 3 0.06 0.21 504
INT-SB-1 1 1.00 1.00 954
INT-AV-8 1 0.08 0.67 93
INT-SB-4 1 0.17 0.43 685

TABLE IX: IPs observed in both the public evasion list and
our experiments. Prop. indicates the proportion of IPs for a given
vendor that were also observed in the evasion list.

2) Impact of evasion: We further investigated the impact
of the public GitHub evasion list on ecosystem health by sim-
ulating its effects on our results, which highlights the impact
of several threats to the ecosystem identified by our study.
First, we find that IPs being used for a multiple year period
makes it easy for adversaries to use the dataset to identify
sandbox executions. Despite this, most vendors are not fully
blocked by the evasion list—only one vendor, INT-SB-1,
is fully blocked by the entries on the list. However, even
partial blocking of a vendor can have downstream effects. By
assuming a Satellite would not have been dropped if its parent
binary had been blocked from execution by the public evasion
list, we can track downstream effects of evasive IoCs. Table IX
shows five examples of vendors with significant downstream
blocking. In the most extreme case, a single IP belonging to
INT-AV-8 executes only 8% of the total binaries attributed to
INT-AV-8, but removing the IP prevents 60% of downstream
executions. This reduction in exposure of an adversary’s
behaviors and IoCs can result in a more covert campaign with
fewer IoCs burned and a lower overall attack cost.

Takeaway: Our analysis provides evidence that pub-
licly available IP blocklists are actively used by mal-
ware in the wild. Despite only searching for three IP
addresses over a 90-day window, we uncovered over
900 matching samples, suggesting that the true scale of
sandbox-evading malware is significantly larger. The
prevalence of malware directly integrating evasion lists
published on GitHub underscores how easily threat ac-
tors can implement evasive techniques. The use of such
tactics can suppress dropped-file execution, limiting
analysis by defenders and downstream vendors.
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V. DISCUSSION
A. Implications & recommendations

The TI community benefits from a robust ecosystem
for sharing, consuming, and enriching IoCs. Processes that
inadvertently cause active probing can violate data sharing
agreements between data producers and inform adversaries
of analysis (RQ3). To improve the ecosystem’s resilience, we
provide several recommendations:

For vendors. Our study revealed that while a few vendors
thoroughly analyze malware, most conduct shallow analysis
and ignore dropped files by the initial binary. By exploring
strategies that take into consideration more comprehensive
analysis techniques (e.g., execution of dropped files), vendors
would be in a better position to uncover hidden threats and
provide more relevant TI. Additionally, the lack of context
for detection labels can easily lead to incorrect classifications
of a binary or IoC’s malware family [60]. Incorporating
provenance information into detection processes could help
provide more accurate threat labeling and attribution.

Vendors should reduce the risk of fingerprint-based evasion
by diversifying their IP space. Simple strategies can include:
the use of VPNs, or wider IP pools in multiple different
ASNs for sandbox Internet connection in order to reduce the
sandbox profiling capabilities of cybercriminals.

For operators. Operators should be more aware of the
risks of uploading binaries to public scanning services, which
can inadvertently help adversaries by revealing detection
capabilities and response times. Our Generator/Observer
system can be used to detect the unintended public exposure
of controlled TI (e.g., IoCs designated TLP:AMBER or
PAP:RED [61]). In this context, the binaries and domains
generated by our system would serve as honeytokens [62].
The Observer component monitors for any probing of
these honeytokens, while the Analysis Engine identifies and
distinguishes the entities responsible for such activity. This
approach can reveal breaches of data-sharing agreements
between organizations or be used by defenders themselves to
self-audit incident response and threat hunting workflows.

When evaluating TI feeds, it is imperative that operators
assess how thoroughly and reliably vendors extract IoCs.
Understanding which vendors perform deeper analysis and
use more diverse detection environments allows operators to
prioritize intelligence sources that best match their operational
needs. It is also important to consider a vendor’s potential
upstream providers. As we showed, vendors who introduce a
sharing delay can hinder widespread threat detection. Lastly,
our system can help identify overlaps in TI sources, helping
to reduce redundancy in storage and analysis.

For researchers. In scientific studies, the source and quality
of data are paramount. Our findings emphasize the need
to carefully consider the source of data when developing
measurements or ML models for malware detection.
Relying solely on data from antivirus vendors may result in
unrepresentative models due to limited analysis depth and
regional biases. TI platforms, which ingest data from multiple
sources, offer more diverse and comprehensive datasets
suitable for training robust models. In addition, researchers



must account for potential redundancy and polymorphism
prevalent in malware datasets. Studies [63] have shown that
a significant portion of malware samples are polymorphic
copies, which can skew analysis and lead to overestimation
of threat diversity. Understanding the dependencies between
vendors is also critical given the fact that many vendors reshare
ToCs and detection labels, which can create the illusion of
consensus [64]. Our work provides more supporting evidence
for considering these inter-dependencies when deciding on
detection thresholds. Furthermore, existing metrics used
to evaluate feeds may not fully capture the dynamics of
the ecosystem (e.g., binaries, domains, and URLs exhibit
distinct sharing patterns), necessitating specific approaches
to metric development. Lastly, researchers should account for
aggressive IoC scanning during experiments and implement
appropriate protections and data cleaning.

B. Responsible disclosure

We contacted each vendor to whom we had submitted
binaries to inform them of our studies, coordinate public
disclosure, and offer remediation support through detection
capabilities. Each vendor received an anonymized version of
the paper, their assigned anonymous ID, and our YARA rules.
For vendors who did not respond initially, we sent a follow-up
email after one month. Of the 30 contacts, 17 acknowledged
our outreach. Many expressed appreciation for our detailed
analysis and collaborative approach. Two sandbox vendors
requested full anonymity, which we honored in Table XI.

Notably, views on our findings differed across the security
community. While most vendors treated them as product vul-
nerabilities, one organization classified our report as strategic
threat intelligence. Another concluded that the weaknesses we
identified do not directly impact the confidentiality, integrity,
or availability of customer data. From their perspective, our
findings reflect performance gaps in the security product
rather than vulnerabilities requiring immediate action.

These differing assessments were compounded by
operational constraints that further complicate remediation.
In particular, one issue the vendors brought to our attention
was sandbox IP reputation. Network communication is often
essential to dynamic analysis as C2 traffic can yield valuable
threat intelligence, and some malware only activates in
networked environments. However, this same communication
can trigger abusive behavior. For example, the Mirai malware
family conducts brute-force attacks against external hosts [65],
which can result in the blocklisting of sandbox IPs. Because
these IPs are typically leased or assigned by registries,
vendors face challenges in rotating or replenishing them. This
makes it difficult to diversify sandbox infrastructure without
increasing exposure to fingerprint-based evasion. Despite
their generally low reputation due to widespread abuse [66],
VPNs could offer a practical tradeoff, enabling IP diversity
while reducing the risk of long-term reputation damage.

C. Ethical recommendations

Our survey of prior studies that upload binaries ([22],
[67]) and URLs ([68]) to VirusTotal revealed high variation
in binary submission volume and inconsistent disclosure
of research activities. Ethical standards [69] safeguarding
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humans and systems must always be followed. When only
the effects of systems are being measured (like in this study),
disclosure of research activities should always be readily
available to inform humans. This includes embedding an
opt-out link in the binary, all network communications, and all
infrastructure when possible. Studies should have a clear end
date, and infrastructure should be taken down after this date.

Special care must be taken when submitting lookalike
artifacts (e.g., new polymorphic samples of real-world
malware families [22] or of specific brand names [68]). These
can cause targeted detections in commercial systems, leading
to more widespread human intervention and can introduce
artificial data into future research studies. In these cases, it
is critical to clearly share the nature of the experiment with
the TI ecosystem. When live infrastructure is involved, we
recommend taking lookalike measurements quickly and then
immediately replacing lookalike content with a disclosure
page and opt-out URL. When possible, researchers should
opt for ‘private’ analyses to minimize sharing.

Finally, researchers should take reasonable steps to
minimize compute cost induced on vendors. While vendor-
imposed API rate limiting provides guidance, the impact
of downstream vendors and longitudinal studies should also
be considered. We found that submissions to multiscanner
websites generate between 15-100 total executions when
downstream vendors are included. In cases where many bina-
ries are being studied over a long period of time, cumulating
in millions of total probes [15]), we recommend using backoff
techniques to minimize the number of probes conducted when
no changes are observed for an increasing number of days.

D. Limitations

First, although we took steps to include a representative
sample of vendors, our analysis is limited to free sandbox
providers. This constraint may affect the external validity
of our findings, particularly when compared to premium
sandbox services. Unlike free sandboxes, premium offerings
typically execute binaries privately, which could reduce the
extent of inter-vendor sharing observed. Moreover, the system
and network fingerprints of premium sandboxes may differ
from those of the free ones, potentially reflecting greater
heterogeneity. We leave the exploration of these differences
as a valuable direction for future work.

Beyond these premium vendors, there exists a long tail
of vendors offering free sandbox, TI, and malicious file
inspection services that were not directly evaluated in our
study. Exhaustively cataloging all such vendors is not the
primary objective of our work. Rather, our goal was to draw
inductive observations about the broader ecosystem based on
a representative set of 30 vendors.

Another limitation centers around the temporal stability
and completeness of the fingerprints we collected. Signatures
may change over time as vendors update their infrastructure
or practices, meaning that longitudinal analyses would require
periodically refreshing the features used for vendor labeling.
Thus, our results should be viewed as a snapshot of the
ecosystem that highlights its underlying processes, strengths,
and weaknesses. Similarly, while the small number of features



used in our experiments may lower clustering performance,
it suffices for highlighting the ecosystem’s processes.

Finally, our study does not address the human and
organizational elements of disruption. In practice, takedown
workflows rely on human reporting and analyst intervention,
and registrars differ widely in their willingness to cooperate
with anti-abuse efforts—an issue highlighted in recent
litigation [70]. Use of these registrars would likely have
reduced the takedown prevalence seen in our study.

VI. CONCLUSION

We present a novel approach for gaining a deeper
understanding of how TI is disseminated among the
ecosystem. Through an extensive empirical analysis, we
showcase several important factors, including the fragility of
an ecosystem that is currently highly dependent on a few key
players. We observe clear evidence that adversaries exploit
known weaknesses in sandbox infrastructures and sharing
paths, and provide actionable recommendations to improve
the resiliency of TI systems.
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ETHICAL CONSIDERATIONS
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norms [71] and security research guidance [69], [72], [73]. In
Section V, we highlight some of the lessons learned from our
study and propose guidelines for future researchers actively
probing production TI systems.

Human deception. Our study is designed to measure
automated systems, not human analysts. To minimize collateral
human deception, we included an opt-out link within all
binaries and network requests. Furthermore, we implemented
system-based notifications for human analysts by displaying
messages on the screen. This approach ensures that human
analysts were informed option to opt out, respecting the au-
tonomy and privacy of potential participants. Furthermore, we
initiated a responsible disclosure process after the experiments
(detailed in Section V-B). We received two opt-out requests
during the responsible disclosure phase. In both cases, the
vendors agreed to be included in the study anonymously.

Compute cost. Our tracking mechanism involves submitting
a self-replicating binary to vendors (i.e., each time the binary
executes, a new binary is dropped on the host). Given the
presence of sharing in the ecosystem, we must ensure that
submitting our binary does not introduce a ‘snowball effect’
where self-replications increase exponentially as more and
more binaries are shared. With this in mind, we aggressively
limit our binaries’ replication depth to a maximum of five
layers. Our tracking mechanism allows us to estimate that
the 90 binaries we submitted resulted in 1,827 executions.
Each execution emitted only one HTTP/DNS request,
minimizing network usage. Finally, when probing OSINT we
probed public blocklists and vendor query interfaces for IoC
detections no more than 200 times per hour.

Privacy. To protect the privacy of the vendors and to prevent
unnecessary leakage of sensitive information, we anonymize
the name of each vendor when presenting the results.
Additionally, to minimize the impact of our probes, our
system collects a minimal set of sandbox features and applies
privacy-preserving hashing before any transmission. This
limits potential exposure of potentially private information
from the sandbox (e.g., machine names or user configuration
data [24]) that external parties could abuse. Furthermore, our
all binaries are defanged—they do not store or transmit any
behaviors they may record.

Responsible disclosure. We disclosed our findings and
provided recommendations (including signatures that could
help detect attempts to evade execution on their platforms) to
all vendors we directly uploaded binaries to. We discuss the
insights gleaned from this process in Section V-B.

APPENDIX

Our fingerprinting methodology is based on the approach of
SandPrint [24], which identifies unique features of sandbox en-
vironments. However, rather than using all 16 features consid-
ered in that work, we use a subset of features that maximizes
mutual information while being privacy conscious. Our system
fingerprint consists of hashed values of this set. To find the
subset of features, we designed a binary that collected the same
SandPrint features (along with the information gain) shown in
Table X. To ensure no cross-contamination, that binary used
domains unrelated to those in the final study. That binary was
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submitted to a small set of vendors during a pilot study. We
clustered the emissions using the methodology in Section III.
Since each execution may produce multiple emissions and
IDs are unique, emissions are first grouped by execution ID.
We observed 532 executions and their execution IDs in this
pilot. Executions were grouped using single-link hierarchical
clustering on 16 sandbox features. To compute the distance
threshold parameter of the hierarchical clustering algorithm,
distance thresholds between similarities of 0.00 to 1.00 in
increments of 0.05 were attempted sequentially; the distance
threshold which correctly clustered the greatest number of
hand-labeled clusters for a random subset of the dataset was
selected and passed into the clustering a final time with the
full execution dataset to source ground truth.
TABLE X: Features from SandPrint [24] used in pilot and their
associated information gain. The g symbol denotes features

we viewed as potentially sensitive and choose not to consider as
part of the hashed fingerprint.

Field Description Info Gain  Sensitive
host_name Host Name 5.98 B
install_date Install Date 5.84
processor Processor 5.69
win_prod_id Windows Product ID 5.65 B8
mac MAC Address 5.32 B
owner_name Owner Name 5.21 8
sample_path Sample Path 5.20 B8
ip IP Address 5.11
sample_name Sample Name 4.97
default_gateway  Default Gateway 4.77
sys_manufac System Manufacturer 4.28
disk_space Disk Space 4.21

dns DNS 4.14

ram RAM 4.00
os_information OS Information 2.30
org_name Organization Name 0.95 B

We analyzed each cluster to find the smallest subset of fea-
tures with the largest amount of mutual information so that we
can disambiguate vendors in a length-constrained subdomain.
We compute mutual information between a feature and the
cluster variable as I(Fy;C) = H(Fy) + H(C) — H(F1,C),
where H(-) is the entropy of a random variable and H (-, ")
is the joint entropy of two random variables. We found the
maximum by searching over all 2! — 1 nonempty subsets
of the 16 features. For each subset, we computed the mutual
information gain from the subset of features. To validate,
we ran the single-link hierarchical clustering algorithm to
check similarity between ground truth (clustering with all 16
features) and clustering with just information contained within
the subset of features and performed pairwise comparisons
of executions in the ground truth labeling and the subset
labeling. We found that the install_date, ram, and
sys_manufac features achieved the greatest cluster
similarity for 3 features: in over 99% of pairs of executions,
we achieved the same labeling between the two clustering
algorithms. This is due to the fact that among all 560 possible
triplets, the mutual information for the selected features tied
for first place with another 160 subsets. Of those, 39 subsets
did not include any feature marked as sensitive in Table X.

Satisfied with the high mutual information for those 3
features, We then built a new version of our Rocket that
profiles only those features. To validate that the fingerprinting



TABLE XI: Vendors considered in our study. After disclosing our
study details to the vendors, two requested anonymity, which we
honor with the INT-category-n label.

Vendor Name Locale Measured Execs. Additional Notes
Avast CZ v v
ClamAV UsS v v
Dr.Web RU v v
FortiGuard Labs usS v 4
Kaspersky RU v v
Sophos UK v 4
»  Symantec UsS v v
£  Avina DE 4 X
& BitDefender RO v X
é Comodo UK/US v X
F-Secure FI v X
GData DE v v
Microsoft Defender us 4 X
SonicWall us 4 X
‘WebRoot Us v X
Adaware CA X X Service unavailable
EMSISoft NZ X X Submission error
Any.Run UA 4 4
Hybrid Analysis DE/US 4 4
Intezer UsS v v
INT-SB-1 - v v
Pikker EE v 4
., Filescan us v v
£ INT-SB-D - 4 4 Requested redaction
2 CAPEv2 - X X Service unavailable
T IOBit CN X X Service unavailable
& Amn Pardaz IR X X Service unavailable
AntiScan BZ X X Service unavailable
SecureHunter Us X X PDFs only
IRIS-H - X X PDFs only
SecondWrite UsS X X Regquires vetted trial
VMRay Us X X Paid license
MalBeacon UsS X X Anti-probing policy
AlienVault OTX us v v
v  MWDB PL v v
§ MalwareBazaar CZ/NL v v
& VirusTotal us v 4
= US-CERT Us v v
— INT-TI-G - v v Requested redaction
= OPSWAT Us v X

and watermark trail functionalities worked correctly, we tested
the rocket in a control with different sandboxes installed
locally, where we manually copied the satellites dropped in
one sandbox and executed them in another and then verified
the trail worked as expected.

Most system fingerprints are easy to change or spoof, and a
vendor who frequently alters system and network fingerprints
could readily evade fingerprinting. Our experiment identified
one vendor that changes its OS install date for every
execution, but keeps all other fingerprints the same. Egress
IP addresses are more difficult to spoof, but our experiments
discovered vendors still manipulating IP addresses using
proxies. Sandprint [24] notes that several features excluded
from our measurement are trivial to change, for example,
screen resolution or size.

A. Vendor Selection

We categorize inaccessibility to some of the vendors
into six groups. First, for five of the vendors, their online
submission portal or website was not accessible. For example
CAPEv2 had a datacenter incident that shut down their
operation and did not recover in time for us to consider.
Second, some vendors’ web portal only accept a specific type
of files because their online engine is limited for public use.
Third, one of the vendors offers a free trial for their analysis
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service but required us to contact sales and set up a demo and
ensure that we are a legitimate entity before providing us with
a free trial. Since we do not intend to purchase the service,
we opted not to waste the human resource by interfacing
with sales representatives. Fourth, some vendors have explicit
anti-probing policies such as MalBeacon’s. We excluded those
vendors from our study. Fifth, EMSISoft had an issue with
their submission form that did not accept or upload the binary
file correctly. We tried multiple times with different browsers,
operating systems, and IP addresses but were not successful.
Lastly, some vendors require a paid license. For the remaining
vendors, we were able to submit a binary, but the binaries
were not dynamically analyzed or may have been analyzed in
isolation, and our Observer could not record the emissions.

B. Automatic labeling of unknown vendors

The clustering algorithm used to label external vendors is
given in Algorithm 1.

Algorithm 1 Cluster Unknown Vendors

: Input: Set of fingerprints {x1,X2,...,X,}

: Output: Set of hard clusters C

C + {Instantiate a cluster for each x;_,}

: Dles, ¢j] < Distance between clusters (¢;, ¢;)

: while minimum distance between clusters < ¢ do
Ci, Cj < arg Ininc“c_,GC (minzec“yEC_, D[‘Tv y])
Merge ¢; and c; into a single cluster, update C
Recompute distances D for the new set of clusters
: end while

: Return: C
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