
Success Rates Doubled with Only One Character:
Mask Password Guessing

Yunkai Zou, Ding Wang, Fei Duan
College of Cryptology and Cyber Science, Nankai University, Tianjin 300350, China; wangding@nankai.edu.cn
Key Laboratory of Data and Intelligent System Security (NKU), Ministry of Education, Tianjin 300350, China
Tianjin Key Laboratory of Network and Data Security Technology, Nankai University, Tianjin 300350, China

Abstract—While traditional whole-password guessing attacks
have been extensively studied, few studies have explored mask
password guessing, where an attacker has somehow obtained par-
tial information of the target victim’s password (e.g., length and/or
some characters) by exploiting various side-channel attacks (e.g.,
shoulder surfing, smudge, and keystroke audio feedback).

To evaluate the threats posed by mask attackers with varied
capabilities, we investigate four major mask guessing scenarios,
each of which is based on different kinds of information exploited
by the attacker (e.g., the length of the victim’s password and some
characters). For the first time, we systematically and comprehen-
sively characterize the impacts of mask guessing that incorporate
side-channel priors, personally identifiable information (PII), and
previously leaked (sister) passwords, by proposing two password
models: neural network-based PassSeq and probability statistics-
based Kneser-Ney. Using the maximum likelihood estimation
technique, we propose a new guess number estimation method
to accurately and efficiently estimate the guess number required
against the target password under a given password model.
Extensive experiments on 15 large-scale datasets demonstrate
the effectiveness of PassSeq and Kneser-Ney. Particularly, within
ten guesses: (1) When a trawling attacker knows the character
composition (without order) of the victim’s 4-digit PIN, the
success rate increases by 152% (from 14% to 35%); (2) When
a PII-based targeted attacker knows the length of the victim’s
password, the success rate increases by 47%-82%; and (3) if this
targeted attacker further knows one character of the victim’s
password (besides the length), the success rate generally doubles,
reaching 7%-29% (and these figures will be 33%-73% for a
targeted attacker that can exploit the victim’s sister password).

To further validate the practicality of our mask guessing
models, we collect real-world keystroke audio data from 11 pop-
ular keyboards (e.g., Apple, Dell, Lenovo) and replicate attacks
where partial password information is inferred via acoustic side
channels. Experiments show that our PassSeq significantly boosts
the success rates of existing keystroke inference attacks, achieving
an additional 5.6%-166.7% improvement within 10 guesses. This
work highlights that mask password guessing is a damaging
threat that deserves more attention.

I. INTRODUCTION

Text passwords remain the most widely used authentication
method due to their simplicity of use, ease of change, and
low deployment cost, and they are likely to maintain the

dominant position in the foreseeable future [10], [11], [25],
[72]. Accurately modeling password guessability can not only
help precisely evaluate the security threats brought by attack-
ers, but also help administrators design and deploy effective
security mechanisms (e.g., password strength meters [13], [65]
and honeywords [32], [62]) to protect systems and users. A
common way to evaluate the strength of a password is to
estimate its guess number under a given password guessing
model/algorithm/tool [16], [34].

There have been dozens of password models designed for
whole-password guessing, such as probabilistic context-free
grammar (PCFG [64]), Markov [40], [45] and recurrent neural
network (RNN)-based models [43], [49]. However, these mod-
els are not optimal for mask guessing, where the attacker has
further obtained partial information of the victim’s password
(e.g., some characters and/or length). In general, password
models like RFGuess [63], Markov [40], and RNN [43] are
trained to predict the next character based on preceding char-
acters in a password (i.e., characters are trained and predicted
from a single direction). As a result, they are unable to utilize
characters that follow a template to predict preceding masked
characters. For example, in the template **veu4eve* (cor-
responding to the password loveu4ever, a stylized form
of ‘love you forever’), where * represents masked characters,
they cannot utilize the following veu4eve to determine the
probabilities of the first two masks.

Worse still, existing side-channel attacks (e.g., shoulder
surfing and smudge attacks) pose significant threats by poten-
tially exposing sensitive parts of the target victim’s password.
Among these attacks, shoulder-surfing attacks [9], [20], [36]
are particularly concerning, as they enable attackers to directly
see partial characters and/or the length of the target victim’s
password. In 2024, Hu et al. [30] systematically investigated
password-masking practices across modern authentication sys-
tems and found that all evaluated mobile browsers implement
dynamic masking (i.e., briefly revealing the most recently
typed character before re-masking it). This mechanism makes
certain characters trivially observable to nearby shoulder-
surfers or camera-based side channels. Such momentary expo-
sure on mobile devices directly motivates our mask guessing
scenarios, in which attackers exploit short-lived character leaks
to substantially increase guessing success rates.

Actually, shoulder-surfing attacks are frequently encoun-
tered in real-world scenarios, especially in public or semi-

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.241059
www.ndss-symposium.org

Fig. 1. Access control keypads that leave/leak input traces in the real world.
We can clearly see that the left user’s password consists of the four digits 1,
5, 6, and 7, while the right user’s password contains 2, 6, and 7. Using this
side-channel information, the attacker can perform mask password guessing
to significantly increase her guessing success rate (see Fig. 6).

public spaces, and have alarmingly high success rates. For
instance, Honan [28] reports that 85% of participants admitted
being able to observe sensitive information on others’ com-
puter screens; the Ponemon Institute [1] finds that 91% of
157 visual hacking attempts were successful in office settings.
Large-scale user studies further corroborate these findings:
Marques et al. [42] report that about 20% of U.S. adults (and
up to 52% of young users) admit to successfully snooping on
others’ phones within a single year. Aviv et al. [6] establish
empirical baselines for mobile shoulder-surfing, showing suc-
cess rates of 10.8% for 6-digit PINs after a single observation
and 26.5% after multiple observations.

Besides shoulder surfing, there are also common and prac-
tical threats that motivate our work. For example, smudge
attacks [6] allow attackers to determine the character composi-
tion of a victim’s password by analyzing the traces left/leaked
on input devices (see Fig. 1); keystroke audio feedback [7], [8],
[12], [71] enables attackers to listen to keystrokes, revealing
the probability distribution of individual characters and the
password length; Thermal attacks [3], [4], exploiting keyboard
heat maps, can reliably identify the last input password charac-
ter with certainty. Notably, Alotaibi et al. [4] illustrate, through
an example decoding path (Fig. 11), that the per-state decoding
confidence along the inferred path can follow a monotonic
increasing trend with position, with later positions showing
higher conditional probabilities; Bicycle attacks [22], which
monitor encrypted traffic between users and authentication
servers, can infer the exact password length. Particularly,
Harsha et al. [22] reveal that >84% of the Alexa Top-100
pages are vulnerable to password-length leakage.

If the attacker knows some characters and the exact length
of the victim’s password with certainty, she can directly
perform template-based mask guessing. Alternatively, if the
attacker has partial information about some characters (e.g.,
the probability distribution of characters obtained through
keystrokes or the composition of characters obtained through
smudges), she can incorporate this distribution (derived from
acoustic side-channel analysis) as prior knowledge into the

mask-based model to further improve the guessing success
rate based solely on sound. In Sec. IV-F, we demonstrate that
our proposed password model, when integrated with acoustic-
derived priors, can significantly boost the guessing success
rates of existing acoustic side-channel attacks (e.g., [2], [21])
by 6%-167% within 10 guesses (see Table X). This is achieved
using keystroke data collected from 11 real-world keyboards
(e.g., Apple, Lenovo, and Dell laptops).

Despite the increasing deployment of multi-factor authen-
tication (MFA), password-only authentication remains preva-
lent. Recent reports indicate that merely 27%-34% of small
and medium-sized enterprises have adopted MFA [55], and
that about 60% of users still rely on passwords for their
personal accounts [41]. Moreover, widely used dynamic mask-
ing interfaces (particularly on mobile browsers [30]) briefly
display the most recently typed character before re-masking
it, creating routine opportunities for partial or momentary
character exposure. Besides UI-level leakage, attackers today
can easily acquire identical keyboards, collect training data,
and leverage side-channel inference [12], [21]. All this makes
mask guessing attacks increasingly practical. Our study there-
fore provides timely insights into how modern systems behave
under partial leakage and how improved modeling of masked
passwords can enhance password strength evaluation, inform
adaptive throttling and rate-limiting mechanisms, and support
the design of more robust user interfaces.

A. Design challenges

In mask guessing, attackers can additionally exploit par-
tial character information from the target password (com-
pared with traditional whole-password guessing), and a
given password template (e.g., **veu4eve*) usually in-
dicates that the attacker further knows the length and pat-
tern/structure/composition of the target password. This exem-
plary subtlety partially implies that the exploration of mask
guessing looks deceptively simple, but actually, it is rather
challenging. The following explains why.

Firstly, when applied to mask guessing scenarios, most
state-of-the-art password models are unable to assign a prob-
ability to the missing character of a template efficiently. As
briefly mentioned in [48], [50] and in-depth investigated in this
work, character-level generative models like RFGuess [63],
FLA [43] and Markov [40], [45] imply a causal order between
password characters. This assumption asserts that causality
flows in a single and specific direction during the generation
process, that is, from the beginning to the end of the string. As
a result, these password models are good at assigning proba-
bilities to the following characters by the preceding characters
but not vice versa. While training companion models with two
directions may seem reasonable, it introduces two independent
probabilistic models: the forward and reverse-trained models.
This approach necessitates careful consideration of additional
probabilistic smoothing, which can be complex and non-trivial.

PCFG-based password models [57], [64] are designed for
token-based probabilistic modeling. They can only instantiate
the basic structures (L/D/S) of passwords with substrings and

2

cannot infer the missing positions of a password character by
character, so these models cannot be directly employed for
mask guessing. Deep generative models like PassGAN [26]
and CPG [50] have inherent limitations. More specifically,
they cannot assign a probability to the generated password,
preventing them from sorting the guesses in an optimal order.
Thus, a new technical route for mask guessing is needed, but
how to design password models to overcome the identified
weaknesses has not been systematically explored.

Secondly, it is inherently impractical to directly apply the
existing password strength evaluation method, i.e., the Monte
Carlo (MC) method [16], to estimate a password’s guess
number for mask guessing due to the accuracy vs. efficiency
trade-off. Since the way of enumerating large-scale guesses is
computationally intensive, previous works [37], [43], [67] have
commonly employed the MC method to estimate the guess
number of a password under a given probabilistic password
model. Its basic idea is to sample from the given password
model, i.e., generating random passwords according to the
probabilities assigned by the model, and a more accurate result
can simply be obtained by increasing the sample size.

However, when applied to mask guessing, the MC method
[16] does not provide a guarantee that the randomly sampled
passwords will necessarily match a given template (e.g.,
**veu4eve*). It needs to filter out a large number of
samples that do not conform to the password template. This
may result in an insufficient sample size, which does not
guarantee the reliability of the evaluation results.

B. Our contributions

In summary, our contributions are four-fold.
• Two mask password models. We propose a Seq2Seq-

based password model, namely PassSeq, which can ac-
curately capture the impact of leaked characters on the
overall security of the whole password and is applicable
to various mask guessing scenarios. For the first time,
we introduce the Kneser-Ney smoothing technique [35]
into password guessing, and propose the Kneser-Ney
password model, well mitigating the long-standing issues
of overfitting and data sparseness.

• New guess number evaluation method. We adjust the
generation mechanism of existing character-level autore-
gressive password models (e.g., Markov [40] and Backoff
[40]) from traditional whole-password guessing to mask
guessing, and propose a new guess number estimation
method based on the Maximum Likelihood Estimation
(MLE) technique for mask password guessing. With
MLE, we can accurately and efficiently evaluate the
password strength under each given template.

• Extensive evaluation. By conducting an extensive review
of existing side-channel attacks on passwords, we model
four different types of realistic mask attackers. The results
demonstrate the severe dangers posed by various mask
attackers. Particularly, when a targeted attacker knows
just one character of the victim’s password, the guessing
success rate generally doubles within 1-20 guesses (see

Figs. 5(a)-5(d)). Furthermore, within 10 guesses, our
PassSeq can boost the effectiveness of existing keystroke
acoustic-based side-channel attacks, achieving up to a
167% increase in guessing success rates (see Table X).

• Some insights. We provide a practical application and
valuable insights. Specifically, our PassSeq can serve as
a reliable password strength meter. Interestingly, mask
attackers exploiting PII can achieve a 6%-14% higher
guessing success rate when the first character of the target
password is exposed, compared to when a randomly
chosen character is exposed (see Figs. 5(a)-5(d)).

II. RELATED WORK AND BACKGROUND

In this section, we first introduce major password guessing
models and then present our threat model.

A. Password guessing attacks

This work divides password guessers in existing research
into three types according to different technical routes.
Type-1 research mainly employs empirical knowledge and
heuristic insights to design various transformation rules
(namely mangling rules), such as insertion, reversal, capital-
ization, and leet (e.g., password→passw0rd). In 1979,
Morris and Thompson [44] pioneered heuristic transformation
rules to generate variants of words in the dictionary, and
performed password guessing. Besides, there exist some open
source password guessing tools (e.g., John the Ripper [46] and
Hashcat [23]), taking the mangling rule techniques one step
further by leveraging GPUs to automate the guesses at scale.
While these heuristics are reasonably successful in practice,
they are primarily applied in an ad hoc manner, rather than
being constructed from a principled approach.
Type-2 research gradually moves away from the heuristic
stage of relying on whimsical ideas and enters the scientific
stage based on reliable probabilistic statistical models. In
2005, Narayanan and Shmatikov [45] proposed a password
model based on the Markov chain, which estimates password
probability from every two adjacent characters. In 2014, Ma
et al. [40] introduced a number of normalization (e.g., End-
symbol) and smoothing (e.g., Backoff) techniques on the
Markov chain to overcome the data sparseness and overfit-
ting problems, enabling password generation without being
restricted by fixed-length substrings.

In 2009, Weir et al. [64] designed a password guessing
model based on probabilistic context-free grammars (PCFG).
PCFG [64] views a password as the concatenation of several
independent strings of different lengths and character types
(i.e., letters, digits, and symbols), corresponding to a specific
password structure. Thus, it can generate password structure
templates with grammatical rules obtained by statistics, and
then fill them with character strings in the training dictionary.
Since then, a series of improved PCFG-based methods have
been proposed one after another. For example, in 2014, Veras
et al. [57] discovered semantic strings in passwords through
dictionary matching and classified them into a special cate-
gory, strengthening the ability to analyze password semantics;

3

TABLE I
COMPARISON OF MAJOR MASK GUESSING LITERATURE (GAN/WAE=GENERATIVE ADVERSARIAL NETWORK/WASSERSTEIN AUTOENCODER).

Model / Paper Password
length

Probabilistic
per-position

Character
composition

PII/Reuse-
based Core modeling idea Notes / Distinction

CPG [50]
(Pasquini et al., S&P’21) Required Fixed p=0.5 ✗ ✗ Representation learning via

GAN/WAE latent smoothness
These models primarily extend trawling pa-
ssword generation to conditional/fixed tem-
plate-based settings, but lack explicit prob-
abilistic modeling for masked positions and
considerations for unknown PW lengths.
While Xu et al. [68] and Yang-Wang [69]
consider PII/reuse-based scenarios, they
are both designed for whole-password
guessing rather than mask guessing.

PassBERT [68]
(Xu et al., Security’23) Required Fixed p=0.5 ✗ ✗ Bi-directional Transformer

(pre-train and fine-tune)

RankGuess-MASK [69]
(Yang and Wang, S&P’25) Required Fixed p=0.5 ✗ ✗ Adversarial ranking with

offline reinforcement learning

PassSeq and Kneser-Ney
(This work) Unknown L

considered

Fixed p=0.5;
Side channel-
aware

✓ ✓
Seq2Seq with attention and
Kneser–Ney smoothing

We quantify four mask guessing scenarios
that incorporate side-channel priors, PII,
and previously leaked (sister) passwords.

In 2015, Houshmand et al. [29] added the keyboard and
multiword patterns to PCFG to enhance its ability to crack
weak passwords. In 2022, Wang et al. [58] investigated an
identification method for password segments and introduced
the ReSeg-PCFG model. Their study revealed that the number
of segments significantly influences password security. In
2024, Huang et al. [31] integrated two prominent password
guessing models, PCFG [64] and the Markov-based OMEN
[18], with Hashcat to fully leverage GPU acceleration, signif-
icantly improving the guessing efficiency of both models.
Type-3 research is mainly based on machine/deep learning,
taking more advantage of large-scale data to address the
data sparseness and overfitting problems existing in traditional
statistical password models. In 2017, Melicher et al. [43]
introduced long short-term memory networks [27] to password
guessing and proposed FLA (Fast, lean, and accurate). Like
Markov [40], FLA is also trained to generate the next character
of a password given the preceding characters. The difference
is that FLA is able to automatically assign a small (but non-
zero) probability to each character in the alphabet, instead
of using smoothing techniques. Recently, Pasquini et al. [49]
proposed a FLA-based universal password model, which relies
on auxiliary data (e.g., email) to build a pre-trained model for
the target group of users. In addition, there are several leading
targeted password models, such as TarGuess [61], which can
exploit victims’ PIIs, and Pass2Path [47], which focuses on
credential stuffing/tweaking attacks.

In 2021, Pasquini et al. [50] successfully mitigated the
training collapse problem of PassGAN [26]. They achieved
this by implementing a form of stochastic smoothing over the
representation of strings, leading to a substantial improvement
in the performance of GAN-based approaches. On this basis,
they constructed two guessing frameworks, i.e., conditional
password guessing (CPG) and dynamic password guessing
(DPG). They also showed that existing password models that
are designed for traditional whole-password guessing (e.g.,
PCFG [64], Markov [45], and FLA [43]) can be used for mask
guessing by filtering the generated guesses through templates,
but their guessing success rates are not high. Moreover, this
approach would generate a lot of redundant guesses that do
not conform to the template, which might be inefficient.

In 2023, Xu et al. [68] introduced pre-training and fine-

tuning techniques for password guessing, and proposed Pass-
BERT, a framework based on Transformer. The authors first
pre-trained a password model with the masked language mod-
eling objective using large-scale datasets. Then, they designed
attack-specific fine-tuning approaches to tailor the pre-trained
password model to three attack scenarios.

In 2025, Yang and Wang [69] proposed RankGuess, a pass-
word guessing framework based on adversarial ranking. By
formulating the guessing task as a Markov Decision Process,
RankGuess demonstrates improved performance over existing
models across three major guessing scenarios (Trawling, PII-
based, and Mask guessing scenarios). Recently, several large
language model-based password models (e.g., PassGPT [51],
PagPassGPT [53], and PassLLM [73]) have been proposed.
However, these models are focused on traditional whole-
password guessing, rather than mask guessing attackers that
can exploit the victim’s partial password information (e.g.,
length and/or some characters) through side-channel cues.
Summary. To the best of our knowledge, only a few stud-
ies have explicitly addressed the mask password guessing
scenario, including the conditional password guessing (CPG)
framework [50], PassBERT [68], and RankGuess-MASK [69].
However, these works focus mainly on canonical settings,
where part of the password is already known or structurally
fixed. They overlook more realistic and practical variants,
such as side-channel attacks (see Fig. 10) that provide proba-
bilistic information about character-level distributions (which
we summarize and compare in Table I). Fundamentally, mask
password guessing can be viewed as a problem of probability
allocation/smoothing over missing characters. This raises an
important question: Could traditional statistical smoothing
techniques (e.g., Backoff [40]) be more suitable than complex
neural architectures in this context? Furthermore, are there
more effective smoothing techniques that better align with
the nature of mask guessing? These questions remain largely
unexplored in existing literature.

B. Threat model

We introduce a formal attacker model for real-world mask
guessing scenarios, grounded in the partial information that
can be exploited by the attacker. Based on the characteristics
and granularity of the available information, we identify four

4

TABLE II
SUMMARY OF REPRESENTATIVE SIDE-CHANNEL CHARACTERISTICS FOR CONTEXTUALIZING OUR EVALUATED MASK-GUESSING SCENARIOS.†

Attack types and base success rates /
prevalence / practical realism

Key experimental settings of
representative studies Experimental setup in this work

Shoulder-surfing [5], [42]
1⃝ Using video recordings of partici-

pants unlocking devices, Aviv et al. [5]
report shoulder-surfing success rates
of 34.9%/10.8% and 56.7%/26.5% for
4-digit/6-digit PINs after one and mul-
tiple observations.

2⃝ An anonymity-preserving survey
by Marques et al. [42] finds that about
31% of participants admit to having
looked through someone else’s phone
without permission within the past
year. When weighted to the U.S. adult
population, this corresponds to ∼20%.

3⃝ Dynamic masking‡ in major An-
droid/iOS browsers makes partial
character exposure a realistic threat
and directly motivates our work [30].

1⃝ Aviv et al. [5] investiga-
ted shoulder-surfing attacks
by showing 1,173 participants
pre-recorded videos of users
entering 4- and 6-digit PINs
from different viewing angles.

2⃝ Using anonymous online
list experiments via Google
Consumer Surveys, Marques
et al. [42] measured how of-
ten people looked through oth-
ers’ phones without permis-
sion (N ≈ 2, 000).

3⃝ Hu et al. [30] investigated
the password masking practice
deployed by the Google CrUX
Top-1K websites and major
desktop and mobile browsers.

We consider nine partial password-leakage cases
covering scenarios where the attacker exploits:
(a) personally identifiable information (PII) of
the target, (b) previously leaked passwords of
the same user, and (c) no related information.
Specifically, these include:
(1) PII-based scenarios with length leakage;
(2) PII-based scenarios (length + one char leak);
(3) Reuse-based scenarios with length leakage;
(4) Reuse-based scenarios (length + one char);
(5) Trawling scenarios (the first character leak);
(6) Trawling scenarios (length + 1st char leak);
(7) Trawling scenarios (50% chars leak);
(8) Trawling scenarios (50% chars + length);
(9) Trawling scenarios with length leakage.
Results for the PII/reuse-based guessing scenar-
ios appear in Fig. 5, and results for the trawling
guessing scenarios are in Table VII and Fig. 7.

Bicycle attack (length-leak) [22]
Harsha et al. [22] show that at least
84% of Alexa Top-100 websites fail to
properly pad password fields, making
them vulnerable to password-length
leakage attacks.

Password lengths are inferred
from TLS request sizes of
Alexa Top-100 websites (e.g.,
Gmail), revealing the exact
length via plaintext–ciphertext
size correlation [22].

The risks introduced by password length leakage
are quantitatively evaluated in our constructed
scenarios (1), (3), and (9) above; see Fig. 5
for PII and Reuse-based guessing scenarios and
Fig. 7 for the corresponding trawling scenarios.

Keystroke audio feedback [21]
Under a threat model where an at-
tacker records keystrokes using a
nearby smartphone or through a re-
mote voice call (e.g., Zoom), Harri-
son et al. [21] extract mel-spectrogram
features and train a neural classifier
that achieves up to 95% character-
level accuracy for keystrokes.

Data were collected on a Mac-
Book Pro 16-inch (2021), with
36 alphanumeric keys (0–9,
a–z) each pressed 25 times,
while keystroke audio was
recorded in stereo at 44.1 kHz
and 32-bit resolution using an
iPhone 13 mini placed ∼17 cm
from the keyboard [21].

We follow the threat model of Harrison et al.
[21] and use per-character probability distribu-
tions inferred from keystroke audio as priors
for our PassSeq. Note that Harrison et al. [21]
collected repeated presses of the same key rather
than actual passwords. To construct a more real-
istic guessing scenario, we collected over 1,500
keystroke samples of real PIN entries from 16
users across 11 popular keyboards (see Table X).

Thermal residue [4]
Alotaibi et al. [4] show that, using
AI-driven analysis of thermal images
taken after password entry, an attacker
can achieve success rates ranging from
92% (6-symbol) to 55% (16-symbol).
When images are captured shortly af-
ter entry, attackers achieve 86% at 20s,
76% at 30s, and 62% at 60s.

Data were collected from 21
participants who entered pass-
words of 6, 8, and 12-16 char-
acters on a Microsoft Wired
Keyboard 600. An optris PI
450 thermal camera was used
to capture thermal snapshots at
20s, 30s, and 60s [4].

We construct per-position disclosure probabili-
ties inspired by the position-dependent recov-
ery probabilities observed in ThermoSecure’s
decoding process [4] (see Fig. 11). We de-
fine a heuristic six-position disclosure profile,
[0.17, 0.20, 0.25, 0.33, 0.50, 1.00], capturing the
monotonic increase in recovery probabilities ob-
served in thermal-residue attacks (see Fig. 4).

Smudge attacks [14]
Within 20 attempts, the smudge sup-
ported-guessing attack achieves ≈74%
success rate with clean residue and
≈32% with noisy residue [14].

Smudge traces were extracted
from smartphone photos (us-
ing Samsung Galaxy S4 with
train/test = 219/93, N = 12);
evaluated unlock, call, and
social-app scenarios [14].

Smudges (see Fig. 1 for example) and thermal
residue (e.g., [3]) reveal the set of characters
composing the password but not their exact
positions. We model this scenario using PIN
data in Fig. 6 and quantify the incremental risk
introduced by such partial composition leakage.

†See Table II in the full version for a more detailed summary, available at http://wangdingg.weebly.com/publications.html.
‡ All major mobile browsers on Android/iOS implement dynamic masking (where a recently typed character is unmasked, but

previously typed characters are masked), allowing shoulder-surfing attackers to observe characters during password entry.

5

http://wangdingg.weebly.com/publications.html

generalized categories of attackers. Each attacker is character-
ized by information K, which constrains an effective guessing
space GK and informs the guessing strategy πK .
General setting. Let P denote the password space and pw∗∈P
the ground-truth password of length L. The attacker attempts
to guess pw∗ given partial prior knowledge K. We define the
constrained candidate space as:

GX = {pw ∈ P | pw satisfies K} , (1)

and the goal is to construct a guessing policy πX that maxi-
mizes the success rate under a given guessing budget.
Type I: Template attackers (Atemplate). These attackers possess
an exact mask template PT, e.g., **veu4eve*, where known
positions are revealed and the others remain masked. The
corresponding candidate set is:

Gtemplate = {pw ∈ P | pw[i] = PT[i] ∀i s.t. PT[i] ̸= ∗} , (2)

where ci is the character at position i in the password, and ∗
is the masked character. Such templates can be obtained from
shoulder-surfing (e.g., [20], [36]) and bicycle attacks [22].

In response to this attack scenario, Pasquini et al. [50], Xu et
al. [68], and Yang and Wang [69] have respectively proposed
the CPG, PassBERT, and RankGuess password models. These
works employ various password templates to generate large-
scale password guesses that conform to the templates, and
then evaluate their password models on specific (template-
conformed) test sets (that are different from the training sets).
While all three studies highlight that some real-world side-
channel attacks could obtain partial password information,
they do not clearly articulate which specific parts of a pass-
word can be obtained under which types of attack scenarios.

To comprehensively evaluate the practical risks of the mask
scenario, we extensively review existing studies that can obtain
partial password information and further classify the mask
scenarios to better align with real-world situations. Still, this
basic mask scenario (i.e., the Atemplate attacker) will serve as
a benchmark for comparing the advancements of the models
proposed in this paper (see Table VII).
Type II: Distributional or compositional attackers (Astat).
These attackers acquire statistical or compositional side-
channel information about the target victim’s password. One
form of leakage is a positional character distribution D =
{Di}Li=1, where each Di denotes the distribution over possible
characters at position i. Specifically,

Di(c) = Pr(pw∗[i] = c), (3)

which denotes the probability that character c appears at
position i of the target password pw∗. Such distributions are
typically derived from thermal residue on keyboards (e.g., [3],
[4]) or keystroke audio feedback (e.g., [7], [12], [71]). Another
common form is an unordered character multiset M⊆Σ∗, as
revealed by smudge attacks on touchscreens (see Fig. 1), which
disclose the set of characters used in the password without any
positional information. In both cases, the attacker’s guessing
strategy involves either maximizing the joint likelihood of

LNN+Softmax

Attention

Hidden
states

BiLSTM

Embedding

Hidden
states

LSTM

Embedding
Context
vector

Softmax

…

Softmax

q * e r * y * *Input

×

q w e r t y 1 2Output
label

Fig. 2. The network architecture of our Seq2Seq. Here we show a high-level
example of the architecture with one layer of LSTM/BiLSTM.

characters under D or enumerating permutations of M that
form valid password candidates.
Type III: Contextual prior attackers (Acontext). These at-
tackers enhance traditional mask guessing by incorporating
user-specific prior knowledge into the attack process. Such
contextual priors include personally identifiable information
(PII), denoted as I (e.g., the victim’s name, birthday, or email
address), as well as previously leaked passwords, denoted as
R. By conditioning guesses on I or adapting patterns from
R, these attackers can significantly narrow the search space
and increase the guessing success rate.
Type IV: Uncertain-length template attackers (Alength). These
attackers obtain partial template information PT but cannot
determine the exact password length. Instead, a length candi-
date set L⊆N is given. The attacker must consider multiple
candidate lengths in parallel:

Glength =
⋃
ℓ∈L

{pw ∈ P | |pw| = ℓ and pw satisfies PT} . (4)

Table II provides representative side-channel attacks (e.g.,
shoulder surfing [5], [42], keystroke audio feedback [12], [21],
and thermal residue [3], [4]) and their key characteristics
(including baseline success rates, prevalence, practical feasi-
bility, and typical experimental settings) which contextualize
our evaluated mask-guessing scenarios. The corresponding
attacker capabilities are listed separately in Table III.

III. OUR TWO NEW SEQUENCE PASSWORD MODELS:
PASSSEQ AND KNESER-NEY

We first elaborate on our PassSeq model, then introduce the
Kneser-Ney smoothing technique [35] to password guessing,
and finally present a new method for estimating the guess
number required for mask guessing.

A. Our PassSeq password model

Mask guessing scenarios can be modeled as character-level
sequence-to-sequence language modeling tasks that leverage
prior information, such as PII (if available) and template
sequences, to predict target password sequences. The Seq2Seq
model, with its encoder-decoder architecture [54], offers sig-
nificant structural flexibility, making it well-suited for this
task. More specifically, the encoder can be composed of

6

TABLE III
ATTACKER CAPABILITIES CONSIDERED IN THIS WORK.

Mask attacker
types

Password
length

Character information
with 100% certainty

Character information
with some probability†

Character
compositions‡ PII∗ Leaked

passwords∗
Existing
literature Experimental results

Atemplate ✓ ✓ [50], [68], [69] Table VII
Astat ✓ ✓ ✓ This work Fig. 4, Fig. 6, Table X
Acontext ✓ ✓ ✓ ✓ This work Fig. 5
Alength ✓ This work Fig. 5, Fig. 7
† Keystroke audio feedback (e.g., [7], [8], [12]) or thermal residual (e.g., [3], [4]) can infer the likelihood of password characters (with position determined).
‡ Smudge attacks (e.g., [6] and Fig. 1) are a type of side-channel attack that can infer the composition of password characters (with position undetermined).
∗PII=Personally Identifiable Information. Besides the partial information of the victim’s password (e.g., password length and/or some characters), the mask

attacker can exploit the victim’s name, birthday, and previously leaked passwords to further enhance their guessing success rates.

bidirectional LSTM [27], capturing bidirectional information
of the password templates. This is particularly useful for tem-
plates where the continuity of local n-grams is disrupted (e.g.,
*2*45*as*). As we qualitatively analyze in Section IV-B,
bidirectional encoding more effectively accommodates such
templates than traditional n-gram smoothing. Further, the de-
coder structure ensures that passwords are generated character
by character in an autoregressive manner from left to right (see
equation 5), aligning better with the typical human behavior
when creating and entering passwords. This also results in
the model outperforming the PassBERT model [68] in mask
scenarios. While transformer architectures [56] also perform
well in bidirectional sequence tasks, the simplicity of the
Seq2Seq model aligns with Occam’s razor principle, making
it a pragmatic choice for our application.

Our Seq2Seq network architecture is shown in Fig. 2. The
encoder converts the input password character tokens to a
representation vector and then feeds it to the decoder to
generate output tokens based on a target vocabulary. The initial
Seq2Seq model was proposed by Sutskever et al. [54], and
originally applied to the English-French translation task. In
2015, Luong et al. [39] employed an attention mechanism,
which makes use of all the encoder outputs and thereby
improves the model performance. Thus, we also employ the
attention mechanism to build our neural network.

When applying Seq2Seq for mask guessing scenarios, the
password template PT (e.g., q*er*y**) is encoded as the
input of the model, and the corresponding password pw (i.e.,
qwerty12) is used as the output label. We define the prob-
ability of predicting the complete password pw(=c0, ..., cn)
given the corresponding template PT as

Pr(pw|PT) =
n∏

i=1

Pr(ci|c0, ..., ci−1,PT). (5)

In the training phase, we use cross-entropy to quantify
the discrepancy between the outputs and the corresponding
labels. In the generation phase, we can use beam search
or our proposed mask search algorithm (see Algorithm 1)
to generate guesses. We call the resulting model PassSeq,
and put the details of the model structure in Table XIX of
the full version, available at http://wangdingg.weebly.com/p
ublications.html). We note that Pal et al. [47] and Xiu and
Wang [66] have respectively proposed leading password reuse
models based on Seq2Seq. However, their model architectures,
training/generation paradigms, and core application scenarios
are all different from our PassSeq.

B. Our Kneser-Ney password model
Traditional statistical password models (e.g., Markov [45])

generally rely on smoothing techniques to address the data
sparsity issue inherent in n-gram modeling. In 2014, Ma et
al. [40] incorporated the backoff smoothing method [33] into
the Markov password model [45], resulting in the widely
used Backoff password model. While effective in some sce-
narios, backoff smoothing tends to assign overly simplistic
probabilities in the absence of high-order n-gram matches,
limiting its generalization ability in sparse or unseen contexts.
To better address these limitations, we explore the use of
Kneser-Ney (KN) smoothing, a technique that has shown re-
markable robustness in natural language modeling but remains
underexplored in password modeling. To motivate this choice
and highlight the shortcomings of traditional approaches, we
provide a toy example in Appendix A of the full version to
illustrate the differences between MLE, backoff smoothing,
and Kneser-Ney smoothing in character-level prediction.
Model formulation. In practice, KN smoothing has emerged
as one of the most theoretically grounded and empirically
robust smoothing methods in language modeling, owing to its
ability to balance count discounting and context diversity [24],
[35], [52]. Given the analogous challenges in character-level
password modeling (e.g., extreme sparsity and high contextual
variability), we incorporate KN smoothing as a principled and
effective solution within our probabilistic framework. Let the
password substring be pwj

i = cici+1 · · · cj . The conditional
probability of the next character ci given context pwi−1

i−n+1 is:

PrKN(ci | pwi−1
i−n+1) =

C(pwi
i−n+1)−D(C(pwi

i−n+1))∑
ci

C(pwi
i−n+1)

+ γ(pwi−1
i−n+1) · PrKN(ci | pwi−1

i−n+2)

(6)

The discount function D(x) is:

D(x) =


0, if x = 0

x− n1
n1+2n2

· nx+1

nx
(x+ 1), if x = 1, 2, 3

D(3), if x > 3

(7)

where nx is the number of n-gram substrings with frequency
x. The backoff weight γ(·) is:

γ(pwi−1
i−n+1) =

D(1)N1(pwi−1
i−n+1·) +D(2)N2(pwi−1

i−n+1·)∑
ci

C(pwi
i−n+1)

+
D(3)N3+(pwi−1

i−n+1·)∑
ci

C(pwi
i−n+1)

(8)

Here, N1, N2, and N3+ denote the number of distinct

7

http://wangdingg.weebly.com/publications.html
http://wangdingg.weebly.com/publications.html

continuations of pwi−1
i−n+1 appearing exactly once, twice, and

three or more times, respectively.

C. Our guess number estimation method

Considering that enumerating large-scale guesses is com-
putationally intensive, previous works (e.g., [17], [37], [43],
[67]) generally employ the Monte Carlo (MC) method [16]
to estimate a password’s guess number (given a password
probabilistic model) if the guesses are in descending order of
likelihood. However, MC is not suitable for mask guessing,
since it lacks an efficient way to ensure that the sampled
passwords match a given template. To address this limitation,
we consider modifying the original MC estimation as follows:

C∆ =
∑

pw∈Θ

{
1

n·p(pw)
if p(pw) > p(pw∗),

0 otherwise.
(9)

Here, Θ is a sample of size N from the password space
Γ, and C∆ estimates the number of passwords more likely
than pw∗. By constraining pw to also match a given password
template PT∗, we can refine the estimation to match mask
guessing scenarios. However, this adaptation is often imprac-
tical. Even with 107 samples from a trained Markov model
[40], the average number of passwords matching a specific
template remains low (e.g., 0-16), far below the recommended
N = 104, leading to unreliable estimation.

Instead, we propose using Maximum Likelihood Estimation
(MLE) to estimate password strength in mask guessing. Given
that the number of passwords matching a template PT∗ is finite
and known (denoted n), and that m of them satisfy p(pw) >
p(pw∗), we aim to estimate m.

To this end, we perform t independent sampling trials. In
each trial, we uniformly sample N passwords from the set of
candidates matching PT∗, and count how many of them satisfy
p(pw) > p(pw∗). Let xi denote the number of such passwords
in the i-th trial. The MLE of p is then computed as:

p̃ =
1

tN

t∑
i=1

xi. (10)

This estimator is unbiased, and its variance satisfies
Var(p̃) = O(1/(tN)), indicating rapid convergence as the
number of trials and sample size increase.

Full derivation and theoretical analysis of MLE (including
variance and convergence rate) can be found in Appendix A.

Intuitively, MLE follows a principle similar to the mark-
recapture estimation: by uniformly sampling n passwords
from N total passwords (within a given template) and observ-
ing m passwords that are stronger than the target password,
we can estimate its rank as M=mN/n. Repeating this process
multiple times (e.g., 4-10) can produce an (approximately) un-
biased estimate of the target password’s rank, thereby aligning
with the attacker’s ranking strategy.

In practice, MLE is particularly suitable when estimating
large-scale guess numbers for a given password under a given
template (e.g., ≥108 guesses). We provide a brief analysis
of the computational overhead introduced by MLE in Sec-
tion IV-F, highlighting its significant efficiency advantage over

directly generating and ranking the entire candidate space
to determine the guess number. All large-scale experimental
results reported in Table X of the full version are obtained
using our MLE-based estimation method.

IV. EXPERIMENTS

Now we first elaborate on our password datasets and then
fairly/comprehensively evaluate our proposed PassSeq and
Kneser-Ney with their foremost counterparts (i.e., Markov
[40], Backoff [40], Hashcat [23], PCFG [64], OMEN [18],
CPG [50], PassBERT [68], and RankGuess [69]) in typical
mask guessing scenarios.

A. Our datasets

Datasets. We introduce 15 real-world datasets with over
3.4 billion passwords (see Table IV), including eight from
English sites, six from Chinese sites, and one mixed (COMB,
containing passwords from over 50 countries/regions). Among
them, three datasets (i.e., 12306, Rootkit, and Clixsense) are
associated with various PIIs (e.g., name, email, and birth-
day). For PII or reuse-based guessing scenarios, we obtain
another two PII datasets (see Table V) and four password-
pair datasets by matching email (see Table VI). These datasets
are compromised by hackers or leaked by insiders, and have
been publicly available for some time. Following the data
cleaning method employed by [40], [60], [69], we remove
non-password strings in the original dataset, including head-
ers, descriptions, footnotes, and non-ASCII strings. We also
remove passwords with length>30, because they are likely to
be constructed by password managers or just junk information.

B. Template-based mask guessing scenarios

We compare our PassSeq and Kneser-Ney with eight state-
of-the-art password guessers in typical mask guessing scenar-
ios (i.e., the type-I attacker Atemplate), and they are PCFG [64],
OMEN [18], Markov [40], Backoff [40], Hashcat [23], CPG
[50], PassBERT [68], and RankGuess [69]. The reasons for
selecting these password models are as follows: PassBERT
[68], CPG [50] and RankGuess [69] are state-of-the-art pass-
word models specifically designed for typical mask guessing
scenarios; PCFG [64] remains the most influential structure-
based guesser; Hashcat’s mask mode is a widely used attack
method among real-world attackers; Markov/OMEN/Backoff
are leading character-level autoregressive models that rely
on statistical smoothing techniques. Particularly, we adapt
Markov and Backoff to mask guessing scenarios using our
proposed generation algorithm (see Algorithm 1).

We make sure the eight approaches work on the same
training (i.e., 80% Rockyou as with [50]) and test sets, and
manage to use/obtain their codes shared/open-sourced by the
original authors. For all model parameters, we follow the best
recommendations. The specific setup is as follows.

• PassSeq. For the built-in Seq2Seq model, we set the
context length to 16, the hidden size, and the embedding
size to 256 and 128, respectively. See Table XIX (in the
full version) for detailed parameters/model structure.

8

TABLE IV
BASIC INFORMATION ABOUT OUR 12 PASSWORD DATASETS (PW=PASSWORD).

Dataset Language Service type Leaked time Original size Non-PWs/Non-ASCII PW length>30 Removed After cleaning Remaining
Post Millennial English News outlet May 2024 38,902 0 31 0.08% 38,871 99.92%
Wishbone English Mobile app Jan. 2020 10,092,037 798 250 0.01% 10,090,989 99.99%
000Webhost English Web hosting Oct. 2015 15,299,907 69,606 1,131,721 7.76% 14,098,263 92.24%
LinkedIn English Job hunting July 2012 54,656,615 0 17,157 0.03% 54,639,458 99.97%
Yahoo English Portal July 2012 453,391 10,709 1 2.37% 442,681 97.63%
Rockyou English Social forum Dec. 2009 32,603,387 149,971 2,068 0.47% 32,451,348 99.53%
Taobao Chinese E-commerce Feb. 2016 15,072,418 0 86 0.00% 15,072,332 100.00%
Sohu Chinese Portal Oct. 2015 14,755,046 147,429 50 1.00% 14,607,567 99.00%
126 Chinese Email Dec. 2011 6,392,568 0 599 0.00% 6,391,969 100.00%
CSDN Chinese Programmer forum Dec. 2011 6,426,872 0 125 0.00% 6,428,285 100.00%
Dodonew Chinese E-commerce Dec. 2011 16,282,276 4,975 12,070 0.10% 16,265,231 99.90%
COMB Mixed Mixed Feb. 2021 3,279,064,312 14,948,181 10,576,452 0.78% 3,253,539,679 99.22%

TABLE V
BASIC INFORMATION OF OUR PII DATASETS.

Dataset Language Items num Types of PII useful for this work
12306 Chinese 129,303 Email, User name, Name, Birthday, Phone
Dodonew-PII Chinese 80,758 Email, User name, Name, Birthday, Phone
000Webhost-PII English 79,580 Email, User name, Name, Birthday
Rootkit English 69,418 Email, User name, Name, Birthday
ClixSense English 2,222,045 Email, User name, Name, Birthday

TABLE VI
BASIC INFORMATION OF OUR PASSWORD REUSE DATASETS.†

Language Training set setup Size (pairs) Test set setup Size (pairs)
Chinese CSDN→126 97,915 CSDN→12306 12,635
Chinese CSDN→12306 12,635 CSDN→126 97,915
English 000Web.→Clixsense 150,273 000Web.→Yahoo 36,936
English 000Web.→ClixSense 150,273 000Web.→LinkedIn 231,452

†A→B means that a user’s password at service A can be exploited by an attacker to
help attack this user’s account at service B. 000Web.=000Webhost.

• PCFG. We use the latest open-source implementation of
the PCFG cracker [64] and follow the default grammar
extraction and generation pipeline.

• OMEN. We use the public release of OMEN [18] and
execute it with its recommended default configuration.

• Kneser-Ney. We set the order to 7 (i.e., 8-gram) based
on our experimental results (see Fig. 3).

• Markov/Backoff. For Markov, we set the order to 3,
and adopt the Laplace and End symbol technique recom-
mended by [40]. For Backoff, we set the count threshold
to 10 as recommended by [40].

• Hashcat. We employ the mask attack mode with the
given password templates (Markov optimization).

• CPG. We use the source code of CPG [50] (i.e., Pass-
wordAE) with the default parameters.

• PassBERT. PassBERT [68] provides two pre-trained
variants: one on natural language and one on password
data. We use the latter due to its higher cracking rates.

• RankGuess-MASK. We run the authors’ provided source
code with the recommended hyperparameters [69]. See
our full version for details.

At IEEE S&P’21, Pasquini et al. [50] evaluated existing
password models (e.g., Markov [40] and FLA [43]) in mask
guessing scenarios by filtering the generated guesses through
templates. However, they also revealed that this solution has
two main drawbacks: (1) It’s costly and storage-demanding;
(2) It’s difficult for such models to generate relatively low-
probability guesses. For a fair comparison, we first closely
follow the experimental setup in [50], [68], [69] (e.g., the

100 101 102 103 104 105 106 107 108

Guess number
0.00
0.06
0.12
0.18
0.24
0.30
0.36
0.42
0.48
0.54

Fr
ac

tio
n

of
 su

cc
es

sf
ul

ly
 c

ra
ck

ed KneserNey-order4
KneserNey-order5
KneserNey-order6
KneserNey-order7
KneserNey-order8
Backoff
RankGuess

Fig. 3. We evaluate our Kneser-Ney password model with different n-gram
orders (n=4, 5, 6, 7, 8), alongside Backoff [40] and RankGuess [69] baselines.
Results show that the guessing success rate of Kneser-Ney is slightly higher
when n=7/8. Therefore, we set n=7 for all subsequent experiments.

following template classification method is exactly the same
as [50], [68], [69]). Then, we propose a generation algorithm
(see Algorithm 1) and adapt the existing character-level au-
toregressive password models (including Markov [40], [45]
and Backoff [40]) for mask guessing.

More specifically, we first construct a test set consisting of
password templates, where the character set includes 94 print-
able ASCII characters (excluding space) and a wildcard/mask
symbol ∗. Each password template (PT) is extracted from a
randomly sampled password in a validation set V . We use
LinkedIn as the validation set and retain only passwords with
length ≤30, resulting in 6×106 unique passwords.

For each template, we uniformly sample a password pw
from V and independently mask each character in pw with
probability p=0.5 (the rationale for this choice is discussed
later). We then retain only the templates that contain at least
four observable characters and at least five wildcards, follow-
ing [50]. Finally, we extract all passwords in V that conform
to a given PT, forming the candidate set V PT. Depending on
the size of V PT, the templates are divided into four classes.

• Tcommon={PT| ∀PT, |V PT| ∈ [1, 000, 1, 500]}
• Tuncommon={PT| ∀PT, |V PT| ∈ [50, 150]}
• Trare={PT| ∀PT, |V PT| ∈ [10, 15]}
• Tsuper-rare={PT| ∀PT, |V PT| ∈ [1, 5]}

Each class contains 30 templates. This setup corresponds to
the Atemplate attacker, that is, the attacker knows the length
and some characters (with certainty) of the target password.
Essentially, template-based mask guessing inherently relies
on the mask probability p to generate the corresponding
password templates. Choosing a value of p that is too high

9

TABLE VII
PROPORTION OF AVERAGE MATCHED PASSWORDS OVER THE BIASED PASSWORDS TEST-SET DIVIDED INTO FOUR CLASSES (RG=RANKGUESS).†

Templates class Markov-d [40] Markov-m Backoff-d [40] Backoff-m Hashcat [23] PCFG [64] OMEN [18] CPG [50] RG-MASK [69] PassBERT [68] KN-m PassSeq
Common [1,000-1,500] 0.2806 0.6457 0.4753 0.8179 0.2803 0.6104 0.3337 0.6312 0.6551 0.4548 0.8366 0.7760
Uncommon [50-150] 0.1041 0.4624 0.4720 0.8038 0.1832 0.6291 0.2123 0.6539 0.5616 0.3538 0.8823 0.7957
Rare [10-15] 0.1709 0.6162 0.5273 0.8879 0.1823 0.8441 0.2590 0.6601 0.7193 0.4633 0.9244 0.8947
Super-Rare [1-5] 0.0580 0.2830 0.1656 0.4094 0.1066 0.1902 0.0285 0.2783 0.3147 0.1931 0.4270 0.4879
† The evaluation metric is the average guessing success rate across 30 password templates within each class. The guessing success rate for each template is calculated as Nintersection/|V PT|,

where Nintersection represents the intersection between the candidate passwords and the passwords in the validation set (i.e., V PT). “-d” means default mode: We directly generate 109

candidate passwords using the original/default generation methods of these models (These generated passwords generally include a significant number that does not match the provided
template), and then calculate the guessing success rate; “-m” means mask mode: We use Algorithm 1 to generate 106 candidate passwords that naturally match each provided template.

or too low may bias the evaluation of different models in
mask guessing scenarios. More specifically, a high proba-
bility (e.g., p=0.8, as in ab******) produces too many
masked positions and makes the task closely resemble whole-
password guessing, while a low probability (e.g., p=0.2, as
in aaaaaaa**) results in an extremely small search space
that can be nearly exhausted by simple enumeration (generally
within 106 guesses, e.g., the total space of a template with
three masked characters is only 943). Therefore, we adopt
p=0.5, which is consistent with prior work (e.g., CPG [50],
PassBERT [68], and RankGuess-MASK [69]) and provides
a balanced and realistic evaluation setting. In addition, we
introduce three masking strategies and report their comparative
results in Appendix C of the full version. Overall, masking
strategies have only a marginal effect on guessing success
rates, and p=0.5 is a simple yet effective setting for our study.

Note that Hashcat [23], CPG [50], PassBERT [68] and
RankGuess-MASK [69] can be directly applied to mask
password guessing scenarios. We employ each approach to
pre-generate 106 passwords for each template. For existing
sequence models (i.e., Markov [40], OMEN [18], and Backoff
[40] and PCFG [64]), we first enable them to pre-generate 109

passwords in descending order of probability. Then we filter
out passwords that conform templates PTs from these guesses,
and match V PT to obtain the guessing success rates. We call
this approach the default mode of a sequence model (i.e., “-d”
in Table VII). While these models are not inherently designed
for mask guessing, they can be better applied to this attack
scenario with proper adjustments. We call this approach the
mask mode of a sequence model (i.e., “-m” in Table VII).

Algorithm 1 illustrates how to adapt the generation mech-
anism of sequence models from traditional whole-password
guessing (default mode) to template-based guessing (mask
mode). The core idea is to perform depth-first search (DFS)
under template and probability constraints. For example, given
a password template 123*5*, each trained sequence model M
(including our PassSeq and Kneser-Ney) provides a character
distribution for each wildcard position *. The constrained
DFS procedure for generating guesses that naturally match
a given template (e.g., 123*5*) generally consists of four
steps. First, we set a minimum probability threshold T and
initialize DFS from left to right. Second, if the character
at the current position is known (e.g., 5 in 123*5*), we
directly append it to the current prefix s(=1234). Third,
if the position corresponds to a wildcard *, we enumerate
candidate characters c whose conditional probability satisfies

Algorithm 1: PW generation for mask guessing.
Input: Template PT, Model, Threshold T , CharSet.
Output: Generate passwords pw that match the given template.

1 DFS(pw, p, i) : /* p is the probability of password prefix; i
is the i-th position of pw; i < len(pw); i initialize to 0 */

2 if i = (PT.length − 1) then
3 return pw
4 if PT[i] = ∗ then
5 for c ∈ CharSet do
6 pw+ = c
7 if Model.calculate(pw) < T then
8 continue
9 else

10 p = Model.calculate(pw)
11 DFS(pw, p, i + 1) /*Search from the next position.*/

12 else
13 pw+ = PT[i] /* Add the unmasked character directly. */
14 if Model.calculate(pw) < T then
15 return
16 else
17 p = Model.calculate(pw)
18 DFS(pw, p, i + 1)

PrM(s||c)>T . Fourth, we recursively repeat the above process
until the end of the password template is reached.
Results. Table VII reports the comparison results across
four template classes. We observe that, when adapted to the
mask guessing scenario, traditional statistical models (e.g.,
Markov [40] and Backoff [40]) achieve substantial improve-
ments in guessing capability (see the difference between the
“-d” and “-m” columns). Surprisingly, Backoff-m outperforms
state-of-the-art neural models that specifically tailored for
mask guessing (including CPG [50], PassBERT [68], and
RankGuess-MASK [69]), across all template categories. This
demonstrates that employing statistical smoothing to estimate
character-level probabilities is a promising and effective strat-
egy for tackling the mask password guessing problem.

In particular, our Kneser-Ney model (KN-m) achieves the
highest guessing success rates among all baseline models
(excluding PassSeq) across the four template classes. It is
especially effective in the rare category, where data sparsity
at higher-order n-gram levels poses significant modeling chal-
lenges and smoothing becomes crucial. While slightly behind
KN-m and Backoff-m on the first three higher-frequency
template categories, our PassSeq demonstrates its greatest
strength in the most challenging super-rare class. Specifically,
PassSeq achieves a success rate of 0.4879, outperforming the
strongest neural baseline RankGuess-MASK [69] (0.3147) by
a relative margin of 55.1%, and our enhanced Backoff-m

10

0.0 0.2 0.4 0.6 0.8 1.0
Guess Number (1e5)

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

 S
uc

ce
ss

fu
lly

 C
ra

ck
ed

Mask KneserNey-Len6
Mask KneserNey-Len 7

Whole KneserNey-Len6
Whole KneserNey-Len 7

(a) 80% Rockyou→PostMillennial

0.0 0.2 0.4 0.6 0.8 1.0
Guess Number (1e5)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 S

uc
ce

ss
fu

lly
 C

ra
ck

ed

Mask KneserNey-Len6
Mask KneserNey-Len 7

Whole KneserNey-Len6
Whole KneserNey-Len 7

(b) 80% Rockyou→000Webhost

0.0 0.2 0.4 0.6 0.8 1.0
Guess Number (1e5)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 S

uc
ce

ss
fu

lly
 C

ra
ck

ed

Mask KneserNey-Len6
Mask KneserNey-Len 7
Whole KneserNey-Len6
Whole KneserNey-Len 7

(c) 80% Rockyou→Wishbone

0.0 0.2 0.4 0.6 0.8 1.0
Guess Number (1e5)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 S

uc
ce

ss
fu

lly
 C

ra
ck

ed

Mask KneserNey-Len6
Mask KneserNey-Len 7

Whole KneserNey-Len6
Whole KneserNey-Len 7

(d) 80% Rockyou→COMB

Fig. 4. Mask password guessing under probabilistic character leakage (i.e., the type-2 attacker Astat). We adopt a thermal-residue-based leakage model in
which per-position leakage follows a front-to-back increasing key probability profile, inspired by Alotaibi et al. [4] (see Fig. 11 and Table I of [4]). The
positional leakage probabilities are set to [0.17, 0.20, 0.25, 0.33, 0.50, 1.00] for length-6 passwords and are extended to other lengths (i.e., Len≥7 in the
figure) via linear interpolation. For each dataset, we randomly sample 1,000 passwords and construct corresponding probabilistic templates. Each point (X,Y)
in the figure represents that, at X guesses, a proportion Y of password templates have their original passwords successfully recovered.

model (0.4094) by 19.2%. These results highlight PassSeq’s
robustness in addressing extremely sparse password templates,
where most prior models fail to generalize effectively.

To qualitatively compare bidirectional encoding (PassSeq)
with n-gram smoothing (Kneser-Ney), we examine the tem-
plates from Table VII for which PassSeq achieves fewer av-
erage guesses than Kneser-Ney. Results show a general trend:
PassSeq performs better than Kneser-Ney when masked posi-
tions are irregularly distributed, widely separated, or disrupt
the continuity of local character sequences (e.g., *am**bon*;
see more examples in Table XX of the full version). Such tem-
plates are generally longer and contain multiple fragmented
masked blocks, which introduce long-range dependencies
that n-gram smoothing cannot effectively capture. PassSeq,
benefiting from bidirectional encoding, aggregates contextual
information across distant unmasked segments and remains
effective even when local substrings are heavily interrupted.

Further, we have set up some general scenarios to show the
impact of exposing/masking different numbers of characters
on password security. Results (see Table X in the full version)
show that disclosing just one additional character can double
the attacker’s guessing success rate (e.g., a 121.9% increase
within 105 guesses on the COMB dataset using PassSeq).

Since PassSeq, Kneser-Ney, and our improved Backoff
baseline (Backoff-m) consistently rank among the top three
in guessing success rates and outperform state-of-the-art
mask-guessing models such as RankGuess-MASK [69], Pass-
BERT [68], and CPG [50], we mainly employ these three mod-
els in the following experiments to quantitatively evaluate the
threat posed by different classes of mask-guessing attackers.

C. Distributional mask guessing scenarios

Considering that some side-channel attacks (e.g., thermal
residue [3]) may not reveal any particular password character
with 100% certainty, we set up two mask attack scenarios in
which the attacker acquires statistical or compositional side-
channel information about the target password.
Thermal attackers. To model probabilistic character leak-
age in mask guessing attacks, we construct per-position
character disclosure probabilities inspired by empirical ob-
servations from prior thermal-residue attack studies. More
specifically, we adopt a six-position recognizability profile,
[0.17, 0.20, 0.25, 0.33, 0.50, 1.00], inspired by the monoton-

ically increasing position-wise decoding probabilities illus-
trated in Fig. 11 and Table I of ThermoSecure [4], which
reflect progressively stronger confidence in character ordering
as the decoding proceeds. We use these values as heuristic
position-wise disclosure priors for character leakage. We then
linearly interpolate these values to any password length L
to obtain a position-dependent probability sequence qi. Each
qi is clipped to [0, 1] and perturbed with Gaussian noise
N (0, 0.052) to account for real-world variability (e.g., sur-
face material). Experimental results show that the guessing
success rates of disclosing characters (with thermal-residue-
based leakage probabilities) are 2.47-33.67 times higher than
those of not disclosing any password character (i.e., the Whole
Kneser-Ney lines in Fig. 4). Fig. 14 (in the full version)
additionally considers other leakage probabilities that follow
the increasing-probability trend observed in thermal-residue
attacks [3], [4], and the conclusions still hold.
Smudge attackers. In practice, smudges in keypads (see Fig.
1) can reveal the target victim’s character composition infor-
mation (without order). We evaluate the impact of this threat
on real-world PINs using the Amitay-4-digit dataset, which
consists of 204,432 human-chosen 4-digit PINs collected by
Daniel Amitay with the iOS application ”Big Brother Camera
Security” in 2011. Specifically, we assume that Astat knows
the digits composing the target 4-digit PIN through keystroke
traces but does not know their exact positions (which is also
aligned with the experimental setup in [12]). To model this,
we modify the PassSeq model to limit the search space to
the known digits of the target user when generating guesses.
We then calculate the guessing success rate in this scenario
and compare it to the scenario where the attacker has no prior
knowledge. Fig. 6 shows that, for a single guess, the success
rate of Astat is 255% higher than that of an attacker without
any prior knowledge. When up to 10 guesses are allowed, the
success rate increases by 152%, reaching 35%.

D. Contextual prior mask guessing scenarios

In the above, we have only considered the threat posed
by mask attackers who possess partial information about the
target victim’s password, without leveraging the target victim’s
PII or previously leaked passwords. Yet, in reality, a large
fraction of users (e.g., 37%-51% in [61]) build passwords with
their own PII, and tend to reuse their existing passwords (e.g.,

11

1 10 20 30 40 50 60 70 80 90 100
Guess number

3%
6%
9%

12%
15%
18%
21%
24%
27%

Fr
ac

tio
n

of
 su

cc
es

sf
ul

ly
 c

ra
ck

ed

PassSeq (Length & one random char)
PassSeq (The 1st char leak)
PassSeq (Length leak)
PassSeq (One random char leak)
PassSeq

PassSeq (Length & one random char)
PassSeq (The 1st char leak)
PassSeq (Length leak)
PassSeq (One random char leak)
PassSeq

(a) 50% 12306-PII→50% 12306-PII

1 10 20 30 40 50 60 70 80 90 100
Guess number

1%
2%
3%
4%
5%
6%
7%
8%
9%

10%

Fr
ac

tio
n

of
 su

cc
es

sf
ul

ly
 c

ra
ck

ed

PassSeq (Length & one random char)
PassSeq (The 1st char leak)
PassSeq (Length leak)
PassSeq (One random char leak)
PassSeq

PassSeq (Length & one random char)
PassSeq (The 1st char leak)
PassSeq (Length leak)
PassSeq (One random char leak)
PassSeq

(b) 50% 000Web.-PII→50% 000Web.-PII

1 10 20 30 40 50 60 70 80 90 100
Guess number

10%

15%

20%

25%

30%

35%

Fr
ac

tio
n

of
 su

cc
es

sf
ul

ly
 c

ra
ck

ed

PassSeq (Length & one random char)
PassSeq (The 1st char leak)
PassSeq (Length leak)
PassSeq (One random char leak)
PassSeq

PassSeq (Length & one random char)
PassSeq (The 1st char leak)
PassSeq (Length leak)
PassSeq (One random char leak)
PassSeq

(c) 50% Dodonew-PII→50% Dodonew-PII

1 10 20 30 40 50 60 70 80 90 100
Guess number

1%
2%
3%
4%
5%
6%
7%
8%

Fr
ac

tio
n

of
 su

cc
es

sf
ul

ly
 c

ra
ck

ed

PassSeq (Length & one random char)
PassSeq (The 1st char leak)
PassSeq (Length leak)
PassSeq (One random char leak)
PassSeq

PassSeq (Length & one random char)
PassSeq (The 1st char leak)
PassSeq (Length leak)
PassSeq (One random char leak)
PassSeq

(d) 50% Rootkit→50% Rootkit

1 10 20 30 40 50 60 70 80 90 100
Guess number

45%

50%

55%

60%

65%

70%

75%

Fr
ac

tio
n

of
 su

cc
es

sf
ul

ly
 c

ra
ck

ed

PassSeq (Length & one random char)
PassSeq (The 1st char leak)
PassSeq (Length leak)
PassSeq (One random char leak)
PassSeq

PassSeq (Length & one random char)
PassSeq (The 1st char leak)
PassSeq (Length leak)
PassSeq (One random char leak)
PassSeq

(e) CSDN→12306 (Reuse)

1 10 20 30 40 50 60 70 80 90 100
Guess number

18%

20%

23%

25%

28%

30%

33%

35%

Fr
ac

tio
n

of
 su

cc
es

sf
ul

ly
 c

ra
ck

ed
PassSeq (Length & one random char)
PassSeq (The 1st char leak)
PassSeq (Length leak)
PassSeq (One random char leak)
PassSeq

PassSeq (Length & one random char)
PassSeq (The 1st char leak)
PassSeq (Length leak)
PassSeq (One random char leak)
PassSeq

(f) 000Web.→Yahoo (Reuse)

1 10 20 30 40 50 60 70 80 90 100
Guess number

30%

35%

40%

45%

50%

55%

Fr
ac

tio
n

of
 su

cc
es

sf
ul

ly
 c

ra
ck

ed

PassSeq (Length & one random char)
PassSeq (The 1st char leak)
PassSeq (Length leak)
PassSeq (One random char leak)
PassSeq

PassSeq (Length & one random char)
PassSeq (The 1st char leak)
PassSeq (Length leak)
PassSeq (One random char leak)
PassSeq

(g) CSDN→126 (Reuse)

1 10 20 30 40 50 60 70 80 90 100
Guess number

20%
23%
25%
28%
30%
33%
35%
38%
40%

Fr
ac

tio
n

of
 su

cc
es

sf
ul

ly
 c

ra
ck

ed

PassSeq (Length & one random char)
PassSeq (The 1st char leak)
PassSeq (Length leak)
PassSeq (One random char leak)
PassSeq

PassSeq (Length & one random char)
PassSeq (The 1st char leak)
PassSeq (Length leak)
PassSeq (One random char leak)
PassSeq

(h) 000Web.→LinkedIn (Reuse)

Fig. 5. Mask guessing scenarios with PII/existing leaked password (i.e., the Acontext attacker). The training and testing setup is recommended by [61]. On
both Chinese and English datasets, disclosing password length and one password character significantly improves the attacker’s guessing success rate. In Figs.
5(a)-5(d), with a single guess, the leak of password length and one character doubles the attacker’s success rates (see Table VIII for the confidence statistics of
the success-rate improvement), increasing by at least 165%±24% (95% CI: 124%-223%). See Table XIV in the full version for specific success-rate figures.

TABLE VIII
CONFIDENCE STATISTICS OF SUCCESS-RATE IMPROVEMENTS (ONE CHARACTER+LENGTH LEAKAGE VS. BASELINE) UNDER DIFFERENT SCENARIOS AND GUESS BUDGETS† .

Scenarios Top-1 (Mean±Std, 95% CI) Top-10 (Mean±Std, 95% CI) Top-100 (Mean±Std, 95% CI)

(a) 50% 12306 → 50% 12306 3.4150 ± 0.6312 (2.4405, 4.9938) 1.2331 ± 0.2207 (0.9289, 1.7605) 0.4893 ± 0.0665 (0.3752, 0.6356)
(b) 50% 000Webhost → 50% 000Webhost 2.7961 ± 1.1789 (1.3225, 5.9781) 1.5555 ± 0.3672 (0.9554, 2.3875) 0.8666 ± 0.1425 (0.5727, 1.1932)
(c) 50% Dodonew → 50% Dodonew 1.6532 ± 0.2439 (1.2416, 2.2259) 0.8900 ± 0.1036 (0.7060, 1.0787) 0.4029 ± 0.0500 (0.2974, 0.4872)
(d) 50% Rootkit → 50% Rootkit 3.4139 ± 1.0793 (1.3747, 5.9562) 0.9676 ± 0.2131 (0.6201, 1.3814) 0.5276 ± 0.1115 (0.2428, 0.7561)

†All values in the table are relative improvement ratios. Each result is obtained by performing 30 rounds of sampling with replacement over the entire test
set, with 1,000 target users per round. Cells highlighted in gray correspond to scenarios where the success rates doubled compared to the baseline.

1 10 20 30 40 50 60 70 80 90 100
Guess number

10%
20%
30%
40%
50%
60%
70%
80%

Fr
ac

tio
n

of
 su

cc
es

sf
ul

ly
 c

ra
ck

ed PassSeq (Chars leaked)
PassSeq (The 1st char)

PassSeq (One random char)
PassSeq
PassSeq (One random char)
PassSeq

Fig. 6. Mask guessing on real-world PINs. The term “Chars leaked” means
that the Astat attacker knows the digit composition of the target victim’s PIN
but does not know the exact positions of the digits. PassSeq is trained on
50% Amitay-4-digit dataset, and is tested on the rest 50%. “The 1st char/One
random char” means the 1st digit/a random digit of the victim is leaked.

20%-59% of users [15], [61] directly reuse or simply modify
their existing passwords). Thus, it is necessary and practical
to evaluate the threat posed by a more powerful mask attacker
knowing the target victim’s PII or existing passwords. Tables
V and VI summarize the basic information of our datasets.
PII-based attackers. For the PII-based mask attack scenario,
we train our PassSeq on datasets containing PII (see Table
V). More specifically, the training input for our PassSeq is the
character sequence of the personal information sequence (e.g.,
name|username|email|birthday), and the output is the
corresponding password sequence. When generating guesses,
we input the target victim’s PII sequence, using beam search
to generate the corresponding guesses. Figs. 5(a) and 5(b)
show that by merely knowing the victim’s password length,
the guessing success rates of the Acontext attacker can increase

by 63.48%-72.64% within 10 guesses, and this value doubles
(+102.17%-129.32%) when one additional password character
is leaked (see Table VIII for the confidence statistics).
Reuse-based attackers. For the reuse-based mask attack sce-
nario, we train the PassSeq model by taking a user’s existing
password as input and their new password as output, following
a training paradigm similar to Pass2Pass [47] and PointerGuess
[66]. We model a realistic attacker Acontext who knows both
the existing password and the target password’s length and/or
one character. Here, our PassSeq serves as a representative
model to evaluate the additional risks introduced by mask
guessing in password reuse settings. Importantly, our goal
is not to compare PassSeq with state-of-the-art reuse-based
models (indeed, it achieves guessing success rates comparable
to PointerGuess [66]). To validate our findings, we also apply
the same evaluation to PointerGuess (see Fig. 13 in the full
version), and observe consistent trends. Results (see Figs. 5(e)-
5(h)) show that with only one guess, the guessing success
rates of Acontext increase by 62.30%-73.21% when both the
password length and one character are disclosed, with the
single-guess success rate reaching up to 69% (see Fig. 5(e)).
All this reveals that mask guessing with users’ PII or existing
passwords is a damaging threat that needs more attention.

E. Uncertain-length mask guessing scenarios

To quantify the impact of password length information on
mask guessing scenarios, we assume that the attacker only
knows partial character information of the target password

12

0.0 0.2 0.4 0.6 0.8 1.0
Guess Number (1e5)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Fr

ac
tio

n
of

 S
uc

ce
ss

fu
lly

 C
ra

ck
ed KneserNey(No length & 50% chars leak)

KneserNey(No length & the 1st char leak)
KneserNey(Length & the 1st char leak)
KneserNey(Length leak)
Whole KneserNey

KneserNey(No length & 50% chars leak)
KneserNey(No length & the 1st char leak)
KneserNey(Length & the 1st char leak)
KneserNey(Length leak)
Whole KneserNey

(a) 80% Rockyou→PostMillennial

0.0 0.2 0.4 0.6 0.8 1.0
Guess Number (1e5)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Fr
ac

tio
n

of
 S

uc
ce

ss
fu

lly
 C

ra
ck

ed KneserNey(No length & 50% chars leak)
KneserNey(No length & the 1st char leak)
KneserNey(Length & the 1st char leak)
KneserNey(Length leak)
Whole KneserNey

KneserNey(No length & 50% chars leak)
KneserNey(No length & the 1st char leak)
KneserNey(Length & the 1st char leak)
KneserNey(Length leak)
Whole KneserNey

(b) 80% Rockyou→000Webhost

0.0 0.2 0.4 0.6 0.8 1.0
Guess Number (1e5)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 S

uc
ce

ss
fu

lly
 C

ra
ck

ed KneserNey(No length & 50% chars leak)
KneserNey(No length & the 1st char leak)

KneserNey(Length & the 1st char leak)
KneserNey(Length leak)
Whole KneserNey

(c) 80% Rockyou→Wishbone

0.0 0.2 0.4 0.6 0.8 1.0
Guess Number (1e5)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 S

uc
ce

ss
fu

lly
 C

ra
ck

ed KneserNey(No length & 50% chars leak)
KneserNey(No length & the 1st char leak)
KneserNey(Length & the 1st char leak)
KneserNey(Length leak)
Whole KneserNey

KneserNey(No length & 50% chars leak)
KneserNey(No length & the 1st char leak)
KneserNey(Length & the 1st char leak)
KneserNey(Length leak)
Whole KneserNey

(d) 000Webhost→COMB
Fig. 7. Length-uncertain mask guessing with/without one-character leakage (the Alength and Astat attackers). We consider five attacker configurations with
different prior knowledge: (1) no prior information (whole-password guessing), (2) unknown length with probabilistic character leakage (p=0.5), (3) unknown
length with one leaked character, (4) known length without character leakage, and (5) known length with one leaked character. These scenarios collectively
represent the upper (100% leakage) and lower bounds (0% leakage) of leaking length and/or one character. Our results show that at 105 guesses, leaking just
one character (with unknown password length) at least doubles the attacker’s success rate, achieving improvements from 1.57-14.50 times.

TABLE IX
PERFORMANCE COMPARISON ACROSS DIFFERENT MODELS† .

Model Training time Model size Password generation speed
Trawling (pw/s) Mask (pw/s)

Kneser-Ney 00:05:45 3.0 GB 284,000 2,042,222
PassSeq 84:38:58 23.0 MB 610 151
RankGuess-MASK [69] 16:08:11 2.52 MB / 30
PassBERT [68] 22:00:08 35.9 MB / 320
CPG [50] 26:54:04 6.1 MB / 677
Backoff‡ 00:01:55 270.0 MB 297,600 2,195,121
† CPU: Xeon(R) Gold 6226R 2.9GHz; GPU: RTX 3090 (80% Rockyou).
‡We optimize the original Backoff implementation [40], achieving a several-fold

speedup in password generation; see Appendix G of the full version.

but without knowing the exact password length. In this case,
an intuitive strategy is to prioritize the selection of the top
lengths counted in the training set as the priority choices for
constructing the templates. More specifically, we choose the
top-3 lengths from the training set to set three different lengths
for each test template. Here, the top-3 lengths we select should
satisfy the condition of being greater than or equal to the
longest position of the leaked character in the target password
that we know. For example, if we know that the character
at the eighth position of the target password is d, then the
selected top lengths should be ≥8.

Consider a toy example where the target password is
p@ssword. A password template with masks is generated by
masking each position with a 50% probability, and without loss
of generality, assume the template *@*sw**d is generated.
Then, from the leaked dataset (i.e., the training set), Alength
(who knows characters at positions 2, 4, 5 and 8, but not the
total length) selects the top-3 common lengths (≥8; e.g., 8,
9, and 10) and constructs three templates (i.e., *@s*w**d,
*@s*w**d* and *@s*w**d**). Alength then generates an
equal number of guesses for each template (1/3 of the total)
to execute the attack. Similar to the PII/reuse-based guessing
scenarios, we additionally consider three combined leakage
cases in trawling scenarios: (i) length-only leakage, (ii) single-
character leakage without length, and (iii) simultaneous leak-
age of both length and one character. As shown in Figs. 7(a)-
7(d), at 105 guesses, leaking just one character (without
password length) at least doubles the attacker’s success rate,
achieving improvements from 1.57-14.50 times.

F. Performance evaluation

Table IX shows that adapting existing statistical models
such as Backoff [40] and Kneser-Ney (KN) to mask guessing
scenarios significantly improves their generation speeds. In

PII or sister
passwords？

PassSeq
(GPU required)

Template
Frequency ≤ 5 ？

PassSeq
(GPU required) Kneser-Ney/Backoff

Password template

L o v e ✱ 4 ✱ ✱ ✱ ✱

Fig. 8. Decision chart for mask password model selection. It is recommended
to use our PassSeq model when the target victim’s PII or sister passwords are
available. For password templates with a frequency ≤5, PassSeq is preferred;
otherwise, Kneser-Ney or Backoff is recommended.

contrast, our PassSeq has slower generation speed in mask
guessing scenarios (151 pw/s vs. 610 pw/s), primarily because
mask generation relies on sequential token-by-token decoding
with limited parallelism, compared to the more batch-friendly
trawling mode. However, the slower generation speed of
PassSeq is acceptable in practice. Mask guessing is typically
employed in targeted online attacks, where the performance
bottleneck lies in network latency and server-side throttling
mechanisms [19], rather than in local computational cost. As
such, PassSeq remains practical for real-world deployment.

It is worth noting that, besides achieving the highest overall
guessing success rates in typical mask scenarios (see Ta-
ble VII), our KN offers fast training and generation speeds
without requiring GPU support (see Table IX), making it
suitable for on-site training without the need to save/maintain
model files. This property is quite desirable. Meanwhile, our
Seq2Seq-based PassSeq framework supports a wider range
of mask guessing scenarios (including PII- and reuse-based
attacks) with strong generalization ability. Importantly, it per-
forms best under super-rare template types (see Table VII),
where statistical models generally struggle due to data sparsity.

Recommended usage guidelines. Table IX shows that
PassSeq outperforms KN and Backoff on templates with fre-
quencies in the range of [1, 5], whereas its success rate is lower
than KN when the template frequency increases to [10, 15].
To further examine this trend, we evaluate PassSeq, KN, and
Backoff on templates with frequencies between [5, 10], where
their guessing success rates are 93.93%, 98.02%, and 92.86%,
respectively. Considering all these results alongside Fig. 5, we
recommend using PassSeq for templates with frequencies ≤5
and for targeted scenarios involving PII or previously leaked

13

100 102 104 106 108 1010

Guess number
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fr
ac

tio
n

of
 su

cc
es

sf
ul

ly
 c

ra
ck

ed 3 masked characters - MLE
3 masked characters - Real
4 masked characters - MLE
4 masked characters - Real
5 masked characters - MLE
5 masked characters - Real

(a) Evaluation of MLE (Kneser-Ney)

100 102 104 106 108 1010

Guess number
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fr
ac

tio
n

of
 su

cc
es

sf
ul

ly
 c

ra
ck

ed 3 masked characters - MLE
3 masked characters - Real
4 masked characters - MLE
4 masked characters - Real
5 masked characters - MLE
5 masked characters - Real

(b) Evaluation of MLE (PassSeq)

100 102 104 106 108 1010

Guess number
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fr
ac

tio
n

of
 su

cc
es

sf
ul

ly
 c

ra
ck

ed 3 masked characters - MLE
3 masked characters - Real
4 masked characters - MLE
4 masked characters - Real
5 masked characters - MLE
5 masked characters - Real

(c) Evaluation of MLE (Backoff)
Fig. 9. Comparison between the actual password generation results (e.g., 3 masked characters-Real) and the MLE estimates (e.g., 3 masked characters-MLE)
for Kneser-Ney, PassSeq, and Backoff [40] under three template types with different numbers of masks (n=3, 4, 5). Results show that the MLE estimates
closely match the empirical generation outcomes, with the maximum deviation in guessing success rates <1%.

Fig. 10. A further validation: mask guessing with keystroke acoustic infor-
mation leaked from different types keyboards. (The experimental setup we
used for keystroke collection is the same as [21], [70], [71]).

passwords, while KN/Backoff are better suited for higher-
frequency templates or deployments that prioritize fast, GPU-
free training and inference (see Fig. 8).
Overhead of MLE. Note that neural password models (e.g.,
our PassSeq) require a significant amount of time to generate a
large number of guesses (e.g., >107) that naturally conform to
the given password templates. For example, it takes PassSeq
18.5 hours to explicitly generate 107 guesses conforming a
single given template with four or five masks. Fortunately, our
MLE can reduce the time cost of guess number estimation (for
any password under the given template) to minutes. Given a
template containing three masks (e.g., *w*rt*12), there are a
total of 943 unique passwords under this template. We employ
MLE to estimate the guess number required to crack a target
password (e.g., qwErtY12) under this template. The MLE
parameters are set as follows: the number of samples N=105,
and the number of repetitions t=4. The average time consumed
by MLE to estimate the guess number for any password under
this given template (i.e., *w*rt*12) is 107s (using PassSeq).
Notably, the time consumption is mainly in the sampling and
probability calculation process for a given template. Once this
process is completed, the time for estimating the guess number
of any 944 passwords under this password template is <0.1s.
Evaluation of MLE. To empirically evaluate the effectiveness
of our proposed MLE estimator, we categorize password
templates by the number of masks they contain, namely three,
four, and five masks, which correspond to increasingly large
guessing spaces (e.g., a four-mask template corresponds to a

space of size 944). These three categories represent the most
frequently occurring template types in typical mask guessing
scenarios and are therefore selected as representative cases. For
each category (a total of 30 templates are tested), we conduct
random sampling with sample sizes of 104, 105, and 106, and
repeat the sampling process four times, using 10,000 randomly
selected passwords as the test set under the given template.
In these settings, the MLE results exhibit stable convergence.
We further applied PassSeq, Kneser-Ney, and Backoff [40]
to perform both actual password generation and MLE-based
estimation across the three template types. Considering that
Kneser-Ney and Backoff generate guesses more efficiently
than PassSeq, their actual generation sizes are larger than
PassSeq (109 vs. 107). Fig. 9 shows that the empirical guessing
success rates closely match the MLE estimates, with a maxi-
mum deviation of less than 1%, demonstrating the estimator’s
accuracy and robustness across different models and templates.

G. A further validation of PassSeq

To evaluate the practical effectiveness of PassSeq under
realistic side-channel attack scenarios, we integrate it into
keystroke acoustic inference attacks (see Fig. 10). Following
prior work [21], [70], [71], we collect keystroke audio from
11 keyboard units across commonly used brands and models
at realistic eavesdropping distances (17-30 cm), involving 16
diverse participants. Among them, nine distinct keyboards are
used for same-device/same-user evaluations, each providing
100 keystroke audio samples recorded by individual partici-
pants entering 6-digit PINs sampled from the top-100 most fre-
quent PINs in the Taobao dataset. To improve robustness and
capture subtle acoustic variations, we additionally record 800
samples (top-800 PINs) on a 2020 MacBook Air entered by
six different participants. Moreover, two identical keyboards
of the same brand and model are typed by two users to enable
realistic cross-user evaluations. Each same-device dataset is
split into training and test sets with an 80:20 ratio, and each
is used to train an independent acoustic inference model.

For acoustic inference, we start from the open-source CNN-
based implementation of [21] and further enhance it following
[2] by integrating CNNs, random forest classifiers, and MFCC-
based feature extraction into a unified ensemble framework.
This improves the single-key inference accuracy from about

14

TABLE X
GUESSING SUCCESS RATES OF THE ACOUSTIC, PASSSEQ, AND INTEGRATED MODELS ACROSS DIFFERENT KEYBOARDS† .

Keyboard type / Cross-device Setting Acoustic model [2], [21] PassSeq model Acoustic+PassSeq model v1‡ Acoustic+PassSeq model v2‡

Top-1 Top-10 Top-100 Top-1 Top-10 Top-100 Top-1 Top-10 Top-100 Top-1 Top-10 Top-100

HP EliteBook 30.00% 60.00% 80.00% 0.00% 0.00% 0.00% 45.00% 75.00% 85.00% 15.00% 55.00% 80.00%
Logitech K220 35.00% 50.00% 55.00% 0.00% 5.00% 20.00% 85.00% 90.00% 90.00% 35.00% 55.00% 85.00%
Apple Keyboard 40.00% 75.00% 95.00% 0.00% 0.00% 0.00% 40.00% 85.00% 90.00% 40.00% 75.00% 85.00%
Varmilo 75.00% 90.00% 95.00% 0.00% 0.00% 0.00% 55.00% 95.00% 95.00% 75.00% 95.00% 95.00%
Mech. KB 25.00% 30.00% 70.00% 0.00% 0.00% 0.00% 25.00% 55.00% 80.00% 30.00% 55.00% 85.00%
Dell KB216T 15.00% 25.00% 25.00% 10.00% 15.00% 25.00% 55.00% 65.00% 70.00% 15.00% 40.00% 60.00%
Dell KB212-B 15.00% 20.00% 25.00% 0.00% 10.00% 20.00% 25.00% 35.00% 45.00% 10.00% 30.00% 65.00%
Lenovo 15.00% 15.00% 60.00% 0.00% 0.00% 20.00% 30.00% 40.00% 45.00% 30.00% 55.00% 75.00%
MacBook Air 25 15.00% 25.00% 40.00% 0.00% 5.00% 25.00% 40.00% 55.00% 55.00% 20.00% 50.00% 65.00%
MacBook Air 20 18.75% 39.38% 53.12% 0.62% 2.50% 6.88% 28.75% 47.50% 60.00% 18.12% 28.75% 36.88%
Dell KB216T → Dell KB212-B 0.00% 0.00% 0.00% 1.00% 3.00% 24.00% 0.00% 0.00% 0.00% 1.00% 4.00% 24.00%
Dell KB212-B → Dell KB216T 0.00% 0.00% 0.00% 2.00% 9.00% 21.00% 0.00% 0.00% 0.00% 1.00% 2.00% 28.00%
MacBook Air 25 → MacBook Air 20 0.62% 0.62% 0.62% 0.25% 0.88% 3.14% 0.62% 0.62% 0.62% 0.25% 1.13% 3.39%
MacBook Air 20 → MacBook Air 25 0.00% 0.00% 0.00% 1.00% 4.00% 18.00% 0.00% 0.00% 0.00% 1.00% 4.04% 21.21%
Dell KB216TA→ Dell KB216TB 7.00% 10.00% 21.00% 0.00% 3.00% 17.00% 14.00% 21.00% 25.00% 7.00% 15.00% 17.00%
Dell KB216TB→ Dell KB216TA 7.00% 8.00% 15.00% 1.00% 3.00% 14.00% 9.00% 14.00% 17.00% 4.00% 6.00% 14.00%
†All percentages represent Top-k success rates under each model. Each within-device test sets N = 20 (except MacBook Air 20 with N = 160). Cells with

dark gray and light gray backgrounds denote the highest and second-highest values (per keyboard and Top-k) across the four models, respectively.
‡ v1 means using the acoustic model’s predicted character probabilities to construct candidate password templates (e.g., 1*2**3), corresponding to the

oracle distribution. v2 directly adds the acoustic character probabilities to those produced by PassSeq, forming the no-oracle distribution.

40% to 94% under same-device in-domain splits. This ensem-
ble model is adopted as our final acoustic backbone.

Besides same-device evaluations, we further conduct cross-
device experiments to examine generalization. Specifically,
we train and test on different keyboards from the same
brand (and vice versa). We investigate two strategies for
integrating PassSeq: (1) Template-driven integration (oracle
distribution), where keystroke acoustic posteriors are used to
construct candidate password templates (e.g., 1*2**3) that
guide PassSeq’s generation; and (2) Probability-fusion integra-
tion (no-oracle distribution), where posterior probabilities from
the acoustic and password models are directly combined using
normalized weights. Based on empirical tuning, we assign
higher weights (0.8-0.9) to the acoustic model under same-
device settings, while under cross-device settings, a lower
acoustic weight (0.1-0.2) achieves better results. Moreover, we
have explored a complementary approach in cross-device set-
tings, where acoustic posteriors are used to reorder PassSeq’s
beam-search outputs. Its effectiveness is comparable to that
of character-level probability fusion, with neither approach
consistently outperforming the other.

The overall template construction procedure is driven
by per-keystroke acoustic posteriors. For each segmented
keystroke, we extract three uncertainty-related statistics from
the posterior distribution: (1) the top-1 probability, (2) the top-
k candidates (k=3), and (3) the entropy to quantify prediction
uncertainty. Based on these statistics, each position is either
fixed to its most likely digit or masked, according to a set
of entropy- and confidence-thresholding rules. Specifically,
positions with high confidence (low entropy or high top-1
probability) are fixed, while uncertain positions are replaced
by a mask token. To further enrich template diversity, we
additionally generate single-position-masked variants from the
top acoustic sequence prediction, as well as global Top-N
masking templates that retain only the most reliable positions.
All generated templates are then evaluated by a posterior-

guided scoring function considering per-position confidence,
consistency with the base acoustic prediction, and the pro-
portion of fixed characters. The top-ranked templates (e.g.,
top-5 per acoustic candidate) are finally selected to guide the
subsequent PassSeq-based password generation.

For PassSeq (implemented using a lightweight Seq2Seq
architecture with two unidirectional LSTM layers), we use 6-
digit numeric PINs from the Dodonew dataset as the training
set. Guided by the constructed templates, the trained PassSeq
generates ranked password guesses under both the template-
driven and probability-fusion integration strategies.

Overall, integrating the acoustic model with the password
model significantly improves guessing success rates across
most keyboards (see Table X). More specifically, the ora-
cle distribution integration (v1) achieves substantial gains:
within 10 guesses, it generally outperforms the acoustic model
by 5.6%-166.7%, and the PassSeq model by 3-18 times.
The no-oracle distribution integration (v2) also outperforms
the acoustic-only model in 13/16 cases, though to a lesser
extent. Notably, in cross-device scenarios, the acoustic-only
and oracle models perform poorly due to strong inter-device
variability. While the v2 integration still provides measurable
improvements, most of its gains stem from the password model
itself. In contrast, in cross-user scenarios (two users typing
on two identical keyboards, i.e., Dell KB216TA and Dell
KB216TB), the oracle integration significantly outperforms the
acoustic baseline by 12.5%-110% within 10 guesses.

In this study, we primarily focus on 6-digit numeric PINs
as a representative setting for validating the practical effec-
tiveness of PassSeq. Extending our analysis to alphanumeric
and symbol-rich passwords is left for future work.

V. PRACTICAL DEFENSES AGAINST MASK GUESSING

Employ fully static masking and minimize UI feedback
granularity. At CCS’24, Hu et al. [30] found that dynamic
masking, widely adopted on mobile browsers, provides little

15

usability benefit compared with fully static masking. Together
with our findings that partial character exposure (particularly
the first character; see Fig. 5) significantly boosts attackers’
guessing success rates, we recommend that mobile platforms
also adopt fully static masking (already widely deployed
on desktop systems [30]) and avoid any deterministic per-
keystroke reveals or position-dependent hints. Such uniform
masking effectively mitigates visual side-channel leakage
without significantly sacrificing usability.
Blind password length across UI, transport, and applica-
tion layers. Prior work by Harsha et al. [22] demonstrates
that >84% of Alexa Top-100 websites are vulnerable to leak
exact password length through request sizes even under TLS.
Consistent with their findings, our evaluation indicates that
leaking only the password length can increase an attacker’s
guessing success rate by 1.57 times (see Fig. 7). We therefore
recommend end-to-end length blinding: using fixed-width in-
put fields and placeholder elements on the client, disabling
length-threshold hints, and padding both requests and error
responses so that their observable sizes remain uniform.
Apply multi-dimensional adaptive rate limiting. Current
throttling implementations remain inconsistent, effectively al-
lowing thousands of online guesses per month (e.g., Amazon,
which enforces the strictest lockout policy among the Alexa
Top-10 websites, allows 3,600 monthly guessing attempts; see
Table 7 in [59]). This tolerance suggests that our proposed
password models remain effective across both online and
offline scenarios, since our experimental configurations span
guess budgets from 100-106, fully covering the scale of typical
online limits. To counter such structured, mask-aware attacks,
we recommend behavior-driven adaptive throttling: dynami-
cally adjusting thresholds based on account history, device
fingerprint, and the presence of mask-like guessing attempts
(e.g., fixed-length sequences, position-constrained character
classes, or leakage-conditioned templates).
Mitigate acoustic leakage and password-level inference.
Our results show that the integration of per-keystroke acoustic
leakage and password models amplifies the attacker’s capa-
bility in two ways: keystroke sounds expose character-level
cues, while password models capture structural and semantic
characteristics. We thus provide two complementary mitigation
directions. On the signal side, device- or application-level
masking, such as mixing background sounds (which can be
generated on the input device and does not impede users from
entering passwords or performing tasks effectively [38]), has
been shown to substantially reduce key-specific recognition
cues. On the user side, adjusting typing behavior before
entering sensitive information, and creating long, non-semantic
passwords limits the gain attackers obtain from both acoustic
features and password model-driven inference.
Practical applications for protection. By employing the
Monte Carlo method [16], PassSeq can serve as a password
strength meter (PSM), providing a security evaluation of pass-
words from an attacker’s perspective. We evaluate PassSeq-
PSM using the unsafe error metric (i.e., the rate at which a
PSM incorrectly labels weak or easily guessable passwords as

strong, a widely adopted measure in prior work [43], [67]).
We compare PassSeq-PSM with FLA-PSM [43] and Markov-
PSM [13] on 100,000 randomly sampled passwords from the
000Webhost, Wishbone, Taobao, and COMB datasets. Results
(see Fig. 11 of the full version) shows that PassSeq-PSM has
significantly fewer unsafe errors than both baselines, demon-
strating improved reliability in password strength evaluation.

VI. CONCLUSION

We have presented the first systematic study of how attack-
ers can substantially amplify password guessing effectiveness
by exploiting partial password information (e.g., some char-
acters and/or password length) combined with side-channel
priors, PII, and sister passwords. Extensive experiments with
15 real-world datasets demonstrate the effectiveness and wide
applicability of our proposed PassSeq and Kneser-Ney. Our
results highlight the damaging threat of mask guessing, es-
pecially when combined with keystroke inference attacks or
PIIs. We believe that the new algorithms and insights into
mask guessing threats can help re-evaluate existing password
practices and inform future password security research.

ACKNOWLEDGEMENT

The authors are grateful to the shepherd and anonymous
reviewers for their invaluable comments. Ding Wang is the
corresponding author. This research was in part supported
by the National Natural Science Foundation of China under
Grants Nos. 62502238 and 62572259, and by the China Post-
doctoral Science Foundation under Grant No. 2025M771596,
and by Natural Science Foundation of Tianjin, China under
Grant No. 25JCJQJC00230. See the full version of this paper
at https://wangdingg.weebly.com/publications.html.

ETHICAL CONSIDERATIONS

Our work is inherently dual-use. While it advances the
understanding of password security under partial-information
leakage (e.g., side-channel priors) and helps defenders quan-
tify real-world risk, the same techniques could be misused
to facilitate more efficient password guessing if deployed
irresponsibly. We explicitly acknowledge this risk and adopt
concrete mitigation measures to ensure that the defensive and
societal benefits outweigh the potential for misuse.

Specifically, our study uses publicly available password
datasets that were leaked through past breaches and have
been widely used in prior password research (e.g., [40], [43],
[50], [61], [68], [69]). However, besides passwords, our study
incorporates associated PIIs (e.g., usernames or emails) in
the context of targeted guessing scenarios. We recognize that
affected individuals did not provide informed consent for
research use of their data and that incorporating PII raises
greater ethical concerns than password-only studies. While
these datasets are already publicly accessible, their continued
use still warrants careful ethical consideration.

To minimize potential harm to data subjects, we adopt
strict data-handling safeguards. We do not redistribute any raw
breached datasets, PII, or unprocessed side-channel traces, and

16

https://wangdingg.weebly.com/publications.html

our study does not introduce any additional exposure beyond
what already exists in the public domain. All datasets are
stored and processed on offline machines not connected to the
Internet. Individual accounts are treated as strictly confidential,
and all reported results are aggregated and anonymized, en-
suring that no personally identifiable information or individual
account details can be inferred. Sensitive attributes, including
PII, are deleted immediately after the completion of analysis.
All acoustic data are collected with explicit participant consent
under controlled conditions.

OPEN SCIENCE

We release the source code of Kneser-Ney, Backoff, and
PassSeq in mask mode, together with full training/generation
configurations (see https://github.com/CSSLabNKU). We also
provide the implementation of our MLE rank estimator. For the
side-channel integration experiments, we release a pretrained
acoustic model, a pretrained password model, and 20 test audio
samples collected from one keyboard, enabling reproduction
one of our integrated-attack results in Table X.

REFERENCES

[1] Global Visual Hacking Experimental Study: Analysis, Aug. 2016,
https://multimedia.3m.com/mws/media/1254232O/global-visual-hacki

ng-experiment-study-summary.pdf.
[2] Keystroke Acoustic Recognition System, April 2025, https://github.com

/s2cr3t/Keystroke Acoustic Recognition System.
[3] Y. Abdelrahman, M. Khamis, S. Schneegass, and F. Alt, “Stay cool!

understanding thermal attacks on mobile-based user authentication,” in
Proc. ACM CHI 2017, pp. 3751–3763.

[4] N. Alotaibi, J. Williamson, and M. Khamis, “Thermosecure: Investigat-
ing the effectiveness of AI-driven thermal attacks on commonly used
computer keyboards,” ACM Trans. on Priv. and Secur., vol. 26, no. 12,
pp. 1–24, 2023.

[5] A. J. Aviv, J. T. Davin, F. Wolf, and R. Kuber, “Towards baselines for
shoulder surfing on mobile authentication,” in Proc. ACSAC 2017, pp.
486–498.

[6] A. J. Aviv, K. L. Gibson, E. Mossop, M. Blaze, and J. M. Smith,
“Smudge attacks on smartphone touch screens,” in Proc. USENIX WOOT
2010, pp. 1–7.

[7] J. Bai, B. Liu, and L. Song, “I know your keyboard input: A robust
keystroke eavesdropper based-on acoustic signals,” in Proc. ACM MM
2021, pp. 1239–1247.

[8] K. S. Balagani, M. Cardaioli, S. Cecconello, M. Conti, and G. Tsudik,
“We can hear your PIN drop: An acoustic side-channel attack on ATM
PIN pads,” in Proc. ESORICS 2022, pp. 633–652.

[9] F. Binbeshr, M. L. M. Kiah, L. Y. Por, and A. A. Zaidan, “A system-
atic review of pin-entry methods resistant to shoulder-surfing attacks,”
Comput. Secur., vol. 101, no. 102116, 2021.

[10] J. Bonneau, C. Herley, P. van Oorschot, and F. Stajano, “Passwords
and the evolution of imperfect authentication,” Commun. ACM, vol. 58,
no. 7, pp. 78–87, 2015.

[11] J. Bonneau, C. Herley, P. C. Van Oorschot, and F. Stajano, “The quest
to replace passwords: A framework for comparative evaluation of web
authentication schemes,” in Proc. IEEE S&P 2012, pp. 553–567.

[12] M. Cardaioli, M. Conti, K. S. Balagani, and P. Gasti, “Your PIN sounds
good! augmentation of PIN guessing strategies via audio leakage,” in
Proc. ESORICS 2020, pp. 720–735.

[13] C. Castelluccia, M. Dürmuth, and D. Perito, “Adaptive password-
strength meters from markov models,” in Proc. NDSS 2012, pp. 1–14.

[14] S. Cha, S. Kwag, H. Kim, and J. H. Huh, “Boosting the guessing attack
performance on android lock patterns with smudge attacks,” in AsiaCCS.
ACM, 2017, pp. 313–326.

[15] A. Das, J. Bonneau, M. Caesar, N. Borisov, and X. Wang, “The tangled
web of password reuse,” in Proc. NDSS 2014, pp. 1–15.

[16] M. Dell’Amico and M. Filippone, “Monte carlo strength evaluation: Fast
and reliable password checking,” in Proc. ACM CCS 2015, pp. 158–169.

[17] Q. Dong, C. Jia, F. Duan, and D. Wang, “RLS-PSM: A robust and
accurate password strength meter based on reuse, leet and separation,”
IEEE Trans. Inf. Forensics Secur., vol. 16, pp. 4988–5002, 2021.

[18] M. Dürmuth, F. Angelstorf, C. Castelluccia, D. Perito, and C. Abdelberi,
“OMEN: faster password guessing using an ordered markov enumera-
tor,” in Proc. ESSoS 2015, pp. 119–132.

[19] M. Dürmuth, D. Freeman, S. Jain, B. Biggio, and G. Giacinto, “Who
are you? A statistical approach to measuring user authenticity,” in Proc.
NDSS 2016, pp. 1–15.

[20] M. Eiband, M. Khamis, E. von Zezschwitz, H. Hussmann, and F. Alt,
“Understanding shoulder surfing in the wild: Stories from users and
observers,” in Proc. CHI 2017, pp. 4254–4265.

[21] J. Harrison, E. Toreini, and M. Mehrnezhad, “A practical deep learning-
based acoustic side channel attack on keyboards,” in Proc. EuroS&P
Workshops, 2023, pp. 270–280.

[22] B. Harsha, R. Morton, J. Blocki, J. A. Springer, and M. Dark, “Bicycle
attacks considered harmful: Quantifying the damage of widespread
password length leakage,” Comput. Secur., vol. 100, p. 102068, 2021.

[23] Hashcat Project, “Hashcat,” https://hashcat.net/hashcat/.
[24] K. Heafield, I. Pouzyrevsky, J. H. Clark, and P. Koehn, “Scalable

modified kneser-ney language model estimation,” in Proc. ACL 2013,
2013, pp. 690–696.

[25] C. Herley and P. Van Oorschot, “A research agenda acknowledging the
persistence of passwords,” IEEE Secur. Priv., vol. 10, pp. 28–36, 2012.

[26] B. Hitaj, P. Gasti, G. Ateniese, and F. Pérez-Cruz, “PassGAN: A deep
learning approach for password guessing,” in Proc. ACNS 2019.

[27] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[28] B. Honan, Visual Data Security White Paper, July 2012, https://multim
edia.3m.com/mws/media/950026O/secure-white-paper.pdf.

[29] S. Houshmand, S. Aggarwal, and R. Flood, “Next gen PCFG password
cracking,” IEEE Trans. Inf. Forensics Secur., vol. 10, no. 8, pp. 1776–
1791, 2015.

[30] Y. Hu, S. Alroomi, S. Sahin, and F. Li, “Unmasking the security and
usability of password masking,” in Proc. CCS 2024, pp. 4241–4255.

[31] Z. Huang, D. Wang, and Y. Zou, “Prob-hashcat: Accelerating proba-
bilistic password guessing with hashcat by hundreds of times,” in Proc.
RAID 2024, pp. 674–692.

[32] A. Juels and R. L. Rivest, “Honeywords: Making password-cracking
detectable,” in Proc. ACM CCS 2013, pp. 145–160.

[33] S. Katz, “Estimation of probabilities from sparse data for the language
model component of a speech recognizer,” IEEE Trans. Acoust. Speech
Signal Process., vol. 35, no. 3, pp. 400–401, 1987.

[34] P. G. Kelley, S. Komanduri, M. L. Mazurek, R. Shay, T. Vidas, L. Bauer,
N. Christin, L. F. Cranor, and J. Lopez, “Guess again (and again and
again): Measuring password strength by simulating password-cracking
algorithms,” in Proc. IEEE S&P 2012, pp. 523–537.

[35] R. Kneser and H. Ney, “Improved backing-off for M-gram language
modeling,” in Proc. IEEE ICASSP 1995, pp. 181–184.

[36] T. Kwon, S. Shin, and S. Na, “Covert attentional shoulder surfing:
Human adversaries are more powerful than expected,” IEEE Trans. Syst.
Man Cybern. Syst., vol. 44, no. 6, pp. 716–727, 2014.

[37] E. Liu, A. Nakanishi, M. Golla, D. Cash, and B. Ur, “Reasoning
analytically about password-cracking software,” in Proc. IEEE S&P
2019, pp. 380–397.

[38] A. Lobanova, J. He, N. Zhu, A. Nazir, and X. Ma, “Machine-learning-
based adaptive keyboard sound masking against acoustic channel at-
tacks,” in Proc. CCNS 2024, pp. 271–277.

[39] T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” in Proc. ACL EMNLP 2015,
pp. 1412–1421.

[40] J. Ma, W. Yang, M. Luo, and N. Li, “A study of probabilistic password
models,” in Proc. IEEE S&P 2014, pp. 689–704.

[41] R. Manning, 2025 Global State of Authentication survey:
A world of difference in cybersecurity habits, Sept. 2025,
https://www.yubico.com/blog/2025-global-state-of-authentication-s
urvey-a-world-of-difference-in-cybersecurity-habits/.

[42] D. Marques, I. Muslukhov, T. J. Guerreiro, L. Carriço, and K. Beznosov,
“Snooping on mobile phones: Prevalence and trends,” in Proc. SOUPS
2016, pp. 159–174.

[43] W. Melicher, B. Ur, S. Komanduri, L. Bauer, N. Christin, and L. F.
Cranor, “Fast, lean and accurate: Modeling password guessability using
neural networks,” in Proc. USENIX SEC 2017, pp. 175–191.

17

https://github.com/CSSLabNKU
https://multimedia.3m.com/mws/media/1254232O/global-visual-hacking-experiment-study-summary.pdf
https://multimedia.3m.com/mws/media/1254232O/global-visual-hacking-experiment-study-summary.pdf
https://github.com/s2cr3t/Keystroke_Acoustic_Recognition_System
https://github.com/s2cr3t/Keystroke_Acoustic_Recognition_System
https://hashcat.net/hashcat/
https://multimedia.3m.com/mws/media/950026O/secure-white-paper.pdf
https://multimedia.3m.com/mws/media/950026O/secure-white-paper.pdf
https://www.yubico.com/blog/2025-global-state-of-authentication-survey-a-world-of-difference-in-cybersecurity-habits/
https://www.yubico.com/blog/2025-global-state-of-authentication-survey-a-world-of-difference-in-cybersecurity-habits/
https://www.yubico.com/blog/2025-global-state-of-authentication-survey-a-world-of-difference-in-cybersecurity-habits/

[44] R. Morris and K. Thompson, “Password security: A case history,”
Commun. ACM, vol. 22, no. 11, pp. 594–597, 1979.

[45] A. Narayanan and V. Shmatikov, “Fast dictionary attacks on passwords
using time-space tradeoff,” in Proc. ACM CCS 2005, pp. 364–372.

[46] Openwall Project, “John the ripper password cracker,” http://www.op
enwall.com/john/.

[47] B. Pal, T. Daniel, R. Chatterjee, and T. Ristenpart, “Beyond credential
stuffing: Password similarity models using neural networks,” in Proc.
IEEE S&P 2019, pp. 417–434.

[48] D. Pasquini, G. Ateniese, and M. Bernaschi, “Interpretable probabilistic
password strength meters via deep learning,” in Proc. ESORICS 2020.

[49] D. Pasquini, G. Ateniese, and C. Troncoso, “Universal neural-cracking-
machines: Self-configurable password models from auxiliary data,” in
Proc. IEEE S&P 2024, pp. 36–54.

[50] D. Pasquini, A. Gangwal, G. Ateniese, M. Bernaschi, and M. Conti,
“Improving password guessing via representation learning,” in Proc.
IEEE S&P 2021, pp. 1382–1399.

[51] J. Rando, F. Pérez-Cruz, and B. Hitaj, “Passgpt: Password modeling
and (guided) generation with large language models,” in Proc. ESORICS
2023, pp. 164–183.

[52] E. Shareghi, M. Petri, G. Haffari, and T. Cohn, “Fast, small and exact:
Infinite-order language modelling with compressed suffix trees,” Trans.
Assoc. Comput. Linguistics, vol. 4, pp. 477–490, 2016.

[53] X. Su, X. Zhu, Y. Li, Y. Li, C. Chen, and P. J. E. Verı́ssimo, “Pagpassgpt:
Pattern guided password guessing via generative pretrained transformer,”
in Proc. DSN 2024, pp. 429–442.

[54] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Proc. NIPS 2014, pp. 3104–3112.

[55] C. Team, New Study Underscores Slow Adoption of
Multifactor Authentication By Global SMBs, Nov. 2024,
https://cyberreadinessinstitute.org/news-and-events/new-study-und
erscores-slow-adoption-of-multifactor-authenification/.

[56] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. NIPS
2017, pp. 5998–6008.

[57] R. Veras, C. Collins, and J. Thorpe, “On semantic patterns of passwords
and their security impact,” in Proc. NDSS 2014.

[58] C. Wang, J. Zhang, M. Xu, H. Zhang, and W. Han, “#segments:
A dominant factor of password security to resist against data-driven
guessing,” Comput. Secur., vol. 121, no. 102848, 2022.

[59] D. Wang, X. Shan, Q. Dong, Y. Shen, and C. Jia, “No single silver
bullet: Measuring the accuracy of password strength meters,” in Proc.
USENIX SEC 2023, pp. 947–964.

[60] D. Wang, P. Wang, D. He, and Y. Tian, “Birthday, name and bifacial-
security: Understanding passwords of Chinese web users,” in Proc.
USENIX SEC 2019, pp. 1537–1555.

[61] D. Wang, Z. Zhang, P. Wang, J. Yan, and X. Huang, “Targeted online
password guessing: An underestimated threat,” in Proc. ACM CCS 2016,
pp. 1242–1254.

[62] D. Wang, Y. Zou, Q. Dong, Y. Song, and X. Huang, “How to attack and
generate honeywords,” in Proc. IEEE S&P 2022, pp. 489–506.

[63] D. Wang, Y. Zou, Z. Zhang, and K. Xiu, “Password guessing using
random forest,” in Proc. USENIX SEC 2023, pp. 965–982.

[64] M. Weir, S. Aggarwal, B. De Medeiros, and B. Glodek, “Password
cracking using probabilistic context-free grammars,” in Proc. IEEE S&P
2009, pp. 391–405.

[65] D. Wheeler, “zxcvbn: Low-budget password strength estimation,” in
Proc. USENIX SEC 2016, pp. 157–173.

[66] K. Xiu and D. Wang, “Pointerguess: Targeted password guessing model
using pointer mechanism,” in Proc. USENIX SEC 2024, pp. 5555–5572.

[67] M. Xu, C. Wang, J. Yu, J. Zhang, K. Zhang, and W. Han, “Chunk-level
password guessing: Towards modeling refined password composition
representations,” in Proc. ACM CCS 2021, pp. 5–20.

[68] M. Xu, J. Yu, X. Zhang, C. Wang, S. Zhang, H. Wu, and W. Han,
“Improving real-world password guessing attacks via bi-directional
transformers,” in Proc. USENIX SEC 2023, pp. 1001–1018.

[69] T. Yang and D. Wang, “Rankguess: Password guessing using adversarial
ranking,” in Proc. S&P 2025, pp. 682–700.

[70] J. Yu, L. Lu, Y. Chen, Y. Zhu, and L. Kong, “An indirect eavesdropping
attack of keystrokes on touch screen through acoustic sensing,” IEEE
Trans. Mob. Comput., vol. 20, no. 2, pp. 337–351, 2021.

[71] T. Zhu, Q. Ma, S. Zhang, and Y. Liu, “Context-free attacks using
keyboard acoustic emanations,” in Proc. ACM CCS 2014.

[72] V. Zimmermann, “From the quest to replace passwords towards support-
ing secure and usable password creation,” Ph.D. dissertation, Technical
University of Darmstadt, Germany, 2021.

[73] Y. Zou, M. An, and D. Wang, “Password guessing using large language
models,” in Proc. USENIX SEC 2025, pp. 7799–7818.

APPENDIX

A. Details of our maximum likelihood estimation

Let pw∗ be a password that conforms to the template PT∗.
Denote n as the number of unique passwords in the set ΓPT∗

that conform to PT∗, and m as the number of passwords in
ΓPT∗ that also satisfy p(pw)>p(pw∗). We want to estimate m.
Let p=m/n, which is the probability that a uniformly sampled
password from ΓPT∗ satisfies the condition p(pw)>p(pw∗).

Define a sampling experiment S: Uniformly sample one
password pw from ΓPT∗ . If p(pw)>p(pw∗), record a success.
Repeat experiment S for N times. Let the number of successes
be x, which follows a binomial distribution:

x ∼ Binomial(N, p), f(x|N, p) =

(
N

x

)
px(1− p)N−x.

Define experiment T as repeating S N times. Repeat T
for t times, and denote the sequence of success counts as
{x1, x2, ..., xt}. The likelihood function is:

L(p) = log

(
t∏

i=1

(N
xi

)
p
xi (1 − p)

N−xi

)

=

t∑
i=1

log
(N
xi

)
+

(
t∑

i=1

xi

)
log(p) +

(
tN −

t∑
i=1

xi

)
log(1 − p).

(11)

Taking the derivative of L(p) with respect to p gives:

∂L(p)

∂p
=

∑t
i=1 xi

p
−

tN −
∑t

i=1 xi

1− p
.

Setting ∂L(p)
∂p = 0 and solving yields the MLE:

p̃ =
1

Nt

t∑
i=1

xi.

Unbiasedness: The expectation of p̃ is

E[p̃] =
1

Nt

t∑
i=1

E[xi] =
tpN

Nt
= p.

Variance: The second derivative of the log-likelihood is:

∂2L(p)

∂p2
= −

∑t
i=1 xi

p2
−

tN −
∑t

i=1 xi

(1− p)2
.

The Fisher Information is the negative expectation:

I(p) = −E

[
∂2L(p)

∂p2

]
=

tN

p(1− p)
.

The Cramér-Rao bound (inverse Fisher Information) gives:

Var(p̃) =
p(1− p)

tN
≤ 1

4tN
.

Conclusion: The estimator p̃ is unbiased and converges to p
in probability. The estimate of m is: m̃ = p̃ · n.

18

http://www.openwall.com/john/
http://www.openwall.com/john/
https://cyberreadinessinstitute.org/news-and-events/new-study-underscores-slow-adoption-of-multifactor-authenification/
https://cyberreadinessinstitute.org/news-and-events/new-study-underscores-slow-adoption-of-multifactor-authenification/
https://cyberreadinessinstitute.org/news-and-events/new-study-underscores-slow-adoption-of-multifactor-authenification/

	Introduction
	Design challenges
	Our contributions

	Related work and Background
	Password guessing attacks
	Threat model

	Our two new sequence password models: PassSeq and Kneser-Ney
	Our PassSeq password model
	Our Kneser-Ney password model
	Our guess number estimation method

	Experiments
	Our datasets
	Template-based mask guessing scenarios
	Distributional mask guessing scenarios
	Contextual prior mask guessing scenarios
	Uncertain-length mask guessing scenarios
	Performance evaluation
	A further validation of PassSeq

	Practical defenses against mask guessing
	Conclusion
	References
	Appendix
	Details of our maximum likelihood estimation

