Artifact
Evaluated

ANDss

Available

Functional

SECV: Securing Connected Vehicles
with Hardware Trust Anchors

Martin Kayondo*i, Junseung You**, Eunmin Kim*, Jiwon Seo'$, Yunheung Paek*$
*ECE and ISRC, Seoul National University
{kymartin, jsyou, emkim} @sor.snu.ac.kr, ypaeck@snu.ac.kr
TDepartment of Cybersecurity, Dankook University
jwseo@dankook.ac.kr

Abstract—Modern vehicles integrate Extra-Vehicle Networks
(EVNs) with In-Vehicle Networks (IVNs) to support navigation,
diagnostics, and over-the-air updates. This convergence intro-
duces an EVN platform as a new source of control messages
at the IVN gateway, breaking the traditional assumption that
the gateway only filters traffic from simple, isolated, and im-
plicitly trusted legacy ECUs. Instead, the EVN platform hosts
a complex EVN manager with a full operating system and
multiple applications, greatly enlarging the attack surface: a
compromised OS or application can spoof control messages
that evade gateway filtering. We present SECV, a runtime
security mechanism that enables the IVN gateway to accurately
verify EVN-originated control messages even when the EVN
manager is compromised. SECV mediates all EVN-to-IVN traffic
inside a Trusted Execution Environment (TEE), performs per-
application validation, and attaches cryptographic proofs. These
proofs are verified by the IVN gateway using a Hardware Security
Module (HSM), providing reliable message authentication with
low overhead. SECYV addresses practical challenges in TEE-HSM
trust establishment, real-time mediation, and robust attribution
under compromise. Implemented on an automotive SoC with
ARM TrustZone and an EVITA-compliant HSM, SECV enforces
strong security guarantees with only 6.5% transmission geometric
mean overhead and 1.5% additional message loss during extreme
communication bursts, effectively mitigating EVN-originated at-
tacks while satisfying real-time constraints.

I. INTRODUCTION

Modern connected vehicles support advanced features such
as navigation assistance, real-time traffic updates, and remote
diagnostics, which enhance both safety and passenger experi-
ence and rely on continuous data exchange with cloud services,
backend servers, user devices, and other vehicles. This need
for external connectivity marks an evolutionary shift from
legacy automotive systems, built around a closed in-vehicle
network (IVN), to an architecture that integrates the IVN with
an extra-vehicle network (EVN) to support high-bandwidth
data exchange with diverse external entities. This architectural

¥ The first two authors contributed equally to this work.
§Corresponding authors.

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.240106
www.ndss-symposium.org

*" EVN Platform
- EVN
i Manager

[[es] [ow]

Access N EVN Control Units

EVN (External-Vehicle Network) IVN (In-Vehicle Network)

Fig. 1: Remote attackers can leverage EVN reach to hack their
way to safety-critical IVN ECUs

paradigm, now widely adopted by major automotive ven-
dors [41]], [71], [[79], [81], logically separates internal (IVN)
and external (EVN) communications into distinct domains,
typically interfaced through dedicated gateway components to
meet the growing data demands of modern features. The IVN
platform, typically based on microcontrollers and designed for
real-time operation, hosts a software stack known as the IVN
gateway, which oversees IVN traffic and is present even in
legacy systems. In contrast, the EVN platform, typically built
on application processors optimized for compute-intensive
tasks and introduced as part of the connected vehicle paradigm,
runs the EVN manager, a software stack responsible for
handling EVN traffic. The EVN manager and IVN gateway
coordinate to mediate interactions between the EVN and IVN
domains.

Unfortunately, the EVN domain significantly expands the
vehicle’s attack surface by introducing remote threats. In tradi-
tional vehicles, the closed and isolated nature of IVNs largely
protected electronic control units (ECUs) from remote com-
promise, limiting realistic attacks mostly to physical ones [54].
However, as shown in prior work [24], [25], [33],
351, [48]], [53], [64], [65], [69], [72], [90] demonstrates that
modern platforms allow remote attackers to compromise the
EVN manager and launch attacks on the IVN. Because the
IVN hosts ECUs responsible for safety-critical functions (e.g.,
braking, steering, engine control), arbitrary control-message
injection enables effective commandeering of the vehicle and
poses severe risks to passenger and public safety. These
attacks have drawn increasing attention from society, security
researchers, and industry practitioners [22[], [23], [28]], [30],
(36l, [46l, [491, [67], [301, [82], [85]-{88], [911-193]l., 98]
[99], [102]-[1104], [108]], underscoring the need for systematic
defenses that constrain EVN-originated threats before they

reach the IVN.

Traditionally, automotive security has been enforced by the
IVN gateway, which applies static routing and filtering policies
to control all in-vehicle communications among simple, trusted
ECUs. However, the introduction of the EVN and its complex
EVN manager—a powerful, connected node running a full OS
with multiple applications—breaks these trust assumptions.
Real-world attacks [43], [58]], [64], [95], [96], [[107]] show that
a compromised EVN manager can exploit the IVN gateway’s
lack of knowledge about runtime EVN context (e.g., sender ap-
plication identity or intent) to inject spoofed control messages
that appear legitimate, undermining the gateway’s filtering.

To mitigate these attacks, we propose a security mech-
anism that guarantees the trustworthiness of control mes-
sages from the EVN manager, enabling the IVN gateway
to process them for verification. Our mechanism mediates
all outbound control messages from the EVN manager to
ensure that only authorized messages are transmitted. This
mediation occurs within a protected execution environment to
prevent circumvention, even under OS compromise. Second,
the mechanism enforces message transmission policies that
determine whether a given application is authorized to send
specific control messages. These policies are securely stored
in a tamper-resistant environment, with both the policies and
their enforcement protected from manipulation—even under
OS compromise. Finally, our mechanism enables the IVN
gateway to verify these messages efficiently and securely, such
that authentication can be performed within the real-time and
safety constraints of the automotive system.

We have implemented our security mechanism, named
SECV, with hardware-based security primitives [26], [S1]],
[70] widely available on modern automotive platforms. Specif-
ically, SECV builds a trusted enforcement module using
a Trusted Execution Environment (TEE) [51]—commonly
present on EVN platforms. The main tasks of the EVN
enforcement module are outbound message authentication,
authorization, and spoofing detection. To perform these tasks,
it relies on the TEE’s secure peripheral access control to
intercept all outbound traffic for inspection. Additionally,
it leverages the TEE’s tamper-resistant runtime environment
to securely store and enforce per-application transmission
policies based on execution context (e.g., process ID and
address space). The module signs authorized messages using a
TEE-confined key, securely shared with the IVN gateway for
verification. Message signatures provide unforgeable proof to
the IVN gateway that the messages are trustworthy and safe
to process before being routed to the IVN ECUs. On the IVN
side, the IVN gateway verifies each message’s signature before
routing it to IVN ECUs. The gateway employs a Hardware
Security Module (HSM)—mandated on IVN platforms by
automotive standards [75], [[106]—as its trust anchor. The
gateway relies on HSM to attest the EVN enforcement mod-
ule, securely store the message verification key, and offload
cryptographic signature verification to reduce computational
overhead and meet real-time and safety requirements. To-
gether, these components on both the EVN and IVN sides

collaboratively enforce a layered authentication architecture:
the enforcement module ensures that only trusted messages
transmitted by the EVN manager reach the IVN gateway, while
the IVN gateway independently verifies their authenticity and
authorization before applying traditional filtering.

Designing SECV presents three key challenges. First, for
the IVN gateway to trust control messages from the EVN
manager, it must trust the enforcement module that authorizes
them. Since the IVN gateway anchors its trust in an HSM,
the HSM must validate the TEE firmware on which the en-
forcement module runs and establish a secure communication
channel with it. However, the HSM lacks direct access to
the TEE firmware, and its internally generated keys cannot
be exported to establish the shared communication channel.
Second, mediating all outbound transmissions through the
enforcement module requires it to control communication
peripherals—intercepting 1/O, routing interrupts securely, and
executing peripheral control logic within the Secure World.
If implemented naively, this can introduce frequent world
switches that incur significant performance overhead, un-
dermining the real-time guarantees required for automotive
safety. It also risks bloating the TEE’s trusted computing base
(TCB) with peripheral control code, increasing the system’s
attack surface. Third, SECV must reliably associate each
outbound control message with its originating application,
without executing EVN applications inside the Secure World.
This requires extracting and validating runtime context (e.g.,
process ID and address space) within the TEE, even in the
presence of a compromised Normal World OS.

To address the first challenge, SECV introduces a hybrid
protocol that combines measured boot with cross-domain
attestation and coordinated key provisioning. The EVN plat-
form’s root of trust—a lower-layer bootloader—measures
the TEE firmware during boot and transmits signed attes-
tation evidence to the HSM via a pre-established asymmet-
ric key relationship. To establish secure communication, the
EVN enforcement module receives a random entropy from
HSM, and derives a strong communication key which is
securely imported into the HSM for synchronized use. To
address the second challenge, SECV implements a lightweight
TEE-peripheral coordination protocol that minimizes world
switches through batching and polling, and further optimizes
transmission using zero-copy shared memory channels. To
maintain a minimal TCB for peripheral access, SECV avoids
porting full drivers into the TEE. Instead, it employs mini-
mal driverlets—Ilightweight, security-critical stubs that execute
only trusted memory-mapped I/O (MMIO) operations, delegat-
ing all non-sensitive functionality to the Normal World driver.
To address the third challenge, SECV establishes secure mes-
sage channels between user-space applications and the EVN
enforcement module. Leveraging intra-kernel isolation [34],
[56], [60]], SECV deploys a minimal trusted kernel component
that accurately tracks application identities and securely relays
this context to the enforcement module, enabling authenticated
message attribution for policy enforcement.

We implement SECV on a modern automotive SoC with

an EVN platform based on ARM Cortex-A processors with
TrustZone and an IVN platform based on ARM Cortex-
M7 MCUs with an EVITA-compliant HSM [106]], where the
EVN and IVN communicate over CAN. This architecture
reflects current industry practice, as major vendors (e.g.,
Infineon, NXP, Renesas) deploy ARM-based platforms with
integrated TEEs and HSMs, with CAN as the dominant IVN
protocol and growing Ethernet use in EVN control units. To
evaluate SECV’s practicality, we measure runtime overhead,
communication performance, and memory footprint, observing
a 6.5% EVN-to-IVN transmission geometric mean overhead
and 1.5% message loss under high-throughput bursts. These
results show that SECV can provide strong security guarantees
while meeting modern automotive performance requirements,
and a detailed security analysis confirms its effectiveness
against remote attackers, compromised OSes, and malicious
applications under realistic threat models.

II. BACKGROUND AND MOTIVATION
A. Automotive Architecture and EVN-IVN Communication

Automotive systems feature heterogeneous E/E architec-
tures in which ECUs exchange control messages over the
IVN; for example, a speed-control ECU (e.g., cruise control or
ADAS) may receive a stop command with a unique message
ID from the brake ECU. Traditionally, IVN ECUs run on
simple single-threaded MCUs that implement one or a few
fixed functions, allowing the IVN gateway to enforce static
filtering and routing rules and to use the fixed mapping
between message IDs and ECU tasks to deterministically
associate each message with its source and promptly block
malicious traffic targeting safety-critical systems. However,
this model implicitly assumes that all IVN endpoints are
simple, fixed-function ECUs. As vehicles adopt the EVN and
its EVN manager, the IVN gateway typically remains the
primary IVN defense but still treats the EVN manager as
just another ECU whose traffic must match traditional filters.
In reality, the EVN manager hosts multiple OS-managed
applications, each able to transmit through the IVN gateway,
while the gateway has no visibility into runtime context or
sender provenance. As a result, messages from a compromised
EVN manager can satisfy static rules and be forwarded to
IVN ECUs, enabling unauthorized control. Moreover, some
EVN manager-origin messages are privileged and target the
IVN gateway itself, raising the risk of malicious firmware
installation and propagation across ECUs.

B. Automotive Attacks and SECV Motivation

1) Control Message Paths and Compromise: To transmit
a control message, an EVN application first prepares the
message in a memory buffer and then invokes the network
stack via a system call. The stack typically copies the message
from the user-space into a kernel-space buffer, where it may
further process the message according to the transmission
protocol (e.g., header construction) before enqueueing it for
transmission. Actual transmission occurs when the message is
dequeued and written to the communication peripheral, such

rRequirements for EVN-IVN attack mitigations:
RQ1: All EVN applications must have explicitly defined
permissions governing which control messages they are
allowed to transmit.
RQ2: Transmission permissions are security-critical and
must be protected against unauthorized modification or
spoofing.
RQ3: Only authenticated and attested firmware and soft-
ware are allowed to execute on both EVN and IVN
platforms.
RQ4: All security keys must be securely stored and
properly managed, and their use must be strictly controlled
to prevent unauthorized access or tampering.
RQS: Messages from the EVN manager must be con-
sistently verified, and the EVN manager must cooperate
with the IVN gateway to establish comprehensive trust
validation for all EVN-IVN traffic.

\.

as a CAN controller, by the corresponding driver executing
in the OS address space. In some cases, particularly with
custom peripherals, applications may bypass the standard
network stack and interact directly with the communication
driver via the TOCTL interface, passing the message straight
to the driver, which may then perform additional processing
or write the message directly to the peripheral. At each
stage, the message can be compromised or forged; that is,
(1) Application layer: a malicious application generates and
transmits control messages that impersonate an authorized
application. (2) Network stack: a compromised stack tampers
with messages in transit or injects unauthorized messages
into its transmission queues to spoof application provenance.
(3) Peripheral driver: a compromised driver, which directly
controls the communication peripheral, injects attacker-chosen
messages directly into peripheral buffers and triggers their
transmission.

2) Real-world Attack Examples: The attacks described
above have been demonstrated by security researchers and
industry practitioners on modern production vehicles. Based
on an analysis of these published attacks, we derive the
core requirements for establishing the EVN manager as the
trustworthy source of IVN control messages and, in turn, for
defending against EVN-IVN attacks.

Below, we summarize five real-world attack examples (AE)
and show how unmet requirements (RQ) enabled them.
AE1l: Tencent Keen Lab vs. Mercedes-Benz (2021). Keen
Lab exploited firmware vulnerabilities in the STA8090 Wi-
Fi receiver to gain code execution on the head unit (EVN
manager) [8]-[10]. Subsequent browser and kernel exploits
yielded root privileges on this platform. By impersonating
trusted services on the EVN manager, the attackers were able
to bypass the IVN gateway and inject CAN messages. They
then achieved persistence by modifying the firmware of the
telematics control unit (TCU), which is typically attached to

the EVN manager. (RQ1, RQ3).
AE2: Cai et al. vs. BMW (2019). Cai et al. from Tencent

Key observations from attack examples:
AO1: These attacks span over a decade, with multiple
cases as recent as 2023-2024, indicating that weaknesses
are persistent rather than legacy artifacts.
AQ2: In all examined designs, the EVN and IVN remain
air-gapped, with the IVN gateway as the single chokepoint.
Once compromised, attackers gain complete control.
AO3: Across vendors, attacks follow a common pattern:
EVN side entry, EVN manager compromise, and IVN
gateway filtering bypass that enables arbitrary IVN control
message injection.
AO4: In some Tesla cases, compromising only the EVN
manager was sufficient to bypass gateway protections and
reach safety-critical ECUs, even without directly modify-
ing the gateway firmware.

J

exploited vulnerabilities in the TCU’s cellular interface to
compromise BMW’s EVN components, including the In-
Vehicle-Infotainment (IVI) system and the EVN manager [57].
A WebKit buffer overflow enabled initial code execution,
and a time-of-check-to-time-of-use (TOCTOU) flaw was then
used to escalate privileges to root on the EVN manager. The
attackers subsequently crafted unchecked control messages
that exploited weaknesses in the IVN gateway’s filtering,
allowing them to issue commands to safety-critical ECUs.
RQL, RQS5)
AE3: Miller & Valasek vs. Jeep Cherokee (2015). By ex-
ploiting a firmware vulnerability in the TCU [2], the attackers
first gainted a foothold on the EVN manager and then pivoted
the IVN gateway over the SPI [[64] link. They uploaded a
malicious firmware image to the gateway, disabling SPI-CAN
filtering, and demonstrated remote control of brakes, engine,
and transmission at highway speeds. (RQ¥, RQ3, RQS)
AE4: Keen Lab vs. Tesla Model S (2016-2017). A browser
exploit [1] and kernel escalation [4]] gave attackers root on
the EVN manager allowing them to reconfigure IVN gateway
filters and install malicious firmware, thereby enabling direct
CAN access from the EVN side [68]]. After Tesla added
firmware signing in 2017, the researchers bypassed it by
exploiting the update logic to inject and execute unsigned EVN
applications. (RQ3)
AES: Synacktiv vs. Tesla Model 3 (2022-2024). Synacktiv
demonstrated a series of full remote compromises via the IVI
system [29]], [94]-[97]. In 2022, Wi-Fi vulnerabilities [12],
[13] enabled code execution on the EVN manager. The attack-
ers then bypassed the in-vehicle firewall to inject unfiltered
UDP packets that were automatically translated into CAN
frames. In 2023, Bfluetooth vulnerabilities allowed kernel-
level execution, which was used to update IVN gateway
firmware with malicious code. In 2024, LTE interface exploits
enabled direct CAN injection from the EVN side, bypassing
the gateway’s intended filtering mechanisms. (RQ¥, RQ2,
RQ5)

These attacks collectively reveal several key observations
highlighted above. A broader survey appears in Jing et al. [53]],
but we find that all but a few of their presented attack paths

follow the above-described pattern.

3) Arm TrustZone TEE: Most processor vendors provide
TEEs as security extensions to their processors. Arm’s imple-
mentation is TrustZone [73|], available on both Cortex-A and
Cortex-M families. TrustZone partitions processor execution
into two states: the Secure World, which hosts trusted services,
and the Normal World, which runs the general-purpose OS
and applications. The Secure World establishes the TEE for
sensitive operations such as key management and message
authentication, and it is entered from the Normal World via
Secure Monitor Calls (SMCs). The TrustZone Protection Con-
troller (TZPC) restricts peripheral access, while the TrustZone
Address Space Controller (TZASC) and TrustZone Memory
Adapter (TZMA) enforce secure memory access over DRAM
and SRAM, respectively. Together, they provide hardware-
enforced isolation that grants the Secure World exclusive
access to critical memory and devices, forming a robust
TEE. This TEE underpins HTA functions; key management,
cryptographic operations, and other HTA requirements [75].
The secure monitor (EL3) mediates communication between
worlds: it handles SMCs, controls interrupt routing (allowing
selected IRQs to be delivered to the Secure World OS),
and can trap security-critical operations (e.g., control-register
updates), effectively deprivileging both worlds’ OSes from
low-level mechanisms such as page-table management.

4) Automotive HSMs: Automotive HSMs are embedded
co-processors that provide hardware-isolated execution for
security services. They are specified in three variants, EVITA-
full, medium, and light, by the EVITA project [106]. The
full variant offers the strongest security capabilities required
for EVN-IVN protection, while the medium and light vari-
ants primarily support in-vehicle communication security, of-
ten integrated into security-critical ECUs and actuators for
message authentication. Current EVN-IVN platforms from
major vendors integrate an EVITA-full class HSM at the
IVN gateway [22], [37], [89]. These HSMs provide tamper
resistance, immutable boot firmware, random number genera-
tion, key management, and optimized cryptographic accelera-
tion—features essential for strong automotive security [76].

C. Intra-Kernel Isolation

The EVN manager relies on a complex OS (e.g., Automo-
tive Grade Linux (AGL) [61]) to manage the EVN platform’s
extensive resources and diverse applications, leading to a large
TCB and heightened vulnerability to bugs and exploits. More-
over, they commonly adopt a monolithic design, integrating
the core kernel and device drivers within a single address
space; thus, a flaw in any one component can compromise
the entire OS, including the core kernel itself. To counter this
risk, several works [27], [34], [S0], [56[], [60] propose intra-
kernel isolation, which partitions a monolithic kernel into two
domains: the inner and outer kernel. The inner kernel retains
privileged control over security-critical resources, such as the
memory management unit (MMU) and page tables [60]. To
achieve this, some approaches [34], [56] leverages ARM64
features like TxSZ, a field in the TCR control register that

defines the virtual address length, to dynamically adjust each
domain’s address space and restrict memory access and exe-
cution privileges. Transitions into and out of the inner kernel
occur via small gates that perform security checks and recon-
figure address-space size and permissions, and this design has
been formally analyzed with proven security guarantees [43].

III. THREAT MODEL, SECURITY OBJECTIVES, AND
CHALLENGES

Problem Definition. Control messages ultimately drive vehi-
cle actuation. In current deployments, control messages that
go from the EVN to IVN ECUs are checked only at the IVN
gateway using packet-level filters. This leaves a gap where
EVN-originated control messages can satisfy these filters yet
still violate OEM safety and security policies, because the
IVN gateway has no visibility into the EVN manager runtime
context or per-application provenance on the EVN side. On
the EVN platform, applications and the OS that hosts them,
along with the network stack and drivers, form the control
message transmission path. However, either of these can be
compromised; access control over message buffers over this
transmission path is insufficient, and messages lack a concrete,
authenticated binding to their true originating application. As
a result, there is no practical mechanism to robustly enforce
per-application sender policies on EVN-to-IVN control traffic.
Attacker Model. SECV focuses on software adversaries in the
EVN domain that exploit the contextual gap defined earlier to
cause unauthorized vehicle control. The attacker compromises
the message transmission path on the EVN manager, aiming
to arbitrarily inject, modify, or replay control messages that
reach IVN ECUs via the IVN gateway while bypassing OEM
policies. We categorize the adversaries as follows:

(a) Application-level attacker: The attacker runs arbitrary
code in one or more EVN application processes in user space,
but has not gained kernel privileges. The attacker can invoke
standard EVN networking APIs to send control messages, but
cannot directly modify kernel data structures, driver state, or
peripheral registers. Under this capability, the attacker forges
control messages at the application layer to spoof provenance:
for example, by exploiting applications without transmission
privileges to pose as authorized senders, or by implanting
backdoors in authorized applications that emit attacker-chosen
control messages under a legitimate application identity.

(b) OS-level attacker: In the stronger case, the attacker
defeats the OS defenses of EVN manager (e.g., via privilege
escalation or sandbox escape) and gains kernel-level control
over the whole transmission path. With kernel privileges, in-
cluding control over memory access, process management, and
OS-level communication mechanisms, the attacker can spoof
provenance by forging and injecting messages that appear to
originate from privileged applications so that they pass IVN
gateway static filtering, placing crafted frames into socket
buffers, network stack queues, or communication peripheral
transmit buffers; tamper on path by modifying or replaying
control messages that applications have handed off to the
OS through manipulation of kernel-space message buffers

and transmission queues; and perform driver/peripheral sub-
version by compromising communication drivers or directly
programming peripheral transmit buffers (e.g., CAN controller
mailboxes) to place attacker-crafted frames on the physical
bus and attempting to use DMA-capable peripherals to access
memory regions used by trusted components in an effort to
subvert SECV.

Assumptions. Physical attacks (e.g., electromagnetic or volt-
age fault injection [55]]) that require specialized countermea-
sures beyond HTAs, side-channel, and other hardware attacks
are out of scope of SECV. We assume an EVN platform
is an ARM-based platform equipped with TrustZone as the
TEE, and an IVN platform equipped with an automotive-grade
HSM equivalent to EVITA-Full. EVN applications run in the
Normal World. The TEE is trusted, and direct attacks on it
are out of scope. The Normal World OS is untrusted, aside
from an isolated minimal trusted component that handles core
kernel functions, as detailed in

Security Objectives and Challenges. The primary objective
of SECV is to prevent unauthorized vehicle control from the
EVN domain, by establishing secure, authenticated message
paths from EVN applications to the IVN gateway. To this end,
through a trusted enforcement module on the EVN platform,
SECV ensures that any control message delivered to the IVN
gateway from the EVN manager is authenticated, integrity-
protected, and policy-compliant before it leaves the EVN.
Concretely, SECV provides the following three properties.

o C1: Message authenticity: A message is authentic only
if it is bound to a legitimate EVN application identity.
Messages emitted by backdoor applications or injected via
a compromised OS must be detected and blocked before
they reach the IVN gateway. The challenge is that the
enforcement module runs in the TEE while all applications
execute in the Normal World. Accordingly, SECV must
both (i) verify the integrity/identity of the message-emitting
application and (ii) systemically bind each message to that
application, so the TEE-resident module can enforce per-
application sender policies with accuracy.

o C2: Message integrity: The EVN side path, user-space
buffers, kernel-space buffers, and driver accesses on control
messages must be hardened so that, once issued, a control
message cannot be altered or replayed at any subsequent
stage. The challenge for SECV is to enforce buffer and path
access control under an untrusted OS and device drivers,
preventing untrusted components from spoofing provenance
or tampering with in-flight messages to bypass the TEE
enforcement module.

o C3: Policy enforcement: Per-application, least-privilege au-
thorization is applied at send time, ensuring each message
conforms to OEM policy (e.g., permitted IDs/topics, desti-
nations, and rates) and denying any nonconforming trans-
mission. To guarantee that no message is put on the wire
without authorization, SECV revokes Normal World access
to communication peripherals and binds device control to
the Secure World. This, however, necessitates Secure World

driver support; a naive port of full drivers would either be
insecure or bloat the Secure World TCB.

IV. SECV DESIGN
A. Design Overview

As illustrated in SECV is a two-layered security
framework that preserves the IVN gateway’s static filtering
while adding EVN side message authentication and policy en-
forcement, ensuring that only pre-authorized EVN-originated
control messages reach the IVN gateway, by introducing
two trusted enforcement components: the Secure Software
Module for the EVN (SSMe), which runs in the TEE on the
EVN platform, and the Secure Software Module for the IVN
(SsMi), which operates alongside the HSM on the IVN gate-
way; together, they establish an end-to-end secure channel in
which SSMe authenticates EVN-originated control messages,
enforces per-application policy, and authorizes transmission by
cryptographically signing messages, while SSMi verifies these
signatures before the IVN gateway processes and forwards
messages to IVN ECUs.

Since SSMe executes on the EVN platform, it can obtain
sender-application identity (via the mechanisms described
later) and bind each control message to its origin. Run-
ning in a trusted, isolated environment with exclusive con-
trol over communication peripherals, SSMe provides pre-
authorized transmissions that the IVN gateway can safely rely
on while retaining its existing static filters. To delegate these
responsibilities to SSMe and establish a trusted end-to-end
channel, the IVN gateway must verify SSMe’s isolation and
integrity. SECV achieves this via boot-time verification and
remote attestation of the EVN TEE (including SSMe), with
the IVN gateway acting as verifier. SECV leverages secure
boot and extends measured boot on the EVN platform to
produce attestation evidence for EVN side trusted components.
This evidence is conveyed to the IVN gateway and validated
by its HSM against reference values and policies stored in
secure HSM memory. Only upon successful validation does
the IVN gateway permit secure channel provisioning; the
detailed attestation and channel-setup flow appears in

On the EVN side, SECV designates communication pe-
ripherals (e.g., CAN or SPI controllers) as choke points for
transmission authorization, since they are the final control
point for messages. It revokes Normal World access and
binds these peripherals to the Secure World using TZPC
and TZASC, so that SSMe must mediate all transmissions.
SECYV therefore restructures the message-transmission path. In
conventional architectures, EVN applications submit messages
to the Normal World OS, which copies them into kernel-space
buffers and processes them through the network and driver
stacks until drivers write them into peripheral Tx buffers—a
path exposed to the attacks described in and In
contrast, SECV introduces secure message buffers: memory
regions allocated and owned by SSMe in the Secure World
and uniquely bound to an EVN application, while non-writable
by untrusted Normal World components (including the OS).
Each application writes control messages only into its assigned

secure buffers. Rather than copying payloads across untrusted
OS buffers, SECV passes buffer references as needed, preserv-
ing a stable binding between each buffer and its originating
application.

Because the Normal World is denied peripheral access,
drivers submit transmission requests to SSMe by referenc-
ing these secure buffers. SSMe uses the buffer addresses
to attribute each request to an application and enforce per-
application transmission policy before placing data on the
wire. This design requires (i) a trusted conveyance of ap-
plication identity to SSMe for correct buffer provisioning
and provenance binding, and (ii) write-restricted buffers with
non-remappable ownership under an untrusted Normal World
OS. To realize these properties, SECV adopts intra-kernel
isolation, partitioning the Normal World OS into a minimal,
attested-and-trusted inner kernel (responsible for core kernel
operations) and an untrusted outer kernel. The inner kernel
manages memory and processes, and SECV relies on it to
supply accurate process identity and enforce buffer access
control within the Normal World; further details appear in

Finally, restricting communication peripheral access to the
Secure World requires SECV to provide Secure World drivers.
A naive port of full Normal World drivers would inflate
the Secure World TCB and, given the prevalence of high-
risk driver vulnerabilities [6], [17], [18], [20], [21], import
substantial attack surface [44], [83], [&4]], [105]. Instead,
SECV adopts a split-driver architecture: minimal driverlets
in the Secure World implement only the authorization-critical
control path and the minimal device operations necessary to
place data on the wire, while the feature-rich Normal World
drivers handle non-security-critical functionality. Driverlets co-
operate with the Normal World drivers through a constrained,
validated interface (e.g., parameter-checked commands and
controlled shared buffers) so that transmission can proceed
only after SSMe authorization, as detailed in

B. Design Details

1) SSMe-to-1VN gateway Secure Channel Establishment:
IVN Gateway Attestation of the SSMe. SECV mandates
secure boot and measured boot anchored in hardware roots
of trust on both sides, the HSM in the IVN gateway and
the TrustZone-based platform in the EVN manager. To enable
cross-domain trust, the OEM provisions asymmetric key pairs
for both endpoints prior to deployment: the HSM retains
its private key and the EVN manager ’s public key in se-
cure NVM, while the EVN manager stores its private key
and the HSM’s public key in hardware-protected storage
(eFUSE/OTP) accessible only during early boot.

Secure EVN-IVN Channel Establishment. SECV estab-
lishes the SSMe—SSMi channel in three phases. Phase 1
(bootstrap attestation): initial EVN measurements (up to BL2)
are conveyed under the provisioned asymmetric keys; after
successful verification via the HSM, entropy is supplied to
derive a symmetric root session key (SKR), which is also im-
ported into the HSM. Phase 2 (TEE attestation): SSMe trans-

EVN Platform
IVN Platform
H m
Normal Normal ||: || Secure Secure <
) E) § | | e
2
ol syscall l Isysca\ll 5 [—]
H 9 RTOS
Nw 0s swos 3 [Ecu#2
comn ke | o :
H MMIO [©
(innerkernel] SsMe U S k- Ecusn
L ¥ il
@] svc ©)] smc Authenticated &
| Secure Monitor (EL3) | Authorized Msg

Power

EVN-IVN
control L Tx. policies

@5“&/’ EVN-IVN Tx. buffers -
Door it EVN-IVN
-k
control [vRW 5 Comm. keys

EVN-Apps VRO ® VRW

\/RWI

Inner
Kernel

SMMe
(sw)

Outer
Kernel

®Rwi mwl

EVN-IVN Comm. peripheral |

®RW MMU-Enforced Access Ctrl ®RW TZPC Enforced Access Ctrl
VRO Hilps Enforced Access Ctrl ®RW TSASC Enforced Access Ctrl

Fig. 2: An Overview of SECV Design and Security Enforcement for EVN-IVN Communications. Left: SECV’s EVN-IVN
security components; Right: SECV’s regulation of EVN application control message transmission to the IVN.

Scheduling queue
IRQ handling

(Jon,
Page tables
2o
Device drivers Task struct
3¢
o

Security module (IMA)

Loadable modules

console

outer inner l B B l inner
Domain switching |

——— X
mechanism

=7 |]

Valid Virtual Address
(128 GB)

Valid Virtual Address
(512 GB)

Fig. 3: Normal World OS partitioning into a minimal trusted
inner kernel and untrusted outer kernel.

mits the final measurement set—including the Normal World
OS—under SKR, and SSMi verifies it via the HSM. Phase 3
(runtime channel): upon success, SSMi delivers fresh entropy
protected under SKR; SSMe seeds its PRNG and derives a
runtime session key (SKC) for lightweight, ongoing protection
of control-plane messages. An SKR-wrapped copy of SKC
is imported into the HSM; SKR is then discarded, and all
subsequent SSMe «+>SSMi traffic uses SKC.

This hybrid protocol completes EVN manager attestation
and secure key provisioning while cleanly separating boot-
time attestation keying (SKR) from runtime communication
security (SKC).

2) The Minimal Trusted Normal World OS Inner Kernel:
As stated earlier, SECV partitions the Normal World OS into
a minimal trusted inner kernel and an untrusted outer kernel
to achieve intra-kernel privilege isolation. SECV builds on
and repurposes Hilps [34]] to realize an isolated, trusted kernel
component by dynamically reconfiguring the kernel’s address-
space view via the TxSZ field. During inner kernel execution,
TxSZ is set to expand the translation range to cover both inner
and outer kernel memory; during outer kernel execution, it is
compressed so the outer kernel’s translations exclude inner
kernel regions, restricting access to its assigned range only.
depicts an overview of how SECV partitions the
kernel, and a sample of constituents of each kernel component.

The inner kernel comprises core kernel components and
holds exclusive write access to page tables and control regis-
ters (e.g., page-table base registers TTBR). Switching between

inner and outer kernel execution is performed via an interface
domain call (IDC) gate [34], a defined instruction sequence
that securely reconfigures the address-space view. Beyond
default memory management, SECV entrusts the inner kernel
with process management and scheduling, thereby controlling
access to process control data structures by allocating the
caches from which they are drawn in the inner kernel address
region. It also moves scheduling code and process-lifecycle
functions to the inner kernel region. Security-critical subsys-
tems, including integrity measurement architecture (IMA) con-
trol logic, security-sensitive data, and security module (LSM)
hook dispatch, are also placed in the protected region; the outer
kernel may only issue service requests to these components.
The inner kernel further protects interrupt/exception vector
tables to prevent hijacking during interrupt handling.

Non-security-critical components, and those historically
prone to vulnerabilities, such as device drivers, network stacks,
and most process-service logic, remain in the outer kernel.
Memory objects that the outer kernel must read but not mod-
ify (e.g., page-tables, scheduling queues or task_struct
fields) are mapped in regions that are read-only to the outer
kernel and read-write to the inner kernel, preserving necessary
observability while maintaining write protection.

Note that SSMe may be invoked by either the inner or
the outer kernel, and it cannot, by itself, distinguish which
compartment initiated the world switch. Yet some SSMe
requests are privileged and must originate only from the inner
kernel; a compromised outer kernel could otherwise abuse
them to subvert SECV. To prevent this, SECV leverages
the EL3 secure monitor to mediate all world switches and
block privileged SSMe invocations from the outer kernel.
The monitor inspects TCR_EL1.T1SZ to identify the caller’s
compartment. Because only the inner kernel is permitted to set
the distinguishing T1SZ values, this hardware-enforced field
allows SECV to reliably detect and reject forged transitions
from the untrusted outer kernel.

3) Guaranteeing Message Authenticity: After boot, EVN
applications can send control messages to the IVN. Since ap-
plications may be dynamically loaded and are unauthenticated
at boot, attackers may install malware, tamper with binaries, or
forge communication policies to inject spoofed messages (see
[§TI). SECV treats such messages as inauthentic and seeks to
detect and prevent their transmission. SECV binds message

Key Type Purpose Gen. By Persist. Storage
SKR AES Runtime SSMe/SSMi trust HSM Ephemeral HSM / secure RAM
SKC AES/SHA SSMe <> SSMi comm. SSMe (TEE) Ephemeral HSM / ssMe secure RAM
IVK RSA/ECC IMA signature verification OEM Permanent* HSM sNVM / SSMe secure RAM
MEK AES Encrypt MIDs OEM Permanent* HSM sNVM / SSMe secure RAM
HSM pair RSA/ECC Root of SSMi/SSMe trust OEM Permanent Pub: eFUSE / Priv: HSM
EVN mgr pair RSA/ECC Root of SSMi/SSMe trust OEM Permanent Pub: HSM / Priv: eFUSE

TABLE I: Keys used in SECV. Ephemeral keys are valid for a single boot; Permanent* indicates OTA-updatable keys. All
keys reside in HSM NVM or EVN secure storage and are accessible only to HSM or EVN trusted components.

authenticity to the integrity of the transmitting application and
its associated transmission policy at load time. Concretely, it
extends Linux IMA, requiring that application binaries and
policy be signed prior to deployment. At load time, IMA
verifies each file against a trusted key in its keyring (signature
appraisal) and permits execution/use only on successful vali-
dation; failures are denied, preventing unmeasured or unsigned
code and policies from issuing control messages.

As shown in at deployment SECV requires the
OEM to encrypt the transmission policy (or policy set) with a
symmetric Message Encryption Key (MEK) and bundle it with
the application binary (@), @). The bundle is then hashed (@)
and the hash digitally signed (@) with a private key whose
public counterpart is installed in the EVN platform’s keyring.
At load time, the inner kernel recomputes the bundle hash
and verifies its integrity (@, @) using the keyring public key,
denying execution on failure (@). Upon success (@), the inner
kernel unbundles the application, allocates a process identifier
(PID), binds the PID to the encrypted policy, and forwards
this policy and PID metadata to SSMe (@). SSMe decrypts
the policy with the MEK copy, which is stored in the HSM’s
secure non-volatile memory (sSNVM) and can be retrieved at
boot after the SSMe-SSMi secure channel establishment, and
securely associates the permitted message identifiers (MID)
with the process in a PID-MID mapping structure, keeping
this mapping hidden from the Normal World. To preserve the
binding across process creation, SECV hooks fork so that
children inherit the parent’s policy; if fork is followed by
execve, the inner kernel notifies SSMe to remap permissions
to the new binary and policy.

SECV hardens IMA by adding a keyring verification step
to the Normal World boot sequence, preventing attackers from
spoofing signature appraisal with a tampered keyring. Specif-
ically, the OEM provisions an IMA Verification Key (IVK)
used to sign the keyring; at boot, the inner kernel verifies
the keyring against the IVK before enabling IMA policy and
appraisal. The IVK public key may also be provisioned in the
HSM’s sNVM and retrieved at boot (similar to the MEK) to
provide a hardware-anchored reference. Finally, unlike stock
IMA, SECV requires that any changes to IMA measuremen-
t/appraisal policy require both root privileges and explicit
authentication by SSMe using an OEM-specific secret. This
dual control prevents even privileged attackers from disabling
IMA or silently altering its policies.

4) Normal World Control Message Transmission:
Sender Application Provenance. To achieve accurate per-
application policy enforcement, SECV must reliably associate
each outbound control message with its sender application.

oM |

Inner kernel

l Developer | l

Packed App

Deployment

Secure world c Merged App Measurement
S

Inner kernel 5 security.ima © Appraisal
3 ‘
13

Outer kernel =

© If IMA succeed,

Fig. 4: Deployment and Execution SECV’s IMA Flow.

One approach is to have applications or the OS attach a
PID to control messages, but this is insecure since untrusted
components could forge such metadata. Another approach is to
assign provenance tracking to the inner kernel, but this would
require it to manage the entire message path, significantly
expanding its TCB.

Instead, SECV enforces provenance using per-process se-

cure message buffers. Upon an inner kernel request that
presents a process PID, the SSMe allocates a dedicated shared-
memory buffer pool for that process, records the pool’s phys-
ical base address in the PID-MID map structure (§ TV-B3)),
and returns the pool address to the inner kernel. Control
messages for that process are written into buffers carved from
this pool. When the SSMe (driverlet receives a
transmission request, it identifies the sender by resolving the
buffer’s address via the PID-MID map structure, eliminating
any dependence on untrusted metadata.
Guaranteeing Message Integrity. To protect control mes-
sages from compromise, especially as they traverse the outer
kernel path, SECV relies on the inner kernel to enforce access
control over the submitted message buffers. When the inner
kernel receives a pool’s physical base from the SSMe, it maps
the pool into the process address space as read—write, maps it
read—write for the inner kernel, and maps it read-only for the
outer kernel. Because the network stack and Normal World
peripheral drivers reside in the outer kernel, they cannot write
to these buffers and therefore cannot tamper with in-flight
control messages.

Buffer pool management is securely, jointly handled by the
inner kernel and SSMe. For each buffer pool, they maintain
shared metadata in the form of a bitmap and a buffer-size field.
The inner kernel allocates a message buffer by setting the next
available bit in the bitmap and returning the corresponding
buffer address. When SSMe receives that buffer in a transmit
request and successfully sends the contained control message,

it frees the buffer by clearing the corresponding bit in the
bitmap.

Another concern arises from the Normal World OS’s use of
APIs like copy_to_user, put_user [100], and related
functions that write to user space. Although the transmit buffer
pool is mapped read-only to the outer kernel, these APIs may
still be exploited. For instance, a malicious outer kernel could
use an unrelated system call to trigger one of these APIs
and overflow a user-supplied buffer into the memory region
backing the transmit pool. This violates isolation, allowing
the outer kernel to tamper with message post-submission. To
address this, SECV hooks the copy-to-user family of
APIs and enforces a constraint: writes into SSMe-mapped
shared-memory regions are permitted only when performed
by the inner kernel. All other attempts are denied, ensuring
strict control over Secure World —to—Normal World data flow
and preserving the integrity of submitted message buffers.
The Message Transmission Path. Application processes
transmit control messages typically through the network stack
using sockets and send or write system calls, and some-
times, although rarely, directly to peripheral drivers via the
IOCTL interface. When a process attempts to transmit a
control message, the inner kernel intercepts the system call. It
allocates a buffer from the process’s pool, copies the message
into it, and forwards the buffer’s address to the outer kernel’s
network stack. The outer kernel uses the standard sk_buff
structure [101]] to carry the control message through the
networking layers to the Normal World OS peripheral driver.

However, as the message traverses the network stack, certain
operations may require write access to the message buffer.
This presents a challenge for SECV, which must switch
between the inner and outer kernels to verify and perform the
intended write on the outer kernel’s behalf. These transitions
incur performance overheads and complicate enforcement. To
address this challenge, we examine the transmission path
of the widely used CAN protocol. We focus on CAN in
our design and evaluation of SECV because CAN drivers
are tightly integrated with the kernel and typically rely on
large, monolithic frameworks for message handling, error
processing, and bus arbitration, making it highly complex to
partition the logic between the Normal World driver and the
Secure World driverlet in SSMe. We note that Automotive
Ethernet is rapidly gaining adoption, particularly in Tesla
vehicles and increasingly across the industry [47]], and we
detail in how our CAN-centric design can be extended
to support Automotive Ethernet with minimal modifications.

We observe that most modern EVN applications transmit via
SocketCAN, using the standard socket API. Along the network
path, there are a few sites where the submitted CAN frame
is mutated (e.g., protocol headers/flags). These mutations are
minimal and typically derived from fields already set by the
application; accordingly, the stack can temporarily switch to
the inner kernel, which validates the intended changes and
performs them on the stack’s behalf. Crucially, we find no need
to reallocate or deep-copy the frame as it traverses the stack,
except for a few instances in SPI-wrapped CAN. Although

NW 0s

|

Outer Kernel

SGI | | Msg. buffer TX queue
handling | | write request
&d - Rd
Inner Kernel

SMC <response>

Shared memory swos

Secure memory

Control recordin
0 g

L| RX queue

TX queue

0-0+0-0

i3 =
Intgirrupt SGI "==
ka

RX queue SSMe

Secure
Driverlet

Minimized
state

SMC <request>
d I ISGI Secure message buffer

[Secure Monitor
Write @ Interrupt sig. T VRW

I SP1/ CAN controller I

Fig. 5: SECV driver splitting setup, using shared buffers,
SMCs, and SGIs for communication.

sk_buff normally co-locates metadata and payload in a
single allocation, it also supports externally allocated payloads
via data. This enables straightforward adoption of SECV ’s
message-buffer design by setting data to the secure message
buffer and letting the stack operate over that buffer under inner
kernel mediation.

5) SECV Driver Splitting: In line with SECV ’s goal
of preventing unauthorized transmissions, SECV revokes
Normal World ’s direct access to peripheral drivers, ensur-
ing that a compromised Normal World component cannot
bypass SSMe and inject unauthorized control messages. As
described in SECV achieves this by adopting a split-
driver model that partitions existing peripheral drivers into
an Normal World component and a minimal Secure World
driverlet.

This model presents a further challenge: EVN-IVN com-

munication peripherals (e.g., CAN, UART, SPI) rely heavily
on MMIO. Because SECV confines peripheral access to the
Secure World, these MMIO regions are accessible only there,
requiring all interactions to be mediated by SSMe. However,
existing drivers tightly interleave MMIO operations with com-
plex state management, error handling, and kernel-dependent
logic, leaving no obvious boundary for safe partitioning. The
difficulty is compounded by low-level I/O patterns: drivers
frequently manipulate peripheral registers byte-by-byte, even
when processing entire frames, with the relevant logic dis-
persed across the codebase.
Splitting Points and Coordinated Control. We observe
that transmission and reception paths dominate peripheral
interaction and are executed most frequently. Accordingly,
SECYV relocates the peripheral-access logic specific to message
Tx/Rx into SSMe, decoupled from the original driver structure.
In the Normal World drivers, this logic is replaced with
explicit SMC requests to Secure World driverlets. Driverlets
implement simplified control flow and minimal state to track
transmission, reception, and essential peripheral state.

For the remaining logic, the Normal World driver issues
access requests to the driverlet as needed. SECV treats read
requests as benign, but write requests as potentially malicious.
In practice, control registers are typically well-identified;
driverlets are protocol-aware and encode the permitted periph-
eral states and transitions. Consequently, they can whitelist

expected control sequences and flag any Normal World write
sequences that deviate from the known protocol. Prior work
demonstrates similar approaches, pre-recording peripheral ac-
cesses and replaying or validating them at runtime [44], [105].
This preserves Secure World ownership of device registers
while allowing the outer driver to progress using validated,
least-privilege state.
Message Transmission and Reception. For message Tx/Rx,
SECV adopts a zero-copy design that shares buffer addresses
between Normal World drivers and SSMe. On the Tx path,
this is already provided by per-application pools and secure
message buffers. On the Rx path, SECV allocates a common
shared memory pool for all incoming IVN frames; while
receive buffers are not per-application by default, they can
be logically partitioned to prevent EVN applications from
reading messages they are not authorized to access. SECV
coordinates exchange via software shared queues. For Tx, the
NW driver enqueues a buffer address (from the network stack)
into the Tx queue and issues an SMC; the driverlet validates
the request and, if admissible, programs the device to transmit
directly from the referenced buffer. For Rx, the driverlet writes
incoming frames into a buffer from the shared pool, enqueues
its address into the Rx queue, and signals the NW driver with
an SGI. This scheme preserves zero-copy semantics while
keeping SSMe in the authorization loop for both directions.

Real-time EVN-IVN communication is heavily interrupt-
driven. Since SSMe controls all peripherals, SECV routes all
hardware interrupts to the driverlet, which then notifies the
NW driver via SGIs. A naive scheme, one SMC call per
transmission and one SGI per received or completed frame,
incurs frequent world switches, leading to high latency and
throughput overheads. To address this, SECV adopts a NAPI-
inspired polling and batching model in the split-driver path.
Instead of handling every peripheral interrupt individually,
the driverlet disables them after the first and polls interrupt
flags to process multiple Tx/Rx events in a single invocation.
This approach significantly reduces world switches during
burst traffic, e.g., when the FlexCAN controller raises rapid
successive interrupts-avoiding severe reception frame loss.
SECV also amortizes transmission by batching. Finally, be-
cause the number of available SGIs is limited, while peripheral
controllers typically raise distinct interrupt lines, SECV uses a
single SGI with a shared-memory bitmap for demultiplexing.

6) Policy Enforcement and Actual Message Transmission:
For each control message dequeued from the Tx queue,
the driverlet retrieves the associated policy using the buffer
address, which maps to a PID-MID map entry identifying the
sender. It verifies whether the application is authorized to send
the message, by checking the ID (or a destination IP/Port in
case of Ethernet) of the transmission request against the MIDs
in the PID-MID map entry. If authorized, it signs the message
with SKC and writes it on the peripheral buffer for transmis-
sion, and frees the buffer by unsetting the corresponding bit
in the bitmap. Any mismatch indicates a replay or fault.

7) IVN Message Reception by and SSMi Role: By default,
SECV assumes the IVN is benign and focuses on blocking

10

EVN-originated attacks from reaching it. For EVN-bound
traffic, however, SSMi signs or encrypts messages at the IVN
gateway, and SSMe decrypts them with the SKC, enqueues
them in the Rx queue shared with the NW driver, and raises
an SGI so the driver forwards them to the NW stack. SECV
can also support application-specific reception by establishing
reverse paths between SSMe and the NW driver, analogous to
the transmit paths.

V. IMPLEMENTATION

We implement a SECV prototype on an ARMv8-A plat-
form, building the SSMe atop OP-TEE v4.0 and extending
the ARM Trusted Firmware v2.10 secure monitor, with Linux
6.6.52 in the Normal World. Our implementation focuses
on the EVN side—with only minor IVN modifications—and
includes the SSMe and kernel isolation mechanisms, CAN
driver changes for the NXP S32G3 platform, a generalizable
SPI-wrapped CAN driver using the MCP2515 CAN HAT,
and extensions to Linux’s IMA, MMU, process and task
management, security modules, and CAN network stack.

A. Intra-Kernel Isolation

To partition the kernel into inner and outer, we build
on Hilps [34]’s IDC and initial page-table setup, which
split the kernel virtual address space into two compart-
ments. We hook the set_pXX () family so that page ta-
ble updates are verified and applied in the inner kernel,
and extend the linker script to place security-critical code
and data in the inner region. In particular, we map most
of the SCHED TEXT, IRQENTRY_ TEXT, and other sensi-
tive sections, as well as process/task-management such as
task_alloc, copy_process, and sched, into the inner
kernel. For non-prefixed functions and globals, we intro-
duce sections prefixed with ___secv and collect them into
a dedicated range in the linker script. Finally, we hook
copy-to-user APIs and related helpers with checks that
ensure only inner kernel can modify message buffer ranges.

For the LSM framework, we register SECV-specific
hooks with security_add_hooks in the outer ker-
nel, but implement their handlers in the inner kernel.
Each LSM hook in the outer kernel therefore points to a
stub that marshals arguments and invokes the IDC, where
the actual handler runs. For process-management hooks
such as bprm_check_security, the stub forwards the
linux_binprm context to the inner kernel, which coop-
erates with SECV-extended IMA to establish the PID-MID
binding and trigger Secure World updates before execve
completes.

B. Implementing the SSMe

We implement the SSMe as an OP-TEE driver consisting of
multiple driverlets and a companion library. We define SMC
function IDs to service Normal World OS requests. The core
library provides a page-sized message-buffer pool carved from
a reserved shared-memory region and maintains the PID-MID
map as a hash map keyed by PID hashes. For cryptography,

secure storage, and other HTA-related services, we bootstrap
OP-TEE’s £TPM [77].

Driverlets are derived from Normal World driver logic.
We define minimal state to track only what is required for
Tx/Rx and protocol compliance, and implement functions as
pared-down adaptations of Normal World routines or clean
reimplementations informed by driver behavior. On the trans-
mit path, we target __ start_xmit (), which consumes
an sk_buff and typically contains the MMIO sequences
that effect CAN-frame transmission in dedicated CAN drivers
(e.g., flexcan, rcar). For SPI-attached CAN devices, this
remains a convenient post—network-stack interception point,
and we additionally inspect __transfer_one () in the
relevant SPI driver. Where device manuals are explicit, we
further minimize logic and move only the necessary MMIO
accesses, akin to record-and-replay.

On the receive path, we study the polling/IRQ handlers
(e.g., __irg_do_ ()) that produce an sk_buff and extract
the minimal code needed to fetch frames from the device,
with the remaining path proceeding in the Normal World via
SMCs. Finally, we implement interrupt handlers, either as
minimal counterparts of their Normal World versions or as
coordination routines that work with Normal World drivers to
manage peripheral state.

C. Normal World Drivers

We modify existing normal world drivers to ensure they are
in sync with the secure world driverlets. We replace peripheral
access sequences that result in message transmission with
SMC code that enqueues frames to the shared queue and
makes SMC requests to the SSMe driverlets. As explained
above, we locate and transform the no_start_ xmit ()
routines.

For interrupt handlers, e.g., flexcan_irg mailbox of
the FlexCAN driver, since the driverlets already define mini-
mal versions of their own, we implement new functions that
coordinate with the driverlets to handle the driver state. These
handle SGIs forwarded by the SSMe instead of the original
interrupt. We also hook the readl/writel helpers in the
CAN and SPI drivers, replacing their MMIO accesses with
SMC requests. The driverlets interpret the accessed addresses
according to a known static MMIO protocol, which allows
them to block malicious peripheral accesses.

D. Modifying The CAN Network Stack

Having analyzed the CAN network stack, we identify
and modify critical sites relevant to SECV. Specifically,
we adjust the ___sendmsg path (e.g., raw_sendmsg (),
bcm_sendmsg ()) where send/write copy the control
message into kernel space. SECV ensures that the allocated
sk_buff is backed by the sender application’s secure mes-
sage buffer and that the payload copy occurs while temporarily
switching to the inner kernel. Subsequent header-touch points
along the path, before invoking ndo_start_xmit (), can
be reasoned about and safely performed via inner kernel
mediation.

11

Metric Baseline (ms) SECV (ms) Overhead (Xx)
fork + execve 1.24265 1.53795 1.24
fork + exit 0.47311 0.61307 1.30
write 0.00054 0.00054 1.0
open/close 0.00703 0.00710 1.01
stat 0.00390 0.00376 0.97
fstat 0.00087 0.00088 1.01
send 0.00306 0.00417 1.36
recv 0.01085 0.01077 0.99
mmap 0.05100 0.06093 1.19
Geomean 1.11

TABLE II: SECV’s
fected system calls.

LMBench results and overhead for af-

VI. EVALUATION

In this section, we evaluate SECV ’s security guarantees and
runtime performance on an S32G3 board with eight Cortex-
AS53 application processors (hosting the EVN manager), four
Cortex-M7 MCUs (hosting the IVN gateway), an automotive-
grade HSE, and peripherals including FlexCAN, LINFlex,
SPI, UART, and automotive Ethernet. Although AP-MCU
communication can use any of these links, we primarily
use FlexCAN, with SPI/UART only for cases such as boot-
time trust setup, consistent with We measure SECV s
impact on EVN-IVN throughput and latency, EVN application
performance during control-message transmission, and IVN
gateway CPU load due to SSMi, and additionally evaluate its
effect on system boot time, application load time, and overall
security guarantees.

A. Performance Evaluation and Resource Utilization

1) Boot Time Overhead: We first evaluate SECV’s impact
on platform boot time, focusing on TEE firmware attestation
and HSM trust establishment. Establishing trust between the
HSM and SSMe adds only 5.83ms on average—Iless than
1% of total boot time. This overhead mainly arises from
communication latency, firmware hash exchange, and the cryp-
tographic operations needed to secure the protocol (encryption,
decryption, and shared key generation).

2) Application Load Time and Affected Systemcall Over-
head: Next, we evaluate SECV’s impact on application load
time to capture the cost of dynamic application attestation and
binding EVN applications to the SSMe. To this process, SECV
adds binary/policy verification and PID-MID map setup in
SSMe, which increases load latency by 23x (from 0.0256 ms
to 0.593 ms). Analysis of this overheaded shows two roughly
equal contributors: (i) application/policy verification and (ii)
the SMC to create the PID-MID entry. For applications with-
out transmit permissions, SECV skips PID-MID setup; for
others, setup can be deferred until the first send to amortize it
with initial secure buffer—pool allocation. Because verification
entails file hashing, we evaluated sensitivity to binary+policy
size and MID count by averaging overhead incurred over
bundles from 8 KB to 200 MB; the overhead remained in
the same range across sizes. Since this overhead is incurred
only once during initial application loading, it does not affect
subsequent communication latencies.

We measure the overhead that SECV introduces to the
fork and exec system-call families using LMBench [63]],

with missing calls measured manually. reports these
results, along with manually measured recv, send, and
mmap. Recall that fork invokes the SSMe to create a
PID—policy mapping for the child, while exec triggers IMA
measurement and SSMe setup similar to application loading;
because exec typically follows fork, we report combined
overhead for fork+execve. We also evaluate the overhead
of write and send used for EVN-IVN communication,
which incur inner—outer kernel transitions and additional
checks in put_user, copy_to_user, and related APIs.
Each call is executed 100 times and we report the mean. The
first send or write from a process includes a one-time SMC
for transmission—pool initialization, causing over 3x overhead;
because this occurs only once, we exclude it from the averages.

3) Communication Throughput and Latency: Next, we
assess the impact of SECV on EVN-IVN communication
in terms of throughput, latency, and IVN gateway load. We
begin by isolating SECV ’s non-cryptographic overhead using
microbenchmarks that measure round-trip time (RTT) and
throughput for control messages of varying sizes between
EVN manager and IVN gateway. We use NXP’s GoldVIP
SAE J2284 [5[-inspired EVN manager-IVN gateway commu-
nication benchmark that emulates authentic EVN-IVN traffic.
Under burst transmission conditions (Oms inter-message gap),
SECV introduces a throughput and latency overhead ranging
from 1.6% and 1.7% for 64-byte messages to 11.1% and
0.6% for 8-byte messages, respectively, in our FlexCAN
setup. Smaller messages deplete transmit buffers more rapidly,
triggering more frequent world switches and reducing the
time budget for SECV to process messages. Consequently,
using a long Tx queue for such messages significantly hurts
throughput, latency, and leads to a high message loss. In fact,
in our experiments, we notice that for 8-byte messages, any
Tx queue longer than 1 message at a time leads to a message
loss of more than 20%. For such messages, SECV proposes
treating them as a priority, and transmitting them to the SSMe
immediately without queuing. We notice that this significantly
improves throughput, latency, and reduces message loss for
such small messages. However, care must be taken to ensure
attackers don’t use such messages to launch a DoS attack
on SECV. One way SECV can mitigate such attacks is by
incorporating rate limiting in SSMe’s filtering. Fortunately,
SSMe is designed with flexibility in mind, allowing for OEMs
to adopt any advanced filtering methods before EVN-IVN
transmission. With this design, we observe a mere 1.5%
additional average frame loss for small messages under burst
reception. We also observed that longer Tx queues benefit
large-size messages (32-64 bytes), and believe a slow-fast
hybrid design of these queues can further improve overall
communication performance. We leave this for future work.
Notice that in some cases, the throughput and latency of
SECV are better than the baseline’s. This is attributed to
the shorter, optimized message offloading paths SECV uses
in its split-driver design, especially where most message
handling logic is replaced by deterministic paths due to static
recording. Consequently, except for the 8-byte small messages,

12

LoC

Original: 0.19k, SECV: 2k
2.7k
1.2k

Component

HILPS
SSMe
Secure Monitor (EL3)

TABLE III: SECV’s TCB size in terms of lines of code (LoC).

SECV ’s overhead decreases with larger message sizes, as the
peripheral takes longer to transmit each message, giving SECV
sufficient headroom to manage buffers without overruns. At
the IVN gateway, incoming messages are first received and
inspected by SSMi, adding a moderate average CPU load of
2%. Under less intensive conditions (inter-message gaps >
1ms), SECV introduces negligible overhead in all metrics, as
shown in This is expected, since the TEE world
switch completes well within the idle gap, allowing SECV
to handle communication without delay. Given that CAN
messages typically tolerate up to 10ms latency, SECV is well-
suited for real-world deployments.

To evaluate SECV under realistic conditions, we replayed
combined real-world CAN traces from CAN-MIRGU [78]] and
OTIDS [59]. Analysis of these datasets revealed no inter-
message gaps below 1ms, suggesting that the burst periods
where SECV exhibits higher overhead are rare in practice.
In our experiments, we observed no measurable throughput
degradation or frame loss. Although SECV still incurred a
small per-message latency overhead, all messages were deliv-
ered within their available time windows without overruns.

With encryption and/or authentication enabled, we evaluate
SECYV using HMAC on 32-byte messages with 32-byte MAC
tags under a realistic 1ms inter-message gap. We simulate
synthetic control messages from the EVN manager to the IVN
gateway, each of which triggers an authenticated response, and
run this exchange continuously for one minute. Throughput
remains unchanged, but cryptographic processing adds an
average round-trip latency of 181.26 us, primarily due to MAC
generation in the TEE and verification by SSMi via the HSM.
At the IVN gateway, CPU load increases by 8.61%, which
remains moderate because SSMi offloads expensive opera-
tions—especially response MAC generation—to the HSM.
Using AES-GCM with a 12-byte nonce and an 8-byte tag for
the same 32-byte messages, SECV incurs a higher average
latency overhead of 246.79us and a CPU-load increase of
13.99%.

For memory overhead, SECV reserves a fixed 30MB region
at the EVN manager, from which it allocates all message
channels and NW-EVN shared queues, avoiding dynamic
allocation and ensuring predictable usage. SECV also reduces
energy consumption by relying on peripheral polling instead
of interrupts, which is particularly effective during message
bursts and imposes only negligible CPU load on the IVN gate-
way. Consequently, SECV provides strong security guarantees
without incurring excessive resource utilization.

4) Trusted Computing Base (TCB): To reduce the risk
of bugs and vulnerabilities in its core security components,
SECV maintains a small TCB, summarized in [Table III

118 == Throughput

Latency

= Throughput

B 114 Latency

£ 110
5
2
S 1.06
°
9 1.02

£ 098

Normalized Overhead

2 094

0.90

8 16
Frame size (Bytes)

32

8

16 32 64 Geomean
Frame size (Bytes)

64 Geomean

IVN Gateway CPU Load

= Baseline
Secv

= Baseline
Secv

IVN Gateway CPU Load

50
8 16 32 64 Geomean
Frame Size (Bytes)

8 16 32 64 Geomean

Frame Size (Bytes)

(a) Message throughput and la- (b) Message throughput and la- (c) IVN gateway CPU utilization (d) IVN gateway CPU utilization

tency (Transmission Gap = Oms). tency (Transmission Gap = 1ms). (Transmission Gap = 0ms).

(Transmission Gap = 1ms).

Fig. 6: Combined performance impact of SECV under burst traffic.

B. Security Evaluation

We evaluate the security guarantees provided by SECV
against the threats described in and qualitatively explain
its security guarantees against numerous attackers.

1) Application-level Spoofed Provenance: Attackers may
install backdoors or alter applications, but such binaries fail
the inner kernel’s load-time integrity verification and cannot
execute. Note that for an application to be verified, a crypto-
graphic hash of its bundle (app binary + encrypted MIDs) must
have been computed and signed by the OEM’s private key,
securely maintained remotely. Its digital signature must have
been installed along with the bundle as outlined in [§ TV-B3}
Verification encompasses recomputing the bundle hash and
validating it against the public key counterpart of the OEM’s
private key (the keyring [§ TV-B3). Recall that SECV hardens
this procedure by requiring further verification of the keyring
in the Secure World, preventing attackers from subverting this
process. Because transmission permissions are encrypted and
bundled with the binary, and the bundle is signed, attackers
cannot tamper with policies to bypass SECV °’s authenticity
guarantees. Likewise, exploiting a vulnerability in an installed
application does not permit arbitrary control transmissions:
SSMe enforces per-application permissions at send time, and
nonconforming messages are denied and dropped. Even if a
legitimate application is exploited to compromise the outer
kernel, it cannot transmit control messages beyond its policy.
The outer kernel is not authorized to allocate secure message
buffers, nor can it spoof MIDs to SSMe, because only the
inner kernel may relay PID-MID bindings to SSMe. It also
cannot tamper with other processes’ buffers: those pools are
write-protected from the outer kernel and uniquely bound per
process. Consequently, any message emitted by the compro-
mised application is still recognized under its original identity
and checked against its permitted MID set; attempts to transmit
outside that set are denied by SSMe.

A more sophisticated threat involves hijacking an already-
permissioned application to misuse its privileges and trans-
mit unauthorized control messages. These may be addressed
through rate-limiting strategies. Each application is allocated
a bounded message buffer; abuse leads to buffer exhaustion
and a subsequent lockout. To thwart timing-based inference
attacks, each application may be assigned a randomized, per-
session transmission rate, negotiated between the SSMi and
SSMe during boot or application load.

2) Privilege Escalation Attacks:

13

Spoofing Provenance. An attacker who compromises the
outer kernel may attempt to forge and inject control messages
via the network stack or Normal World driver queues, attempt-
ing to impersonate an authorized application. However, such
payloads reside in inauthentic buffers not recognized by SSMe
’s per-process pool and thus do not resolve in the PID-MID
map structure; the permission lookup fails, and the messages
are denied and dropped.

Tamper/Injection on Path. Similarly, an attacker in the outer
kernel may attempt to modify control messages submitted by
authorized applications, or simply record and replay secure
message buffer addresses. However, message buffer manage-
ment is shared by both the inner kernel and SSMe. SSMe treats
a message buffer whose bit is unset in the bitmap as carrying
an invalid message and simply drops it.

Driver/Peripheral Subversion. An attacker cannot program
peripheral Tx buffers as Normal World access is completely
revoked by SSMe. Even the access requests the NW driver
makes to the Secure World driverlets are strictly checked,
especially if they are write requests to control registers.
Interestingly, an attacker may compromise a Normal World
driver to perform DMA attacks on the SSMe. On a system
with a resource controller, such as XRDC on our evaluation
board, peripherals can be constrained on the memory ranges
they can access, thwarting such attacks successfully. On other
systems with the SMMU, this can be placed in the control of
the inner kernel and then leveraged to prevent such attacks. In
the absence of a system resource controller or SMMU, static
carve-outs of memory may be pre-assigned as in [[L05]].
Compromised Firmware Attacks. Attempts to compromise
the EVN manager OS or the IVN gateway firmware trigger
boot-time attestation failures, resulting in either a halted boot
process or blocked communication between the EVN and IVN
domains. While such attempts may induce a denial-of-service
(DoS) condition, they nonetheless prevent unauthorized con-
trol over safety-critical IVN components—a deliberate safety-
preserving tradeoff in automotive security design.

Exploiting TEE Vulnerabilities. Advanced adversaries may
attempt to exploit vulnerabilities in the Secure World OS (e.g.,
OP-TEE [14], [16]) to compromise SSMe itself. While such
attacks lie out of the scope of this work, we outline several
hardening options. For instance, SSMe can be implemented as
a separate Trusted Application (TA) and isolated using XRDC,
as demonstrated by ReZone [32]]. Alternatively, SSMe can
be executed on a dedicated, pinned CPU core with exclusive

peripheral access and shared memory communication, follow-
ing designs proposed in Sanctuary [31]. XRDC isolation can
further strengthen these setups by enforcing hardware-backed
separation across trust domains.

VII. DISCUSSION
A. SECV for Automotive Ethernet & Protocol Translation

We investigated whether SECV ’s CAN-based design can
generalize to Automotive Ethernet, whose adoption is steadily
growing among major vendors (AES in [47]). However,
the Ethernet stack is substantially more complex than CAN:
the sk_buff structure is repeatedly reallocated and modified
across layers (e.g., header insertion and flag updates), mak-
ing frequent inner—outer kernel switches impractical, while
pulling the entire stack into the inner kernel would bloat
its TCB and import known vulnerabilities [7], [L1], [15]. In
principle, SECV could still support Ethernet by performing
inner—outer transitions on each legitimate sk_buff update,
but this would introduce prohibitive overhead and engineer-
ing complexity, motivating an alternative design for Ethernet
and CAN-Ethernet protocol translation. Instead, we propose
a kernel bypass approach [40], [42] that links applications
to the SSMe via user-space network stacks and a modi-
fied NIC driver, which fits SECV ’s per-application control
model. The inner kernel maps isolated memory pools into
each application’s address space, user-space stacks allocate
Ethernet packets from these pools, and the SSMe verifies
packet buffers—as in our CAN design—before authorizing
transmission to the NIC. With kernel bypass, SECV can thus
be efficiently extended to Automotive Ethernet.

B. SECV with Virtualization & Containerization

Virtualization and containerization are increasingly used
in connected vehicles to reduce ECU count and improve
isolation. In such environments, SECV must still uphold its
security guarantees, with communication peripherals mapped
to the Secure World via hypervisor mechanisms such as
nested paging. The main challenge is correctly associating
applications and their virtualized network endpoints with IVN
control messages. To address this, SECV can build on secure
hypervisor modules such as those in [43]], extended to support
SECV and generalized beyond IVI domains.

C. Related Works

Secure Peripheral Access and Driver Splitting. Several
works [38]], [44]], [62]], [83]], [84], [[105] explore TEE-mediated
secure peripheral access. Some, such as TEEFilter [83],
manually split drivers at goal-specific boundaries (as SECV
does), while others, e.g., Guo et al. [44], Liu et al. [62]
and Wang et al. [105]], record and replay driver interactions
to synthesize minimal secure paths. To ensure availability in
CPS settings, RT-TEE [105] adopts a split-driver design with
debloated Secure World driverlets for secure tasks and full
sandboxed drivers for nonsecure tasks, debloated by recording
MMIO/interrupt interactions and replaying only the necessary
subset. Recognizing that CPS peripherals (e.g., sensors and

14

actuators) share buses, RT-TEE also enforces spatial and tem-
poral isolation of device access using a layered bus scheduler.

SECV adopts a split-driver architecture akin to RT-TEE
but uses manual partitioning narrowly focused on control-
message Tx/Rx paths. Unlike RT-TEE’s setting, where sen-
sors/actuators commonly share a bus, automotive deployments
typically place communication peripherals like CAN (and
often SPI) on dedicated physical buses. This environmental
setting difference further highlights the design goals and driver
splitting designs between SECV and RT-TEE. Nonetheless,
SECV’s security remains intact even on prototype platforms
with multiplexed, multi-purpose boards: SECV’s driverlet can
leverage peripheral selectors (e.g., chip-select) to identify
the targeted device in each Normal World driver request and
apply protocol-aware checks to block malicious transmissions.
However, in shared-bus scenarios, SECV does not provide the
availability guarantees pursued by RT-TEE. The inner kernel
can detect availability degradation (e.g., contention/starvation),
but strong availability requires specialized arbitration like RT-
TEE’s and is out of scope for SECV. We believe SECV
could benefit from RT-TEE’s layered scheduler, although not
trivially, to provide availability guarantees, especially for high-
priority control-message Tx/Rx, and from its template-based
driverlet derivation to streamline driver splitting.

StrongBox [39] also relies on Normal World drivers (e.g.,
secure GPU use) and protects the data of trusted applications
via a request—response interface with the Secure World, with-
out Secure World driver mediation when untrusted apps use
the GPU. By contrast, SECV mediates all peripheral control
end-to-end: there are no windows in which a Normal World
driver can transmit without Secure World driverlets’ interven-
tion. Every MMIO operation flows through protocol-aware
Secure World driverlets in a request-response workflow that
monitors, validates, and gates device access.

Although TEEFilter’s driver splitting may appear similar to
SECYV, especially in the choice of splitting points, SECV faces
a far broader MMIO surface than TEEFilter’s NIC case (which
touches relatively few Ethernet registers) and complex MMIO
access-dependent logic, which largely influences driverlet de-
sign. Consequently, SECV driverlets make more autonomous
decisions during peripheral access and handle message-related
interrupts largely independent of the Normal World drivers.

Finally, manual driver splitting, as in SECV, does re-
quire engineering effort. That said, SECV offers a vendor-
agnostic abstraction readily adaptable across CAN, SPI, and
Ethernet. In practice, adoption chiefly entails: (i) registering
device interrupts with Secure-World driverlets (given the IRQ
number, add it to SECV ’s table), (ii) defining a minimal
driverlet state (typically vendor-specific but small; future work
can mirror the Normal-World sk_buff abstraction), and
(iii) refactoring key Normal-World routines (xmit, recv,
IRQ handlers) into SECV ’s request-response interface. To
gauge portability, we examined Linux CAN and SPI-CAN
drivers (e.g., Rockchip, R-Car, Kvaser, FlexCAN, slcan,
mscan, mcp2515, hi311x). In all cases, the message paths
(xmit/recv/irq) align well with SECV ’s model; the main

divergence is vendor-specific interrupt handling. Here, SECV
’s protocol-aware driverlets, and where helpful, RT-TEE-style
template driverlets can bridge differences. For Ethernet, we
expect an even simpler path: StrongBox-style [|39] mediation
can be adapted, potentially combined with kernel-bypass, as
previously discussed.

EVN Attacks and Solutions. Several works demonstrate
practical EVN-domain attacks, including full chains that start
in the EVN, traverse the IVN gateway, and compromise IVN
ECUs. Jeong et al. [52] report competition-style attacks on
IVI systems, typically part of the EVN manager, with some
reaching the IVN gateway—the threat surface SECV aims
to protect. Other practitioners [57], [64], [95] show even
more severe attacks that target broader components of the
EVN manager. As discussed in Section these findings
strongly motivated the development of SECV. More recently,
Jing et al. [53]] presented attack paths affecting vehicles from
multiple vendors, further underscoring the severity and real-
world relevance of the problem SECV addresses.

In contrast, relatively few works focus on defense. Har-
ness [43|] proposes a framework that restricts IVN gateway
access from compromised IVI systems by defining a minimal
trusted domain via a hypervisor. Tailored to Android Automo-
tive OS (AAOS), it shares SECV’s goal of securing paths from
external sources to IVN ECUs, but we observed significantly
higher communication overhead than SECV, likely due to
the lack of hardware-backed cryptographic acceleration on
the IVN side and evaluation on a non-autonomous platform.
Moreover, while Harness establishes trust between the enclave
and IVN ECUs (similar to SECV), it focuses only on GUI
inputs from the touchscreen and relies on a hypervisor-based
EVN architecture, which entails a larger TCB and greater
attack surface than TEE-based designs.

Hardware Trust Anchors in Automotive Systems. Plappert
et al. [[75], [76] survey the use of hardware trust anchors
(HTAs) in automotive security, including EVITA [[106] HSMs,
used on our IVN gateway, and TEEs. However, their treatment
of combined HTA designs is brief and does not analyze
the challenges of using a TEE together with an HSM as in
SECV. In follow-up work [74], they develop lightweight ECU
attestation mechanisms based on HTAs, focusing on TPMs [3]],
HSMs, and DICE [19], but not on TEEs.

TEEs in Automotive and Network Solutions. TEEs have
been widely used in network security. TrustedGateway [84]]
and TEEfilter [83]] use TrustZone to implement secure Ethernet
gateways but do not address the specific constraints of automo-
tive systems. Ethernet adoption for EVN-IVN communication
remains slow due to real-time requirements, although it is
increasingly used for non-critical traffic and may eventually
complement CAN. In our experience, splitting drivers and
tracking application context for CAN, SPI, or UART is sub-
stantially more complex than for Ethernet; consequently, for
Ethernet we later propose a different design based on kernel-
bypass techniques. TeeCheck [66], in contrast, mediates all
CAN traffic through the secure world and closely resembles
SECV in requiring mutual attestation between ECUs and the

15

gateway. Prior work [74] shows this is feasible using per-
task HMACs and rate limiting to mitigate DoS, but TeeCheck
still assumes a trustworthy Normal World OS. If the OS is
compromised, it can suppress Secure World API calls, creating
a critical blind spot.

VIII. CONCLUSION

This paper addressed security challenges in modern au-
tomotive platforms, focusing on EVN-originated attacks on
safety-critical IVN ECUs. Drawing on real-world attack cases,
we identified a common root cause and proposed SECV, a
hardware-rooted mechanism for regulating EVN-IVN com-
munication that provides strong security guarantees under
automotive real-time constraints with only moderate control-
message overhead. SECV is practical to deploy via secure
software updates on existing CAN-based platforms and can be
extended to automotive Ethernet with minor software changes,
leveraging widely deployed hardware.

IX. ACKNOWLEDGEMENT

This work was supported by the National Research Foun-
dation of Korea(NRF) grant funded by the Korea govern-
ment(MSIT) (RS-2023-00277326); by the BK21 FOUR pro-
gram of the Education and Research Program for Future ICT
Pioneers, Seoul National University in 2025; by the Institute of
Information & Communications Technology Planning & Eval-
vation(IITP) grant funded by the Korea government(MSIT)
(No. 2021-0-00528, Development of Hardware-centric Trusted
Computing Base and Standard Protocol for Distributed Secure
Data Box); by Institute of Information & communications
Technology Planning & Evaluation (IITP) under the Grad-
uate School of Artificial Intelligence Semiconductor(IITP-
2025-RS-2023-00256081) grant funded by the Korea gov-
ernment(MSIT); by Inter-University Semiconductor Research
Center (ISRC), by Korea Planning & Evaluation Institute of
Industrial Technology(KEIT) grant funded by the Korea Gov-
ernment(MOTIE) (No. RS-2024-00406121, Development of
an Automotive Security Vulnerability-based Threat Analysis
System(R&D)); by the Institute of Information & Communi-
cations Technology Planning & Evaluation(IITP) grant funded
by the Korea government (MSIT) (No.RS-2025-02215590,
Development of Al implementation obfuscation technology
to prevent information leakage in On-Device Al). Finally,
this work was supported by the Institute of Information &
Communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government(MSIT) (No.RS-2024-
00438729, Development of Full Lifecycle Privacy-Preserving
Techniques using Anonymized Confidential Computing)

REFERENCES

[1] “Cve-2013-6282: Linux kernel api improper input validation vulnera-
bility,” https://nvd.nist.gov/vuln/detail/CVE-2013-6282, 2013.

[2] “Cve-2015-5611: Unspecified vulnerability in uconnect before 15.26.1
in certain fiat chrysler automobiles (fca) from 2013 to 2015,” https:
//mvd.nist.gov/vuln/detail/CVE-2015-5611} 2015.

https://nvd.nist.gov/vuln/detail/CVE-2013-6282
https://nvd.nist.gov/vuln/detail/CVE-2015-5611
https://nvd.nist.gov/vuln/detail/CVE-2015-5611

(3]

[4]
[3]

(6]

[7]

(8]

[91

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

“Information technology — trusted platform module library, parts
1-4) International Organization for Standardization (ISO) and
International Electrotechnical Commission (IEC), Tech. Rep. ISO/IEC
11889:2015, 2015, parts: 1. Architecture; 2. Structures; 3. Commands;
4. Supporting Routines. [Online]. Available: https://www.iso.org/
standard/66510.html

“Cve-2016-2434: Nvidia video driver privilege escalation vulnerability
in android,” https://nvd.nist.gov/vuln/detail/CVE-2016-2434, 2016.
“SAE J2284: High-Speed CAN (HSC) for Vehicle Applications at 500
kbps,” SAE International, Tech. Rep. J2284/4_201606, 2016, available:
https://www.sae.org/standards/content/j2284/4_201606/.
“Cve-2020-12769: Race condition in designware spi controller driver,”
https://ubuntu.com/security/ CVE-2020- 12769, 2020, ubuntu Security
Notice.

“Cve-2020-28588: Linux kernel /proc/pid/syscall stack
leak,” 2021, accessed: 2025-07-25. [Online]. Available:
//threatpost.com/linux-kernel-bug-wider-cyberattacks/165640/
“Cve-2021-23907: Heap overflow in headunit ntg6 in the mbux in-
fotainment system,” https://nvd.nist.gov/vuln/detail/CVE-2021-23907,
2021.

“Cve-2021-23908: Type confusion in headunit ntg6 (mbux infotain-
ment system, mercedes-benz),” https://www.cvedetails.com/cve/CVE-
2021-23908/, 2021.

“Cve-2021-23909: Improper input validation in hermes 2.1 (mbux
infotainment system, mercedes-benz),” https://nvd.nist.gov/vuln/detail/
CVE-2021-23909, 2021.

“Cve-2022-0435: Linux kernel tipc stack buffer overflow,” 2022,
accessed: 2025-07-25. [Online]. Available: https://duo.com/decipher/
linux-kernel-stack-overflow-patched

“Cve-2022-32292: Connman gweb heap buffer overflow,” https://
security-tracker.debian.org/tracker/CVE-2022-32292, 2022.
“Cve-2022-32293: Connman wispr use-after-free,” |https://ubuntu.com/
security/ CVE-2022-32293, 2022.

info
https:

“Cve-2022-46152: Op-tee os improper input validation
allows local privilege escalation via cleanup_shm_refs(),”
https://nvd.nist.gov/vuln/detail/CVE-2022-46152, 2022, accessed:
2025-07-25.

“Cve-2023-0179: Linux kernel netfilter stack-based buffer
overflow,” 2023, accessed: 2025-07-25. [Online]. Avail-
able: https://linuxsecurity.com/news/security- vulnerabilities/a- new-

privilege-escalation- vulnerability-in- the-linux-kernel-enables-a-local-
attacker-to-execute-malware-on-vulnerable-systems

“Cve-2023-41325: Double free in op-tee shdr_verify_signature
leading to potential secure world memory corruption,”’
https://nvd.nist.gov/vuln/detail/CVE-2023-41325, 2023, accessed:
2025-07-25.

“Cve-2021-46959: Use after free in linux kernel spi subsystem,” https:
/lfeedly.com/cve/CVE-2021-46959, 2024, feedly - CVE Advisory and
Patch.

“Cve-2024-26807: Pointer handling error in cadence quadspi driver,”
https://teedly.com/cve/CVE-2024-26807, 2024, feedly - CVE Advi-
sory.

“Dice attestation architecture,” Trusted Computing Group, Tech. Rep.
Version 1.1, Revision 0.18, January 2024, pUBLISHED. [Online].
Available: https://trustedcomputinggroup.org/wp- content/uploads/
DICE- Attestation- Architecture- Version- 1. 1-Revision- 18_pub.pdf
“Cve-2022-49844: Linux kernel can frame drop in virtual interfaces,”
https://nvd.nist.gov/vuln/detail/CVE-2022-49844, 2025, nVD Vulner-
ability Detail.

“Cve-2025-38262: Concurrency bug in linux uart driver registration,”
https://security - tracker.debian.org/tracker/ CVE-2025- 38262, 2025,
debian Security Tracker.

I. T. AG, “Infineon’s aurix tc4xx: World’s first iso/sae 21434 certified
automotive mcu family,” 2022, https://www.infineon.com/cms/en/
about-infineon/press/market-news/2022/INFCSS202211-028.html,
——, “Infineon and vector advance automotive cybersecurity with
new microcontroller platform,” 2024, https://www.dennemeyer.com/
fileadmin/a/media - library / reports / cybersecurity_in_mobility_2024 -
05.pdf.

T. H. Aldhyani and H. Alkahtani, “Attacks to automatous vehicles: A
deep learning algorithm for cybersecurity,” Sensors, vol. 22, no. 1, p.
360, 2022.

16

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

E. Aliwa, O. Rana, C. Perera, and P. Burnap, “Cyberattacks and
countermeasures for in-vehicle networks,” ACM computing surveys
(CSUR), vol. 54, no. 1, pp. 1-37, 2021.

A. Ambekar, R. Schneider, K. Schmidt, and U. Dannebaum, “Future of
automotive embedded hardware trust anchors (aehta),” SAE Technical
Paper, Tech. Rep., 2022.

A. M. Azab, K. Swidowski, R. Bhutkar, J. Ma, W. Shen, R. Wang,
and P. Ning, “Skee: A lightweight secure kernel-level execution envi-
ronment for arm.” in NDSS, vol. 16, 2016, pp. 21-24.

S. Basu, M. Staron, J. Horkoff, M. Almgren, C. Berger, and T. Olovs-
son, “A survey of recent automotive software security vulnerabilities:
Trends and attack vectors,” Chalmers University of Technology Re-
search Portal, 2023, https://research.chalmers.se/publication/543968/
file/543968_Fulltext.pdf.

D. Berard and V. Dehors, “Security of connected vehicles,” Presentation
at GreHack 2023 https://grehack.fr/2023/talks, 2023.

K. Blog, “Vulnerability in remote control systems of kia vehicle,”
https://os.kaspersky.com/blog/vulnerability-in-kia- car-remote-control-
systems/, 2025.

F. Brasser, D. Gens, P. Jauernig, A.-R. Sadeghi, and E. Stapf, “Sanc-
tuary: Arming trustzone with user-space enclaves.” in NDSS, 2019.
D. Cerdeira, J. Martins, N. Santos, and S. Pinto, “${S$rezone$}$:
Disarming ${$trustzone$}$ with ${S$tee$}$ privilege reduction,” in
31st USENIX Security Symposium (USENIX Security 22), 2022, pp.
2261-2279.

S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno, “Compre-
hensive experimental analyses of automotive attack surfaces,” in 20th
USENIX security symposium (USENIX Security 11), 2011.

Y. Cho, D. Kwon, H. Yi, and Y. Paek, “Dynamic virtual address range
adjustment for intra-level privilege separation on arm.” in NDSS, 2017.
A. Chowdhury, G. Karmakar, J. Kamruzzaman, A. Jolfaei, and R. Das,
“Attacks on self-driving cars and their countermeasures: A survey,’
IEEE Access, vol. 8, pp. 207 308-207 342, 2020.

R. E. Corporation, “Renesas rh850/plx-c: Automotive safety micro-
controllers with embedded hardware security module (hsm),” Tech.
Rep., 2016, https://www.renesas.com/en/key - technologies/security/
automotive-security

——, “Renesas unveils automotive gateway solution based on new r-
car s4 socs and pmics,” IoT Now, 2021.

Y. Deng, C. Wang, S. Yu, S. Liu, Z. Ning, K. Leach, J. Li, S. Yan,
Z. He, J. Cao et al., “Strongbox: A gpu tee on arm endpoints,” in
Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, 2022, pp. 769-783.

——, “Strongbox: A gpu tee on arm endpoints,” in Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications
Security, 2022, pp. 769-783.

F.-S. Developers, “F-stack: High performance network framework
based on dpdk and freebsd tcp/ip stack,” 2017, available at
https://github.com/F-Stack/f-stack.

A. N. Europe, “Vw reaches direct supply deals with chipmakers to
avoid shortage,” https://www.autonews.com/suppliers/vw- will- buy-
important-chips-directly-nxp-infineon-renesass/, 2023.

L. Foundation, “Data plane development kit (dpdk),” 2015. [Online].
Available: http://www.dpdk.org

H. Gong, S. Hong, S. Yang, R. Chang, W. Shen, Z. Yuan, C. Yu, and
Y. Zhou, “Harness: Transparent and lightweight protection of vehicle
control on untrusted android automotive operating system.”

L. Guo and F. X. Lin, “Minimum viable device drivers for arm
trustzone,” in Proceedings of the Seventeenth European Conference
on Computer Systems, 2022, pp. 300-316.

Y. Guo, Z. Wang, B. Zhong, and Q. Zeng, “Formal modeling and
security analysis for intra-level privilege separation,” in Proceedings
of the 38th Annual Computer Security Applications Conference, 2022,
pp. 88-101.

K. Herald, “Autocrypt accelerates as car cyber threats drive global
demand,” https://www koreaherald.com/article/10494114, 2025.

S. Hu, Q. Zhang, A. Weimerskirch, and Z. M. Mao, “Gatekeeper:
A gateway-based broadcast authentication protocol for the in-vehicle
ethernet,” in Proceedings of the 2022 ACM on Asia Conference on
Computer and Communications Security, 2022, pp. 494-507.

N. Hugq, C. Gibson, and R. Vosseler, “Driving security into connected
cars: threat model and recommendations,” Trend Micro, 2020.

https://www.iso.org/standard/66510.html
https://www.iso.org/standard/66510.html
https://nvd.nist.gov/vuln/detail/CVE-2016-2434
https://ubuntu.com/security/CVE-2020-12769
https://threatpost.com/linux-kernel-bug-wider-cyberattacks/165640/
https://threatpost.com/linux-kernel-bug-wider-cyberattacks/165640/
https://nvd.nist.gov/vuln/detail/CVE-2021-23907
https://www.cvedetails.com/cve/CVE-2021-23908/
https://www.cvedetails.com/cve/CVE-2021-23908/
https://nvd.nist.gov/vuln/detail/CVE-2021-23909
https://nvd.nist.gov/vuln/detail/CVE-2021-23909
https://duo.com/decipher/linux-kernel-stack-overflow-patched
https://duo.com/decipher/linux-kernel-stack-overflow-patched
https://security-tracker.debian.org/tracker/CVE-2022-32292
https://security-tracker.debian.org/tracker/CVE-2022-32292
https://ubuntu.com/security/CVE-2022-32293
https://ubuntu.com/security/CVE-2022-32293
https://linuxsecurity.com/news/security-vulnerabilities/a-new-privilege-escalation-vulnerability-in-the-linux-kernel-enables-a-local-attacker-to-execute-malware-on-vulnerable-systems
https://linuxsecurity.com/news/security-vulnerabilities/a-new-privilege-escalation-vulnerability-in-the-linux-kernel-enables-a-local-attacker-to-execute-malware-on-vulnerable-systems
https://linuxsecurity.com/news/security-vulnerabilities/a-new-privilege-escalation-vulnerability-in-the-linux-kernel-enables-a-local-attacker-to-execute-malware-on-vulnerable-systems
https://feedly.com/cve/CVE-2021-46959
https://feedly.com/cve/CVE-2021-46959
https://feedly.com/cve/CVE-2024-26807
https://trustedcomputinggroup.org/wp-content/uploads/DICE-Attestation-Architecture-Version-1.1-Revision-18_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/DICE-Attestation-Architecture-Version-1.1-Revision-18_pub.pdf
https://nvd.nist.gov/vuln/detail/CVE-2022-49844
https://security-tracker.debian.org/tracker/CVE-2025-38262
https://www.infineon.com/cms/en/about-infineon/press/market-news/2022/INFCSS202211-028.html
https://www.infineon.com/cms/en/about-infineon/press/market-news/2022/INFCSS202211-028.html
https://www.dennemeyer.com/fileadmin/a/media-library/reports/cybersecurity_in_mobility_2024-05.pdf
https://www.dennemeyer.com/fileadmin/a/media-library/reports/cybersecurity_in_mobility_2024-05.pdf
https://www.dennemeyer.com/fileadmin/a/media-library/reports/cybersecurity_in_mobility_2024-05.pdf
https://research.chalmers.se/publication/543968/file/543968_Fulltext.pdf
https://research.chalmers.se/publication/543968/file/543968_Fulltext.pdf
https://grehack.fr/2023/talks
https://os.kaspersky.com/blog/vulnerability-in-kia-car-remote-control-systems/
https://os.kaspersky.com/blog/vulnerability-in-kia-car-remote-control-systems/
https://www.renesas.com/en/key-technologies/security/automotive-security
https://www.renesas.com/en/key-technologies/security/automotive-security
https://www.autonews.com/suppliers/vw-will-buy-important-chips-directly-nxp-infineon-renesass/
https://www.autonews.com/suppliers/vw-will-buy-important-chips-directly-nxp-infineon-renesass/
http://www.dpdk.org
https://www.koreaherald.com/article/10494114

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

T. Instruments, “Texas instruments f29h85x: Real-time mcus for func-
tional safety and cybersecurity in automotive,” Tech. Rep., 2024,
https://www.embedded.com/ti- introduces - two - new - series - of - real -
time-mcus-for-automotive-and-industrial-applications,

J. Jang and B. B. Kang, “Selmon: reinforcing mobile device security
with self-protected trust anchor,” in Proceedings of the 18th Interna-
tional Conference on Mobile Systems, Applications, and Services, 2020,
pp. 135-147.

P. Jauernig, A.-R. Sadeghi, and E. Stapf, “Trusted execution envi-
ronments: properties, applications, and challenges,” IEEE Security &
Privacy, vol. 18, no. 2, pp. 56-60, 2020.

S. Jeong, M. Ryu, H. Kang, and H. K. Kim, “Infotainment system
matters: Understanding the impact and implications of in-vehicle info-
tainment system hacking with automotive grade linux,” in Proceedings
of the Thirteenth ACM Conference on Data and Application Security
and Privacy, 2023, pp. 201-212.

P. Jing, Z. Cai, Y. Cao, L. Yu, Y. Du, W. Zhang, C. Qian, X. Luo, S. Nie,
and S. Wu, “Revisiting automotive attack surfaces: a practitioners’
perspective,” in 2024 IEEE Symposium on Security and Privacy (SP).
IEEE, 2024, pp. 2348-2365.

K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham ef al., “Experimental
security analysis of a modern automobile,” in 2010 IEEE symposium
on security and privacy. 1EEE, 2010, pp. 447-462.

N. Kiihnapfel, C. Werling, H. N. Jacob, and J.-P. Seifert, “Three
glitches to rule one car: Fault injection attacks on a connected ev,”
in Proceedings of the 20th ACM Asia Conference on Computer and
Communications Security, 2025, pp. 1235-1249.

D. Kwon, H. Yi, Y. Cho, and Y. Paek, “Safe and efficient implementa-
tion of a security system on arm using intra-level privilege separation,”
ACM Transactions on Privacy and Security (TOPS), vol. 22, no. 2, pp.
1-30, 2019.

K. S. Lab, “Experimental security assessment of bmw cars:
A summary report,” Keen Security Lab, Tencent, Tech.
Rep., 2018, full technical paper released in 2019. [Online].

Available: |https://keenlab.tencent.com/en/whitepapers/Experimental-
Security- Assessment-of-BMW-Cars-by-KeenLab.pdf

, “Mercedes-benz mbux security research report,” Tencent
Keen Security Lab, Tech. Rep., 2021. [Online]. Available:
https://keenlab.tencent.com/en/whitepapers/Mercedes_Benz_Security_
Research_Report_Final.pdf

H. Lee, S. H. Jeong, and H. K. Kim, “Otids: A novel intrusion detection
system for in-vehicle network by using remote frame,” in 2017 15th
Annual Conference on Privacy, Security and Trust (PST). 1EEE, 2017,
pp- 57-5709.

S. Lee, S. Kim, C. Song, B. Woo, E. Ahn, J. Lee, Y. Jang, J. Jang,
H. Lee, and B. B. Kang, “Genesis: A generalizable, efficient, and
secure intra-kernel privilege separation,” in Proceedings of the 39th
ACM/SIGAPP Symposium on Applied Computing, 2024, pp. 1366—
1375.

Linux Foundation, “Automotive grade linux (agl),” |https :
/| www.automotivelinux.org, 2024, open-source project uniting
automakers, suppliers, and technology companies to accelerate

automotive software development.

Y. Liu, Z. Yao, M. Chen, A. Amiri Sani, S. Agarwal, and G. Tsudik,
“Provcam: A camera module with self-contained tcb for producing
verifiable videos,” in Proceedings of the 30th Annual International
Conference on Mobile Computing and Networking, 2024, pp. 588—602.
L. McVoy and C. Staelin, “Lmbench benchmark suite, version 3.0-
a9+debian.1-9,” https://sourceforge.net/projects/Imbench/, 2025, latest
release as of May 2025.

C. Miller, “Lessons learned from hacking a car,” IEEE Design & Test,
vol. 36, no. 6, pp. 7-9, 2019.

C. Miller and C. Valasek, “A survey of remote automotive attack
surfaces,” black hat USA, vol. 2014, p. 94, 2014.

T. Mishra, T. Chantem, and R. Gerdes, “Teecheck: Securing intra-
vehicular communication using trusted execution,” in Proceedings of
the 28th International Conference on Real-Time Networks and Systems,
2020, pp. 128-138.

C. News, “Carmakers unite to defend against auto hacking,” https:
//www.cbsnews.com/news/carmakers - unite- to- defend - against- auto-
hacking/, 2016.

S. Nie, L. Liu, and Y. Du, “Free-fall: Hacking tesla from wireless to
can bus,” Briefing, Black Hat USA, vol. 25, no. 1, p. 16, 2017.

17

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]
[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

F. J. Niroumand, P. A. Bonab, and A. Sargolzaei, “Security of con-
nected and autonomous vehicles: A review of attacks and mitigation
strategies,” SoutheastCon 2024, pp. 1197-1204, 2024.

NXP Semiconductors, S32K3 Auto General-Purpose MCUs, https:
/Iwww .nxp.com/products/S32K3, 2024, automotive MCUs featuring
Hardware Security Engine (HSE) for cryptographic offload, secure key
management, and hardware root of trust.

NXP Semiconductors and Ford Motor Company, “Nxp and ford
collaborate to deliver next-generation connected vehicles,” 2021.

F. Pascale, E. A. Adinolfi, S. Coppola, and E. Santonicola, “Cyber-
security in automotive: An intrusion detection system in connected
vehicles,” Electronics, vol. 10, no. 15, p. 1765, 2021.

S. Pinto and N. Santos, “Demystifying arm trustzone: A comprehensive
survey,” ACM computing surveys (CSUR), vol. 51, no. 6, pp. 1-36,
2019.

C. Plappert and A. Fuchs, “Secure and lightweight ecu attestations for
resilient over-the-air updates in connected vehicles,” in Proceedings of
the 39th Annual Computer Security Applications Conference, 2023, pp.
283-297.

C. Plappert, A. Fuchs, and R. Heddergott, “Analysis and evaluation
of hardware trust anchors in the automotive domain,” in Proceedings
of the 17th International Conference on Availability, Reliability and
Security, 2022, pp. 1-11.

C. Plappert, D. Lorych, M. Eckel, L. Jdager, A. Fuchs, and R. Hed-
dergott, “Evaluating the applicability of hardware trust anchors for
automotive applications,” Computers & Security, vol. 135, p. 103514,
2023.

H. Raj, S. Saroiu, A. Wolman, R. Aigner, J. Cox, P. England, C. Fen-
ner, K. Kinshumann, J. Loeser, D. Mattoon ez al., “${$ftpm$}$: A
${$software-only$}$ implementation of a ${$tpm$}$ chip,” in 25tk
USENIX Security Symposium (USENIX Security 16), 2016, pp. 841—
856.

S. Rajapaksha, G. Madzudzo, H. Kalutarage, A. Petrovski, and M. O.
Al-Kadri, “Can-mirgu: A comprehensive can bus attack dataset from
moving vehicles for intrusion detection system evaluation,” in Sympo-
sium on Vehicles Security and Privacy. Internet Society, 2024.
ReportLinker, “Global and china automotive gateway industry report,
2021-2022,” 2022.

A. R. B. ReportLinker Staff, “Navigating cyber risks in auto manufac-
turing: A 2024 outlook,” 2024.

P. M. Research, “Multi-core automotive gateway chip market analysis
and forecast 2019-2031,” https://pmarketresearch.com/auto/multi-core-
automotive- gateway-chip-market/, 2024.

T. Rheinland, “Iso/sae 21434 certification,” https://www.tuv.com/
world/en/iso-sae-21434-audit-and-certification.html, 2024.

J. Rockl, N. Bernsdorf, and T. Miiller, “Teefilter: High-assurance
network filtering engine for high-end iot and edge devices based on
tees,” in Proceedings of the 19th ACM Asia Conference on Computer
and Communications Security, 2024, pp. 1568-1583.

F. Schwarz, “Trustedgateway: Tee-assisted routing and firewall enforce-
ment using arm trustzone,” in Proceedings of the 25th International
Symposium on Research in Attacks, Intrusions and Defenses, 2022, pp.
56-71.

ScienceAlert, “Remote hijacking fears prompt recall of 1.4 million
hackable vehicles,” https://www.sciencealert.com/remote- hijacking-
fears- prompt- fiat- chrysler- to- recall- 1-4- million- hackable- vehicles,
2015.

U. Security, “Upstream’s 2025 global automotive cybersecurity re-
port,” https://upstream.auto/reports/2025- automotive- smart- mobility-
cybersecurity-report-audiobook-edition/, 2025.

——, “Upstream’s 2025 global automotive cybersecurity report,” 2025,
https://upstream.auto/reports/global-automotive-cybersecurity-report/.
N. Semiconductors, “Nxp s32g3 vehicle network processors: Secure
and high-performance solutions for automotive architectures,” Tech.
Rep., 2024, https://www.nxp.com/products/S32G3.

, “S32 automotive processors,” https://www.nxp.com/products/
processors - and - microcontrollers / arm - processors / s32 - automotive -
processors: AUTOMOTIVE-MPUS| 2025.

SOCRadar, “Syrus4 iot gateway vulnerability could allow code ex-
ecution on thousands of vehicles, simultaneously (cve-2023-6248),”
https://socradar.io/syrus4-iot- gateway- vulnerability-could-allow-code-
execution-on- thousands- of - vehicles- simultaneously - cve-2023- 6248/,
2024, a critical vulnerability in the Syrus4 IoT Gateway allows unau-

https://www.embedded.com/ti-introduces-two-new-series-of-real-time-mcus-for-automotive-and-industrial-applications
https://www.embedded.com/ti-introduces-two-new-series-of-real-time-mcus-for-automotive-and-industrial-applications
https://keenlab.tencent.com/en/whitepapers/Experimental-Security-Assessment-of-BMW-Cars-by-KeenLab.pdf
https://keenlab.tencent.com/en/whitepapers/Experimental-Security-Assessment-of-BMW-Cars-by-KeenLab.pdf
https://keenlab.tencent.com/en/whitepapers/Mercedes_Benz_Security_Research_Report_Final.pdf
https://keenlab.tencent.com/en/whitepapers/Mercedes_Benz_Security_Research_Report_Final.pdf
https://www.automotivelinux.org
https://www.automotivelinux.org
https://sourceforge.net/projects/lmbench/
https://www.cbsnews.com/news/carmakers-unite-to-defend-against-auto-hacking/
https://www.cbsnews.com/news/carmakers-unite-to-defend-against-auto-hacking/
https://www.cbsnews.com/news/carmakers-unite-to-defend-against-auto-hacking/
https://www.nxp.com/products/S32K3
https://www.nxp.com/products/S32K3
https://pmarketresearch.com/auto/multi-core-automotive-gateway-chip-market/
https://pmarketresearch.com/auto/multi-core-automotive-gateway-chip-market/
https://www.tuv.com/world/en/iso-sae-21434-audit-and-certification.html
https://www.tuv.com/world/en/iso-sae-21434-audit-and-certification.html
https://www.sciencealert.com/remote-hijacking-fears-prompt-fiat-chrysler-to-recall-1-4-million-hackable-vehicles
https://www.sciencealert.com/remote-hijacking-fears-prompt-fiat-chrysler-to-recall-1-4-million-hackable-vehicles
https://upstream.auto/reports/2025-automotive-smart-mobility-cybersecurity-report-audiobook-edition/
https://upstream.auto/reports/2025-automotive-smart-mobility-cybersecurity-report-audiobook-edition/
https://upstream.auto/reports/global-automotive-cybersecurity-report/
https://www.nxp.com/products/S32G3
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/s32-automotive-processors:AUTOMOTIVE-MPUS
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/s32-automotive-processors:AUTOMOTIVE-MPUS
https://www.nxp.com/products/processors-and-microcontrollers/arm-processors/s32-automotive-processors:AUTOMOTIVE-MPUS
https://socradar.io/syrus4-iot-gateway-vulnerability-could-allow-code-execution-on-thousands-of-vehicles-simultaneously-cve-2023-6248/
https://socradar.io/syrus4-iot-gateway-vulnerability-could-allow-code-execution-on-thousands-of-vehicles-simultaneously-cve-2023-6248/

thenticated remote code execution and control over vehicle ECUs and
immobilization.

S. D. I. Software, “Modern automotive cybersecurity through se-
cure communication, strong authentication and flexible firewalls,”
Tech. Rep., 2024, https://assets.new.siemens.com/siemens/assets/api/
uuid: 24dfcedc-e2f0-485¢c- at61 - fifebec74 10/ ca- topic- cybersecurity -
en- modern- automotive- cybersecurity- through- secure-communication-
white-paper.pdf.

S. Staff, “Bmw patches security flaw that let hackers open doors,” https:
//www.securityweek.com/bmw - patches - security - flaw - let - hackers -
open-doors/, 2024.

STMicroelectronics, “Stmicroelectronics stsafe-v and st33-a: Secure
automotive hardware for next-gen applications,” Tech. Rep., 2024,
https://www.st.com/en/secure- mcus/secure-automotive.html.
Synacktiv, “O-click rce on the tesla model3,” |https :
//www .synacktiv.com/sites/default/files/2022- 10/tesla- hexacon.pdf,
2022.

, “Exploiting tesla model 3,” https://www.synacktiv.com/sites/
default/files/2023- 1 1/tesla-codeblue.pdf, 2023.

“Pwn2own vancouver 2023 tesla exploit chain,’
https : / / www.synacktiv.com / sites / default / files / 2023 - 06 /
SecuriteDes Voitures.pdf, 2023.

——, “O-click rce on tesla model 3 through tpms sensors,” https://
www.synacktiv.com/sites/default/files/2024- 10/hexacon- 0- click-rce-
on-tesla-model-3-through-tpms-sensors-light.pdf, 2024.

F. E. S. I. Team, “Kia avoids potential hack of millions of vehicles,”
https://fieldeffect.com/blog/kia- avoids- potential- hack- of- millions- of-
vehicles, 2024.

K. Team. (2025) Vulnerability in remote control systems of kia vehicle.
https://os.kaspersky.com/blog/vulnerability-in-kia-car-remote-control-
systems/,

T. L. K. Team, “Access to the address space of the process:
copy_to_user and related apis,” https://linux-kernel-labs.github.io/refs/
heads/master/labs/device_drivers.html, 2025, accessed: 2025-08-21.

, “struct sk_buff - the linux kernel documentation,” https://
docs.kernel.org/networking/skbuff.html, 2025, accessed: 2025-08-21.
R. Tech, “Top 10 automotive cybersecurity trends 2024,” 2024, https:
/Iwww .rinf.tech/top- 10-automotive-cybersecurity- trends- 2024/,
VicOne. (2025) Vicone automotive cyberthreat landscape 2025:
Preparing for tomorrow’s threats. https://www.vicone.com/resources/
research-reports/automotive-cyberthreat-landscape-2025.

VicOne and M. Consortium. (2024) Advancing automotive cybersecu-
rity through zero trust architecture. https://vicone.com/blog/advancing-
automotive-cybersecurity-through-zero-trust-architecture,

J. Wang, A. Li, H. Li, C. Lu, and N. Zhang, “Rt-tee: Real-time system
availability for cyber-physical systems using arm trustzone,” in 2022
IEEE symposium on security and privacy (SP). 1EEE, 2022, pp. 352—
369.

B. Weyl, M. Wolf, F. Zweers, T. Gendrullis, M. S. Idrees, Y. Roudier,
H. Schweppe, H. Platzdasch, R. El Khayari, O. Henniger et al., “Evita
deliverable d3. 2: Secure on-board architecture specification,” Technical
report, EVITA Consortium, Tech. Rep., 2011.

M. Yan, J. Li, and G. Harpak, “Security research report on mercedes-
benz cars,” Black Hat USA, vol. 38, 2020.

M. Zoppelt and R. Tavakoli Kolagari, “What today’s serious cyber
attacks on cars tell us: Consequences for automotive security and de-
pendability,” 2020, https://opus4.kobv.de/opus4-ohm/frontdoor/deliver/
index/docld/1481/file/main.pdf.

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]
[104]

[105]

[106]

[107]

[108]

APPENDIX A
ARTIFACT APPENDIX

In modern automotive systems, an externally connected
platform (EVN) often interfaces with the in-vehicle network
(IVN) to perform control functions. Typically, an IVN gateway
filters which messages from the EVN are allowed to reach
IVN ECUs. However, the IVN gateway lacks visibility into
the specific applications running on the EVN and therefore
cannot accurately attribute or verify message origins. This
allows remote attackers who compromise the EVN platform
to masquerade as authorized applications and issue malicious

control messages to IVN ECUs—or even to the gateway itself.
Our system, SECV, mitigates this threat by introducing a
TEE-based security architecture on the EVN platform that
mediates all outbound IVN traffic. SECV establishes authentic,
application-bound communication paths between EVN appli-
cations and the IVN gateway, preventing message spoofing
and unauthorized access. At its core, SECV relies on secure
message buffers—per-application memory regions allocated
by the TEE and used for verified control messages.

A. Description & Requirements

The artifact includes SECV’s implementation of the secure
message buffers at the EVN platform. We provide our modified
Normal world OS (Linux), the Secure World OS (OPTEE), the
Secure World Monitor (ARM Trusted Firmware), a sample of
the modified FlexCAN driver at the Normal world, and its
accompanying Secure World driverlet.

1) How to access: We have open-sourced the artifact to a
publicly available GitHub Repository at https://github.com/
secv-ndss2026/secv.git, and DOI: https://doi.org/10.5281/
zenodo. 17785984, We do recommend using the GitHub repos-
itory, as it will have more recent updates to the artifact, while
the one at the DOI is frozen at the version published at the
time of open-sourcing the paper artifact (2025/12).

2) Hardware dependencies: Our current prototype of
SECV is built for NXP S32G3. We understand the challenges
in acquiring such a board, and are making our best effort to
provide a porting for Raspberry Pi 4 as the EVN platform,
although this may take some time. However, we believe that
by following our implementation for S32G3, it should be
effortless to port for Raspberry Pi 4.

3) Software dependencies: To run the artifact on the NXP
S32G3 platform, users currently need the NXP HSM firmware,
S32 Design Studio (S32DS) IDE, NXP FSL Linux, NXP OP-
TEE OS, and NXP ARM Trusted Firmware (ATF). Some of
these components require an NXP license. However, for other
platforms that already integrate Linux, OP-TEE, and ATF,
it should be straightforward to follow our modifications and
reproduce the build accordingly.

4) Benchmarks: For performance evaluation, we provide
both the microbenchmarks that run in under 2 minutes to test
the SECV’s performance, especially under stress. These are
reported in the paper. For the real-world workload, we use real-
world data from the site https://ocslab.hksecurity.net/Datasets),
and this is already loaded on the board.

B. Artifact Installation & Configuration

We provide build and execution scripts, along with detailed
usage instructions, in the repository. Users can follow these
scripts to build the system and reproduce the experiments as
described.

C. Experiment Workflow

To evaluate SECV’s performance, we provide a compre-
hensive set of experiments covering both system-level and
communication-level performance metrics:

https://assets.new.siemens.com/siemens/assets/api/uuid:24dfcedc-e2f0-485c-af61-fffe6ec741f0/ca-topic-cybersecurity-en-modern-automotive-cybersecurity-through-secure-communication-white-paper.pdf
https://assets.new.siemens.com/siemens/assets/api/uuid:24dfcedc-e2f0-485c-af61-fffe6ec741f0/ca-topic-cybersecurity-en-modern-automotive-cybersecurity-through-secure-communication-white-paper.pdf
https://assets.new.siemens.com/siemens/assets/api/uuid:24dfcedc-e2f0-485c-af61-fffe6ec741f0/ca-topic-cybersecurity-en-modern-automotive-cybersecurity-through-secure-communication-white-paper.pdf
https://assets.new.siemens.com/siemens/assets/api/uuid:24dfcedc-e2f0-485c-af61-fffe6ec741f0/ca-topic-cybersecurity-en-modern-automotive-cybersecurity-through-secure-communication-white-paper.pdf
https://www.securityweek.com/bmw-patches-security-flaw-let-hackers-open-doors/
https://www.securityweek.com/bmw-patches-security-flaw-let-hackers-open-doors/
https://www.securityweek.com/bmw-patches-security-flaw-let-hackers-open-doors/
https://www.st.com/en/secure-mcus/secure-automotive.html
https://www.synacktiv.com/sites/default/files/2022-10/tesla-hexacon.pdf
https://www.synacktiv.com/sites/default/files/2022-10/tesla-hexacon.pdf
https://www.synacktiv.com/sites/default/files/2023-11/tesla-codeblue.pdf
https://www.synacktiv.com/sites/default/files/2023-11/tesla-codeblue.pdf
https://www.synacktiv.com/sites/default/files/2023-06/SecuriteDesVoitures.pdf
https://www.synacktiv.com/sites/default/files/2023-06/SecuriteDesVoitures.pdf
https://www.synacktiv.com/sites/default/files/2024-10/hexacon-0-click-rce-on-tesla-model-3-through-tpms-sensors-light.pdf
https://www.synacktiv.com/sites/default/files/2024-10/hexacon-0-click-rce-on-tesla-model-3-through-tpms-sensors-light.pdf
https://www.synacktiv.com/sites/default/files/2024-10/hexacon-0-click-rce-on-tesla-model-3-through-tpms-sensors-light.pdf
https://fieldeffect.com/blog/kia-avoids-potential-hack-of-millions-of-vehicles
https://fieldeffect.com/blog/kia-avoids-potential-hack-of-millions-of-vehicles
https://os.kaspersky.com/blog/vulnerability-in-kia-car-remote-control-systems/
https://os.kaspersky.com/blog/vulnerability-in-kia-car-remote-control-systems/
https://linux-kernel-labs.github.io/refs/heads/master/labs/device_drivers.html
https://linux-kernel-labs.github.io/refs/heads/master/labs/device_drivers.html
https://docs.kernel.org/networking/skbuff.html
https://docs.kernel.org/networking/skbuff.html
https://www.rinf.tech/top-10-automotive-cybersecurity-trends-2024/
https://www.rinf.tech/top-10-automotive-cybersecurity-trends-2024/
https://www.vicone.com/resources/research-reports/automotive-cyberthreat-landscape-2025
https://www.vicone.com/resources/research-reports/automotive-cyberthreat-landscape-2025
https://vicone.com/blog/advancing-automotive-cybersecurity-through-zero-trust-architecture
https://vicone.com/blog/advancing-automotive-cybersecurity-through-zero-trust-architecture
https://opus4.kobv.de/opus4-ohm/frontdoor/deliver/index/docId/1481/file/main.pdf
https://opus4.kobv.de/opus4-ohm/frontdoor/deliver/index/docId/1481/file/main.pdf
https://github.com/secv-ndss2026/secv.git
https://github.com/secv-ndss2026/secv.git
https://doi.org/10.5281/zenodo.17785984
https://doi.org/10.5281/zenodo.17785984
https://ocslab.hksecurity.net/Datasets

o E1: Microbenchmarks for Communication Perfor-
mance These experiments measure the latency overhead
introduced by SECV in message transmission between
the EVN and IVN platforms using synthetic workloads.
Each microbenchmark runs for approximately one minute
to capture stable latency and throughput trends.

E2: Real-World Workload Benchmarks These exper-
iments evaluate SECV’s practicality in real automotive
communication scenarios by replaying real-world vehicle
traffic traces. We measure the impact of SECV on end-
to-end latency and throughput of IVN control messages
under realistic operating conditions.

E3: System Performance Benchmarks To assess
system-level effects, we use LMBench to evaluate the per-
formance impact of SECV’s kernel-level modifications,
focusing on process management, memory operations,
and inter-process communication performance.

We clearly describe in the repository how to use each script
to run the experiments as outlined above.

D. Major Claims

SECV enables secure end-to-end communication between
EVN platforms while incurring about 6.5% geomean through-
put overhead, and latency overhead 3.9%, and demonstrating
near-zero message loss even under stress testing (with trans-
mission gaps of 0ms).

e (C1): SECYV incurs minimal communication overhead,
about 6.5% geometric mean throughput and latency over-
head 3.9%, and exhibits near-zero message loss.

(C2): Under real-world workloads, SECV ensures that
all control messages are transmitted within their required
time windows, without any message loss.

(C3): SECYV introduces a modest system performance
overhead of 11% (geometric mean), as measured using
the LMBench benchmark suite.

E. Evaluation

As described above, we provide three experiments to sup-
port the claims presented in the paper. The repository includes
all necessary scripts along with detailed instructions on how
each can be executed to reproduce the reported results. For
real-world communication workloads, individual experiments
may take between 10 minutes and 2 hours to complete;
however, we also provide scaled-down versions that finish
within 20 minutes per experiment. Additionally, since SECV
demonstrates no message loss for transmission gaps greater
than 1 ms, experiments involving significantly larger transmis-
sion gaps (e.g., exceeding 10ms) may be safely skipped. More
detailed experimental results are summarized in Tables
and

Follows an exemplary structure for one experiment (Ey):

1) Experiment (EI): [Microbenchmark for Communication
Overhead] [20 human-minutes]: This experiment measures
the round-trip communication overhead of control messages
exchanged between the EVN platform and the IVN gateway.
The EVN platform transmits control messages with CAN ID 0,

19

and for each successfully received message, the IVN gateway
responds with a control message using CAN ID 4. Latency
is defined as the elapsed time between the transmission of
a control message and the reception of the corresponding
response message. Message loss is calculated as the difference
between the number of transmitted and received control mes-
sages, while throughput is measured as the number of control
messages transmitted per second. The experiment is repeated
with varying control message sizes (8, 16, 32, and 64 bytes) to
compute the geometric mean overhead in message throughput
and message loss across different message sizes.

2) Experiment (E2): [Communication Overhead over Real-
World Workloads] [100—120 human-minutes]: This experi-
ment extends the previous setup by replaying CAN messages
recorded from an actual vehicle driven for over five hours.
To align with our IVN gateway configuration—which accepts
only specific CAN IDs and does not respond to mismatched
ones—we modify the recorded message IDs accordingly. To
reduce experimental time, the control messages are grouped
based on their transmission gaps, and each group is evaluated
separately.

3) Experiment (E3): [System Performance Benchmarks]
[20—60 human-minutes]: This experiment evaluates the general
system performance overhead introduced by SECV using the
LMBench benchmark suite. Since SECV hooks system calls
and partitions the OS into two components, some performance
degradation is expected. We measure the overhead of the
most affected system calls and functions, including memory
mapping and I/O operations. The entire experiment can be
executed using a single terminal command, as described in
the repository.

[How to: Preparation and Execution] The repository provides
scripts for preparing and executing the benchmarks, along with
detailed usage instructions.

[Results]

Fig. 7: Expected results from executing the microbenchmarks
for performance measurement include the number of trans-
mitted (Tx) and received (Rx) frames. The results also report
throughput—expressed in frames per second (frames/s) or
kilobits per second (KBit/s)—and the percentage of message
loss.

fork+execve 1.24380 1.24150 1.24265 0.00163 1.24
fork+exit 0.47773 0.468 50 047311 0.006 52 1.30
write 0.000 54 0.000 54 0.000 54 0.00000 1.00
open/close 0.00701 0.007 05 0.00703 0.00003 1.01
stat 0.00391 0.00387 0.003 89 0.00003 0.97
fstat 0.000 87 0.00087 0.00087 0.00000 1.01
send 0.00307 0.003 05 0.003 06 0.00017 1.36
recv 0.01070 0.01100 0.01085 0.00021 0.99
mmap 0.047 82 0.054 18 0.051 00 0.004 50 1.19

TABLE V: Baseline performance and relative SECV overhead

(ratio).
. . E Frame Siz Tx (av. Rx (av Laten \ Lost frames (%
Fig. 8: Expected results from executing the real-world work- ~ 62 SECY) Frame Size ave) avg) Latency (ave) Lost frames (%)
. . 0 8 13985.1 13987.7 71.5700 11.00
load experiments for performance measurement include the 0 16 11095.2 11095.2 90.2730 0.00
. . 0 32 7768.6 7768.6 129.0030 0.00
number of transmitted (Tx) and received (Rx) frames. 0 64 1862.3 4862.3 206.4070 0.00
1 8 929.0 929.0 1076.0220 0.00
1 16 928.1 928.1 1076.4170 0.00
1 32 928.0 928.0 1076.9150 0.00
1 64 927.0 927.0 1078.0000 0.00

TABLE VI: Communication measurements over 10 runs
(SECV).

Gap (Baseline) Frame Size Tx (avg) Rx (avg) Latency (avg) Lost frames (%)

0 8 15544.2 14071.9 71.131 9.5
0 16 12059.4 12059.4 83.045 0
0 32 8128.4 8128.4 123.31 0
0 64 4941.5 4941.5 203.046 0
1 8 929 929 1076.022 0
1 16 928.1 928.1 1076.417 0
1 32 928 928 1076.915 0
1 64 927 927 1078 0

TABLE VII: Communication over 10 runs (Baseline).

Fig. 9: Expected results from executing the LMBench suite
include the execution time for each operation, which can
be compared against the baseline to compute the normalized
overhead.

The interpretation of E2 results follows the same approach
as in the microbenchmark experiments. However, depending
on the IVN GW setup, if the IVN GW rejects the packets, as
shown in the figure above, they will not be echoed back; hence,
the results will be similar to those shown in the figure. What
matters here is that all the frames are transmitted successfully,
and no transmissions miss their deadlines. Check that all
the frames in the file being replayed have been transmitted

successfully.
Metric SECV 1 SECV 2 SECV 3 SECV 4 SECV 5 SECV (avg) SECV (std)
fork+execve 1.57425 1.558 50 1.51450 151775 1.52475 1.53795 0.03
fork+exit 0.61167 0.62925 0.608 22 0.607 10 0.60911 0.61307 0.01
write 0.000 54 0.000 54 0.000 54 0.000 54 0.000 54 0.000 54 0.00
open/close 0.007 10 0.007 13 0.007 08 0.007 10 0.007 09 0.007 10 0.00
stat 0.003 76 0.003 76 0.00373 0.00375 0.00378 0.003 76 0.00
fstat 0.000 88 0.000 88 0.000 88 0.000 88 0.000 88 0.000 88 0.00
send 0.003 93 0.004 87 0.003 89 0.004 06 0.00412 0.00417 0.00
recv 0.010 64 0.01079 0.01064 0.01088 0.01088 0.01077 0.00
mmap 0.064 94 0.05515 0.056 91 0.063 24 0.064 39 0.060 93 0.00

TABLE IV: LMbench microbenchmark results under SECV.
Values are averages over five runs.

20

	Introduction
	Background and Motivation
	Automotive Architecture and EVN-IVN Communication
	Automotive Attacks and SeCV Motivation
	Control Message Paths and Compromise
	Real-world Attack Examples
	Arm TrustZone TEE
	Automotive HSMs

	Intra-Kernel Isolation

	Threat Model, Security Objectives, and Challenges
	SeCV Design
	Design Overview
	Design Details
	SSMe-to-IVN gateway Secure Channel Establishment
	The Minimal Trusted Normal World OS Inner Kernel
	Guaranteeing Message Authenticity
	Normal World Control Message Transmission
	SeCV Driver Splitting
	Policy Enforcement and Actual Message Transmission
	IVN Message Reception by and SSMi Role

	Implementation
	Intra-Kernel Isolation
	Implementing the SSMe
	Normal World Drivers
	Modifying The CAN Network Stack

	Evaluation
	Performance Evaluation and Resource Utilization
	Boot Time Overhead
	Application Load Time and Affected Systemcall Overhead
	Communication Throughput and Latency
	Trusted Computing Base (TCB)

	Security Evaluation
	Application-level Spoofed Provenance
	Privilege Escalation Attacks

	Discussion
	SeCV for Automotive Ethernet & Protocol Translation
	SeCV with Virtualization & Containerization
	Related Works

	Conclusion
	Acknowledgement
	References
	Appendix A: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Experiment Workflow
	Major Claims
	Evaluation
	Experiment (E1)
	Experiment (E2)
	Experiment (E3)

