An LLM-Driven Fuzzing Framework for Detecting
Logic Instruction Bugs in PLCs

Jiaxing Cheng’ Ming Zhou'

Institute of Information
Engineering, CAS; SCS, UCAS
Beijing, China
chengjiaxing @iie.ac.cn

Yuncheng Wang
Institute of Information Engineering
CAS; SCS, UCAS
Beijing, China
wangyuncheng @iie.ac.cn

Abstract—Programmable Logic Controllers (PLCs) automate
industrial operations using vendor-supplied logic instruction
libraries compiled into device firmware. These libraries may con-
tain security flaws that, when exploited through physical control
routines, network-facing services, or PLC runtime subsystems,
may lead to privilege violations, memory corruption, or data leak-
age. This paper presents LogicFuzz, the first fuzzing framework
designed specifically to target logic instructions in PLC firmware.
LogicFuzz constructs a semantic dependency graph (SDG) that
captures both operational semantics and inter-instruction depen-
dencies in PLC code. Leveraging the SDG together with an
enable-signal mechanism, LogicFuzz automatically synthesizes
instruction-tailored seed programs, significantly reducing manual
effort and enabling controlled, resettable fuzzing on real PLC
hardware. To uncover bugs conditioned on control-flow triggers
(i.e., invocation patterns), LogicFuzz mutates the SDG to diversify
instruction-invocation contexts. To expose data-triggered faults,
it performs coverage-guided parameter mutation under valid
semantic constraints. In addition, LogicFuzz integrates a multi-
source oracle that monitors runtime logs, status LEDs, and
communication states to detect instruction-level failures during
fuzzing. We evaluate LogicFuzz on six production PLCs from
three major vendors and uncover 19 instruction-level bugs,
including four previously unknown vulnerabilities.

I. INTRODUCTION

Programmable Logic Controllers (PLCs) underpin critical
infrastructure, including power generation, water treatment,
and industrial manufacturing. As societal reliance on these sys-
tems grows, faults in PLCs can disrupt essential services and,
in severe cases, threaten national security and public safety [9]

T These authors contributed equally to this work.
* The corresponding authors.

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.241081
www.ndss-symposium.org

SCS, Nanjing University of
Science and Technology
Nanjing, Jiangsu, China
mingzhou@njust.edu.cn

Yibo Qu
Institute of Information Engineering
CAS; SCS, UCAS
Beijing, China
quyibo@iie.ac.cn

Xin Chen”

Institute of Information
Engineering, CAS; SCS, UCAS
Beijing, China
chenxin1990@iie.ac.cn

Haining Wang
ECE
Virginia Tech
Arlington, VA, USA
hnw@vt.edu

Limin Sun”
Institute of Information Engineering
CAS; SCS, UCAS
Beijing, China
sunlimin @iie.ac.cn

[36] [31] [21]. The Triton (TRISIS) attack [17] exemplifies
these stakes: adversaries exploited zero-day vulnerabilities in
Schneider Electric safety PLCs to tamper with emergency
shutdown logic, nearly causing catastrophic damage at a Saudi
petrochemical facility.

PLCs execute control programs built from logic instructions
that drive physical actuation (e.g., motion control), manage
communication interfaces (e.g., Modbus services), and coor-
dinate device-internal subsystems (e.g., memory management).
Vendors commonly package these instructions into proprietary
firmware-embedded libraries. However, these libraries may
contain defects—including unchecked inputs, memory-safety
violations (e.g., buffer overflows, null pointer dereferences),
and race conditions—introduced through implementation mis-
takes. When triggered by malformed invocation patterns or
adversarial parameters, such bugs can corrupt memory or
escalate privileges, endangering the industrial processes the
PLC governs [13]. Compounding this risk, vendors frequently
reuse instruction libraries across product lines, enabling a
single flaw to propagate multiple PLC models.

We propose an automated framework for uncovering logic-
instruction bugs in PLC firmware. Conventional static analysis
techniques [12] [32] (e.g., taint analysis) are ill-suited for
proprietary PLC images: firmware binaries are often stripped,
use non-standard formats, and tightly integrate vendor-specific
runtime components. As a result, static tools cannot reliably
recover code boundaries, data layouts, or calling conven-
tions—context that is essential to modeling instruction seman-
tics. Without this context, they are also unable to infer the data-
and control-flow dependencies required for instruction-level
bug detection, rendering static approaches largely ineffective
on closed PLC platforms. Given these constraints, we turn
to fuzzing, which exercises logic instructions through vendor-
supported runtime interfaces without requiring visibility into
firmware internals. This choice introduces three key challenges
that motivate our design.

Challenge 1: Synthesizing semantics-aware seed pro-
grams. Fuzzing logic instruction requires test programs that
adhere to usage constraints, hardware side effects (e.g., I/O,
timers, watchdogs), and PLC scan-cycle semantics. These
behaviors vary significantly across vendors and are poorly doc-
umented in closed-source platforms, making manual derivation
slow and error-prone. The challenge is to accurately recover
instruction-level usage semantics and automatically generate
valid, controllable, and resettable seed programs at scale.

Challenge 2: Feedback-guided exploration without in-
strumentation. PLC firmware is proprietary, heterogeneous
across architectures and RTOSes, and incompatible with
conventional techniques such as instrumentation or binary
rewriting—mechanisms that typically supply coverage or state
feedback. In the absence of such signals, fuzzers struggle to
guide execution toward high-value states and corner cases. The
challenge is to extract meaningful, low-noise feedback from
vendor-exposed interfaces and runtime artifacts, and to design
mutation strategies that effectively leverage this feedback to
produce high-quality inputs.

Challenge 3: Comprehensive anomaly detection be-
yond crashes. Logic instruction failures frequently mani-
fest not as crashes but as scan-cycle stalls, I/O inconsis-
tencies, timing violations, watchdog resets, or silent state
divergence—behaviors that crash-only oracles systematically
miss. Meanwhile, PLCs expose heterogeneous exception sig-
nals (e.g., runtime logs, status LEDs, and communication
states) that are encoded in vendor-specific ways. The challenge
is to build a vendor-agnostic monitoring oracle that fuses
these signals to detect a broad spectrum of anomalies while
minimizing false positives.

We present LogicFuzz, an automated fuzzing framework for
PLC logic instructions. To the best of our knowledge, Logic-
Fuzz is the first system to systematically target instruction-
level bugs on real PLC hardware. LogicFuzz constructs a
lightweight semantic dependency graph (SDG) and couples
it with an enable-signal-guided prompting mechanism that
steers a large language model (LLM) to generate test programs
that are valid, controllable, and resettable while adhering to
hardware constraints and instruction semantics. To drive explo-
ration on closed-source devices, LogicFuzz leverages vendor-
exposed serial debugging to integrate structural (invocation-
pattern) mutation with coverage-guided parameter mutation.
It further unifies network behavior, internal system status,
and physical actuation feedback into a multi-source anomaly-
detection oracle capable of identifying failures beyond con-
ventional crash-based signals.

We evaluate LogicFuzz on six commercial PLC models
from three vendors. It successfully generated valid seeds
for 88.47% of the targeted instructions and uncovered 19
instruction-level bugs, including four previously undisclosed
vulnerabilities. These flaws span both device-control and
system-management instructions, with several capable of forc-
ing PLC shutdowns—posing direct physical-safety risks. By
exploiting enable signals for precise control and reset, and
by combining SDG-based structural mutation with coverage-

Logic i i .
oglg mstmctmn Runtime
libraries
Enei .
ngineering CallT 1Ru11
software e . 2 -
! Control program \
| . Logic instructions :
1
: Input parameters | Output parameters | 1
‘o 1 — I _____ | _____ !
'Input Program Output .
Sensors [age data Jmage Actuators
PLC memory

Fig. 1: Execution workflow of PLC logic instructions.

guided parameter mutation, LogicFuzz delivers an instruction-
centric fuzzing workflow for real-world PLC platforms.

The remainder of this paper is organized as follows. Sec-
tion II provides background on PLC logic instructions and
motivating observations. Section III presents an overview of
the LogicFuzz framework. Sections IV-VI detail the static
analysis pipeline, seed program generation, and instruction-
level fuzzing. Section VII reports our evaluation results. Sec-
tion IX discusses insights and limitations. Section VIII surveys
related work, and finally, Section X concludes the paper.

II. BACKGROUND

This section describes how logic instructions are executed in
PLCs, identifies two primary classes of instruction vulnerabil-
ities, and explains how the enable-signal mechanism motivates
our design.

A. Runtime Execution of Logic Instructions

Under the IEC 61131-3 standard, control logic can be
written in five languages—Ladder Diagram (LD), Function
Block Diagram (FBD), Structured Text (ST), Instruction List
(IL), and Sequential Function Chart (SFC). In this work,
we focus on ST and its Siemens variant, SCL. A typical
program executes in three phases. Parameter initialization
declares variables and data types. Context initialization pre-
pares run-time state by invoking auxiliary instructions or
assigning values. Finally, instruction invocation executes the
target logic instruction. This structure conforms to vendor
usage constraints. By injecting externally supplied protocol
data into the instruction’s parameters, each fuzzing iteration
remains aligned with the PLC’s scan cycle, enabling us to
exercise every instruction within its native execution context.

When powered on, the PLC loads firmware that manages
peripherals, internal resources, and communication interfaces,
and then enters a continuous scan cycle (illustrated by the
green dashed box and arrow in Figure 1). At the beginning of
each cycle, sensor readings are sampled into the input image.
The control program then fetches operands—either from the
input image or from the program-data region—dispatches the
corresponding logic instructions from the instruction library,
and executes them. The resulting values are written to the

int SysLibMemCpy (unsigned int pDest,
unsigned int pSrc, unsigned int udiCoun

The cam reach
the position

©0—-0—

MAPC(...)

t
" MAPC execution buffer

Cycle 1

// The PLC crashes when the source

and destination address ranges overlap MAS(...., Merge = “disabled”)

while (i!=udiCount){ MAS execution buffer Cycle 2
(pDest+1)=(pSrc+1);
Lo i S et a it
MAPC(...)—+»MAS(..., Merge = “enabled”)
pDest pSrc Memory MAPC MAS Cycle 1
l l overwrite
Runtime OS memory Buffer conflict

Failed to reach

udiCount the position

0050
Addrl Addr2

() (®)

I TadiComs |

Addr3

Fig. 2: Logic-instruction bugs are primarily triggered by (a)
parameter values and (b) invocation patterns.

output image or back to program data; the output image is
subsequently mapped to actuators, producing physical effects.
During runtime, engineers can feed mutated inputs through
the parameter read-write protocol and observe anomalies
in multiple channels, including runtime logs, status LEDs,
UART output, and Joint Test Action Group (JTAG) traces.
Collectively, these signals expose crashes, scan cycle stalls,
register corruption, and other instruction-level faults, providing
a comprehensive oracle for fuzzing.

B. Vulnerable Logic Instructions

Logic-instruction bugs are firmware-level defects in the
implementation of PLC logic instructions. When exercised
under vendor-specified contexts and parameter constraints,
these flaws can lead to memory corruption, denial-of-service,
or unstable physical outputs. Such bugs typically fall into
four categories: 1) input-handling errors (e.g., missing type
or bounds checks), 2) resource-management faults (e.g.,
unchecked memory operations), 3) security or access control
lapses (e.g., incorrect privilege settings), and 4) business-
logic or configuration mistakes (e.g., inadequate functional-
safety rules). We observe that vulnerabilities across all four
categories are usually triggered by two factors: Parameter
values—edge cases or adversarial data, and invocation pat-
terns—the call order and inter-parameter dependencies that
govern run-time interactions. Figure 2 (a) illustrates a value-
driven flaw: SysMemCpy invokes SysLibMemCpy without
validating either its source (pSrc) or destination (pDest)
pointers. If pDest < pSrc, the routine overwrites memory
and compromises the PLC.

Figure 2 (b) shows a pattern-driven flaw in Rockwell’s
ControlLogix 5570 PLC: Enabling the merge option allows
the stop command MAS to pre-empt an unfinished cam-
control command MAPC, corrupting its buffer and crashing
the controller so that the axis halts short of its intended
target. These cases suggest that exposing latent instruction-
level bugs requires systematic mutation of both parameters and
invocation relationships. LogicFuzz adopts this dual strategy

1 | // (1) External control inputs

» | VAR INPUT

3 EN :BOOL; //Rising edge triggers execution
4 bReset : BOOL; // Falling edge terminates (reset)
5| END_VAR

6 | /7 (2) Internal variables

7| VAR

8

B o 4tk o it

Enable signal Rising edge Falling edge EN_prev :BOOL:=FALSE;
9 | // Previous-cycle EN
@ 10
11| END VAR
1] /(1) Initialize parameters 12| /7 (3) EN rising edge — perform the copy
2| VAR 13| pDest = ADR(OutputBuffer);
3 pDest : DWORD 14| pSre = ADR(InputBuffer);
4 p S_m : DWORD 15| udiCount := SIZEOF(InputBuffer);
5 udiCount : DWORD; 16| IF EN AND NOT EN_prev THEN
6 InputBuffer : ARRAY[0.99] 17 SysMemCpy(pDest, pSre, udiCount);
7 OF INT :=[1, 2, 3]; 18| END IF
3 OutputBuffer : ARRAY[0..99] 19| // (4) EN falling edge — optional reset

9 OF INT:

END VAR 20| IF (NOT EN) AND EN_prev THEN
10)

21 IF bReset THEN

11| //(2) Initialize execution context 2 OutputBuffer := [0(0)..99];
12| pDest := ADR(OutputBuffer); 23| // Clear outputs state

13| pSrc := ADR(InputBuffer); 24 END _IF

14| udiCount := SIZEOF(InputBuffer); 25| END IF

15| //(3) Invoke target logic instruction

" 26| // (5) Track state across scan cycles for determinism
16| SysMemCpy(pDest, pSre, udiCount);

27| EN_prev := EN;
(a) (®)

Fig. 3: Two control-program structures for SysMemCpy: (a) a
representative production-style program; (b) our enable-signal-
driven test program.

by interleaving SDG-based semantic mutation with coverage-
guided parameter mutation, enabling vulnerability discovery
across diverse execution contexts.

C. Motivation

We refer to the control programs used during fuzzing as
test programs. Early experiments with naive layouts revealed
that many logic instructions are highly sensitive to PLC run-
time resources—including memory buffers, file descriptors,
network sockets, timers, persistent variables, and task objects.
Consider fuzzing SysMemCpy, a memory-resource-sensitive
instruction. As shown in Figure 3 (a), if the routine fails to
release memory resources, the stale state carries over into
subsequent fuzzing rounds. The consequences include false
positives, masked bugs that require a clean start to manifest,
distorted coverage metrics, and non-reproducible crashes. In
contrast, session-oriented instructions (e.g., HTTP services)
depend on persistent state and therefore must not be reset
each cycle. A reset strategy must therefore be selective and
aligned with the PLC scan cycle semantics. Resources are
safely cleared only in the following cycle—not the current
one—to avoid forcing slower PLCs into premature resource
release.

Most vendors embed an enable signal in every logic instruc-
tion. The PLC samples this Boolean flag once per scan, and
engineers can toggle it over the network to skip or re-trigger
the instruction without modifying the program. Leveraging this
mechanism, we make each test program both controllable and
resettable—even for PLCs lacking a native enable signal—by
introducing two external inputs, EN and bReset (Figure 3.b),
together with rising- and falling-edge logic: Rising edge
(EN transitions from FALSE to TRUE)—fires the instruction
exactly once per test case execution. All rising-edge regions
share the same EN. Falling edge (EN transitions from TRUE

Static analysis

Seed program generation

Fuzzing logic instruction

v >N -

(@ SDG @ Program (©® Coverage-guided Test case N "u"“

el -L mutation correction =~ parameter mutation building oLC

is = s

L 1 I T

];cl)gtic ‘ Candidate Prog. Verification P ,,\Y __" Seed 5 T L] @

SU- | Documents generation (® generation & validation ass’ © 1 program o~ Feedback| PLC

Y status

% Buggy logic instr.

Fig. 4: Overview of LogicFuzz’s workflow.

Bug clue extraction prompt

[Input] : Manuals, CWE list, L,

[Task]:

For each CWE entry, assess whether its root cause and triggering

conditions are applicable to logic instruction L, using the provided

manuals.

If applicable, generate one or more concise bug clues.

[Output]:

Each item in bug clues must be a dictionary with the following fields:

* "bug type": a short CWE-relevant bug category.

* "trigger param": the name of a parameter of Lx that is likely to trigger
the bug.

* "trigger_condition": a suspicious value range or usage condition that
may lead to the bug.

"bug_clues™: ht
Extracted [{ "bug type": “unvalidated pointer dereference",
bug clues "trigger param": "pSockAddr",

"trigger_condition" :"points to an invalid or NULL address"},

|
Fig. 5: LLM prompt for bug-clue extraction.

to FALSE)—checks bReset; if TRUE, it reinitialises all
internal state (buffers, counters, handles), ensuring a pristine
environment for the next cycle. All falling-edge regions share
the same bReset. Finally, the current EN value is latched
for the subsequent scan to enable precise, cycle-synchronous
control throughout fuzzing.

III. OVERVIEW

Figure 4 illustrates LogicFuzz’s three-stage workflow. In
the first stage, a static preprocessing pass merges vendor
documentation with a CWE corpus to construct a semantic
dependency graph (SDGQG) that captures each instruction’s call
ordering—including both caller-callee relations and execu-
tion sequencing—as well as its parameter dependencies. For
each target instruction, LogicFuzz samples an SDG subgraph,
mutates it by shuffling calls or rewiring dependencies, and
supplies the mutated subgraph—together with a program-
generation prompt—to a large language model, which syn-
thesizes a candidate test program. Each generated program is
then deployed to the tested PLC for verification. If the program
passes validation, it becomes a seed; if it fails, LogicFuzz
repeats the mutate—generate—verify loop until success or until

a user-defined limit IV is reached, after which the system starts
with a fresh SDG mutation.

During the fuzzing stage, coverage-guided parameter mu-
tation—informed by both the SDG and prior execution feed-
back—generates new inputs for each seed, which are executed
directly on the physical PLC. A monitoring component con-
tinuously collects runtime logs, status LED states, and serial
output. This feedback simultaneously guides subsequent mu-
tations and serves as an anomaly-detection oracle for crashes,
watchdog resets, and silent state corruption.

IV. STATIC ANALYSIS

This section explains how LogicFuzz uses static analysis
to build a Semantic Dependency Graph (SDG) that captures
instruction-usage semantics. The SDG encodes (i) the call
order—which covers caller—callee relations and execution
sequencing—and parameter dependencies between the target
instruction L, and other instructions, (ii) per-parameter usage
constraints, and (iii) bug clues distilled from the CWE corpus
and vendor materials (manuals and example code).

LogicFuzz iterates over Common Weakness Enumeration
(CWE) entries collected from MITRE CWE [26]. For each
entry—represented by an example, root cause, and potential
impact—it queries a large language model (LLM) with the
CWE description and the manuals of L, (prompt shown
in Figure 5) to determine whether the CWE is applicable.
We segment manuals by instruction index and initially feed
only the section corresponding to the target instruction; cross-
instruction segments are then added incrementally as needed
to detect inter-instruction dependencies while respecting token
limits. If the LLM deems a CWE applicable, it returns a
bug clue that specifies the candidate bug type and, for each
parameter of L,, the conditions or values likely to trigger
it. In addition, LogicFuzz utilizes the LLM to derive per-
parameter usage constraints from the manuals, formalized as
(parameter, type, description).

Using an existing Structured Text (ST) AST extractor [39],
LogicFuzz parses the example code of L, splits the statement
sequence at control-transfer points (IF/ELSE, loop headers,
RETURN/ EXIT) to form basic blocks, and assembles a
control-flow graph (CFG). It then performs a standard iterative
reaching-definitions analysis on the CFG to recover def-use

[SysSockCreate]-"l diSocket |

1
diSocket [pSockaddr H diSockAddr |

[SysSockBind] |
Base SDG ! 1
1 1
[SysSockConnect] | diSocket H pSockAddr H diSockAddrSize |
-+
Parameter Type Description
diSocket DINT Socket descriptor
Parameter usage
constraint pSockAddr DWORD Pointer to socket address
diSockAddrSize | DINT Size of socket address struct
-+
Bug type Parameter Trigger condition
Uu.vahdate_d pSockAddr Pmr{ts to an invalid or NULL
pointer dereference address
Bug clues Use-before-init diSocket The diSocket is not initialized
B B by SysSockCreate
—.—
The final SDG

Fig. 6: Final SDG for SysSockConnect. In the base SDG,
dashed edges denote data dependencies, while solid edges
represent call and execution flow. Rounded rectangles indicate
logic instructions, and rectangular nodes indicate instruction
parameters.

relationships. The analysis follows the classical forward data-
flow formulation of reaching definitions: For each basic block
B, we iterate

INg= [J OUT» (1)
Pepred(B)
OUTp = GENp U (INg \ KILL3) 2)

to a fixed point, yielding the set of definitions that reach the
entry of every block.

During a linear scan of the CFG, each AST node of the
form AssignStmt (... CallExpr (callee="L;", args=
[a_1l, a_21)) induces the following SDG edges: a) A caller-
callee edge from the current caller to L. b) For every variable

argument v € {a;}, a set of parameter-dependency edges

d % L, for all reaching definitions d € IN(v); literal

arguments are instead recorded as edge attributes without
creating data-dependency edges. and ¢) An execution-order
edge Loy — Ly, where Ly, is the most recent instruction
call encountered in program order within the same basic
block. The collected caller-callee, parameter-dependency, and
execution-order edges form the basic SDG. Finally, LogicFuzz
attaches the extracted bug clues and the per-parameter usage
constraints to the corresponding nodes and edges to obtain
the full SDG. An example SDG for SysSockConnect is
shown in Figure 6. The SDG comprises three components:
the basic SDG structure, parameter-usage constraints, and
bug clues (“+" denotes conjunction). The basic SDG spec-
ifies that SysSockConnect requires prior invocations of

[|\ 2]]
N EAFEIFE] EEOEIFE]

Sample a subgraph
from the SDG

(1) Reorder the invocation
sequence

(2) Rewire parameter
dependencies

J

(4) Insert a new logic
instruction

(3) Delete logic-instruction
nodes

Fig. 7: Four SDG mutation operators. L; denotes a logic
instruction, and P; denotes an instruction parameter.

SysSockCreate and SysSockBind to create and bind
a socket before establishing a connection. The parameter-
usage constraints capture the types and usage semantics of the
instruction’s three parameters, while the attached bug clues
indicate the LLM-identified parameter values or conditions
that may trigger potential vulnerabilities.

V. SEED PROGRAM GENERATION

Seed program generation proceeds in three steps: LogicFuzz
first mutates the semantic dependency graph (SDG), then
synthesizes a candidate program from the mutated subgraph,
and finally executes a verify—correct—validate loop to obtain a
compilable, semantics-conformant seed.

A. SDG Mutation

LogicFuzz begins by sampling a subgraph g from the target
logic instruction L,’s SDG. If a synthesized program fails
verification or validation, LogicFuzz randomly applies one of
four mutation operators (Figure 7) to expose L, to diverse
execution contexts:

« Reorder: Permutes the invocation path leading to L,
while preserving each instruction’s associated parameter-
dependency edges.

« Rewire: Preserves call order but redirects parameter-
dependency edges to different instructions and/or argu-
ment positions.

o Delete: Removes selected instruction nodes and their
incident edges. Predecessors and successors retain their
original ordering, while affected parameter edges become
temporarily unbound.

o Insert: Samples a new instruction from the global pool,
inserts it at a random position in g without altering ex-
isting dependencies, and randomly attaches its parameter
edges to surrounding nodes.

B. LLM-based Candidate Program Synthesis

Given the mutated subgraph g and the full SDG, LogicFuzz
queries an LLM (prompt in Figure 8) to synthesize a candidate
test program 7 following the enable-signal-based template:

T = <tin7 tvara tT7 t,La tst>- (3)

Candidate program generation prompt

[Input] : g'. L, . SDG

[Instruction]

Please generate an IEC 61131-3 Structured Text test program T for the target logic
instruction L, based on the provided SDG. The program must strictly follow the
program structure and requirements below:

Program structure: I’ = (Ajp, Apar A7, AL, Ag)
» A;, 2 (EN:BOOL,bReset : BOOL, B=1{p:...
» Apar = (EN_prev:BOOL :=FALSE,Ctx:X)
» Aj (rising edge) := {guard : EN A —EN_prev ; action: ®(g', B)),

where ®(g', P) £ Seq {L;(Args;) | (v;, Args;) € topo(g')}
A, (falling edge) :={guard : “EN A EN_prev; action: if bReset then Reset(Ctx) fi}
Ag; (state tracking) := { action: EN_prev < EN}

pat)

YoV

Fig. 8: LLM prompt for candidate-program synthesis.

L

Inputs ty, (EN BOOL, bReset BOOL, 3 =
{p1,...,pn}) declares the enable signal, reset flag, and all
external parameters required by instructions in g, ensuring
parameter completeness and successful compilation. State
tyar = (EN_prev : BOOL := FALSE,Ctx :) maintains
cross-cycle context, where EN_prev supports edge detec-
tion and Ctx stores subgraph-specific state (e.g., buffers,
handles, counters). Rising-edge block t4 £ {guard : EN A
—EN_prev; action : ®(g,)} fires exactly once per cycle
and executes ®(g,P) = Seq{L;(Args;) | (vi,Args;,) €
topo(g)}, where topo(g) is a topological order of g and Args,
are resolved from *B. Falling-edge block t, £ {guard : =EN A
EN_prev; action : if bReset then Reset (Ctx) fi} con-
ditionally reinitializes internal state to support both persistent-
state and immediate-cleanup fuzzing modes. A final State
latching block t4 records the current EN value into EN_prev,
ensuring strict alignment with PLC scan-cycle semantics.

C. Program Verification and Correction

The LLM-generated program 7 may contain syntactic or
semantic defects and must be validated before use. LogicFuzz
combines compilation, SDG conformance checking, and au-
tomated correction into a unified verification loop (Figure 9).
LogicFuzz first compiles 7. If compilation fails, the compiler
error log e is sent to the correction prompt to guide the LLLM
in revising 7. The revision must satisfy:

1) Syntactic and semantic correctness: 7 € R, where R
is the IEC 61131-3 ST grammar and semantic constraint
set [38].

2) Elimination of the reported failure: 7 [~ e.

3) Preservation of program semantics:
Semantic(new 7)) = Semantic(7).

LogicFuzz retries compilation and correction up to a limit
of N = 5. If compilation still fails, 7 is discarded. LogicFuzz
performs the reaching-definitions analysis from Section IV to
extract the basic SDG ¢’ from 7. It then checks equivalence
between ¢’ and the mutated subgraph g—including node
sets, call ordering, and parameter-dependency relations. Non-
conforming programs are discarded.

Program correction prompt

[Input] : candidate seed program T, etror log e

[Instruction]
Given a candidate program 7 € 2 and an error log e € &:

« Identify the root cause & from T and e
« Correct T according to 8, ensuring the corrected program
strictly complies with the following structure:

—T € /& (valid syntax and semantics)
—T # e (does not reproduce the same failure)
—Semantic(new J°) = Semantic(T)

LLM No @ Error
log

SDG and o Y Dynamic Y ’
compilation check : testing ?

Verification Validation

Candidate
program T

@TS Valid seed
“[#7] program

Fig. 9: Program verification-correction-and-validation work-
flow.

Program validation. LogicFuzz next performs short-term
dynamic testing to confirm 7’s functional correctness. The
program is deployed to the PLC, a live connection is estab-
lished, and predefined test inputs are executed:

I, = (EN;, RESET;, PARAM;).
For each input, LogicFuzz defines an invalidation oracle:
oracle; = F‘logi U Fparami U Fcoveragei U anapshotia

where: Flog, is the runtime log produced by engineering
tools, Fparam, records observed input/state values, Feoverage,
is derived from PC traces via the serial port or JTAG (Sec-
tion VI-A), Fynapshot, captures PLC state snapshots before and
after execution (e.g., memory, handles, timers).

If any predicate in oracle; is triggered, 7 is deemed
functionally invalid and discarded. Only programs that pass
all oracles are accepted as seeds Ts.

We employ four inputs and corresponding oracles:

o« Iy = (True, False, @) (baseline rising-edge skele-
ton). Invalidation: log contains “error/crash/failure”; un-
expected parameter/state changes; empty coverage; un-
changed snapshots.

o I; Normal invocation with valid parameters. Invalidation:
identical to Iy plus: no expected state updates; no cover-
age increase; unchanged snapshot (indicating L, did not
execute).

o I, Repeats I; for one minute to expose latent leaks/time-
outs; invalidation predicates identical to I;.

o I; = (False, True, () (falling-edge reset). Invalidation:
reset effects absent; empty coverage; unchanged snapshot.

Only candidates that pass all runtime oracles are promoted
as seeds for subsequent fuzzing.

VI. LoGIC INSTRUCTION FUZZING

For each seed program 7, LogicFuzz performs parameter
fuzzing to further explore bugs in the target instruction L,.

Algorithm 1 Coverage-Guided Parameter Mutation

Require: Parameter set P, mutation pool M, subset size [, UCB
constant C, log weight 3
1: cov < 0; K < 0 > Step O: Initialize the global round counter.
2: for all p; € P do > Step O: Initialize the bandit stats.
3: n; < 0; R; <0
4: end for
5. while not STOP(K, cov) do
6 for all p; € P do > Step 1: Compute the UCB score.
7 score; + UCBSCORE(ni, Ri, C, K)
8 end for
9: Sk < Top({score;}, 1)
10: for all p € Sk do

> Step 2: Select top-l parameters.
> Step 3: Parameter mutation.

11: m < RANDOMPICK(M)

12: MUTATE(p, m)

13: end for

14: (newCov,log) < EXECUTEANDGETCOVERAGE ©> Step 4:
Execute the test case and collect runtime feedback.

15: Acov < newCov — cov; cov < newCov

16: logScore <+ (log = @) 70 : SCORELLM(log)

17: 7 < Acov + B - logScore > Step 5: Compute blended reward
18: for all p; € Sk do

19: ni+n,+1, R, + R;
20: end for

21: K+ K+1

22: end while

L
ISk |

> Step 6: Update K.

This section describes the design of our coverage-guided
parameter mutation strategy, the enable- and reset-based exe-
cution control mechanism, and the runtime monitoring infras-
tructure.

A. Coverage-guided parameter mutation

Algorithm 1 adaptively steers mutations toward unexplored
firmware regions with high bug potential by leveraging feed-
back from coverage traces (Feoverage) and runtime logs (Fiog).
At initialization, LogicFuzz maintains per-parameter ban-
dit statistics—the selection count n; and cumulative reward
R;—under a multi-armed bandit (MAB) model, where each
parameter is treated as an arm. Mutation scheduling follows
the Upper Confidence Bound (UCB) policy [3]:

R; 2In K
Score; = — +C'- - , “4)

ng uz

where the empirical mean % captures a parameter’s historical
contribution to coverage gains or log anomalies, the second
term encourages exploration, K denotes the current round,
and C controls the exploration—exploitation trade-off. In each
round, LogicFuzz selects the top-l parameters according to
their UCB score.

For each selected parameter, LogicFuzz samples a mutation
strategy from a pool comprising two behaviors: (i) Random
mutation, which draws values from the parameter’s full, type-
specific domain (e.g., INT € [—32,768, 32,767]), or strings
as random byte sequences); and (ii) bug-oriented mutation,
which uses the prompt in Figure 10 to instruct the LLM to
alalyze L,’s SDG, including parameters, dependencies, and
CWE-derived bug clues. The LLM interprets the bug clue and

Bug-oriented mutation prompt

[Input]: SDG, top-l parameters
[Task]:
1. Read the bug clues from the SDG

2. For each parameter, generate one or more test values that
are likely to trigger the suspected bug based on the
corresponding clue.

3. If generation fails, fall back to a safe default value.

¥
"CWE-119": {
"diAddressFamily": 2, "diType": 0,
"diProtocol": 10, "pSockAddr":
"127.0.0.1", "diSockAddrSize": 5000}

Mutated top-1
parameters of
SysSockConnect

Fig. 10: LLM prompt for bug-oriented parameter mutation.

proposes values likely to trigger the vulnerability for the top-{
parameters, falling back to safe default values if no triggerable
inputs are identified.

The generated values are applied via the online write
protocol to construct a test case, which is then executed
on the PLC. During execution, LogicFuzz collects Fj,; and
Floverage through the engineering software and via serial or
Joint Test Action Group (JTAG) interfaces. Since fine-grained
basic-block coverage is impractical for PLC firmware without
heavy instrumentation [6], [18], we approximate coverage
using memory-block coverage. PLC memory is partitioned into
fixed-size blocks of 50 bytes, corresponding to the average
basic-block size in PLC instruction libraries. At the end
of L,’s execution cycle, LogicFuzz retrieves the program
counter (PC) trace—a sequence of instruction addresses—via
the serial port or JTAG interface. Each address is mapped to
its corresponding memory block, and a block is marked as
hit if at least one address falls within its range. Coverage is
computed as:

N
newCov = —— W(h; > 0), 5)
blk ; ()

where Ny is the total number of memory blocks, h; denotes
the hit count of block 4, and W(h; > 0) is the indicator
function:

1, if h; >0,

0, otherwise.

To exploit semantic signals, LogicFuzz prompts the LLM
(Figure 11) to analyze Fjog and produce a likelihood score
logScore € [0,1] accompanied by a brief rationale. The
prompt guides the LLM to: (i) analyze runtime logs collected
from a real PLC, including resource usage, return codes,
fault indicators, and abnormal patterns; (ii) assess whether the
logs suggest internal failures or unexpected behavior; and (iii)
output a confidence score with supporting textual reasoning.

Log scoring prompt

[Input] : Fioq

[Task]:

You are given a runtime log collected by executing a logic

instruction with specific parameters on a real PLC. The log may

include:

* Resource usage (CPU, memory)

* Execution time and scan-cycle behavior

¢ Function return values or status codes

* Exception messages or fault indicators

* Abnormal patterns or assertion logs

Your task is to:

(1) Carefully analyze the log.

(2) Based on the PLC runtime states in the log, assess the
likelihood that the logic instruction triggered an internal bug
and output a probability score, logScore € [0,1].

(3) Briefly explain your reasoning.

s 2
"logScore": 0.85,

"Reason": “The log shows intermittent scan-cycle
overruns. This pattern suggests a potential failure
mode (e.g., a timing-related issue), indicating a high
likelihood of an internal fault."

Fig. 11: LLM prompt for log scoring (logScore € |0,1]
estimates the likelihood that the logic instruction triggered an
internal bug).

The round reward integrates both structural and semantic
feedback:
r = Ay + S -logScore. 7

To mitigate stagnation caused by deterministic logs and pre-
vent logScore from dominating the reward, LogicFuzz ran-
domizes 8 ~ U(0, 1], improving robustness across rounds. The
reward 7 is evenly assigned to all mutated parameters to update
their corresponding n; and R;. As K increases, the scheduler
progressively prioritizes parameters that consistently improve
coverage or elicit anomalous behavior, enabling deeper explo-
ration of PLC execution paths.

B. Enable and Reset Control Mechanism

The enable signal EN and reset signal bReset are not
subjected to mutation; instead, they serve as deterministic
global controls governing the start, execution, and reset of each
fuzzing test case. Before fuzzing begins, all control variables
are initialized to EN = FALSE and bReset = FALSE. For
each mutated test case, LogicFuzz first records a complete
snapshot of the PLC state, including memory contents, system
handles, and active timers. The fuzzer then sets signal EN to
TRUE, triggering a single instruction execution.

After execution, LogicFuzz captures a second state snapshot
and resets EN to FALSE. Based on a hierarchical reset policy,
the fuzzer decides whether to assert bReset = TRUE to
restore the PLC to a known state. A reset is triggered under
any of the following conditions: (i) the monitoring module
detects an anomaly, causing an immediate PLC restart; (ii) the
pre- and post-execution snapshots are identical, indicating no

TABLE I: Hardware and software configuration for evaluating
LocGIicFuzz.

Category Vendor | Detail
CompactLogix 1756-L61 (firmware versions 16.023,
Rockwell | 17.004, 19.015, 20.014)
CompactLogix 1756-L33ER (firmware versions 20.011,
20.015, 24.011, 24.013)
PLCs R
. S7-1200 (firmware versions 3.0.2, 4.3.2, 4.4.2)
Siemens
S7-1500 (firmware versions 1.5, 1.7, 2.9, 3.1)
PFC 750-8203 (firmware versions 1.02.05, 02.03.09)
Wago
758-870 (firmware version 3.00)
Rockwell | RSLogix 5000
Engineering[.
software Siemens | TIA Portal V14
Wago CODESYS 2.3
Rockwell Total: 'l 12 (External phys.lcalA control: 77; Internal system
N operations: 34; Communication: 1).
Logic
instructions Si | Total: 126 (External physical control: 42; Internal system
iemens . OO
operations: 64; Communication: 20).
Wago Total: 100 (External physical control: 37; Internal system
2 operations: 36; Communication: 27).
OpenAl | GPT-40
LLMs Deepseek | Deepseek-R1
Anthropic| Claude Sonnet 4

ovservable state change; or (iii) the condition resetScore
= a*x + b-y > 0.5 holds, where a and b are LLM-
inferred likelihoods that the instruction is resource-sensitive
or session-persistent, respectively, and x and y are random
values sampled from [0, 1].

Upon receiving a reset signal, LogicFuzz invokes the reset
module embedded in the seed program to restore the PLC
state. If this reset fails—i.e., the pre- and post-reset snapshots
remain unchanged—LogicFuzz escalates to a program-level
reset using the engineering software’s APIs to explicitly restore
memory, handles, and timers. For example, LogicFuzz may
invoke PLC memory-reset interfaces such as SysMemSet in
CODESYS or POKE_BLK in Siemens environments to over-
write arbitrary memory regions. If the program-level reset also
fails, the PLC is forcibly rebooted and fuzzing resumes from
a clean state. This dual-layer reset design mitigates potential
implementation errors in the reset module and ensures that
the PLC reliably returns to a consistent, known state between
fuzzing iterations.

C. Anomaly Detection

LogicFuzz defines a set of monitoring oracles My,qcie de-
rived from three complementary feedback channels—program
runtime logs (Fjog), PLC system indicators (Fiign), and com-
munication interfaces (Fyomm)—to detect crashes, hangs, and
timeouts:

Moracle = ZTlog U ZTlight U Feomm- (8)

Guided by vendor documentation on execution failures,
system faults, communication errors, and control malfunctions,
we implemented 56 reusable oracles spanning three service
categories: (1) External physical control (21 oracles), cap-
turing hardware-module and CPU-level faults; (2) Commu-

TABLE II: Logic-instruction bugs discovered by LOGICFuUzzZ.

Bug ID Logic Instr. Function | Bug type Bug triggering conditions Affected PLC Version Security risk
Lgx169520 GSV System Lack of boundary Set the WCT to year 1900. Rockwell 1756-L61 17.004, 19.015 Denial of Service
Lgx179778 operation checks Set the WCT to year 9999. Rockwell 1756-L61 20.014 Denial of Service
Lgx169520 SSV System Lack of boundary Set the WCT to year 1900. Rockwell 1756-L61 17.004, 19.015 Denial of Service
Lgx179778 operation checks Set the WCT to year 9999. Rockwell 1756-L61 20.014 Denial of Service
IN25781 ALMA System Incorrect data type Set ALMA’s tag length to 100. Rockwell 1756-L61 19.015 Memory corruption
Lgx135333 operation handling Set ALMA’s tag length to —1. Rockwell 1769-L33ER | 17.08 MNRF
IN25781 ALMD System Incorrect data type Set ALMA’s tag length to 100. Rockwell 1756-L61 19.015 Memory corruption
Lgx135333 operation handling Set ALMA’s tag length to -1. Rockwell 1769-L33ER | 17.08 MNRF
Lex00136317 MAJ Physical | Improper Parameter [Set MergeSpeed and Rockwell 1756-L61 | 20.013, 20014 | Denial of Service
control Initialization LockPosition to —1.
New MRP Physical [y @ limized Logic | OOt CurrentPosition + MRPPosition Rockwell 1756-L61 16.023, 17.004 | Denial of Service
control to exceed the maximum representable range.
3 ac a Si S7-1200 3.0.2,3.34 Inf ti
CVE-2020-15782 MOVE_BLK System Lack of bO‘f"d‘“y Make the SRC and DEST arrays overlap. %emens nrorma %on exposure
_VARIANT operation checks Siemens S7-1500 1.5 Information exposure
S f : Si s $7-1200 3.02,3.34 Informati S
New MOVE_BLK Syste_m Lack of boundary Use overlapping SRC and DEST addresses. %emens nrorma ?on exposure
operation checks Siemens S7-1500 1.5 Information exposure
S . Wago 750-8203 3.0 M fl
WAGO-2021-01 SysMemCpy Sy“‘?m Lack of boundary Use overlapping pSrc and pDest addresses. ago emory overtlow
operation checks Wago 758-870 1.02 Memory overflow
F Wi 750-82(. M il
WAGO-2021-02 MemCpy Syslem Lack of boundary Use overlapping pbSrc and pbyDest addresses. 220 750-8203 30 emory overriow
operation checks Wago 758-870 1.02 Memory overflow
S 2 2 Wi 750-8203 3.0 M I rfl
WAGO-2021-03 SysMemMove Systcm Lack of bognduy Use overlapping pSrc and pDest addresses. 80 emory overtow
operation checks Wago 758-870 1.02 Memory overflow
S C| . Wago 750-8203 3.0 M fl
WAGO-2021-04 MemMove Sys'le_m Lack ‘?f b‘mfndary Use overlapping pSrc and pDest addresses. ag0 eIory overtow
operation checks Wago 758-870 1.02 Memory overflow
S S Wago 750-8203 3.0 Informati S
WAGO-2021-05 | SysMemSet System | Memory access Out-of-bounds length (udiCount). ago nformation exposure
operation violation Wago 758-870 1.02 Information exposure
Wi 50-8203 R injecti
New SysFileWrite Syslem Unauthorized access Out-of-bounds pointer (buffer). ag0 750-820 30 Code Tn!et Ton
operation Wago 758-870 1.02 Code injection
S Wi 750-8203 3.0 Inf ti S
New SysFileRead System Unauthorized access Out-of-bounds pointer (buffer). 480 nrorma %on xposure
operation Wago 758-870 1.02 Information exposure

nication services (19 oracles) covering 11 industrial protocols,
including disconnects, timeouts, checksum mismatches, and
station loss; and (3) Internal system services (16 oracles)
monitoring file systems, operating system components, and
internal databases. As an illustrative example, a Modbus
anomaly is reported if any of the following conditions holds:
(i) the module fails to respond or times out after a standard
request (e.g., function code 0x03); (ii) the device status LED
indicates a network error (commonly red, depending on the
PLC model); or (iii) the runtime log contains a “Modbus
service error/exception.”

For confirmed bugs, LogicFuzz performs root-cause analy-
sis by replaying the proof-of-concept (PoC) input, recording
PC traces via the serial interface, reconstructing the executed
basic-block sequence, and reverse-engineering the correspond-
ing firmware regions. This process enables manual auditing to
verify that the vulnerability is consistently triggerable under
the PoC’s constraints.

VII. EVALUATION

We first describe our experimental setup, then evaluate
LogicFuzz’s effectiveness on logic-instruction bugs, ablate five
components, compare key design choices against prior work,
and finally quantify the impact of exploitation. LogicFuzz
consists of roughly 3,000 lines of Python and Autolt.

A. Experiment Setting

We use pdfplumber [30] to convert PLC manuals [35]
[4] [1] into machine-readable text for LLM consumption. All
LLM-driven steps—bug-clue extraction for SDG construction,

seed synthesis, and program correction—are implemented
via the Python OpenAl library [28]. We import synthesized
seed programs into vendor engineering suites (RSLogix5000,
TIA Portal V14, and CODESYS 2.3) and use Autolt to
automate validation: Send (“"v") pastes the program and
ControlClick triggers verification. Our fuzzing engine is
built on Boofuzz [5]. Following RLPatch [44] and Cojocar et
al. [14], we locate JTAG pinouts on Rockwell and Siemens
PLCs and use a Segger J-Link to extract debug traces. For
WAGO PLCs, we enable root-level SSH access and use
perf to collect PC traces during fuzzing. For WAGO, we
serialize test cases using Boofuzz Fields. For Siemens and
Rockwell, we deliver test cases via vendor-specific interfaces:
db_write from Snap7 and LogixDriver.write from
pycomm3, respectively.

As summarized in Table I, our evaluation covers 338 logic
instructions from vendor manuals—112 Siemens, 126 Rock-
well, and 100 WAGO—spanning external control, internal
system services, and communications. We evaluate two PLC
models per vendor across different firmware versions: WAGO
PFC 750-8203 and 758-870; Siemens S7-1200 and S7-1500;
and Rockwell CompactLogix 1756-L61 and 1756-L33ER. To
ensure vendor-faithful compilation, deployment, and validation
during fuzzing, we use each vendor’s default engineering
software: RSLogix5000 for Rockwell, TIA Portal V14 for
Siemens, and CODESYS 2.3 (Wago Automation Alliance) for
WAGO.

Unless otherwise noted, all static analysis, seed generation,
and fuzzing agents use gpt-40-2024-11-20 with temper-

ature O for determinism. To respect the query budget, we cap
the seed-correction loop at five iterations. For coverage-guided
parameter mutation, we set the UCB exploration coefficient to
C = /2 following Auer [3]. Each logic instruction is fuzzed
for 12 CPU-hours.

B. Real-world Bugs Discovered by LogicFuzz

LogicFuzz tested 338 logic instructions, generated 3,294
seed programs, and raised 514 alerts during fuzzing. Across
static analysis, seed generation, and fuzzing, LLM queries cost
$146.31. Among the alerts, 147 were false positives: benign
network-service responses (Modbug, TCP, DNP3, OPC) ar-
rived after our preset alarm timeout and were misclassified
as anomalies. We also observed 83 missed alarms because
the anomaly detector failed to recognize the “Minor Fault”
state string reported by RSLogix5000. After de-duplication
and manual triage of the remaining 284 alerts, we confirmed
19 logic-instruction bugs across six PLCs, including four
previously undisclosed vulnerabilities. We now analyze these
bugs in detail.

As summarized in Table II, six bugs stem from missing
boundary checks. For Rockwell, when LogicFuzz supplied
wall-clock time (WCT) values corresponding to years 1900
and 9999 to GSV and SSV, RSLogix5000 reported a Minor
Fault. Further analysis indicates that these instructions do
not enforce appropriate upper/lower bounds on WCT in-
puts, causing faults on out-of-range yet syntactically valid
parameters. An attacker can exploit such compliant-but-out-of-
bounds parameters via the CIP protocol to trigger a denial-of-
service (DoS) condition on the PLC. Likewise, SysMemMove,
MemMove, SysMemCpy, and Memcpy accept overlapping or
otherwise invalid pointers. Since the CODESYS manual does
not clearly standardize the safety constraints of these instruc-
tions, LogicFuzz generated inputs that cause source and desti-
nation pointers to overlap, resulting in string overflows on two
WAGO PLCs and leaking program/parameter addresses. On
Siemens S7-1200 and S7-1500, MOVE_BLK_VARIANT and
MOVE_BLK invoke memcpy without validating source/desti-
nation positions; the ERROR LED turned red before clearing.
Without bounds checks, these cases can corrupt PLC mem-
ory—potentially halting actuation or causing DoS if control
logic is affected—and may access memory regions outside
the PLC program’s execution sandbox, enabling information
leakage.

Four defects in ALMD and ALMA arise from incorrect type
handling. Both instructions default to treating label param-
eters as strings and interpret inputs —1 and 100 as string
lengths, leading to out-of-bounds accesses at addresses —1 and
100, respectively. The controller subsequently enters a Ma-
jor Non-Recoverable Fault (MNRF)—halting operations, dis-
abling outputs, and requiring manual recovery (e.g., firmware
re-download) [44]. An attacker can leverage engineering-
tool APIs to inject malicious payloads into the ALMA/ATLMD
parameters, making recovery costly and disrupting production.

We further identify a parameter-initialization flaw in MAJ.
Although MergeSpeed and LockPosition are intended

10

to be constrained to {0, 1}, setting them to -1 is not
rejected by the engineering software; the PLC subsequently
fails to process the value, leaving the controller suspended
while the tool reports an unknown fault. Similarly, MRP
fails to guard against integer overflow in its additive logic;
overflowed results also suspend the PLC until restart, with
RSLogix5000 reporting an unknown fault. Both issues
enable a straightforward DoS vector.

Finally, SysMemSet, SysFileWrite, and
SysFileRead do not validate target buffer pointers.
For example, SysLibMemSet calls memset directly,
and the file I/O routines only check if (file) without
verifying buffer addresses. When LogicFuzz provided out-of-
range pointers, WAGO PLCs crashed, disconnected from the
engineering software, and showed a red RUN indicator. Such
improper address/permissions handling risks unauthorized
access to sensitive files or memory-resident secrets (e.g.,
PLC keys). Moreover, SysFileWrite allows writes to
arbitrary paths outside the control program’s directory.
Based on the operator manual indicating that WAGO PLCs
run Linux, LogicFuzz generated test cases that attempt to
write probe files and malicious payloads into root-protected
directories; our monitor detected content changes in protected
paths and classified this behavior as an unauthorized-access
vulnerability. An attacker could exploit this primitive to
persist malicious artifacts on the PLC and potentially escalate
to full device compromise.

C. Ablation Study

The ablation study quantifies the contribution of Logic-
Fuzz’s five components—SDG generation (®), SDG mutation
(@), candidate-program generation (®), program correction
(@), and coverage-guided parameter mutation (®)—via five
configurations. Cfg 1 removes SDG generation (®); down-
stream stages receive only the instruction name and a correct
invocation relation. Cfg 2 removes SDG mutation (@) but re-
tains the initial SDG. Cfg 3 removes our structured candidate-
generation procedure (®) and replaces it with a single generic
prompt (“Generate a test program for the instruction using an
enable signal.”). Cfg 4 removes program correction (®). Cfg 5
removes coverage-guided mutation (®) and instead uses type-
aware random parameters.

We evaluate each configuration using three metrics: (i)
valid-seed ratio over the 338 instructions (counting both the
seed program and its generated test cases), (ii) total alerts
raised during fuzzing, and (iii) average coverage across the
338 programs. For each instruction, all six configurations (full
+ five ablations) terminate once the per-instruction LLM query
budget of $0.05 is exhausted.

As shown in Table III, removing SDG generation (Cfg 1)
sharply reduces the valid-seed ratio to 61.63% (vs. 88.47%
for the full system) and more than halves the number of
alerts (63 vs. 142). This indicates that SDG-derived context
(e.g., bug clues and parameter-usage constraints) is critical
for synthesizing semantically valid, fuzzable seeds. Disabling
SDG mutation (Cfg 2) further collapses alerts to 44—far

TABLE III: Ablation results for LOGICFUZZ’s five compo-
nents.

Configuration ‘ Valid Seed Ratio (%) ‘ Alarms ‘ Avg Coverage (%)
Cfg 1 (9,8,®,®) 61.63 63 16.43
Cfg 2 (©,8,®,®) 87.24 44 13.11
Cfg 3 (9,2,®,0) 31.52 8 16.83
Cfg 4 (0,0,8,0) 74.21 71 17.71
Cfg 5 (0,0,3,®) 86.17 36 9.37
LogicFuzz 88.47 142 22.33

below the full system’s 142—suggesting that SDG mutation
is a primary driver of “depth", i.e., reaching behaviors that
trigger non-trivial failures. Notably, the valid-seed ratio also
drops (87.24% vs. 88.47%), consistent with the generator
being confined to the initial SDG and less able to escape
semantic/syntactic dead ends; iterating SDG mutation with
validation allows LogicFuzz to explore alternative but seman-
tically consistent instruction relations and recover valid seeds.

Replacing structured candidate generation (Cfg 3) yields the
lowest valid-seed ratio (31.52%), underscoring the importance
of the fixed, enable-signal-aligned template in producing com-
pilable, executable programs. Removing program correction
(Cfg 4) decreases the valid-seed ratio to 74.21% (=~ 14%
absolute below full). In the full system, 47 seeds required
one correction round, 15 required two, and 9 required three;
none required four or five. Thus, the five-iteration cap is
conservative, and correction also improves cost efficiency: the
average LLM cost per successful seed is $0.038 (LogicFuzz)
versus $0.079 (Cfg 4). Finally, removing coverage-guided
mutation (Cfg 5) keeps the valid-seed ratio relatively high
(86.17%) but reduces alerts to 36 and drops average coverage
t0 9.37% (vs. 22.33% full), indicating that unguided parameter
exploration substantially limits test depth.

Overall, SDG generation and SDG mutation are the main
drivers of reach and bug-finding depth; the structured tem-
plate and correction primarily improve seed validity and cost
efficiency; and coverage-guided mutation is critical for broad,
deep exploration as reflected by coverage and alert yield.

D. Comparison with Existing Work

To the best of our knowledge, LogicFuzz is the first frame-
work purpose-built for fuzzing PLC logic instructions. Prior
work overlaps with individual modules (e.g., seed synthesis
or feedback collection) but does not provide an end-to-end
pipeline for instruction-level fuzzing. Where applicable, we
adapt and extend these techniques into component-wise base-
lines to enable fair comparisons and to isolate the impact of
LogicFuzz’s design choices.

Static analysis. We compare LogicFuzz’s static analysis
against the knowledge-retrieval agent in Agent4dPLC [24], an
LLM-based control program generator. LogicFuzz extracts in-
vocation relationships via AST traversal, whereas Agent4PLC
relies on LLM-only semantic extraction. For fairness, we aug-
mented AgentdPLC’s retrieval prompt with: “Please extract the
parameter dependencies, the calling relations, and execution

11

orders for the given logic instruction,” use its default retrieval
context window (four 1K-character chunks), and provide both
systems with the same manual. We then manually audit all
338 instructions. LogicFuzz recovers invocation relations for
all 338 (100%), whereas Agent4PLC succeeds on 121. The
gap is largely due to context truncation in Agent4PLC’s limited
session window, which causes the LLM to omit required calls,
hallucinate missing relations, and misorder execution steps.

Across the 1,743 bug clues attached to LogicFuzz’s SDGs,
98.71% fall into four categories: buffer overflows, out-of-
bounds reads, integer overflows, and insufficient index vali-
dation. We attribute this distribution to two vendor-side ten-
dencies: (i) emphasis on physical control logic that under-
specifies finite bit-width constraints (e.g., overflow bounds
and sign handling), and (ii) extensive use of raw pointers in
internal services and communications without strict bounds
enforcement, increasing the risk of out-of-bounds access and
index/offset misuse.

Seed program generation. We evaluate seed generation
capability by comparing LogicFuzz with Agent4PLC and
PromptFuzz [25], adding the enable-signal mechanism to
both baselines for fairness. For Agent4PLC, we rewrite the
query as: “Generate a test program using the enable signal
mechanism for the given logic instruction.” For PromptFuzz,
we substitute logic-instruction manuals for APIs, replace
“API” with “logic instruction” in its prompts, and append
enable-signal logic to produce executable programs. To ensure
consistent correctness criteria across vendors and methods,
we evaluate all generated seeds using LogicFuzz’s unified
correction, verification, and validation pipeline.

Each method generates one seed per instruction (338 total),
and we measure the fraction that passes LogicFuzz’s valida-
tion. To reduce backend-specific variance, we also test two
code-oriented LLMs (DeepSeek [16] and Claude [2]). We
additionally report average generation time and the average
number of repair iterations to capture end-to-end generation
cost. As shown in Table IV, LogicFuzz achieves a substantially
higher pass rate than both baselines, highlighting the ben-
efit of instruction-oriented semantic constraints. PromptFuzz
produces ~ 1% valid programs; its 14 successes correspond
to elementary arithmetic/Boolean operations that require little
semantic extraction. Agent4PLC’s valid outputs similarly clus-
ter in “light semantic, resource-independent” categories (arith-
metic/logic, timers/counters, strings, type conversions), which
do not require scan-cycle-aware state management and are
well represented in pretraining corpora. For vendor-specific,
resource-sensitive, and state-dependent instructions, even with
enable-signal/ scan-cycle scaffolding, Agent4PLC often fails
to reconstruct parameter dependencies and preconditions, and
it frequently omits required pointer/handle initialization, reuse,
or reset, yielding semantically invalid programs.

LogicFuzz also exhibits lower generation cost than
Agent4PLC and PromptFuzz (9.10 seconds average generation
time and 1.50 repair iterations), indicating that SDG-guided
semantic constraints reduce invalid generations and unnec-
essary repair cycles. Table IV further shows clear backend

~
~

TABLE IV: Evaluation covers all 338 logic instructions. For each method, we report: (1) Passed/338 (pass rate), (2) Time/338
(average generation time), and (3) Ifers/338 (average number of repair iterations). Row Avg. reports, for each model, the mean
pass rate/time/iters across methods, while Col. Avg. aggregates each method across the three models.

Model ‘ Agent4PLC ‘ PromptFuzz ‘ LogicFuzz ‘ Row Avg.
‘ Pass (%) Avg. Time (s) Avg. Iters ‘ Pass (%) Avg. Time (s) Avg. Iters ‘ Pass (%) Avg. Time (s) Avg. Iters ‘
GPT-40 | 28.00% 14.72 221 | 0.89% 17.83 462 | 92.90% 7.32 144 | 40.60% / 13.29/2.76
DeepSeck-R1 | 21.89% 20.38 237 | 207% 32.17 493 | 89.94% 10.87 157 | 37.97%/21.14/2.96
Claude Sonnet 4 | 25.15% 17.06 219 | 1.18% 24.09 471 | 91.98% 9.11 149 | 39.44% / 16.75/2.80
Col. Avg. | 25.01% 17.39 226 | 138% 24.70 475 | 91.61% 9.10 150 | 39.34% /17.06/2.84
0s TABLE V: Average per-test execution time (T) and average
= LogicFi
o ot MAX: 41.80% memory usage (M) by PLC and tool.
==« [CSFuzz
0.4+ + LogicFuzz-Random PLC Model | LogicFuzz |LogicFuzz-GUI | LogicFuzz-ICS | LogicFuzz-Quartz
[T(s) M(%)|T(s) M(%) |T(s) M(%) | T(s) M(%)
03 MAX: 27.19% Wago 750-8203 0.111 681 [3.321 3254 [0.016 10.17 |0.00041 7.89
& —_— Wago 758-870 0.106 6.88 |3.893 37.88 [0.026 1131 |0.00076 8.13
- Y A R R o S, - Siemens $7-1200 0.125 819 [8613 4314 |N/A NA | NA N/A
- Y 2 L Siemens $7-1500 0.118 7.69 |9.121 4723 |N/A N/A | NA N/A
Coad [e Rockwell 1756-L33ER | 0.110 12.25 [6.337 5221 | N/A N/A | N/A N/A
MAX: '4§'% Rockwell 1756-L61 0.086 13.44 |7.813 4973 | N/A N/A N/A N/A
0.14
stantially faster than both baselines; within the first six hours,

0.0

0 5 10 s 2 A
Fuzzing Time (Hour)

Fig. 12: Coverage comparison of LOGICFUZZ, Structured-

Fuzzer, and ICSFuzz over 24 hours. The solid line denotes

mean coverage, and the shaded band indicates the min-max

range.

differences: GPT-4o0 attains the highest average pass rate
(40.60%), together with the lowest average time cost (13.29
seconds per program) and the fewest repair iterations (2.76
per program), motivating its use as our default backend.

Mutation strategy. To assess LogicFuzz’s mutation strat-
egy, we compare it with ICSFuzz [40] and Structured-
Fuzzer [22], two recent control-program fuzzers that mu-
tate instruction/function block parameters. These baselines
represent different philosophies: StructuredFuzzer uses unin-
formed random value generation, whereas ICSFuzz prioritizes
parameters whose mutations are associated with new path
discovery. To fairly adapt them to logic-instruction fuzzing,
we retain LogicFuzz’s static analysis, seed generation, and
test-case construction, and replace only the coverage-guided
parameter mutation policy with each baseline. Concretely,
StructuredFuzzer becomes type-consistent random sampling;
for ICSFuzz, we replace its “new path discovered” trigger with
LogicFuzz’s “new memory block hit” condition derived from
memory-block coverage. We additionally disable bug-oriented
parameter mutations and keep only random parameter muta-
tions, forming LogicFuzz-Random to isolate the contribution
of LLM/SDG-guided semantic mutations.

We run 24-hour campaigns for each of the 338 instructions
and evaluate all methods using LogicFuzz’s coverage metric.
As shown in Figure 12, LogicFuzz reaches high coverage sub-

12

it exceeds 33.46%, while ICSFuzz and StructuredFuzzer grow
slowly and plateau at 14.31% and 7.50%, respectively. More-
over, LogicFuzz continues to increase coverage throughout the
full 24 hours without clear convergence, suggesting a stronger
capability to penetrate deeper execution behavior over time.
When disabling bug-oriented mutations (LogicFuzz-Random),
coverage drops to 27.19%, indicating that LLM/SDG-guided
semantic mutations materially improve mutation effectiveness
and long-term coverage gain.

Execution performance. We evaluate test case
execution performance against three extensible
baselines—ICS3fuzzer [19], ICSFUZZ [401], and

ICSQuartz [41]. We implement three execution backends: (i)
LocGIicFuzz-GUI, built on ICS3Fuzzer and using Autolt to
automate vendor engineering suites for parameter passing and
execution; (ii) LOGICFUZZ-QUARTZ, running on a Linux host
and orchestrating instruction-level fuzzing on WAGO PFC
PLCs by hooking the CODESYS build-and-deploy pipeline;
and (iii) LoGicFuzz-ICS, extending ICSFuzz to execute
parameter passing by intercepting the memory-mapping path
on Linux-based WAGO PFC PLCs. We measure two metrics:
average per-test execution time and memory usage. For each
of the 338 instructions, we select one seed and execute one
test case on all six PLCs, record the total time, and compute
the mean (T) by dividing by 338; we also record the memory
usage (M) after each case.

Table V shows that on WAGO 750-8203 and 750-870,
LogicFuzz is slower than the memory-based LOoGICFUzz-ICS
and host-based LOGICFUZZ-QUARTZ. However, LogicFuzz
operates on any PLC that supports upload, download, and
validation via vendor engineering software, whereas ICSFUZZ
and ICSQuartz are constrained to WAGO-series devices due
to platform-specific interfaces. In terms of memory, LogicFuzz

Predetermined
return
(0,5)

Unexpected
position (0,10)

_ Slide rails

// Move to 5.0
MAS(1, 5.0, ...)
// Jog back toward 0.0
MAIJ(1,-50.0, ...,
MergeSpeed=0.0,
LockPosition=0)

crash

&

Payload
MergeSpeed=-1, 5 {tacker
LockPosition=-1
Jrrm—
E 2l I Industrial
Control " communication
program PLC protocols ~ Engineering

station

Fig. 13: Example exploitation of a Rockwell MAJ logic-
instruction bug. The green arrows depict the normal slide-rail
workflow, while the red arrows show the adversary’s attack
flow.

has the smallest footprint across all methods: its usage ranges
from 6.81% to 13.44%, consistently lower than LOGICFUZz-
GUI, LogicFuzz-ICS, and LOGICFUZZ-QUARTZ on the
same PLC models. Overall, LogicFuzz provides strong porta-
bility and scalability with favorable resource efficiency, mak-
ing it well suited for long-running, large-scale, and parallel
fuzzing campaigns.

E. Effect of Exploitation

This section demonstrates how the parameter-initialization
flaw in MAJ can be weaponized and the physical impact it
can induce. Figure 13 shows our experimental setup: a linear-
rail platform representative of robotic-arm motion stages and
conveyor transport. An engineer first downloads the control
program to the PLC from an engineering workstation. The
workstation then monitors and adjusts the rail state by mapping
logic-instruction parameters to PLC memory over common
fieldbus/industrial Ethernet protocols (e.g., Modbus RTU and
EtherNet/IP). The program moves the rail from the home
position (0, 0) to the return point (0,5) using the MAS move
command, and then jogs it back to (0,0) using a MAJ loop
executed under default safety parameters (MergeSpeed
0.0, LockPosition = 0), which enforces smooth and
bounded motion.

In many deployments, industrial protocols are operated
without encryption, strong authentication, or fine-grained write
controls. Consequently, an adversary with network access can
inject a single Modbus write that overwrites the PLC memory
locations holding MAJ’s parameters, setting MergeSpeed
-1 and LockPosition —1. These illegal values trigger

13

the firmware bug; in our experiment, the PLC crashes and
the rail overshoots to (0,10), beyond its mechanical limit.
Unlike classic control-logic injection [42]—which typically
requires replacing the full program or spoofing multi-step
protocol exchanges—this exploit flips only one instruction’s
parameters, generating minimal traffic and thus offering a
substantially stealthier attack surface. Moreover, because it
abuses a firmware-level defect rather than application logic,
the same technique can apply across PLC models and firmware
versions that share the vulnerable instruction implementation.

Protocol safeguards such as encryption, integrity protection,
mutual authentication, anti-replay, and variable whitelisting
can raise the bar against packet-tampering-based exploitation
of logic-instruction vulnerabilities. However, an attacker may
still satisfy these stronger preconditions—for example, by ob-
taining valid credentials/keys, compromising the engineering
workstation, or gaining physical access to the PLC—thereby
restoring the feasibility of parameter overwrite and increasing
the likelihood of successful exploitation.

VIII. RELATED WORK

In this section, we focus on fuzz testing for embedded
firmware and PLC systems and the use of large language
models (LLMs) in program synthesis and fuzz testing.

A. Firmware and PLC Fuzzing

Firmware-level bug discovery is typically dominated by
three families of techniques—static taint analysis, symbolic
execution, and fuzzing on simulated/emulated images—but
each is ill-suited to systematically testing PLC logic in-
structions. Static taint analysis, exemplified by DTaint [12],
reconstructs potentially dangerous data flows by combining
data-structure similarity with bottom-up call-chain tracing. In
PLC firmware, however, logic instructions heavily rely on
runtime-generated data and vendor-specific execution contexts,
which hinders accurate context recovery and leads to ex-
cessive false positives. Symbolic execution frameworks such
as Angr [34] lift firmware to an intermediate representation
and explore paths symbolically. In practice, this incurs severe
path explosion and memory overhead, often requires substan-
tial manual effort to retrace and validate findings, and still
produces many false positives—limitations that are amplified
by the complex, proprietary runtimes of commercial PLCs.
Finally, simulation- or emulation-based firmware fuzzers such
as Fuzzware [33] typically do not support the processor
architectures or peripheral models used in most PLCs; even
when binaries can be loaded, low simulation fidelity and
frequent execution failures make these approaches ineffective
for exercising logic-instruction implementations. Collectively,
these constraints motivate a dedicated, instruction-aware ap-
proach such as LoGIicFuzz.

Existing PLC fuzzing research targets three
layers—industrial communication protocols, control programs,
and the PLC runtime—yet none systematically addresses
instruction-level bugs (Table VI). Protocol fuzzers such
as ICS3Fuzzer [19] and PCFuzzer [23] mutate packets

or protocol fields to uncover implementation flaws in
proprietary stacks. Since their mutation logic is coupled
to protocol grammars, they cannot capture the invocation
order or parameter dependencies that govern logic-instruction
behavior, and thus provide little leverage for instruction-
centric testing. Runtime fuzzers, represented by Sizzler [20]
and FieldFuzzer [8], manipulate live external inputs (e.g.,
network traffic, physical I/O, or direct memory writes)
to influence a running PLC. However, they neither infer
instruction usage patterns nor synthesize semantically
consistent call sequences and parameters, leaving instruction-
level faults largely unexplored. Control-program fuzzers such
as ICSFuzz [40], ICSQuartz [41], and StructuredFuzzer [22]
aim to expose higher-level logic faults by perturbing
control flow and state transitions in user code. While some
approaches (e.g., StructuredFuzzer) do mutate instruction
parameters, they typically rely on rule-based or random
heuristics that ignore fine-grained parameter dependencies
and invocation constraints. As a result, generated tests
frequently violate semantic preconditions and fail to reach
the boundary conditions and deep behaviors required to
stress logic-instruction implementations. In summary, prior
work advances fuzzing at the protocol, runtime, and control-
program layers, but lacks the specialized semantics, guided
mutations, and hardware-aware execution model needed for
systematic instruction-level fuzzing.

B. LLMs for Program Synthesis and Fuzzing

LLMs have evolved from statistical language models into
general-purpose systems capable of instruction following and
multi-domain reasoning. Models such as GPT-3 [7] and GPT-
4 [27] leverage large-scale pretraining to produce fluent,
coherent outputs over long contexts, while alignment tech-
niques such as reinforcement learning from human feedback
(RLHF) [29] improve their ability to follow user intent and
generate reliable responses. This prompt-based interaction
paradigm has enabled LLM applications beyond traditional
NLP, including code synthesis and completion [10], scientific
knowledge encoding [37], automated test generation, failure
discovery, and analysis of industrial control logic [24]. These
developments suggest that LLMs can serve as task-oriented
agents that combine domain knowledge with general reason-
ing—an attractive capability for generating semantically valid
test programs.

Fuzzing logic instructions requires repeatedly generating
programs that respect instruction semantics and execute cor-
rectly under PLC scan-cycle constraints. As summarized in
Table VI, existing PLC program generators are typically rule-
based or model-based. Rule-based systems such as PLC-
specif [15] and G4LTL-ST [11] encode fixed logic units,
contracts, and behavioral patterns and map them to task
specifications. However, instruction semantics vary widely
across vendors and firmware versions, making comprehen-
sive rule maintenance quickly infeasible. Recent LLM-driven
approaches such as Agent4dPLC [24] generate generic con-
trol programs via retrieval-augmented generation, but they

14

TABLE VI: Comparison of related work. Sup. indicates sup-
port for logic-instruction fuzzing: (e) direct, (®) partial, and
(o) none.

Related work Method Representative works Sup.

Control program Rule-based SEE:; CS]: ((225)]1 :)) [[]151]] :
generation

Model-based Agents4PLC (2024) [24] ®
API fuzz-driver Rule-based APICraft (2021) [43] o
generation Model-based | PromptFuzz (2023) [25] o
PLC protocol | ICS3FUZZER (2021) [19] o
fuzzing PCFuzzer (2022) [23] o
ICSFuzz (2021) [40] o
PLC fuzzing PquEZri"nggmm StructuredFuzzer (2024) [22] | ©
ICSQuartz (2025) [41] o
PLC runtime Sizzler (2023) [20] o
fuzzing FieldFuzzer (2023) [8] o

are not designed for instruction-level fuzzing. In particular,
they omit (i) fuzzing-relevant semantics such as invocation
order, parameter constraints, and bug-trigger conditions; (ii)
hardware-aware logic synchronized with scan cycles and I/O
mappings; and (iii) mechanisms that deliberately drive bound-
ary conditions. Consequently, the generated programs are often
unsuitable as fuzzing seeds and fail to exercise instruction-
level corner cases.

API fuzz-driver generation resembles an instruction-fuzzing
workflow and exists in both rule/model-based variants [43]
[25]. However, these approaches generally overlook the syntax
and execution model of PLC control programs. The resulting
drivers often fail to compile or to be downloaded and executed
in vendor toolchains, and their structure diverges from logic-
instruction test programs: they lack parameter-to-1/0 mappings
and do not implement scan-cycle interactions with external
inputs and outputs. Finally, generic API mutation strategies
do not encode the semantic constraints of logic instructions,
limiting their effectiveness for instruction-level fuzzing.

I1X. DISCUSSION

This section discusses LogicFuzz’s limitations, results, and
future directions from three perspectives: manual effort, ro-
bustness, and scalability.

A. Manual Effort

LoGIicFuzz requires modest human effort that is largely
one-time. We collected seven vendor manuals, 473 logic-
instruction code samples (from official sites, GitHub, and
forums), and one CWE list in about 1 hour. We drafted a
2,000-word prompt in 2 minutes and implemented roughly
3K lines of code in 6 hours, including 600 lines for program
validation and anomaly-detection oracles (about 2 hours).
Setting up serial and Joint Test Action Group (JTAG) con-
nectivity between six PLCs and their engineering suites took
1 hour. Using a traffic monitor, we extracted vendor-specific
engineering software protocols to automate parameter passing
(another 1 hour). Finally, manual triage of 514 alerts required
4 hours. Except for alert triage, these tasks—documentation

collection, prompt drafting, implementation, communication
setup, and protocol extraction—are reusable investments (e.g.,
for future fuzzing of engineering-software protocols). Because
of the soundness—completeness trade-off, some manual con-
firmation is unavoidable; nevertheless, LOGICFUZZ achieves
55.25% precision (284/514). Our next goal is to tighten the
oracles to reduce false alarms and further lower review effort.

B. Robustness

LocGicFuzz’s automatic test-program generation depends
on two factors. (i) Industrial knowledge completeness. While
vendor documentation can omit details, such cases are uncom-
mon: among the 473 collected instructions, only 12 (2.54%)
lacked sufficient parameter-usage constraints to build a com-
plete SDG. All 338 instructions evaluated in our study include
code examples and usage descriptions detailed enough to
support fully automatic SDG extraction. (ii) LLM capability.
Combining SDG-derived constraints with a fixed-structure
prompt yields an 88.47% seed-generation success rate. Al-
ternative backends exhibit noticeable variance, suggesting that
stronger code-capable LLMs can further improve correctness
and reduce repair effort.

A related limitation is that test cases derived from CWE
patterns inevitably reflect known bug classes. In contrast,
LocGicFuzz’s SDG-mutation operators and type-aware ran-
dom parameter generation are pattern-agnostic, enabling ex-
ploration beyond CWE templates and improving the chance
of uncovering previously unknown instruction-level faults.

At the same time, LOGICFUZZ cannot fully control LLM
nondeterminism. In our evaluation, 11.63% of seeds failed
due to: (i) hallucinations that misinterpret logic instructions as
other languages and generate non-IEC 61131-3 code (3.72%);
(ii) unexpected characters (e.g., undecodable bytes) (2.37%);
and (iii) failure to follow specified parameter ranges or
instruction-call order (5.54%). Future work will refine prompts
and explore fine-tuning to mitigate issue (i) and to further
reduce reliance on SDG and other industrial knowledge. We
will also introduce comprehensive static checks over pro-
gram syntax and instruction parameters to detect and reject
issues (ii) and (iii) before deploying test cases.

C. Scalability

As shown in Table V, LoGICFUZZ maintains low and
stable overhead across six PLCs: average per-test execution
time remains within 0.086-0.125s and memory usage within
6.81%—-13.44%. Despite heterogeneous engineering suites and
runtime environments across WAGO, Siemens, and Rockwell,
per-instruction cost remains stable, indicating that expanding
to additional PLC families increases total cost approximately
linearly rather than being dominated by any single platform.

Architecturally, LOGICFUZzZ scales by decoupling
instruction-level logic from device-specific adapters. SDG
construction, semantic parsing, and parameter-constraint
extraction are vendor-agnostic; adding a new PLC primarily
requires implementing thin adapters for the engineering
software and monitoring interface, while reusing the existing

15

seed-generation and mutation pipeline. Similarly, when
the instruction corpus grows beyond 338, LOGICFUZZ
incrementally parses new manuals and adds SDG nodes
without modifying the core fuzzing loop.

LocGicFuzz currently relies on PLC debug interfaces that
expose PC traces or equivalent runtime visibility (e.g., JTAG-
based tracing or per f-based sampling), which are commonly
available on commercial PLCs. For restricted devices without
JTAG/SSH/engineer-mode access, viable alternatives include:
(1) static firmware rewriting or instrumentation (where permit-
ted) to insert lightweight coverage probes or trace hooks that
map internal execution paths to observable events; and (2) us-
ing vendor engineering suites (e.g., TIA Portal or CODESYS)
through their APIs to retrieve runtime states or snapshots for
approximate coverage estimation and anomaly detection. In
future work, we plan to unify heterogeneous coverage and state
signals into a vendor-independent metric, reducing reliance on
specific debug interfaces while preserving effective coverage
guidance on more constrained PLC platforms.

X. CONCLUSION

This paper presents LogicFuzz, the first automated fuzzing
framework designed to uncover logic-instruction bugs across
heterogeneous PLC platforms. To generate test cases that
respect instruction semantics, LogicFuzz constructs a Se-
mantic Dependency Graph (SDG) that captures invocation
relations, parameter constraints, and bug clues. We develop
an AST-based extraction pipeline for SDG construction and
successfully generate SDGs for all 338 evaluated instruc-
tions. Inspired by field engineers’ programming practices,
we design an enable-signal-based fuzzing harness that is
controllable and resettable across scan cycles, and we craft
structured prompts that guide an LLM to synthesize seed
programs. In experiments, LogicFuzz achieves an 88.47%
seed-generation success rate. To target the two primary trig-
gers of logic-instruction bugs—invocation patterns and input
parameters—we propose SDG-guided mutation operators that
perturb instruction invocation relationships. We further in-
troduce a memory-block—based coverage metric obtained via
serial and Joint Test Action Group (JTAG) interfaces and cou-
ple it with UCB-guided parameter mutation. Together, these
complementary mutation strategies drive deeper exploration
and enable LogicFuzz to uncover 19 bugs across six PLCs,
including four previously undisclosed vulnerabilities. Finally,
we build anomaly-detection oracles that combine runtime logs,
communication probes, and PLC indicator lights, achieving
55.25% monitoring precision. Looking ahead, we plan to
refine generation strategies and explore model fine-tuning to
further improve seed validity while reducing reliance on SDG-
style industrial knowledge, thereby increasing the efficiency of
logic-instruction bug discovery.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their insightful and
constructive feedback. This work was supported in part by
the National Natural Science Foundation of China (NSFC)

under Grant No. 92467201, NSFC under Grant No. 62472302,
NSFC under Grant No. 62402225, and by the project “In-
telligent Identification and Risk Response System for Data
Ransomware Attack on Industrial Internet Enterprises” under
Grant No. 0747-2361SCCZA193.

ETHICS CONSIDERATIONS

We responsibly disclosed all discovered logic-instruction
bugs to Siemens, WAGO, and Rockwell, who approved their
publication in this paper. We note that the vendors had
previously identified and remediated 15 logic-instruction bugs
(assigned internal IDs) in firmware updates released before
our disclosure; these fixes address the affected versions. After
we reported four previously unknown logic-instruction bugs,
WAGQO, Siemens, and Rockwell indicated that they plan to
address them in future PLC firmware releases.

[1]

[5]
[6]

[7]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

REFERENCES

3S Smart Software Solutions. 3s smart software solutions becomes
codesys gmbh. https://www.codesys.com/news-events/press-releases/
article/3s-smart-software-solutions-gmbh-becomes-codesys-gmbh.
html, 2021.

Anthropic. Claude: An ai assistant by anthropic. https://www.anthropic.
com/index/claude, 2023. Accessed: 2025-07-22.

P. Auer and R. Ortner. Ucb revisited: Improved regret bounds for
the stochastic multi-armed bandit problem. Periodica Mathematica
Hungarica, 61(1-2):55-65, 2010.

Rockwell Automation. Automation system design
https://www.rockwellautomation.com/en-us/products/software/
factorytalk/designsuite/studio-5000.html, 2025.

Boofuzz Project. Boofuzz: A network protocol fuzzing framework for
humans. https://boofuzz.readthedocs.io/en/stable/index.html, 2025.

M. Borsig, S. Nitzsche, M. Eisele, R. Groll, J. Becker, and I. Baumgart.
Fuzzing framework for esp32 microcontrollers. In 2020 IEEE Interna-
tional Workshop on Information Forensics and Security (WIFS), pages
1-6. IEEE, 2020.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in Neural Information Processing Systems, 33:1877-1901,
2020.

A. Bytes, P. H. N. Rajput, C. Doumanidis, M. Maniatakos, J. Zhou, and
N. O. Tippenhauer. Fieldfuzz: In situ blackbox fuzzing of proprietary
industrial automation runtimes via the network. In Proceedings of the
26th International Symposium on Research in Attacks, Intrusions and
Defenses, pages 499-512, October 2023.

Defense Use Case. Analysis of the cyber attack on the ukrainian power
grid. Electricity Information Sharing and Analysis Center (E-ISAC),
388.1-29, 2016. p. 3.

M. Chen. Evaluating large language models trained on code. https:
/larxiv.org/abs/2107.03374, 2021.

C. H. Cheng, C. H. Huang, H. Ruess, and S. Stattelmann. G4ltl-st:
Automatic generation of plc programs. In International Conference on
Computer Aided Verification, pages 541-549, Cham, July 2014. Springer
International Publishing.

K. Cheng, Q. Li, L. Wang, Q. Chen, Y. Zheng, L. Sun, and Z. Liang.
Dtaint: Detecting the taint-style vulnerability in embedded device
firmware. In Proceedings of the 2018 48th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN), pages
430-441. IEEE, June 2018.

Claroty Team82. The race to native code execution in plcs: Using rce
to uncover siemens simatic s7-1200/1500 hardcoded cryptographic keys.
https://claroty.com/team82/research, 2024.

L. Cojocar, K. Razavi, and H. Bos. Off-the-shelf embedded devices as
platforms for security research. In Proceedings of the 10th European
Workshop on Systems Security, pages 1-6, 2017.

D. Darvas, E. Blanco Vifiuela, and I. Majzik. Plc code generation based
on a formal specification language. In 2016 IEEE [4th International
Conference on Industrial Informatics (INDIN). IEEE, 2016.

software.

16

[16]
[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]
[27]
[28]

[29]

(30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Deepseek. Deepseek. https://www.deepseek.com/, 2025.

A. Di Pinto, Y. Dragoni, and A. Carcano. Triton: The first ics cyber
attack on safety instrument systems. In Proceedings of Black Hat USA,
pages 1-26, 2018.

M. Eisele, M. Maugeri, R. Shriwas, C. Huth, and G. Bella. Embedded
fuzzing: a review of challenges, tools, and solutions. Cybersecurity,
5(1):18, 2022.

D. Fang, Z. Song, L. Guan, P. Liu, A. Peng, K. Cheng, and L. Sun.
Ics3fuzzer: A framework for discovering protocol implementation bugs
in ics supervisory software by fuzzing. In Proceedings of the 37th
Annual Computer Security Applications Conference, pages 849-860,
December 2021.

K. Feng, M. M. Cook, and A. K. Marnerides. Sizzler: Sequential
fuzzing in ladder diagrams for vulnerability detection and discovery
in programmable logic controllers. /EEE Transactions on Information
Forensics and Security, 19:1660-1671, 2023.

D. Formby, S. Durbha, and R. Beyah. Out of control: Ransomware for
industrial control systems. In RSA Conference, volume 4, 2017.

K. A. Koffi, V. Kampourakis, J. Song, C. Kolias, and R. C. Ivans.
Structuredfuzzer: Fuzzing structured text-based control logic applica-
tions. Electronics, 13(13):2475, 2024.

P. Liu, Y. Zheng, Z. Song, D. Fang, S. Lv, and L. Sun. Fuzzing propri-
etary protocols of programmable controllers to find vulnerabilities that
affect physical control. Journal of Systems Architecture, 127:102483,
2022.

Z. Liu, R. Zeng, D. Wang, G. Peng, J. Wang, Q. Liu, and W. Wang.
Agentsdplc: Automating closed-loop plc code generation and verification
in industrial control systems using llm-based agents. arXiv preprint
arXiv:2410.14209, 2024.

Y. Lyu, Y. Xie, P. Chen, and H. Chen. Prompt fuzzing for fuzz driver
generation. In Proceedings of the 2024 ACM SIGSAC Conference on
Computer and Communications Security, pages 3793-3807, December
2024.

MITRE. CWE-699: Software Development. https://cwe.mitre.org/data/
definitions/699.html, 2025. CWE View, Version 4.18.

OpenAl. Gpt-4 technical report. https://openai.com/research/gpt-4,
2023. Accessed: 2025-08-07.

OpenAl. Openai python api library. https://pypi.org/project/openai/,
2025.

L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray, et al. Training language
models to follow instructions with human feedback. Advances in Neural
Information Processing Systems, 35:27730-27744, 2022.

pdfplumber. pdfplumber python library (0.11.5). https://pypi.org/project/
pdfplumber/, 2025.

Langner R. Stuxnet: Dissecting a cyberwarfare weapon. [EEE Security
& Privacy, 9(3):49-51, 2011.

N. Redini, A. Continella, D. Das, G. De Pasquale, N. Spahn, A. Machiry,
and G. Vigna. Diane: Identifying fuzzing triggers in apps to generate
under-constrained inputs for iot devices. In Proceedings of the 2021
IEEE Symposium on Security and Privacy (SP), pages 484-500. IEEE,
May 2021.

T. Scharnowski, N. Bars, M. Schloegel, E. Gustafson, M. Muench,
G. Vigna, and A. Abbasi. Fuzzware: Using precise MMIO modeling
for effective firmware fuzzing. In Proceedings of the 31st USENIX
Security Symposium (USENIX Security 22), pages 1239-1256. USENIX
Association, 2022.

Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna.
SoK: State of The Art of War: Offensive Techniques in Binary Analysis.
In IEEE Symposium on Security and Privacy, 2016.

Siemens. Siemens S7-1200 PLC Programmable Manual. Siemens,
2025. https://cache.industry.siemens.com/dl/files/465/36932465/att_
106119/v1/571200_system_manual_en-US_en-US.pdf.

J. Slowik. Evolution of ics attacks and the prospects for future disruptive
events. Threat Intelligence Centre, Dragos Inc., 2019.

R. Taylor, M. Kardas, G. Cucurull, T. Scialom, N. Hartshorn, E. Saravia,
N. Goyal, D. Dohan, C. Dyer, R. Taori, et al. Galactica: A large language
model for science. https://arxiv.org/abs/2211.09085, 2022.

M. Tiegelkamp and K.-H. John. [EC 61131-3: Programming Industrial
Automation Systems, volume 166. Springer, Berlin, Germany, 2010.
TUMAIS. Iec611313antlrparser. https://github.com/TUMAIS/
IEC611313ANTLRParser.

https://www.codesys.com/news-events/press-releases/article/3s-smart-software-solutions-gmbh-becomes-codesys-gmbh.html
https://www.codesys.com/news-events/press-releases/article/3s-smart-software-solutions-gmbh-becomes-codesys-gmbh.html
https://www.codesys.com/news-events/press-releases/article/3s-smart-software-solutions-gmbh-becomes-codesys-gmbh.html
https://www.anthropic.com/index/claude
https://www.anthropic.com/index/claude
https://www.rockwellautomation.com/en-us/products/software/factorytalk/designsuite/studio-5000.html
https://www.rockwellautomation.com/en-us/products/software/factorytalk/designsuite/studio-5000.html
https://boofuzz.readthedocs.io/en/stable/index.html
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://claroty.com/team82/research
https://www.deepseek.com/
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://openai.com/research/gpt-4
https://pypi.org/project/openai/
https://pypi.org/project/pdfplumber/
https://pypi.org/project/pdfplumber/
https://cache.industry.siemens.com/dl/files/465/36932465/att_106119/v1/s71200_system_manual_en-US_en-US.pdf
https://cache.industry.siemens.com/dl/files/465/36932465/att_106119/v1/s71200_system_manual_en-US_en-US.pdf
https://arxiv.org/abs/2211.09085
https://github.com/TUMAIS/IEC611313ANTLRParser
https://github.com/TUMAIS/IEC611313ANTLRParser

[40]

[41]

[42]

[43]

[44]

D. Tychalas, H. Benkraouda, and M. Maniatakos. ICSFuzz: Manipulat-
ing i/0 and repurposing binary code to enable instrumented fuzzing in
ics control applications. In 30th USENIX Security Symposium (USENIX
Security 21), pages 2847-2862, 2021.

C. Villa, C. Doumanidis, H. Lamri, P. H. N. Rajput, and M. Maniatakos.
Icsquartz: Scan cycle-aware and vendor-agnostic fuzzing for industrial
control systems. In Network and Distributed System Security (NDSS)
Symposium, 2025.

H. Yoo and I. Ahmed. Control logic injection attacks on industrial
control systems. In IFIP International Conference on ICT Systems
Security and Privacy Protection, pages 33-48. Springer, 2019.

C. Zhang, X. Lin, Y. Li, Y. Xue, J. Xie, H. Chen, X. Ying, J. Wang,
and Y. Liu. Apicraft: Fuzz driver generation for closed-source sdk
libraries. In 30th USENIX Security Symposium (USENIX Security 21),
pages 2811-2828, 2021.

M. Zhou, H. Wang, K. Li, H. Zhu, and L. Sun. Save the bruised
striver: A reliable live patching framework for protecting real-world plcs.
In Proceedings of the Nineteenth European Conference on Computer
Systems, pages 1192-1207, 2024.

17

	Introduction
	Background
	Runtime Execution of Logic Instructions
	Vulnerable Logic Instructions
	Motivation

	Overview
	Static Analysis
	Seed Program Generation
	SDG Mutation
	LLM-based Candidate Program Synthesis
	Program Verification and Correction

	Logic Instruction Fuzzing
	Coverage-guided parameter mutation
	Enable and Reset Control Mechanism
	Anomaly Detection

	Evaluation
	Experiment Setting
	Real-world Bugs Discovered by LogicFuzz
	Ablation Study
	Comparison with Existing Work
	Effect of Exploitation

	Related Work
	Firmware and PLC Fuzzing
	LLMs for Program Synthesis and Fuzzing

	Discussion
	Manual Effort
	Robustness
	Scalability

	Conclusion
	References

