WiFinger: Fingerprinting Noisy IoT Event Traffic
Using Packet-level Sequence Matching

Ronghua Li*, Shinan Liuf, Haibo Hu**,Qingqging Ye*, Nick Feamster’
*The Hong Kong Polytechnic University, "The University of Hong Kong, §University of Chicago
j?PolyU Research Centre for Privacy and Security Technologies in Future Smart Systems,
cory-ronghua.li@connect.polyu.hk, shinan6@hku.hk, {haibo.hu, qqing.ye} @polyu.edu.hk, feamster @uchicago.edu

Abstract—IoT environments such as smart homes are suscepti-
ble to privacy inference attacks, where attackers can analyze pat-
terns of encrypted network traffic to infer the state of devices and
even the activities of people. While most existing attacks exploit
ML techniques for discovering such traffic patterns, they under-
perform on wireless traffic, especially Wi-Fi, due to its heavy
noisiness and the packet loss of wireless sniffing. In addition,
these approaches commonly target distinguishing chunked IoT
event traffic samples, and they fail at effectively tracking multiple
events simultaneously. In this work, we propose WiFinger, a fine-
grained multi-IoT event fingerprinting approach against noisy
traffic. WiFinger turns the traffic pattern classification task into
a subsequence matching problem and introduces novel techniques
to account for the high time complexity while maintaining high
accuracy. In addition, its reliance on training sample volumes
reduces efforts for any future fingerprint updates. Experiments
demonstrate that WiFinger outperforms existing approaches
under practical threat models, with an average recall of 89%
(v.s. 499% and 46% respectively) and almost zero false positives
for various IoT events.

I. INTRODUCTION

IoT devices are increasingly ubiquitous in various applica-
tions, including smart homes, smart cities, and industrial au-
tomation. These devices connect to the internet for control and
to transmit sensor data. However, even if the data transmitted
is encrypted to prevent information leakage, existing works
have demonstrated that device activities can still be inferred
and exploited by passively monitoring the encrypted traffic
and analyzing the patterns of traffic flows or packets [1]-[4].
Consequently, this may expose critical information, such as
user behavior or the working status of security-sensitive de-
vices, posing potential security risks for malicious actors (e.g.,
break-in) or leading to privacy breaches through unauthorized
surveillance.

Currently, most existing benign or malicious IoT
event/device fingerprinting methods [1]-[3], [5]-[7] focus
on wired traffic at the TCP/IP layers, with only a few
specifically studying fingerprinting on Wi-Fi traffic [8], [9].
While TCP/IP headers provide verbose information assisting
accurate fingerprinting, TCP/IP sniffing poses stringent

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.241083
www.ndss-symposium.org

requirement on attackers [10], who must either exploit the
LAN access point or obtain authorized access within the
ISP’s network (WAN). In contrast, since most IoT devices
connect wirelessly (Wi-Fi in this work), their traffic can be
easily sniffed using a wireless adapter, significantly lowering
the barrier and increasing the practicality of such attacks.

Given that network event classification has been studied
for decades, an intuitive question arises: can these established
solutions simply work for Wi-Fi layer attacks? Unfortunately,
our findings indicate the opposite. By applying prevalent
methods to IoT traffic at the Wi-Fi layer, we have identified
significant limitations and challenges of these solutions in
tuning model performance and reducing manual efforts, as
detailed in Table I.

Methods Features Data | Label | Param Traffic
Vol Acc Tuning | Com-
pleteness
DL [11]-[13] Raw Traf- | 1 1 T —
fic
ML [8], [9], | Traffic I 1 1T —
[14]-[18] stats
Packet Match | Size & Dir | | 1 1 1
[11, [5] & Time
WiFinger Size & Dir | | 1 1 1
& Time

TABLE I: Factors that influence the performance of existing
approaches. 1 indicates high dependence of performances on
the factor, and vice versa. — indicates a certain level of
robustness against a factor. The lower reliance, the higher
feasibility and scalability.

First, the most widely adopted ML/DL-based traffic analysis
approaches face limitations in adaptability [8], [11]-[13],
granularity [8], [19], [20], and scalability for effective IoT
event fingerprinting. Adaptability: These methods typically
rely on handcrafted features or parameters (e.g., packet size
statistics, flow duration) to classify traffic bursts or flows.
Nonetheless, the most suitable feature/parameter sets vary
among devices and events due to the sparseness and diversity
of 10T traffic [21]. Granularity: ML-based methods are not
fine-grained enough for event identification, particularly when
differentiating events with only slight variations in packet
sizes or intervals. Their results can also be easily affected by
heartbeat or other background traffic, which influences flow
characteristics. Scalability: Training these data-driven models

requires a large amount of labeled data from scratch, which
does not scale well for large IoT systems.

Second, packet-matching approaches [1], [5], albeit accu-
rate, encounter the following two challenges on Wi-Fi traf-
fic. Packet Losses: Passive Wi-Fi sniffing is susceptible to
packet loss due to variable wireless channel conditions. This
affects both online detection and offline training of packet-
matching approaches. Upper-layer Variances: Wi-Fi traffic
inherits variances from upper layers, introducing significant
noise. For example, Ping-Pong [1] filtered retransmission/ACK
TCP packets and only focused on fingerprint TLS application
packets. However, all of them become indistinguishable at the
Wi-Fi layer due to WPA encryption [22], hindering packet-
matching effectiveness.

This work aims to accurately fingerprint Wi-Fi IoT events
by addressing the above limitations and challenges. To this
end, we propose an intuitive and yet noise-agnostic packet-
matching approach for wireless traffic, WiFinger. Inspired by
the findings in [1], [5], WiFinger adopts a similar fingerprint
representation: a sequence of packets with relative timestamps,
sizes, and directions. Yet, instead of finding exact match,
WiFinger focuses on detecting whether “traces” of fingerprint
are present within the examined sequence. WiFinger offers
three main characteristics: (i) Adaptable: WiFinger uses a
consistent parameter setting for fingerprint extraction and
matching, requiring little parameter tuning for various devices
and events. (ii) Accurate: It is robust against Wi-Fi traffic
noise and variances, and can differentiate subtle differences
in packet size and inter-arrival time features distinguishing
different events. Evaluation on 31 real IoT events shows
that WiFinger achieves excellent performance on continuous
event tracking with almost zero false positives, even including
complex events like voice commands of smart speakers. (iii)
Scalable: WiFinger fingerprints can be extracted efficiently
using a few dozen of event samples, significantly reducing
data collection and model update costs. In summary, our main
contributions are as follows:

« We provide insights into the differences between the Wi-
Fi and TCP/IP traffic, revealing the main challenges of
fingerprinting IoT event under wireless IoT traffic.

« We identify the current gap between experimental settings
and online settings, showing that the performance of
existing models are often exaggerated and unrealistic.

« We propose WiFinger, a fine-grained IoT event finger-
printing approach on Wi-Fi traffic, formulating the de-
tection as a subsequence matching problem. We tackle
the NP-hard efficiency challenge to ensure fast offline
training and online matching while maintaining high
accuracy. Moreover, we overcome the challenge of ex-
tracting fingerprints from noisy traffic using collective
intelligence.

The rest of the paper is organized as follows. Section II
uses real examples to show the limitations of existing methods
and motivate this work. Section III defines the problem scope
and threat model. Section IV introduces the intuition behind

WiFinger and details its fingerprint extraction and matching
process. Section V compares WiFinger to two state-of-the-
art methods and investigates its performance against defenses.
Section VI provides additional findings on IoT event traffic and
discusses how WiFinger can be extended to other domains.

II. RELATED WORK & MOTIVATION

Traffic analysis and event detection have been widely stud-
ied over the last decade [1]-[3], [5], [6], [8], [23], [24].
However, most existing works struggle with fingerprinting Wi-
Fi IoT events effectively, particularly compared to methods
at higher layers or different protocols. This section uses real
Wi-Fi event sequences to illustrate Wi-Fi IoT traffic charac-
teristics, highlighting limitations and challenges for existing
fingerprinting methods in this domain.

A. Wi-Fi Event Traffic: A Motivating Example

ON OFF ON OFF ON
Fig. 1: An example of ideal Wi-Fi IoT event traffic v.s.

real-world collected traffic. Green arrows represent fingerprint
packets, and red arrows represent unrelated packets. While the
ideal event fingerprints are clean, real-world event traffic may
be incomplete or mixed with noise packets.

Using a real example, we demonstrate Wi-Fi IoT event
traffic characteristics and their differences from typical TCP/IP
traffic. Since Wi-Fi Control and Management packets are not
related to application-layer behaviors, we only analyze Data
packets with payload, similar to [1] on TCP/IP traffic. Figure 1
shows example Wi-Fi Data packet sequences from a Hue Light
Bulb. Down arrows (Dy;,.) represent downstream packets
(router to device) and up arrows (Us,;,.) represent upstream
packets (device to router). Ideally, “ON” commands start with
a D54 packet, followed by a Usss upstream packet 0.1 - 0.2s
later, and ends with a Dj49 packet after another 0.4s. “OFF”
commands are similar to “ON”, except their first two packets
are one byte larger.

INSIGHT #1: Wi-Fi traffic has severe data packet loss due
to the nature of wireless sniffing. Though Wi-Fi includes
retransmissions for station-to-AP reliability, they don’t guar-
antee completeness for a passive sniffer in promiscuous mode.
Compared to ideal event traffic, real event traffic may have
missing components due to the unreliable Wi-Fi sniffing. In
contrast, TCP/IP traffic sniffing via port mirroring is typically
less susceptible to packet loss. According to our experiments,
the best performing adapter suffers from 5-20% data packet
drop, which significantly impacts the detecting performance.
INSIGHT #2: Event bursts/flows can be dominated by
noise packets, obscuring actual event patterns. As illus-
trated in Figure 1, observed 'Real’ sequences often deviate

from idealized patterns, being interleaved with packets that
are irrelevant with application behaviors. In contrast to TCP/IP
payload analysis, Wi-Fi frames also encapsulate transport layer
control packets (e.g., ACKs, SYNs), which are not directly
part of the application data and ideally should be filtered.
Furthermore, when IoT events occur concurrently with other
background communication, their simple flow patterns will be
mixed with, and potentially buried within, this larger volume
of background noise. Consequently, “burst” patterns no longer
pertain to application-layer behaviors, rendering Wi-Fi flows
inherently noisier than TCP/IP flows.

Based on the above insights, we further analyze some
existing traffic classification approaches and their limitations
in fingerprinting wireless IoT events.

B. Flow-level Analysis

Flow-based analysis is a promising technique adopted in
many network applications, e.g., general traffic analysis [25],
[26], anomaly detection [27]-[30], and some network attack
detection [31]-[34]. These approaches analyze the statisti-
cal/meta data of flows (e.g., average packet sizes, inter-arrival
times, flow durations, and etc.), aiming to classify events based
on the similarity of repetitive flow-level features. To this end,
supervised machine learning (deep learning) is usually adopted
for its robustness and accuracy. While being effective in other
applications, applying flow-based ML approaches to Wi-Fi IoT
event fingerprinting faces significant limitations.

0.95

0.90
Zo.85
I
=
3
Y 0.80
<

0.75

—e— ICX A/C
0.70 —e— Google Home Volume
: —e— Gosund Plug
20 40 60 80 100

Window Size/Event Duration (%)

Fig. 2: [8] performance with various sliding window and
devices/events using chunked training/testing samples.

0.95

o
©
°©

Accuracy
°
-]
w

0.80

—e— Google Home Binary
0.75 —eo— Google Home Multi-class

20 40 60 80 100
Window Size/Event Duration (%)

Fig. 3: [8] performance of binary classification v.s. multi-
event classification using chunked training/testing samples.

LIMIT #1: Collecting labeled training data is too costly
considering the countless types of devices in the market

place. The limit of the dataset and the time-consuming data
collection process limit the use of deep learning models. DL
models are notable for their capability of extracting high-
dimensional features automatically. However, training such
models require comparable amounts of labeled data. Exist-
ing state-of-the-art DL approaches [11]-[13] mostly focused
on classification tasks with large publicly available datasets,
which are yet unavailable for Wi-Fi event traffic. However,
collecting hundreds or thousands of training samples per event
is time-consuming (hours to days). Even worse, when a new
class (event/device) is introduced, models have to be retrained
or finetuned, making the system bulky, considering the rapid
development of the IoT domain.

LIMIT #2: Parameter tuning and feature set selection
have overly significant impact on the overall performance
yet low adaptability across devices/events. For training-
efficient machine learning models, expertise for feature se-
lection and hyper-parameter tuning is needed, which are not
only labor-intensive, but also suboptimal-prune. Taking the
sliding window size as an example, [8] suggests setting the
flow window size as a quarter of the event duration based
on empirical observation. Yet, this setting hardly suits every
device. We tested the influence of window size on a binary
classification task among three devices' and noticed that the
best window size ratio for different devices varies significantly,
as shown in Figure 2. Considering the enormous amount
of features/parameters, testing their combination and tuning
parameters for optimal performance is prohibitively inefficient.

LIMIT #3: Flow-level features are too coarse-grained for
multi-event classification. Some IoT events involve subtle
packet size differences (e.g., single-byte variations) too granu-
lar for effective capture by aggregate flow-level features [14]-
[17]. In addition, as mentioned earlier, these subtle differences
can be easily obscured by flow-level noise [2], [3], [6], such as
periodic device heartbeats, or by countermeasures like traffic
shaping [23]. As shown in Figure 3, multi-class classification
performs much worse than binary classification on two similar
events (e.g., Google Home Volume Up & Down).

LIMIT #4: ML approaches are evaluated inappropriately.
Most ML methods are overrated due to their inappropriate
offline evaluation against chunked samples with accurate labels
(isolated flows as samples). However, in a more realistic
real-world scenario, classifiers continuously sniffs windows
of streaming traffic where they may make decisions with
incomplete information. Figure 4 demonstrates the bias of the
two scenarios: classification performance of chunked samples
is significantly higher for Google Home events than the more
realistic tracking scenario.

LIMIT # 5: ML approaches for wireless traffic cannot
handle the impact of complex events and background
noises well. Some works specifically focus on adapting ML
approaches to Wi-Fi traffic [8], [9], [18]. Nonetheless, without
handling Wi-Fi specific noises properly, their performances

'We obtain each device’s event duration by roughly calculating the median
value of all post-event periods that consist of the majority of packets.

—e— Sample-based
—e— Tracking-based

F1 Score
o
N

20 40 60 80 100
Window Size/Event Duration (%)

Fig. 4: F1-Score performances of chunked sample-based de-
tection v.s. continuous tracking. Detailed introductions of
“tracking” is in Section V.

are degraded upon complex events or noisy background traffic
bursts. Meanwhile, some works fingerprint events with other
wireless protocol traffic (BLE, Zigbee, Z-Wave [35], [36]).
Due to the lower traffic volume and direct data packet-to-
application mapping, such protocol traffic is less noisy than
Wi-Fi and thus results in better performance. Because of
the identical nature of wireless traffic, we only focuses on
fingerprinting the more challenging Wi-Fi traffic.

C. Packet-level Analysis

Packet-matching fingerprints events by examining se-
quences of packet sizes, directions, and time intervals [1],
[5]. Ping-Pong [1] first utilized unique pairs of packet sizes,
stemming from device-server request-response patterns, as
event identifiers. Extending this, IoTAthena [5] incorporated
timing information to form unique packet size sequences
with timestamps. Both approaches demonstrated promising
results in event fingerprinting and the uniqueness of patterns,
surpassing earlier ML-based flow analysis. Unfortunately, both
of them cannot operate reliably in Wi-Fi environments.

LIMIT #6: Packet-level matching approaches are vulner-
able to any packet loss and the effects of upper-layer
variances. The incompleteness of sniffed traffic significantly
impacts online detection methods like [1], [5] due to their exact
matching requirements on every single packet. Figure 5 illus-
trates how moderate simulated packet loss severely degrades
detection performance for [1] and [5]. Furthermore, variances
introduced by upper-layer protocols, combined with Wi-Fi
layer properties, can interfere with their fingerprint extraction
processes. Prior to extraction, Ping-Pong and IoTAthena filter
for application-layer data and rely on the pairwise uniqueness
of packet sizes to identify those related to specific events.
However, WPA-encrypted Wi-Fi traffic prevents Ping-Pong
and IoTAthena from identifying such “real” application data.
In large-scale evaluations, we applied Ping-Pong [1] and [oTA-
thena [5] to Wi-Fi traffic, but both methods exhibit significant
scalability challenges without substantial changes and fail to
even extract fingerprints.

D. Verbose Information Analysis

To avoid cumbersome ML feature engineering, some clas-
sification approaches [7], [19], [20], [37] use “verbose” raw

M ¢L A¢l¢ ‘¢L
Sniffed Sequences T T . L

_ X a X o X
Ping-Pon ' ' [
Fingerprir?t T ¢ T v ' ¢ "

Missing Both
Pair Start Missing

No Packet Missing
Loss Pair End

Fig. 5: Packet-level matching approaches cannot handle packet
losses during sniffing.

packet information like headers or packet types (e.g., DNS,
ICMP), offering two advantages: (i) reduced feature crafting
effort, and (ii) greater insight into upper-layer communication
protocols and interactions. For example, to avoid repetitive
feature engineering, [20] directly encodes raw pcap traffic
into bit sequences and deploy Autogluon [38] as a novel ML
pipeline, significantly reducing the effort for data preprocess-
ing. [7] identified that some devices always send DNS queries
to specific manufactures, easily exposing their brands and
types. However, for Wi-Fi layer IoT event fingerprinting, ver-
bose upper-layer information is generally infeasible as WPA
encryption renders payloads indistinguishable. Furthermore,
verbose Wi-Fi frame headers are uninformative for identifying
application-layer IoT events. They only reflect local network
conditions rather than application behavior.

III. PROBLEM STATEMENT
A. Security & Privacy Impact

In this work, attackers seek to accurately track the states
of devices of interests by sniffing and analyzing their wireless
traffic. Its security and privacy impact is two fold: (i) Curious
“voyeurs” could use WiFinger to violate individuals’ privacy
by uncovering reoccurring events that reflect users’ living
habits or home automation [39], [40] such as the time of going
to bed or leaving home for work; (ii) Cyber-physical attackers
use WiFinger to establish the foundation for the following
severer security/privacy violation behaviors, e.g., breaking into
unmonitored spaces through an unlocked door [41]-[43]. Both
situations cause severe privacy and security violations.

B. Threat Model

Consistent with prior research [1], [3], [7], [8], [23], at-
tackers aim to infer IoT device states to deduce users’ living
habits or gather critical information for subsequent physical
intrusions. To achieve this, attackers deploy wireless sniffers
in promiscuous mode to capture encrypted traffic. The sniffer
could be a compromised IoT device or a self-deployed adapter
outside the living space. In either scenario, attackers do not
have access to the encrypted payload contents. Nonetheless,
since Wi-Fi MAC addresses are in plaintext, attackers can an-
alyze traffic of different devices separately. Before deploying
the attack, we assume attackers own some target devices and
can collect traffic samples of the target events for training
their models. During the attack, attackers need to identify

target devices and detect events by analyzing the patterns of
anonymous traffic.

To establish more realistic attacking scenarios, attackers
identify events from streaming traffic instead of chunked
samples, deviating from existing works [8], [9]. We classify
attacks into three categories: naive (binary classification),
single-target (targeted event detection), and multi-target (multi-
event monitoring). In the naive scenario, attackers can merely
separate a single target event from the idle state, being useful
in limited contexts (e.g., inferring a light is “off” as the last
event late at night). In the single-target scenario, attackers
build fingerprints/models using multi-event training data but
aim to distinguish only one specific event from all other
events and idle traffic. This is helpful when targeting critical
events (e.g., door unlocking) that are important/sensitive and
may occur unpredictably. In the most advanced multi-target
scenario, attackers aim to monitor and identify multiple target
events occurring on a device. This is also the most challenging
case, as misclassified events can impact subsequent detection
results. Despite its challenges, multi-target tracking provides
the most information and is thus the ultimate goal of such
privacy inference attacks.

C. Connection Configurations & Event Triggering

There are two main types of connection configurations for
wireless smart devices: they either connect directly to the home
router via Wi-Fi or connect to a smart hub (e.g., Amazon Echo,
Google Home) which then connects to the router. Devices with
the former configuration usually consume more power and
often have more advanced functions. In contrast, the latter
is more common for BLE or Zigbee devices that stay idle
most of the time. In this work, we focus primarily on the
first type of connection due to its prevalence and complexity,
and our approach could be easily adapted to the hub-based
configuration by sniffing communications between the hub
and devices. Moreover, there are two types of event triggering
schemes: via pre-configured smart home automation or via
manual operations on companion apps. Since the two schemes
result in similar traffic patterns (similar conclusions in [1]),
we focus on the latter scenario, primarily for data collection
efficiency and scalability.

IV. WIFINGER: SYSTEM DESIGN

In this section, we introduce our packet-level fingerprinting
approach, WiFinger. Starting with an analysis of Wi-Fi traffic
noise, we demonstrate the intuition behind effective packet-
level fingerprinting. In the following subsections, we first
define the ideal packet-level fingerprint for noisy traffic and
discuss how to efficiently deploy online fingerprint matching.
Subsequently, we address the challenges of obtaining such
ideal fingerprints.

A. Intuition on Packet-level Fingerprinting

Ping-Pong [1] initially proposed the use of unique data
packet pair sizes as fingerprints. [oTAthena [5] further demon-
strated the uniqueness of using packet sizes and intervals as

the matching criterion among various IoT devices. When such
data packets are transmitted over Wi-Fi, they are encapsulated
within Wi-Fi data frames, adding new headers, footers, and
potential padding. Although WPA encryption hides the upper-
layer packet structures, observable frame characteristics like
size, direction, and timing remain available. We posit that the
sequence of Wi-Fi data frames corresponding to an event, de-
spite encapsulation overheads, retains a characteristic pattern
of relative timings and frame sizes derived from the original
TCP/IP exchange.

Consequently, in an ideal scenario with no packet loss at
either layer, a Wi-Fi IoT event can be characterized by a se-
quence of Wi-Fi data packets defined by their sizes, directions,
and time intervals. We term this ideal Wi-Fi traffic sequence
the base fingerprint and the constituent packets as fingerprint
packets. Upon an event occurrence, two key deviations from
base fingerprints are observed: First, occasional packet loss
during an event can result in the removal of fingerprint
packets; second, the encapsulation of irrelevant packets or
variations in the network environment can introduce additional
packets (noise) into the observed traffic stream alongside the
base fingerprint packets. Regardless of the noise, some or
all fingerprint packets will remain within the event traffic,
maintaining relatively stable inter-arrival times, as illustrated
in Figure 6. Therefore, the event traffic classification problem
can be reformulated as determining whether a given time
series sequence partially matches the base fingerprint. In what
follows, we discuss our resolutions to two challenges: 1.
Matching base fingerprints efficiently; 2. Extracting base
fingerprints from incomplete traffic.

Size t t ¢

LT T -

3" Packet Lost

Base Fingerprint Interposition
Fig. 6: Time intervals between packets remain relatively con-
sistent when there are packet losses or interpositions.

B. Fingerprint Matching

First, assuming that base fingerprints have been obtained, we
conceptualize the traffic matching problem as a variation of the
Longest Common Subsequence (LCS) problem, predicated on
packet transmission directions, sizes, and interval constraints.
The closer the match between two sequences based on this
criterion, the more likely the target sequence corresponds to
the same event. We define the longest common subsequence
of network traffic (NT-LCS) problem as follows:

Definition 1 (NT-LCS). For input sequences Seq, (base
fingerprint) and Seqs (sequence to be examined), the NT-LCS

is the longest subsequence between the two sequences:
[p‘f,pg, . Jﬁ], pi € Seqi"’, Seqi"" C Seq
[p?,pg, o Jﬂ, p) € Seqs™, Seqs™’ C Seqy
where each element p contains:
pd = {time : a;, size: s}, dir:d}}
p? = {time : b;, size: st dir:d}}

subject to:
o />oi (a; — b;)? < B (time constraints)
o (s8—sY2 <€ Vie[l,n] (similar packet size)
o d? =d? Vi€ [1,n] (same direction)

Since the NT-LCS problem is NP-hard (proof in Ap-
pendix B), we propose a baseline approximation algo-
rithm, FMLCS (Fuzzily Matching for Longest Common
Subsequence). FMLCS extends the dynamic programming
(DP) approach for LCS, adapted to accommodate permissible
variations in packet size and time intervals, as detailed in
Algorithm 1. In the DP table construction, we use one table
(maziqp) to track common subsequence lengths and another
(lessyqp) to record possible subsequences corresponding to the
lengths at each step. During the DP function, two packets are
matched if they share the same transmission direction and
their size difference is less than or equal to e bytes (line
30). After identifying potential longest common subsequences
(lines 6-9), their temporal alignments with the base fingerprint
are measured by calculating the L2Norm distances between
the relative timestamps of the matched packets (lines 17-24).
The subsequence with the best temporal alignment (minimum
distance) is selected as the matching result (lines 10-12). For
a match to be deemed successful, the selected subsequence’s
length must be at least Y% of the base fingerprint’s length
and exhibit strong temporal alignment (dist < (). During
experiments, we set ¢ = 1, v = 0.6 (60% of the base
fingerprint), and S = 2. These values serve as the thresholds
for successful matching (line 13).

For smart devices with simple commands (e.g., plugs,
lights, A/C controllers), FMLCS is already sufficient to detect
IoT events accurately and efficiently. However, for complex
devices with larger volumes of traffic (e.g., Amazon Echo
Dot), this baseline has two severe limitations. Computation
efficiency: The algorithm is computationally expensive as the
time complexity of DP increases with the target sequence
length. Furthermore, obtaining all possible longest common
subsequences requires either recording all matches during DP
(current implementation) or recursive backtracking (which is
even slower); both consume unacceptable time for long target
sequences. Accidental mismatch: In rare cases, [oT events
can be mismatched. This occurs because FMLCS only checks
temporal alignment for the longest common subsequences. If
a fingerprint packet is not event-unique, accidentally matched
noise packets can extend the maximum length of common
subsequences and consequently impact the final temporal

Algorithm 1 Baseline FMLCS

1: Input: Seq; (base fingerprint), Seqs (target sequence)
2: Output: true/false (whether Seqz matches Seqi)

3: function FMLCS(Seq1, Seqz)

4: MaTien, lcssiap = DP(Seqi, Seq2)
5: dZStmzn = 00, SeQmatch = []

6: for lcs € lcssiqp do

7 if len(lcs) < maxien then

8

: continue
9: distiemporal = TimeAlignment(lcs)
10: if distiemporal < diStmin then
11: diStmin = distiemporal
12: Seqmatcn = lcs

13: if len(Segmatcn) > v * len(Seq1) & distmin < B then
14: return true

15: else

16: return false

17: function TIMEALIGNMENT(/cs)

18: Subseqi = Seqi[index[1] for index in lcs]

19: Subseqs = Segqalindex[2] for index in lcs]

20: time_veci = [packet[time] for packet in Subseq:]
21: time_vecs = [packet[time] for packet in Subseqz]
22: timer = time_veci — mean(time_vec)

23: timez = time_veca — mean(time_vecs)

24: return [2norm(time; — times)

25: function DP(seq1, seqz)

26: paths = Empty list

27: mazxiar = [[0] * len(seqi)] * len(seq2)

28: lcssian = [[paths] * len(seq1)] * len(seq2)

29: for i=1 to len(seq1) do

30: for j=1 to len(seqz) do

31 if seq1[i] ~ seqz[j] then # match “common” packets
32: maziap][] = maziaslt — 1)[j — 1] + 1

33: pathay = lessian[i — 1][7 — 1]

34: for path in path.; do

35: pathau.append(((i, 5)])

36: lessiab[i][7] = pathau

37: else

38: if maz,qp[i — 1][§] > mawzias[i][j — 1] then

39: mazias[i][j] = mazias]i — 1][J]

40: lessiab[i][7] = lessian[t — 1][7]

41: else if maziap[i — 1)[j] < mazies[i][j — 1] then
42: maziep|i][j] = maziasi][j — 1]

43: lessiant][g] = lessiani][f — 1]

44: else

45: mazias[i][j] = mazias]i — 1][J]

46: lessiab[i][7] = lessian[i][f — 1) + lessian[i][F — 1]

47: return mazxies[—1][—1], lcSStab

alignment, as shown in Figure 7. To tackle these problems,
we further analyze the characteristics of complex event finger-
prints and propose a more advanced approximation algorithm.

C. Advanced Fingerprint Matching

The challenge of computation costs and fingerprint mis-
matches stems from the same root cause: the current common
packet-matching step (line 30) considers only sizes and direc-
tions, not time. Consequently, if many packets share similar
sizes and directions but different timestamps, the number
of subsequence combinations increases exponentially, even
resulting in the erroneous matching of temporally unaligned

Temporally Temporally
Aligned Unaligned
t.
Base el
Fingerprint k. Match
t, ¥
Target ! 2 1 Noise
Sequence v \ 4 ipac"e‘

4 Packet Lost 4" Packet Mismatched
Fig. 7: Erroneous packet-matching predicated only on sizes
and directions, leading to temporal unalignment.

packets. To address this issue, we propose two key optimiza-
tions to fully leverage temporal information: Anchor Reference
and Fingerprint Segmentation.

Anchor Reference: Given an IoT event, intervals be-
tween fingerprint packets remain relatively steady. This in-
terval steadiness can be utilized to filter unnecessary packet-
matching during DP, as shown in Figure 8. Specifically, we
start by stochastically choosing one of the fingerprint packets
as the anchor and try to match it using size and direction.
Once discovered, these two packets serve as anchor packets
for all subsequent potential matches by constraining their time
intervals relative to the anchor packets, i.e., abs(t; —t2) < a.
Considering network fluctuation, empirically setting « to 0.2s
is sufficient to accommodate regular network jitters. Nonethe-
less, this leaves opportunities for knowledgeable defenders
to circumvent WiFinger by deliberately delaying packets to
increase the intervals beyond the threshold. To alleviate this is-
sue, we further leverage the interval distribution of packet pairs
to dynamically calibrate packet intervals before anchor-based
matching. Specifically, we first record the stable distribution of
intervals of all consecutive packets (denoted as pairs) without
interleaving missing packets. Then, given a newly sniffed
sequence, WiFinger rectifies the pair-level intervals to ensure
they are within 1-sigma deviations from the stable distribution.
In addition, packet intervals larger than 0.5s are excluded from
adjustments because such substantial intervals either indicate
natural burst separations or severe functioning degradation due
to defenses. In Section V-I, we evaluate WiFinger with and
without interval calibration (IC) against the deliberate delaying
defense separately.

Anchor
t
®Match <>

A
Discarded
t
>

Target
Sequence
Anchor Enhanced

Baseline

Base
Fingerprint

Fig. 8: Using anchor packets to filter out erroneous packet-
matching, i.e., abs(t; — t2) > a.

Fingerprint Segmentation: For high traffic-volume de-
vices, we additionally introduce segmented matching based
on a critical observation: packets within long base fingerprints
further exhibit temporal clustering patterns at finer time scales.

This is because complex IoT events typically involve multi-
round communications, manifesting as several small packet
bursts (segments). Therefore, we decompose the full-sequence
matching task into parallelizable subtasks, each targeting
one segment of the base fingerprint. To achieve this, we
divide the base fingerprint using consecutive packet intervals,
with boundaries set at the middle of intervals exceeding
a threshold of 0.5s. Segments containing fewer than three
packets are merged into subsequent segments. Finally, we
apply the anchor-constrained FMLCS to all segments inde-
pendently and aggregate the matching results (Figure 9). This
approach effectively mitigates the combinatorial explosion
in DP-based packet matching that scales exponentially with
sequence length. Overall, the advanced FMLCS (AFMLCS)
works as follows:

Segmented
Match

Segment A S,
Boundry 1 1
. Full Match 1 '
Base ' oy H
Fingerprint ! == \)
. Rt
1 ' 1
1 - v , ! '
i ~ao 1 ' 1
Target Seq | 1 H '
fi v
: : :

Fig. 9: Segmentation reduces the number of processed packet
in each segment, decreasing the computation costs.

« 1. Fingerprint segmentation: A long base fingerprint is
divided into several segments.

o 2. Anchor packet selection: WiFinger sequentially com-
pares fingerprint packets within the first segment with the
target sequence to identify the first matching packet pair as
anchors. If no such match is found, the remaining matching
process is terminated.

e 3. Match the first segment: The anchor-constrained
FMLCS is applied to the first segment and the target
sequence. If this matching fails, matching for the remaining
segments is terminated.

o 4. Merge segmented matching results: After a successful
match for the first segment, the same anchor-constrained
matching is applied to all remaining segments, whose results
will get merged. Such a final result is successful if it involves
at least 7% of the base fingerprint packets and they align
well temporally (e.g., meeting the 3 distance criterion).

D. Fingerprint Extraction

While the matching approach relies on accurate base fin-
gerprints for detection, acquiring clean and reliable ones
presents fundamental challenges: ideal base fingerprints
must be derived from noisy training data exhibiting high
packet losses (5-20% observed rates) and upper-layer varia-
tions. To address this, our solution exploits the collective in-
telligence of repeated event executions: each noisy event traffic
burst is assumed to partially manifest the base fingerprint
sequence. Therefore, we formulate base fingerprint extraction
as another subsequence matching problem across all recorded

event traffic bursts. Unlike the online matching paradigm,
subsequence matching is used differently during extraction.
We first use FMLCS to extract pairwise common subsequences
among all “corrupted” traffic bursts to obtain a set of potential
fingerprint components. Then, we merge these components
into one noisy coarse fingerprint (CF) and leverage statistics
of packet matching frequencies to refine the CF into the base
fingerprint. Overall, the fingerprint extraction process consists
of three steps: (i) data collection and filtering; (ii) coarse
fingerprint construction; and (iii) fingerprint refinement, as
illustrated in Figure 10.

Event; Event, Events Event, .

0 0 06 6 G 6®

TR =l

Size Sliding Window Sliding Window 3

T

Fig. 10: Fingerprint extraction process. Step 1 filters out
noise packets and clusters packets into groups. Step 2 applies
pairwise AFMLCS to the groups and merges their consensus
subsequences. Step 3 refines the coarse fingerprints by mea-
suring packets’ matching frequencies against the training data.

1) Data Collection, Filtering, and Compression: To obtain
the training dataset, we use ADB (Android Debug Bridge) [44]
and Python scripts to build an automatic event execution tool,
simulating taps or swipes on mobile devices [1]. The tool
initiates a specific event X times (30 in experiments) to trigger
traffic generation from devices/servers. During automated data
collection, the tool records timestamps of event initiations
(taps/slides) and captures the Wi-Fi packets exchanged be-
tween the device and the router. Random gaps of 30-45
seconds are introduced between each event to ensure the
device finishes the event and returns to the idle state.

After data collection, we first discard Wi-Fi Management
and Control packets, focusing only on Wi-Fi Data packets, as
discussed in Section II-A. To avoid collecting repeated data
packets of Wi-Fi retransmissions, only the original packet or
one of its retransmission packets is kept. For devices with
large traffic volumes, we further filter potential irrelevant
noise packets to reduce computation costs. First, packets are
categorized into classes by their sizes and directions, and those
classes whose frequencies are significantly higher than the
average frequency (e.g., exceeding it by 20 or more) are dis-
carded. These exceptionally frequent classes likely correspond
to background noise, such as TCP ACK packets or regular
data uploads. Then, we compress consecutive packets with
the same sizes and directions into one packet. This is because

identically sized packets lead to the combinatorial explosion
challenge in FMLCS, but they do not contribute to the charac-
teristics of request-response patterns of IoT events [1]. Such a
compression significantly reduces the number of packets to
be processed, e.g., from 10000 to 3000 for Amazon Echo
Dot. Finally, according to [1], IoT events typically last no
more than 10 seconds. Therefore, packets sent beyond a 15-
second window following event initiations are discarded. In
the end, we obtain X groups of 15-second packet traces, each
corresponding to an event.

2) Coarse Fingerprint Extraction: We use the X groups of
preprocessed traffic to construct a coarse fingerprint (CF). A
CF is expected to contain the base fingerprint but may also
include some noise packets. To extract a CF, we leverage the
collective intelligence of traffic groups: we extract consensus
subsequences from every pair of traffic groups and take the
union of these consensus subsequences as the CF. To this end,
we further adapt AFMLCS to reduce the computation costs of
the extraction process.

Extraction Adaptations: The key difference between the
matching and extraction phases is the noisiness of the two
sequences being compared. In the matching phase, the base
fingerprint is assumed to be noise-free. Thus, the naive anchor
packet selection (based only on packet sizes and directions)
does not severely sacrifice efficiency or accuracy. However,
when both sequences are noisy, selected anchors for both
sequences are very likely to be mismatches, leading to er-
roneous references for all subsequent packets. Even worse,
during extraction, such mismatched subsequences (containing
significant noise) will also be treated as potential fingerprint
components, consequently resulting in a significant increase
in computational cost and considerable noise in the final CF.

To address this, we insert fake packets at the event initiation
timestamps to serve as anchor packets. Due to stable network
connection of the attackers’ testbed, traffic bursts emerge
with a relatively fixed delay after event initiations. Since
the intervals between fingerprint packets within the burst are
also steady, event initiation timestamps serve effectively as
reference anchors in AFMLCS. As such, fake identical packets
(anchors) are inserted at each event initiation timestamp to
help align sequences temporally, as shown in Figure 11.
After obtaining all pairwise common subsequences, we naively
merge all subsequences into a coarse fingerprint.

Size
Fake
Anchor $ i T Group,

Grou|
Time fi T P2

>
>

Group,

1 Initiate 1Initiate,

Group, Fake Anchor Alignment
Fig. 11: Align traffic groups by their event-initiation times-
tamps (fake anchor packets) during the extraction.

3) Fingerprint Refinement: Due to the rudimentary union
merging, the CF inadvertently incorporates redundant noise
packets. To filter such noise, we refine the fingerprint by con-

ducting AFMLCS against all groups using a sliding window
scheme, while meticulously recording the matching frequen-
cies for the packets inside the CF. This aims to effectively pin-
point CF packets whose matching frequencies approximately
align with the number of events, i.e., X. While a unidirectional
sliding window might result in elevated matching frequencies
for packets located at the beginning or end of the sequence,
we execute the sliding window analysis in both directions.
In our bidirectional refinement, packets with matching fre-
quencies less than X are discarded. We iteratively execute
the refinement process until no further packets are discarded,
and construct the base fingerprint with all retained packets.

E. System Workflow

In general, the workflow for WiFinger is shown in Fig-
ure 12. During the extraction phase, WiFinger uses the event
triggering module to trigger each event 30 times, collects the
corresponding Wi-Fi traffic, and extracts base fingerprints for
the events. In the online detection phase, WiFinger selects the
target base fingerprint and matches it to newly sniffed device
traffic using either FMLCS or AFMLCS, depending on the
traffic volume and the fingerprint length.

Extraction P

} Event Triggering

[Filtering&Compression

[Coarse Fingerprint }

[Refined Fingerprint }

v

[Base Fingerprints }

v

Matching
N

FMLCS
Long

Traffic? L}
v AFMLCS

Result

Fig. 12: WiFinger system workflow.

V. EVALUATION

We conduct experiments corresponding to the three attack-
ing scenarios (Section III) to evaluate WiFinger’s performance
against two state-of-the-art ML-based fingerprinting methods
applied to Wi-Fi traffic: Peek-a-boo [8] and IoTBeholder [9].
For Peek-a-boo, we use the same feature set and select their
best-performing model (Random Forest, or RF) for evaluation.
During the experiments, we assume RF and IoTBeholder have
finished their device classification and only focus on the event

detection. As for WiFinger, we aim to use a single fingerprint
to classify devices and events at the same time. >

A. Dynamic Tracking & Evaluation Metrics

We use continuous event tracking to emulate realistic at-
tacks instead of classifying chunked traffic flow samples.
Specifically, every detection method uses a sliding window
to dynamically select a group of most recent packets for
classification. For Peek-a-boo, we test various window sizes
and select the best-performing setting for each event. For
IoTBeholder, the window size is set as the burst duration, using
the same definition as [9]. For WiFinger, the window size is
set as the duration of the extracted base fingerprint plus two
seconds (to accommodate potential timing variations). Given
a window of packets, each method determines whether it cor-
responds to “idle” (negative) or an event (positive). Whenever
an event is detected, packets within the current window are
excluded from subsequent windows to avoid misclassification
of similar events. Specifically, Peek-a-boo and IoTBeholder
skip all packets in the next 6 seconds, while WiFinger skips
all packets contained within the current window. This setting
is practical as IoT events on the same device seldom occur
consecutively within a very short period, and the collected
events in our dataset have long enough gaps in between.

To evaluate dynamic tracking performance, we use precision
and recall rates as metrics. During detection, true positive
results correspond to events with correct labels, and false
positive results correspond to events with wrong labels or
misclassifications of idle states. Precision is defined as the
ratio of true positive detections to the total number of positive
detections. Recall is defined as the ratio of true positive
detections to the total number of triggered events.

B. Attacking Scenarios

We evaluate methods’ dynamic tracking performance in
three scenarios: naive, single-target, and multi-target tracking
(ultimate objective).3 For Peek-a-boo and IoTBeholder, attack-
ers use various strategies to train models and detect events to
achieve the optimal performance.

« Naive: attackers train simple binary classifiers to distinguish
one target event from idle periods.

« Single-target: attackers train multi-event classifiers for each
device and aim to distinguish only the event of interest from
all other events and idle, i.e., attackers discard any report of
non-target events.

o Multi-target: attackers train multi-event classifiers to mon-
itor all occurring events of a device, i.e., attackers accept
reports of any event.

As for WiFinger, attackers use a consistent procedure to extract
event fingerprints and apply (A)FMLCS to match them in all
three scenarios.

2Ping-Pong and IoTAthena are not included as baselines due to their
infeasibility on Wi-Fi traffic, as discussed in Section II-C

31t is worth noting that some event fingerprints (E11-E13, E18-19) are
inseparable; they are excluded from the single-target/multi-target experiments.

C. Testbed Configurations & Dataset Collection

We built an automated event triggering system using a Xi-
aoMi 8 mobile device to trigger IoT events. Traffic generated
by the devices was sniffed and labeled accordingly. We tested
the sniffing performance of a MacBook, a NetGear A6210
adapter [45], and an ALFA AWUSO36ACH adapter [46], and
finally chose the A6210 running on Ubuntu-16.04 for its best
capture performance (lowest packet loss). For each IoT event,
we generated 30 samples for training and 20 samples for test-
ing. All samples had approximately 40-second gaps between
them to ensure completion of events. In total, our dataset
includes 15 devices and 47 events (Appendix A, Table VII)
representative of smart devices on the market, including smart
home agents, small smart peripherals, and integrated smart
actuators*. Devices with simpler functionality are TP-Link
Plug, Gosund Plug, WAH Plug, ICX-RF Controller, and Wiz
Hue Light. For complex devices, we chose Amazon Echo,
Google Home, Xiaomi Smart Sweeper and humidifier, Midea
Dishwasher and Dish Sterilizer, Sprinkler, two thermostats,
and a ring alarm. Apart from the tested devices, a laptop
and a TV were connected to the same network serving as
background noise traffic. All devices were connected via
2.4GHz Wi-Fi.

D. End-to-End Detection Results

The results of the naive binary classification are shown
in Table II. Under the naive setting, Peek-a-boo obtains the
highest recall rate of 96% and WiFinger achieves the highest
precision rate of 98% on average.

Peek-a-boo RF IoTBeholder | WiFinger(ours)
Methods Rec. Prec. Rec. Prec. Rec. Prec.
Average | 0.95 0.88 0.9 0.9 0.90 0.98

TABLE II: Three models demonstrate similar performance on
the naive scenario.

Advancing to the single-target setting, WiFinger main-
tains excellent performance, but Peek-a-boo and IoTBeholder
demonstrated a decreasing trend. As shown in Table III,
Peek-a-boo achieves 83% recall and 81% precision, while
IoTBeholder achieves 74% recall and 87% precision. The
performance gap between both models and WiFinger mainly
lies in the precision. The noisiness of WiFi traffic increases
the difficulty of distinguishing events especially when their
fingerprints are similar. For example, E7 and E8 (also E9 and
E10) only have byte-level differences inside a window, causing
obvious degradation on Peek-a-boo and IoTBeholder.

In the most advanced and informative scenario, the perfor-
mance gap becomes event more significant. WiFinger main-
tains the highest recall and precision rates of 86% and 95%,
while Peek-a-boo and IoTBeholder now only achieve 49% and
46% recall rates, and 48% and 35% precision rates respec-
tively, barely useable.’ Such results reflect the models’ authen-

“https://huggingface.co/datasets/Gonewinddd/WiFinger

SConsidering that 30 samples may not be sufficient for training robust ML-
based models, we further collected 100 training samples for each event, but
observe no performance improvement.

10

Size
Event,

- = -l hY
Fig. 13: The influence of mismatch in continuous event

tracking. The model skips half of the Ewventy packets for
misclassifying Event;.

TEvent packet
[’
1 Noise packet
|

1 Time
R 3

>

tic performance on real-world tracking that have been over-
rated in previous evaluations. Most of the existing works eval-
uate classification performances on chunked samples, where
the results of different samples are classified independently.
Nonetheless, in the multi-target scenario, misclassifications
have impact on subsequent detections such as overlooking
other events, as shown in Figure 13. Therefore, during event
tracking, false positive detections have a much higher impact
on the actual overall performance. Among the three models,
IoTBeholder achieves the worst performance. IoTBeholder
uses the confidence score of a group of binary classifier for
multi-class classification. Therefore, once the testing data devi-
ates from the training data pattern, the corresponding model of
events can no longer output a dominating confidence score and
easily lead to erroneous judgment. As a comparison, WiFinger
outstands for its excellent precision rate. Due to the event-
unique base fingerprint features, one event hardly gets matched
to a different fingerprint. Furthermore, we experimented with
matching fingerprints across devices, and their uniqueness
demonstrates the capability of facilitating simultaneous de-
vice fingerprinting and event identification. Such cross-device
uniqueness has also been verified in previous works [1], [5].

E. Robustness Analysis

1) Sensitivity Against Noises: Despite promising overall
performances, WiFinger performs considerably low on the
recall rates of certain events. We manually analyze the match-
ing results of FNs and FPs to analyze the main causes. FN:
WiFinger drops a detection result either for not matching
enough packets of the base fingerprint or the failure of aligning
subsequences temporally, where the former situation happens
much more frequently. In our parameter settings, a successful
match must comprise 60% () of the base fingerprint (except
Mi Sweeper). The choice of ~ is due to the bursty drop pattern
of wireless sniffing, that an average loss rate of around 10-
20% may cause some events having 30-40% missing packets.
Moreover, for short base fingerprints of only 2-4 packets, even
the “60%” matching requirement poses a significant challenge.
Given the brevity of short fingerprints, each packet carries a
disproportionately large weight, meaning a single mismatch
can severely undermine the matching percentage. For example,
the fingerprint of E17 (Mi Sweeper) only involves 2 packets,
indicating that missing any packet leads to the failure of
meeting the “60%” requirement. FP: we also notice that packet
loss is the main reason for misclassifying events with similar

Single-target Multi-target Single-target/Multi-target
Event ID Peek-a-boo RF ToTBeholder Peek-a-boo RF IoTBeholder WiFinger(ours)
Recall | Precision | Recall | Precision | Recall | Precision | Recall | Precision | Recall Precision
El 0.9 1 0.2 0.67 0.95 1 0.15 0.3 0.9 0.72
E2 1 0.9 1 1 0.05 0.04 0.25 0.25 1 1
E3 0.95 1 0.95 1 0.15 0.11 0.1 0.07 0.95 1
E4 1 0.8 1 1 0.1 0.08 0.1 0.06 1 1
E5 0.7 0.47 1 0.69 0.15 0.08 0.5 0.29 0.95 1
E6 0.9 1 0.05 1 0.95 1 0.05 0.08 0.95 1
E7 0.95 0.41 1 0.74 0.7 0.44 1 0.51 0.7 1
E8 0.95 0.42 1 0.69 0.9 0.51 1 0.5 0.8 1
E9 0.75 0.94 0.9 0.95 0.65 0.41 0.9 0.47 0.85 0.77
E10 0.9 0.72 1 0.59 0.8 0.46 1 0.51 0.75 0.88
El4 1 1 0.9 0.9 0.9 0.45 0.4 0.44 1 1
El5 1 1 0.4 0.84 1 0.49 0.4 0.42 1 1
El6 0.9 0.86 0.55 1 0.55 0.58 0.2 0.12 0.85 1
El7 0.95 0.97 0.85 0.94 0.85 0.63 0.7 0.93 0.65 1
E20 0.2 1 0.35 1 0.8 0.97 0.05 0.2 0.68 1
E21 0.85 0.97 0.6 1 0 0 0.23 0.43 0.58 1
E23 1 0.96 0.1 1 0.65 0.62 0 0 0.95 1
E24 1 0.88 0 0 0.55 0.68 0 0 1 1
E25 1 0.94 0 0 0.7 0.64 0 0 0.9 0.95
E26 1 0.96 0 0 0.75 0.6 0 0 0.95 0.91
E27 0.9 0.9 0.8 0.62 0.75 0.72 0.40 0.39 1 1
E28 1 0.95 0.95 0.47 0.75 0.76 0 0 0.95 1
E29 1 0.9 0.40 0.48 0.75 0.64 0.55 0.54 0.95 1
E30 1 0.43 0.7 0.56 0.75 0.69 0.25 0.19 0.95 0.85
E31 1 0.42 0.75 0.56 0.7 0.6 0.2 0.17 0.9 0.91
E32 1 0.83 0.95 0.83 0.95 0.47 0.95 0.46 1 1
E33 1 0.56 1 0.91 1 0.49 1 0.48 1 1
Average 0.91 0.82 0.65 0.72 0.65 0.52 0.39 0.3 0.89 0.96

TABLE III: Event detection performance under the single-target and multi-target scenarios. The results of WiFinger under two

scenarios are the same and thus merged.

base fingerprints. For example, E7 and E8 adjust the volume of
the Google Home speaker, and a few fingerprint packets of E7
are a byte larger than E8. Nevertheless, if such distinguishing
packets are lost from ES8, its remaining packets could be
perfectly mismatched as an E7 event. Such mismatches also
happen to some idle states whose traffic exhibits similar pat-
terns. For instance, idle traffic of Mi Sweeper can occasionally
match 50% or 75% of the E16 fingerprint. Diving deeper into
the situation, we notice that such special phenomena do not
happen to any other devices/events and only occurs after the
“stop sweeping” commands. A reasonable explanation is that
there exists hidden events happening to share similar traffic
patterns, e.g., reporting the “back-to-charging” status.

In summary, short base fingerprints are much more sensitive
to packet losses, causing the majority of the FNs and FPs.
Nonetheless, depending on the needs, attackers can adjust the
matching percentage parameter for these events to balance the
trade-off between precision and recall. If attackers increase the
matching percentage -y, they could obtain higher precision but
lower recall, or vice versa. In later sections, we investigate the
choice of parameters more thoroughly.

2) Sensitivity against Channel Variations: During the at-
tack, wireless channel conditions largely impact the finger-
printing quality. To evaluate its influences on fingerprints with
various lengths, we select 5 events with the highest keep

11

rate (>90%), discard some data packets to reach predefined
packet loss rates, and evaluate models under worse ““simulated”
conditions. We use a uniform packet drop as the baseline and
the well-established Gilbert-Elliott (GE) [47], [48] model to
simulate more realistic bursty packet loss of wireless channels.
We repeat each process three times to mitigate abnormality.
As shown in Figure. 14, WiFinger consistently outperforms
Peek-a-Boo and IoTBeholder under both simulation model,
demonstrating robustness even under various packet loss rates.
Additionally, we note that both IoTBeholder and Peek-a-Boo
demonstrate some level of robustness against packet losses,
despite their worse overall performance. This indicates that
burst-level ML analysis are still capable of distinguishing very
unique events from idle states, but their effectiveness largely
depend on the nature of events.

F. Limits and Effectiveness: Ablation Study on Parameters

According to existing analysis, WiFinger’s performance is
determined by three factors: sniffing data quality, fingerprint
length, and parameter settings. While the former two factors
are unadjustable after selecting the target and setting up the
sniffer, attackers could adapt parameters to their need on preci-
sion and recall rates, depending on the current sniffing channel
condition and their target fingerprints. Therefore, understand-
ing a balanced setting and the boundary of effectiveness is

1.0 1.0 1.0
@i et @i .
T

0.8 0.8 0.8

[}] [}

S o6 5 o6 5 o6

b --e-- WiFinger (Uni) b --#-- WiFinger (Uni) o --e-- WiFinger (Uni)

o 04/ —=— WiFinger (GE) o 04/ —— WiFinger (GE) o .| —=— WiFinger (GE)
Peek-a-Boo (Uni) Peek-a-Boo (Uni) Peek-a-Boo (Uni)
Peek-a-Boo (GE) Peek-a-Boo (GE) Peek-a-Boo (GE)

2| ... loTBeholder (Uni) 2| ... loTBeholder (Uni) 2| ... loTBeholder (Uni)
—=— loTBeholder (GE) —=— loTBeholder (GE) —=— loTBeholder (GE)
0.0 0. 0.

0.90 0.85 0.80

Packet keep rate

0.90 0.85 0.80

Packet keep rate

0.90 0.85 0.80

Packet keep rate

(a) Gosund Plug (B)

1.0

(b) ICX AC (B)

@ ererereeeeraaaans P T O

“\.\-

(c) TP-Link Plug (B)

1.0

0.8 0.8

o
o
.
o

F1 score

—

e
Y

--e-- WiFinger (Uni)

F1 score

o
Y

WiFinger (GE)
Peek-a-Boo (Uni)
Peek-a-Boo (GE)

--e-- WiFinger (Uni)

—s— WiFinger (GE)
Peek-a-Boo (Uni)
Peek-a-Boo (GE)

0.2 0.2

--e-- loTBeholder (Uni) --e-- loTBeholder (Uni)
—s— loTBeholder (GE) —s— loTBeholder (GE)

0.90 0.80

rate

0.90 0.80

0.85 0.85
Packet keep rate Packet keep

(d) Alexa Time (ST) (e) Alexa DND (ST)

Fig. 14: Average model performances under different packet keep rates. B stands for “binary”, ST stands for “single-target.”

crucial for deploying the attack. WiFinger has three adjustable
parameters: similar packet size gap €, minimum sequence
matching percentage -y, and interval distance threshold f.

During the experiment, we empirically set € as 1, meaning e
two packets are only considered similar if they have the exact 0.8
same sizes and transmission directions. The influence of 3 and
v is shown in Figure 15. §°-6
Increasing (8 allows WiFinger to accommodate more net- ¥ oa ::;3;;‘;:2'06_)6)
work jitters during the transmission. WiFinger reaches a stable —— alexa_egg (y=0.6)
performance when [is larger than 2 seconds. Generalizing o2 —+ sweeper_sweep (y=0.6)
to various network conditions, setting 3 = 3 is sufficiently oo —7~ midea_dishwasher (y=0.6)
accommodating. Additionally, WiFinger achieves best perfor- e 0 et ° > >0
mance when v is around 0.5-0.6. There are several factors (a) Fl-score vs. 8
influencing the value. First of all, v depends on the sniffing =
data quality. In an extreme case where all packets could be e
sniffed and the network is stable, attackers would expect 0.8
matching the whole base fingerprint every single time, i.e., .
v = 1. Yet, when a distinctive packet differentiating an g0
event from idle traffic is lost (e.g., event: {155U, 255D, an —— sweeper_sweep (B=2.0)
137U}; idle: {155U, 255D}), distinguishing events is the | i’:)'("::—(‘:;:’z“'gs"e’ (p=2.0)
same as making a random guess. To encounter such inevitable 0.2 —+— gosund (B=2.0)
scenarios, attackers could adjust « to balance the trade-off —— alexa_egg (8=2.0)
on precision and recall. Higher 7y suggests higher matching %0701 o2z o3 o4 o5 o6 07 08 o0

Gamma Parameter

percentage of the fingerprint. If attackers seek for capturing
events with high confidence for subsequent actions (as implied
in Section III-A), tuning v towards a higher value provides
more guarantees, and vice versa. Nonetheless, either too high
or low ~ results in the increment of false negatives or false
positives, lowering the overall performances (Fl-score). As a

(b) Fl-score v.s. vy
Fig. 15: Ablation study on parameter 8 and ~.

12

result, we suggest set 7y as 0.170.2 below l0ss,,; ¢ a balanced
choice, and adjust it according to actual sniffing capability
and the length of fingerprints. Lower v may work, but only
for very unique and long fingerprints.

G. Events and Fingerprint Case Study

We demonstrate the metadata of the extracted base finger-
prints in Table IV. First, complex devices may have very
different fingerprint lengths and durations, depending on the
commands’ complexity. Alexa Echo’s fingerprints’ (E1-E6)
lengths vary from 4 to 41 packets, and the duration varies
from 0.2s to 7.7s. Second, correlated events mostly have very
similar pattern. For instance, events in E11 (or E12-E15) have
exactly the same fingerprints, i.e., same fingerprint lengths,
packet sizes, directions, and similar interval distributions.
These events are inseparable from encrypted traffic analysis.
Nevertheless, some correlated events share subtle differences:
on/off commands of the Wiz Hue Light (E9-E10) have single-
byte differences on their first two fingerprint packets; the
volume up/down commands of the Google Home (E7-E8) also
have single-byte differences on several fingerprint packets, but
the two commands also have different lengths as well. Last but
not least, complex events traffic typically involve more sub-
bursts (segments) during their span. These sub-bursts increase
the difficulty of burst-classification or window-selection for
ML-based approaches, but turn out to be useful for handling
large volume of traffic with our segmentation technique.
In general, IoT fingerprints have both significant flow-level
differences and subtle packet-level variations, making it harder
for tuning ML models to capture their traffic patterns.

H. Efficiency Analysis

We introduced anchor reference and fingerprint segmenta-
tion to optimize the efficiency and accuracy of FMLCS for
large-volume traffic devices (E1-E8). We use the multi-target
setting to compare their online matching performance. Each
testing file contains 20 events spanning over 1200 seconds. As
shown in Table VI, AFMLCS requires significantly less time to
process the traffic, and the time cost difference increases with
traffic volume. For example, during a sudden burst of traffic
exceeding one hundred seconds in Event 5 (ES5), FMLCS
spends most of the time handling the burst but exhibits even
worse performance. Comparing with existing approaches, we
measure the average time for process all testing sequences
with the three approaches. As shown in Table V, WiFinger
outperforms with approximate 10x processing speed.

Moreover, AFMLCS also plays a very important role in the
base fingerprint extraction. During the extraction, WiFinger
applies FMLCS to extract consensus sequences pairwisely
among all event traffic bursts. Yet, the matching processes
between two noisy sequences make baseline FMLCS stuck
at the DP function for its exponential time complexity. As a
result, FMLCS could not finish the process for E2-E8 even
after hours of waiting, while AFMLCS only takes less than
a minute to do so. In general, for short fingerprints/traffic
where segmentation techniques are not applicable, WiFinger

13

Event ID || Packet Num | Duration(s) | Sub-bursts
El 4 0.23 1
E2 23 4.5 3
E3 41 7.7 6
E4 28 3.15 3
E5 42 4.03 4
E6 16 0.35 1
E7 9 3.29 2
E8 17 341 3
E9 4 0.5 1
E10 4 0.5 1
Ell 4 0.2 1
El12 2 0.04 1
El13 20 1.52 2
El4 11 0.62 1
El5 10 0.81 1
El6 4 5.69 2
El7 2 5.76 2
E18 15 1.25 1
E19 6 0.42 1
E20 4 0.73 1
E21 4 0.51 1
E22 7 1.13 2
E23 10 3.81 2
E24 9 4.24 2
E25 13 3.75 2
E26 11 3.44 2
E27 8 6.91 2
E28 8 6.85 2
E29 8 6.93 2
E30 11 6.87 3
E31 13 6.83 3
E32 11 0.88 1
E33 10 0.85 1

TABLE IV: Metadata of the extracted base fingerprints.

Traffic Volume Time Cost (5) —
Peek-a-Boo | IoTBeholder | WiFinger
Small 0.53 0.35 0.04
Large 5.18 8.1 0.45

TABLE V: Average time cost for processing testing packet
sequence of all events.

degrades AFMLCS to the baseline version for its simplicity
and effectiveness.

1. Countermeasures

To protect users from such privacy inference attacks, pre-
vious works have proposed several countermeasures, includ-
ing traffic shaping [23], traffic delaying [49], and packet
padding [50], [51]. Traffic delaying delays packet transmission
for a random short period of time to obfuscate the packet
intervals. Knowledgeable defenders can also use it to crack
WiFinger by enlarge packet intervals beyond the threshold
requirements. Traffic shaping randomly inserts dummy packets
in both direction to masquarade the flow-level characteristics.
Packet padding adds dummy bytes to each packet to obfuscate

Process Time(s) F1 Score
Event ID | Packet Num i a 3 pT ¢S TEMLCS | APMLCS
El 3854 0.13 0.13 0.85 0.80
) 5740 0.17 0.07 1.00 1.00
E3 8178 234 0.15 092 0.97
B4 12670 797 0.85 0.97 1.00
E5 18011 392 13 033 097
E6 1789 0.14 0.15 1.00 097
E7/ES 4179 034 0.1 0.84 0.86

TABLE VI: AFMLCS improves both efficiency and accuracy
for large-volume traffic events.

the size of payload. To emulate these protection mechanisms,
we add random delays (0-0.05s or 0-0.2s) to packets for
traffic delaying, add dummy packets to the original traffic
for traffic shaping, and slightly increase all packet sizes (1-
5 bytes randomly) for packing padding defense, respectively.
We evaluate current fingerprints against the three defenses
under the multi-target setting, and the effectiveness of these
countermeasures against WiFinger is shown in Figure 16.

First, traffic shaping has a very limited influence on the
WiFinger. This is because dummy packets influence neither
the intervals between fingerprint packets nor their sizes and
directions. Consequently, the shaped traffic still embodies the
same event patterns, and thus most events end up with a similar
performance with a slight drop of the recall rate. Its only
impact is that it increases the processing time of complicated
events at the cost of a large bandwidth.

Traffic delay also has a limited impact on WiFinger. During
the defense, transmission delays will be accumulated for each
packet, i.e., if a request is delayed, its response will be also
delayed for the same amount of time plus its own delay.
Consequently, the intervals between tail packets and header
packets are expected to increase, even exceeding the temporal
alignment threshold of FMLCS. Nonetheless, thanks to our
proposed IC mechanism, WiFinger clips and calibrates out-
of-distribution intervals to limit the delay accumulation effect,
ensuring temporal alignments between fingerprints and new
sequences. As shown in the ablation study in Figure 16, WiFin-
ger without IC performs dramatically worse under similar
delaying defenses.

Traffic padding demonstrates to be the most effective de-
fense against WiFinger. Due to the direct change of packet
sizes, the examination process (FMLCS) on packet sizes and
directions is destroyed. As a result, the recall and precision
rates drop to 0% for all events if WiFinger still keeps € = 1.
Nonetheless, as we adapt WiFinger to the defense by loosing e
to 5 bytes, the performance of WiFinger recovers to a degree as
if no defense is applied. For a padding defense to be effective,
it should add enough dummy bytes (e.g., > 100) to obfuscate
packets of different types.

Cost-Effectiveness tradeoff: Since WiFinger aims at the first-
hand wireless sniffing, protections must be implemented on
the IoT devices, which inevitably increases the burden of IoT
application developers and manufactures. Moreover, the three
defenses come at different costs on transmission bandwidth.

1.0
Z0 Peek-a-boo

E loTBeholder £=5
A WiFinger

0.8{ E=1 WiFinger (w/o IC)

0.6
4
H
o
("]
-
“ 0.4 A

.
7 — N
0.2 N
(N
N
e=1
0.0 A)

Delay 0.05 Delay 0.2 Shaping

Defense Methods

Padding
Fig. 16: The three methods’ average attacking performances

against different defenses. Ablation study on IC is not con-
ducted for the latter two due to their irrelevance.

1.0 & e}
[}
° (¢}

E1l
E2
E3

E17
E18
E19
E20
E21
E22
E23/E24
E25/E26
E27/E28
E29
E30/E31
E32/E33

E4

E5

E6
E7/E8
E9/E10
E1l
E12
E13
E14/E15
E16

o
)
;

o
-y
00000000000

F1-Score
o o
N o
000000000000

o
)
o

O O

0 a 8 12 16 20 24 28 32
Delaying Overhead (s)

Fig. 17: Additional event execution overhead (seconds) intro-
duced by traffic delaying defense.

Traffic delaying (Fig. 17) increases the latency of an event
execution and demonstrates extremely biased performance
among events. On the one hand, they perform well for large-
volume traffic events, but all events’ executions are delayed by
7 to 30 seconds, severely impacting the system’s utility. On
the other hand, for small-volume traffic, while the accumulated
delays of 0.5-1 seconds do not impact utility, they are also not
sufficient for protecting traffic from WiFinger attacks.

1.0 W 9 .O‘

8

E1l
E2
E3

E17
E18
E19
E20
E21
E22
E23/E24
E25/E26
E27/E28
E29
E30/E31
E32/E33

o
o

E4

E5

E6
E7/E8
E9/E10
E11l
E12
E13
E14/E15
E16

F1-Score
o
Y

o
0
000000000000 °©

o
)
o

000000000000

=
N

0 a 8
BPS Overhead (X)

Fig. 18: Additional bandwidth overhead (# times of bps)
introduced by traffic shaping defense.

Traffic shaping (Fig. 18) takes more bandwidth for the

significant amount of extra dummy packets to be transmitted.
Transmission rates of events are several times (from two
to over ten times) higher than their regular rate, causing
unacceptable overhead.

@ E1 @ E17
Q@ E2 O e
E3 E19
0.08 - 8 E4 8 E20
O &5 O E21
© E6 O E22
© 0.06 O E7E8 O E23/E24 |
= O E9EL0 O E25/E26
8 @ E11 O E27/E28
wn O E12 O E29
- 0.04 Q E13 O E30/E31 |
TS O E4/E15 (O E32/E33
Q@ E6
0.02 -
0.00 1 ©@@XO O D @B O ® o o
0.0 01 02 03

BPS Overhead (X)

Fig. 19: Additional bandwidth overhead (# times of bps)
introduced by packet padding defense.

Packet padding (Fig. 19) applies relative small packet-level
overheads compared to the other two, but achieves strong
effects on breaking fingerprinting approaches relying on the
size of the payload. We tested randomly padding 1-100 dummy
bytes to packets and successfully disabled WiFinger at the
cost of around 20% overhead on the transmission bandwidth.
Therefore, packet padding works well as the first line of
defenses against WiFinger and all other packet-matching at-
tacks. Some valid implementation options of randomizing the
payload sizes include using OkHttp [52] to pad HTTP headers
or using padding functionalities of the middleware protocols
such as TLS. Since existing defenses may only support web
development, developers still need to integrate them to the
embedded IoT devices.

VI. DISCUSSION

Mitigate Wireless Monitoring. While the implementation of
defenses relies on manufacturers, some smart home usage
habits could help prevent attackers from conducting malicious
activities. For instance, keep device firmware up to date to
remove software vulnerabilities and set necessary automation
for security-related devices to ensure they are in the expected
states. Conversely, manufacturers need to actively implement
certain anonymization methods to cover the trails of devices.
Limitations of WiFinger. Although WiFinger achieves sat-
isfactory accuracy and provides options for parameter adap-
tation, it does not fully address the problem of packet loss.
To alleviate the impact, we plan to explore the use of traffic
recovery techniques, e.g., data synthesis [53], [54], in the
future. In addition, the current WiFinger still requires pre-
collecting offline training data before deploying the attack. A
more ideal scenario is that attackers could directly sniff traffic
from various devices and leverage contextual information such
as placement position, signal strength, and activation time to
infer potential events using unlabeled data.

Streaming IoT Devices/Events. Streaming IoT devices such
as Smart Cameras belong to another dominant class. When

15

turned on, these devices constantly stream video data to the
cloud using the UDP protocol so that users can view the
live feed via the companion app. However, when triggering
commands such as “photo capture” or “video recording”, some
tested devices (e.g., Wyze Camera, XiaoMi Camera) did not
demonstrate characteristic WiFi traffic patterns. Diving into
their TCP/IP traffic [55], we notice that no TCP packet was
transmitted during events, indicating that “photo capture” and
“video recording” for some cameras are likely local operations
where the mobile device takes a snapshot of the video stream.
Therefore, these events are simply not observable from the
network traffic perspective and cannot be fingerprinted at
all. Nonetheless, most streaming devices demonstrate obvious
traffic volume differences that can be utilized to determine
their on/off states or “motion detected” events [7].

Ground Truth Reference for Fingerprint Extraction. Dur-
ing fingerprint extraction, the incomplete training sequence
poses challenges. On the other hand, TCP/IP layer traffic
mirroring are usually more stable and complete. Therefore,
by integrating higher-layer traffic, lower-layer missing packets
might be recovered by comparing their sizes to higher-layer
packet sizes. Nonetheless, one challenge lies in the packet
aggregation mechanisms (e.g., A-MPDU in 802.11n and later),
which can disrupt the one-to-one mapping between WiFi
frames and higher-layer packets.

Potentials Beyond WiFi and Smart Home. WiFinger has
the potential to be applied to other non-invasive monitoring
scenarios as well. For example, fingerprinting medical devices
such as blood glucose meters and heart rate monitors provides
multi-modal information for detecting anomaly behaviors [56],
e.g., uneven heartbeat. In the industrial domain, WiFinger may
be used to fingerprint smart meters or smart sensors and help
detect anomalies in the power grid or manufacturing pro-
cesses. Apart from IoT systems, WiFinger also demonstrates
its potential of fingerprinting complex network events such
as mobile application behaviors, being useful for unveiling
privacy leaking activities in the background [57], [58].
Other security and privacy issues of Wireless IoT systems.
Privacy concerns in wireless IoT systems has been a long-
standing problem. Prior works have demonstrated that traffic
information from various layers can be leveraged to reveal
users’ locations [59]-[62] and hidden IoT devices in the
space [63]. From a defending perspective, efforts have been
made to guarantee security and privacy of wireless sensing
networks [64], [65].

VII. ETHICAL CONSIDERATIONS

This research strictly adheres to ethical guidelines for
academic study. The nature of this work is fundamentally
defensive, with the primary aim of exposing vulnerabilities to
inform the development of stronger security countermeasures.
All experiments were conducted within a controlled laboratory
environment using devices owned by the research team. This
methodology prevents any content leakage, guarantees that
no personally identifiable information is exposed, and ensures
no involuntary participation occurred during the wireless data

collection phase. Furthermore, the dataset to be released has
undergone a meticulous cleansing and anonymization process.
This process removes any extraneous or potentially sensitive
traffic, ensuring full compliance with data privacy standards.

VIII. CONCLUSION

In this work, we proposed WiFinger to extract the packet-
level event fingerprints from noisy wireless traffic. We demon-
strated that the current trend of using ML approaches for
fingerprinting IoT events has inherent overheads and limi-
tations, especially when applied to Wi-Fi. Additionally, we
identified a gap in existing evaluation methodologies, which
often use chunked traffic samples rather than the more appro-
priate approach of detecting events within continuous traffic
streams. Our experiments show that WiFinger achieves the
best performance under more practical settings, maintaining
very low false positive rates.

IX. ACKNOWLEDGMENT

We would like to thank reviewers from NDSS and Oakland
for their valuable comments and suggestions. This work was
supported by the National Natural Science Foundation of
China (Grant No: 92270123 and 62372122), the Research
Grants Council (Grant No: 15226221 and 19209922), Hong
Kong SAR, China, PolyU Research Centre for Privacy and
Security Technologies in Future Smart Systems, and the NSF
Grant CNS-2334996.

REFERENCES

[1] R. Trimananda, J. Varmarken, A. Markopoulou, and B. Demsky, “Ping-
pong: Packet-level signatures for smart home device events,” arXiv
preprint arXiv:1907.11797, 2019.

J. Ren, D. J. Dubois, D. Choffnes, A. M. Mandalari, R. Kolcun, and
H. Haddadi, “Information exposure from consumer iot devices: A multi-
dimensional, network-informed measurement approach,” in Proceedings
of the Internet Measurement Conference, 2019, pp. 267-279.

B. Copos, K. Levitt, M. Bishop, and J. Rowe, “Is anybody home?
inferring activity from smart home network traffic,” in 2016 IEEE
Security and Privacy Workshops (SPW). 1EEE, 2016, pp. 245-251.
O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose, “Sok: Security
evaluation of home-based iot deployments,” in 2019 IEEE symposium
on security and privacy (sp). 1EEE, 2019, pp. 1362-1380.

Y. Wan, K. Xu, E Wang, and G. Xue, “Iotathena: Unveiling iot
device activities from network traffic,” IEEE Transactions on Wireless
Communications, vol. 21, no. 1, pp. 651-664, 2021.

T. OConnor, R. Mohamed, M. Miettinen, W. Enck, B. Reaves, and A.-
R. Sadeghi, “Homesnitch: Behavior transparency and control for smart
home iot devices,” in Proceedings of the 12th conference on security
and privacy in wireless and mobile networks, 2019, pp. 128-138.

N. Apthorpe, D. Reisman, S. Sundaresan, A. Narayanan, and N. Feam-
ster, “Spying on the smart home: Privacy attacks and defenses on
encrypted iot traffic,” arXiv preprint arXiv:1708.05044, 2017.

A. Acar, H. Fereidooni, T. Abera, A. K. Sikder, M. Miettinen, H. Aksu,
M. Conti, A.-R. Sadeghi, and S. Uluagac, “Peek-a-boo: I see your
smart home activities, even encrypted!” in Proceedings of the 13th ACM
Conference on Security and Privacy in Wireless and Mobile Networks,
2020, pp. 207-218.

Q. Zou, Q. Li, R. Li, Y. Huang, G. Tyson, J. Xiao, and Y. Jiang,
“Jotbeholder: A privacy snooping attack on user habitual behaviors
from smart home wi-fi traffic,” Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, vol. 7, no. 1, pp. 1-26,
2023.

J. Li, H. Zhou, S. Wu, X. Luo, T. Wang, X. Zhan, and X. Ma,
“{FOAP}:{Fine-Grained } { Open-World} android app fingerprinting,” in
31st USENIX Security Symposium (USENIX Security 22), 2022, pp.
1579-1596.

[2]

[3]

[4

=

[5]

[6]

[10]

16

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

(22]

[23]

[24]

[25]

[26]

(27]

(28]

[29]

G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescape, “Mimetic: Mobile
encrypted traffic classification using multimodal deep learning,” Com-
puter networks, vol. 165, p. 106944, 2019.

M. Lotfollahi, M. Jafari Siavoshani, R. Shirali Hossein Zade, and
M. Saberian, “Deep packet: A novel approach for encrypted traffic
classification using deep learning,” Soft Computing, vol. 24, no. 3, pp.
1999-2012, 2020.

S. Rezaei, B. Kroencke, and X. Liu, “Large-scale mobile app identifi-
cation using deep learning,” IEEE Access, vol. 8, pp. 348-362, 2019.
A. Sivanathan, H. H. Gharakheili, F. Loi, A. Radford, C. Wijenayake,
A. Vishwanath, and V. Sivaraman, “Classifying iot devices in smart
environments using network traffic characteristics,” IEEE Transactions
on Mobile Computing, vol. 18, no. 8, pp. 1745-1759, 2018.

M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A.-R. Sadeghi, and
S. Tarkoma, “Iot sentinel: Automated device-type identification for
security enforcement in iot,” in 2017 IEEE 37th international conference
on distributed computing systems (ICDCS). 1EEE, 2017, pp. 2177-
2184.

S. Dong, Z. Li, D. Tang, J. Chen, M. Sun, and K. Zhang, “Your
smart home can’t keep a secret: Towards automated fingerprinting of iot
traffic,” in Proceedings of the 15th ACM Asia Conference on Computer
and Communications Security, 2020, pp. 47-59.

X. Ma, J. Qu, J. Li, J. C. Lui, Z. Li, W. Liu, and X. Guan, “Inferring
hidden iot devices and user interactions via spatial-temporal traffic
fingerprinting,” IEEE/ACM Transactions on Networking, vol. 30, no. 1,
pp. 394-408, 2021.

M. Alyami, I. Alharbi, C. Zou, Y. Solihin, and K. Ackerman, “Wifi-
based iot devices profiling attack based on eavesdropping of encrypted
wifi traffic,” in 2022 IEEE 19th Annual Consumer Communications &
Networking Conference (CCNC). 1EEE, 2022, pp. 385-392.

S. J. Saidi, A. M. Mandalari, R. Kolcun, H. Haddadi, D. J. Dubois,
D. Choffnes, G. Smaragdakis, and A. Feldmann, “A haystack full of
needles: Scalable detection of iot devices in the wild,” in Proceedings
of the ACM Internet Measurement Conference, 2020, pp. 87-100.

J. Holland, P. Schmitt, N. Feamster, and P. Mittal, “New directions in
automated traffic analysis,” in Proceedings of the 2021 ACM SIGSAC
conference on computer and communications security, 2021, pp. 3366—
3383.

I. Analytics, “State of iot 2024: Number of connected iot devices
growing 13

W. Alliance, “Discovery wifi: Security.” [Online]. Available: https:
/Iwww.wi-fi.org/discover-wi-fi/security

N. Apthorpe, D. Y. Huang, D. Reisman, A. Narayanan, and N. Feamster,
“Keeping the smart home private with smart (er) iot traffic shaping,”
arXiv preprint arXiv:1812.00955, 2018.

D. Y. Huang, N. Apthorpe, F. Li, G. Acar, and N. Feamster, “Iot
inspector: Crowdsourcing labeled network traffic from smart home
devices at scale,” Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, vol. 4, no. 2, pp. 1-21, 2020.
G. Wan, S. Liu, E Bronzino, N. Feamster, and Z. Durumeric,
“{CATO}:{End-to-End} optimization of {ML-Based} traffic analysis
pipelines,” in 22nd USENIX Symposium on Networked Systems Design
and Implementation (NSDI 25), 2025, pp. 1523-1540.

K. Fauvel, F. Chen, and D. Rossi, “A Lightweight, Efficient and
Explainable-by-Design Convolutional Neural Network for Internet Traf-
fic Classification,” in Proceedings of the 29th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining, 2023.

Y. Jin, E. Sharafuddin, and Z.-L. Zhang, “Unveiling core network-
wide communication patterns through application traffic activity graph
decomposition,” ACM SIGMETRICS Performance Evaluation Review,
vol. 37, no. 1, pp. 49-60, 2009.

S. Zhao, M. Chandrashekar, Y. Lee, and D. Medhi, “Real-time network
anomaly detection system using machine learning,” in 2015 11th inter-
national conference on the design of reliable communication networks
(dren). 1EEE, 2015, pp. 267-270.

M. K. Hooshmand, M. D. Huchaiah, A. R. Alzighaibi, H. Hashim,
E.-S. Atlam, and I. Gad, “Robust network anomaly detection using
ensemble learning approach and explainable artificial intelligence (xai),”
Alexandria Engineering Journal, vol. 94, pp. 120-130, 2024.

S. Naseer, Y. Saleem, S. Khalid, M. K. Bashir, J. Han, M. M. Igbal, and
K. Han, “Enhanced network anomaly detection based on deep neural
networks,” IEEE access, vol. 6, pp. 48231-48 246, 2018.

(31]

[32]

[33]

[34]

[35]

[36

=

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]
[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

R. Doshi, N. Apthorpe, and N. Feamster, “Machine learning ddos
detection for consumer internet of things devices,” in 2018 IEEE Security
and Privacy Workshops (SPW). 1EEE, 2018, pp. 29-35.

M. Idhammad, K. Afdel, and M. Belouch, “Semi-supervised machine
learning approach for ddos detection,” Applied Intelligence, vol. 48, pp.
3193-3208, 2018.

S. Nanda, F. Zafari, C. DeCusatis, E. Wedaa, and B. Yang, “Predicting
network attack patterns in sdn using machine learning approach,” in
2016 IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN). 1EEE, 2016, pp. 167-172.

A. Churcher, R. Ullah, J. Ahmad, S. Ur Rehman, F. Masood, M. Gogate,
F. Algahtani, B. Nour, and W. J. Buchanan, “An experimental analysis
of attack classification using machine learning in iot networks,” Sensors,
vol. 21, no. 2, p. 446, 2021.

T. Gu, Z. Fang, A. Abhishek, H. Fu, P. Hu, and P. Mohapatra,
“Totgaze: Iot security enforcement via wireless context analysis,” in
IEEE INFOCOM 2020-IEEE Conference on Computer Communications.
IEEE, 2020, pp. 884-893.

W. Zhang, Y. Meng, Y. Liu, X. Zhang, Y. Zhang, and H. Zhu, “Homonit:

Monitoring smart home apps from encrypted traffic,” in Proceedings of

the 2018 ACM SIGSAC Conference on Computer and Communications
Security, 2018, pp. 1074-1088.

R. Perdisci, T. Papastergiou, O. Alrawi, and M. Antonakakis, “Totfinder:
Efficient large-scale identification of iot devices via passive dns traffic
analysis,” in 2020 IEEE european symposium on security and privacy
(EuroS&P). 1EEE, 2020, pp. 474-489.

N. Erickson, J. Mueller, A. Shirkov, H. Zhang, P. Larroy, M. Li, and
A. Smola, “Autogluon-tabular: Robust and accurate automl for structured
data,” arXiv preprint arXiv:2003.06505, 2020.

F. Seattle, “Prosecutors say house arrest didn’t stop voyeur
suspect.” [Online]. Available: \url{https://www.youtube.com/watch?v=
IUTdeKEX900}

G. news, “Conditional discharge sought for park royal mall
voyeur.” [Online]. Available: \url{https:/globalnews.ca/news/11496631/
conditional-discharge-sought-park-royal-mall-voyeur/}

F. . Seattle, “Burglars break into Issaquah home while man is
asleep.” [Online]. Available: \url{https://www.youtube.com/watch?v=
jG85y3Z8k2Q}

K. 5, “3 people including child hide inside house.” [Online]. Available:
\url{https://www.youtube.com/watch?v=M8iw-EKeF3Y }

Y. K. 5 “Home burglaries caught on camera” [On-
line]. Available: \url{https://youtube.com/watch?v=sNt9pKYbtql&pp=
0gcJCfwA07VgN5tD}

A. Developers, “Android debug bridge.” [Online]. Available: https:
//developer.android.com/tools/adb

Netgear, “Netgear a6210.” [Online]. Available: https://www.netgear.
com/home/wifi/adapters/a6210/

ALFA, “Alfa awus036ach.” [Online]. Available: https://www.alfa.com.
tw/products/awus036ach_1

A. Konrad, B. Y. Zhao, A. D. Joseph, and R. Ludwig, “A markov-based
channel model algorithm for wireless networks,” in Proceedings of the
4th ACM international workshop on Modeling, analysis and simulation
of wireless and mobile systems, 2001, pp. 28-36.

G. HaBlinger and O. Hohlfeld, “The gilbert-elliott model for packet
loss in real time services on the internet,” in /4th GI/ITG Conference-
Measurement, Modelling and Evalutation of Computer and Communi-
cation Systems. VDE, 2008, pp. 1-15.

X. Cai, R. Nithyanand, and R. Johnson, “Cs-buflo: A congestion
sensitive website fingerprinting defense,” in Proceedings of the 13th
Workshop on Privacy in the Electronic Society, 2014, pp. 121-130.

K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-boo, i
still see you: Why efficient traffic analysis countermeasures fail,” in 2012
IEEE symposium on security and privacy. 1EEE, 2012, pp. 332-346.
X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg, “A
systematic approach to developing and evaluating website fingerprinting
defenses,” in Proceedings of the 2014 ACM SIGSAC conference on
computer and communications security, 2014, pp. 227-238.

OkHttp, “Okhttp webpage.” [Online]. Available: https://square.github.
io/okhttp/

X. Jiang, S. Liu, A. Gember-Jacobson, A. N. Bhagoji, P. Schmitt,
F. Bronzino, and N. Feamster, “Netdiffusion: Network data augmentation
through protocol-constrained traffic generation,” Proceedings of the
ACM on Measurement and Analysis of Computing Systems, vol. 8, no. 1,
pp. 1-32, 2024.

17

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

A. Chu, X. Jiang, S. Liu, A. Bhagoji, F. Bronzino, P. Schmitt, and
N. Feamster, “Netssm: Multi-flow and state-aware network trace gener-
ation using state-space models,” arXiv preprint arXiv:2503.22663, 2025.
J. Ren, D. J. Dubois, D. Choffnes, A. M. Mandalari, R. Kolcun, and
H. Haddadi, “Information Exposure for Consumer IoT Devices: A
Multidimensional, Network-Informed Measurement Approach,” in Proc.
of the Internet Measurement Conference (IMC), 2019.

N. Mashnoor and B. Charyyev, “Network traffic analysis of medical
devices,” in 2024 International Conference on Smart Applications,
Communications and Networking (SmartNets). 1EEE, 2024, pp. 1-6.

T. Van Ede, R. Bortolameotti, A. Continella, J. Ren, D. J. Dubois,
M. Lindorfer, D. Choffnes, M. Van Steen, and A. Peter, “Flowprint:
Semi-supervised mobile-app fingerprinting on encrypted network traf-
fic,” in Network and distributed system security symposium (NDSS),
vol. 27, 2020.

M. Jiang, Z. Li, P. Fu, W. Cai, M. Cui, G. Xiong, and G. Gou, “Accurate
mobile-app fingerprinting using flow-level relationship with graph neural
networks,” Computer Networks, vol. 217, p. 109309, 2022.

R. Li, H. Hu, and Q. Ye, “Rftrack: Stealthy location inference and
tracking attack on wi-fi devices,” IEEE Transactions on Information
Forensics and Security, vol. 19, pp. 5925-5939, 2024.

H. Zheng and H. Hu, “Missile: A system of mobile inertial sensor-
based sensitive indoor location eavesdropping,” IEEE Transactions on
Information Forensics and Security, vol. 15, pp. 3137-3151, 2019.

A. Abedi and D. Vasisht, “Non-cooperative wi-fi localization & its
privacy implications,” in Proceedings of the 28th Annual International
Conference On Mobile Computing And Networking, 2022, pp. 570-582.
Y. Zhu, Z. Xiao, Y. Chen, Z. Li, M. Liu, B. Y. Zhao, and H. Zheng,
“Et tu alexa? when commodity wifi devices turn into adversarial motion
sensors,” arXiv preprint arXiv:1810.10109, 2018.

C. H. Kong and H. Hu, “Automatic preamble extraction system for Ipwan
signals,” in International Conference on Smart Grid Inspired Future
Technologies. Springer, 2024, pp. 215-225.

Z. Chen, H. Hu, and J. Yu, “Privacy-preserving large-scale location
monitoring using bluetooth low energy,” in 2015 11th international
conference on mobile ad-hoc and sensor networks (MSN). 1EEE, 2015,
pp. 69-78.

H. Hu, Q. Chen, J. Xu, and B. Choi, “Assuring spatio-temporal integrity
on mobile devices with minimum location disclosure,” IEEE Transac-
tions on Mobile Computing, vol. 16, no. 11, pp. 3000-3013, 2017.

APPENDIX

A. Table of Devices and Events

The list of devices and events used in the experiments
is shown in Table VII. Events have a high traffic volume,
indicated by ”(H)”.

B. NP-hard Proof

To prove the NP-hardness of the problem, we reduce the
Maximum Cardinality Subset (MCS) problem to the FMLCS
with time constraints problem. The Maximum Cardinality
Subset problem is defined as follows. Giving a non negative

set,

S: {a'17a'27a'37"'7an}

the target is to find a subset S’ C S with the most elements
such that the sum of the elements in S’ does not exceed
threshold K. The Maximum Cardinality Subset problem has
already been proven to be NP-complete.

1D Device Type Device Related Events
El DND/UnDND
E2 (H) QI: What time is it?
E3 (H) . Q2: What’s the price of eggs?
E4 (H) Asentic Controller Alexa Echo Dot Q3: What’s the weather now?
ES (H) g Q4: What’s the weather like in X?
E6 Volume Up/Down
E7 (H) Volume Up
E8 (H) Google Home Volume Down
E9 . . On
B0 Wiz Hue Light OfF
EI1 TP-Link Plug On/Off
El2 Smart Peripherals ICX-RF A/C Controller On/Off
E13 Gosund Plug On/Off
El4 On
ETS WAH Plug OfF
El6 Mi S On/Off
E17 1 >weeper Mode Silent/Standard/Strong
E18 Midea Dishwasher On/Off
E19 Midea Dish Sterilizer On/Off
E20 . . - On/Off
E21 Xiaomi Humidifier Continuous humidification/Close
E22 Wi-Fi Sprinkler On/Off
E23 On
E24 » Off
E25 Integrated Smart Actuator TuYa Thermostat Temperature INC
E26 Temperature DEC
E27 On
E28 Off
E29 HW Thermostat Temperature INC/DEC
E30 Mode Comfort
E31 Mode Non-Frozen
E32 . Mute
B33 Ring Alarm Ring

TABLE VII: Event and the corresponding IDs. “H” indicates events with large traffic volume.

1) Reduction: We reduce the MCS problem to the FMLCS
problem. For the FMLCS problem, two sequences are con-

structed:
Seqy = [{time : /a1, size : 1,dir : 1},
{time : \/ag, size : 1,dir : 1},
{time : \/ag,size : 1,dir : 1},..., (1)
{time : \/ay, size : 1, dir : 1}],
a; €5
Seqs = [{time : 0, size : 1,dir : 1},
{time : 0, size : 1,dir : 1}, 2
{time : 0, size : 1,dir : 1}, ...,
{time : 0, size : 1,dir : 1}]

For each element a; € S, we construct a sequence Seq;
with each element using a; as the timestamp, and another
sequence Segs with all elements having time = 0. As the
elements in both Seq have the same size, the only constraint is
that the L2Norm distance between timestamps of the selected
subsequence should be lower than /K.

2) Equivalence: 1f there exists a subset S’ C S such that
the sum of the elements in S’ does not exceed threshold K,
then the FMLCS problem has a solution. The solution is to
select the elements in Seq; that correspond to the elements in

18

S’, and the L2Norm distance between the timestamps of the
selected elements is less than v K.

Y <K= Y (Va,—0) < (VK)?
a; €S’ a; €S’
Therefore, since MCS is NP-Complete, FMLCS has a poly-
nomial time solution only if P=NP.

3)

