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Abstract—As large language models increasingly memorize
web-scraped training content, they risk exposing copyrighted
or private information. Existing protections require compliance
from crawlers or model developers, fundamentally limiting their
effectiveness. We propose ExpShield, a proactive self-guard that
mitigates memorization while maintaining readability via invisible
perturbations, and we formulate it as a constrained optimization
problem. Due to the lack of an individual-level risk metric for
natural text, we first propose instance exploitation, a metric that
measures how much training on a specific text increases the
chance of guessing that text from a set of candidates—with
zero indicating perfect defense. Directly solving the problem is
infeasible for defenders without sufficient knowledge, thus we
develop two effective proxy solutions: single-level optimization
and synthetic perturbation. To enhance the defense, we reveal
and verify the memorization trigger hypothesis, which can help to
identify key tokens for memorization. Leveraging this insight, we
design targeted perturbations that (i) neutralize inherent trigger
tokens to reduce memorization and (ii) introduce artificial trigger
tokens to misdirect model memorization. Experiments validate
our defense across attacks, model scales, and tasks in language
and vision-to-language modeling. Even with privacy backdoor,
the Membership Inference Attack (MIA) AUC drops from 0.95 to
0.55 under the defense, and the instance exploitation approaches
zero. This suggests that compared to the ideal no-misuse scenario,
the risk of exposing a text instance remains nearly unchanged
despite its inclusion in the training data.

I. INTRODUCTION

Building datasets for large language models (LLMs) increas-
ingly depends on crawling and parsing publicly available web
content. For instance, OpenAl’s GPT-3 [1] was trained on
diverse sources including Wikipedia, Common Crawl, books,
and articles. However, public accessibility does not imply
unrestricted usage rights for Al training [2]], [3]. A critical
concern is that LLMs can memorize and reproduce verbatim
copyrighted or sensitive content [4]], undermining both model
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Fig. 1: Overview of web-text protection. Data owner O uses
ExpShield to transform original text into protected version be-
fore web release. Model trainer 7 crawls the protected content
for LM training. ExpShield mitigates verbatim memorization
and data leakage in trained LMs.

generalization and raising serious ethical and legal issues
regarding privacy [4], copyright [5], and context collapse [6].

Protecting content from unauthorized use faces two
fundamental challenges. First, preventing web crawling is
inherently difficult due to the open nature of the internet.
Sophisticated crawlers can circumvent standard protections
by ignoring robots.txt directives, mimicking human
browsing patterns, rotating IP addresses, and leveraging
distributed networks [7]. Second, existing defenses against
verbatim memorization require cooperation from third parties
who may not be incentivized to comply. Data-level protections
such as deduplication [8] and scrubbing [9]] depend on data
curators; training-level defenses like differentially private
(DP) training [10] and model alignment [[11] rely on model
developers; and inference-level controls such as output
filtering [[12] depend on model curators.

To address these limitations, we propose a self-guard
ExpShield that empowers data owners with direct control
at release time, as shown in Figure [I] This approach aims
to mitigate memorization risk preemptively when the data is
misused in LLM training. Unlike existing countermeasures, our
self-guard operates independently without requiring third-party



compliance. Moreover, instead of applying a one-size-fits-all
defense, it protects each individual text instance independently.

We formulate the individual-level protection as a constrained
bi-level optimization framework with two critical constraints
for practical deployment. The main objective is to find a
text perturbation that minimizes the adversary’s advantage
of inferring the protected text when the perturbed version has
been used for training. The readability constraint requires
that perturbations preserve semantic integrity and rendering
consistency for legitimate users—existing privacy-preserving
methods [[13]], [14], [15] that replace or delete content are
unsuitable as they fundamentally compromise text readability.
The budget constraint limits perturbation overhead and ensures
normal users’ experience.

Evaluating and solving the individual-level defense re-
quires a rigorous metric that explicitly quantifies the privacy
risk increase caused by model training on protected text
instances. However, enumerating all possible adversaries is
impractical, and existing metrics from privacy attacks [16]]
and memorization studies [17] operate at the dataset level
or assume uniform risk distributions, failing to account for
the inherent variation in memorization susceptibility across
natural language. To address this fundamental limitation, we
propose instance exploitation—a novel metric that isolates
sample-specific memorization from model generalization by
calibrating against an informed baseline that has access to all
training data except the target instance.

The bottleneck of solving the defense problem is the limited
capabilities of data owners, who typically lack access to
training algorithms, datasets, or target models, which makes
direct bi-level optimization intractable. Based on previous
success in reformulating bi-level problem to single-level [[18] or
optimization-free solution [19], we develop two practical proxy
solutions: single-level optimization that replaces the target
model with open-source proxy models, and optimization-free
solution that creates training shortcuts by injecting synthetic
perturbation in text.

To instantiate the two solutions effectively, we investigate
the fundamental mechanisms underlying memorization in
autoregressive language modeling. Our key insight is the mem-
orization trigger hypothesis: specific tokens disproportionately
drive the model to rely on memorization over generalization.
We identify memorization triggers as tokens with low prediction
confidence under an open-source pre-trained model. Intuitively,
the low confidence suggests that these tokens are unpredictable
given their usual context and stand out as anomalies. We verify
that such tokens often act as distinctive or rare patterns that
the model tends to memorize verbatim if used for training.

Leveraging this insight, we design targeted perturbations that
(i) neutralize inherent memorization triggers through strategic
placement of imperceptible elements, and (ii) introduce artificial
triggers as adversarial pitfalls that further misdirect the model’s
memorization on the protected text. To satisfy the readability
and budget constraints, we use invisible Unicode characters and
CSS styling to maintain perfect visual fidelity while maximizing
defensive efficacy within budget constraints. We demonstrate

our defense mechanism using a fictional webpage example{ﬂ
Contributions. Our contributions are summarized as follows:

1) We formalize individual text protection as constrained bi-
level optimization minimizing adversarial advantage while
preserving readability. Given data owners’ limited capabil-
ities, we develop two practical solutions: synthetic pertur-
bations and single-level optimization with proxy models.

2) We propose instance exploitation, a novel privacy metric that
quantifies the individual-level memorization risk by calibrat-
ing sample-specific exposure against an informed adversarial
baseline with access to all other training data, enabling
principled design and evaluation of instance-level defenses.

3) We propose the memorization trigger hypothesis: tokens
exhibiting low prediction confidence in general models
are the key drivers of memorization. This hypothesis is
subsequently validated across diverse language models.
Leveraging this insight, we design targeted perturbations
that neutralize inherent triggers while introducing artificial
triggers as adversarial pitfalls.

4) Evaluation across various language and vision-language
models (124M to 7B parameters) shows that ExpShield
significantly reduces the extraction success rate over 10°
attempts and MIA AUC to near-random (0.55) against
an informed attack with a privacy backdoor, achieving
near-zero instance exploitation with robustness against
detection and adaptive scenarios.

II. THREAT MODEL AND PRELIMINARIES
A. Threat Model

As shown in Figure [T we consider two main parties in the
web-text protection problem: the data owner O and trainer 7.
Owner/Defender O (Data Guarding): The content owner
controls the release of their textual data and seeks to mitigate
sample-specific memorization by any LLMs when the released
content is subsequently misused for unauthorized training. The
owner cannot foresee potential attacks and has no access to
training data or algorithms of potential target model. The
defense targets original content that has not been widely
replicated across external sources, ensuring the protection
focuses on genuinely unique material. Crucially, O does not
seek to enhance or degrade overall model performance through
the released content. This fundamental distinction separates
our work from existing unlearnable examples [18]], [20], [19],
which explicitly aim to impair the model’s test performance.
Trainer/Misuser 7 (Crawling and Training): This entity
systematically crawls web pages to construct training datasets
and optimize language model performance. As detailed in Ta-
ble [, we model 7 as a moderate actor that disregards standard
crawling protocols (e.g., ignoring robots.txt directives)
and trains models without implementing privacy-preserving
defenses [[10]], [8]]. Critically, 7 does not actively attempt to
bypass self-guard mechanisms or deliberately amplify data
leakage risks [211], [22]], [23], as such adversarial behavior
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TABLE I: Comparison of trainer assumptions and privacy impact with our defense: We target moderate trainers who prioritize
data usability without active bypass attempts, as aggressive trainers face prohibitive legal risks and implementation costs for
marginal benefits. (v': Yes, x: No; N/A: Depends on the bypassing level; Limited: Our defense is not specifically designed for

aggressive trainers, but shows robustness against active bypass in Section Color coding: , Negative)
Crawling Behavior and Cost w/ ExpShield .
. > - - Applicable?
Assumption for 7 Follow Active Cost | Data Usabilit Protection Risk
Protocol? Bypass? 0s ata Lsability Range Level
Conservative v X Low
Moderate (Our Focus) X X
Aggressive X v High N/A N/A Limited

would incur substantial computational and legal costs. This
assumption reflects practical reality, where data misuse typically
occurs through negligence rather than malicious intent [24]].
While not targeted in this paper, we also describe two other
possible T’s. A conservative T that adheres to all crawling
rules poses no data risk. However, the resulting reduction in
training data quantity and diversity compromises usability from
the trainer’s perspective. Conversely, an aggressive T actively
bypasses self-guards by detecting and filtering them. Yet,
perfectly stripping self-guards without damaging normal text
requires significant effort, and the heightened data leakage risk
for owners also exposes 7 to substantial legal consequences.

B. Background of Language Models

Model Training. Contemporary transformer-based language
models [25]], [26] employ autoregressive training in both pre-
training and fine-tuning phases. Text from each data owner
is tokenized into a sequence x = (x1,x2,...,x:) of length
t, with the dataset D = {x1,...,x,} comprising data from
n owners. The model’s objective is to predict the next token
Z¢41 given the preceding context (z1,xo,...,x;). Training
minimizes the negative log-likelihood objective over 1" tokens:

T
52—;;10gf0(30t|$<t)7 ()
where fy(x|x<;) denotes the conditional probability from
model 0’s softmax output, and x ., represents the prefix context.
Content Leakage Risk. In the inference phase, the trained
model generates a new text by iteratively sampling &; ~
fo(-|x<¢). However, previous works show that models can
memorize specific training data. For example, an adversary
can efficiently extract training data by querying the target LMs
without prior knowledge [24]], and the extraction rate increases
with more attack attempts [27)]. Additionally, membership
inference attack (MIA) [28]], [16] still stands as a widely
used auditing technique with a transparent random data split.
Beyond membership identification, MIA is closely related to
data extraction [4], [24]. Thus, we consider and evaluate data
leakage risk with both data extraction and MIA.

III. INDIVIDUAL TEXT PROTECTION

A. Problem Definition

Given the limited capabilities of the data owner (O as
introduced in Section [[I-A), the only viable self-guard to

mitigate future potential leakage through any model trained
on the web text is to embed perturbation in released webpage
source code. More specifically, O crafts the original web
text x; with a perturbation §; and releases the guarded text
X5, = 0; o x;. We formulate the construction of the guarded
text as a constrained optimization problem:

min  Adv(x;; 05, A) (2)
s.t. 05, €arg mein L(D\x, Uxs,;0), 3)
Multiset(x;) C Multiset(xs, ), 4
EditDist(x;,xs,)/|x:| < b, ®)

where 65 is the model trained on the released text xs,.

1) Main Objective for Defense: The main goal of individual
text protection in Equation (2) is to minimize the adversary’s
advantage Adv(-) on the protected text x; given the trained
model ¢ and the attack A. The attack .A can be membership
inference attack, data extraction or other variants of attacks.
And Adv(-) represents the normalized advantage in the success
rate of guessing the secret via attack 4 over a baseline guess.
For example, MIA advantage [28]] is defined as Adv(x;) =
2 Pr[lA)i = b;]—1 where b; is the real membership, b; is predicted
by Amia with a baseline success rate 1/2.

2) Constraint on Perturbation Operation: The constraint
in Equation (@) ensures that x5, maintains readability and
semantic accuracy for normal web browsers by preserving all
text of the original x;. Specifically, §; must be an invisible
augmentation instead of deleting or replacing characters in x;.

3) Constraint on Perturbation Length: Equation (3) intro-
duces a length constraint that bounds the ratio between the edit
distance and the original text length |x;| by the perturbation
budget b. This constraint limits rendering overhead for normal
users.

Our problem formulation for individual text protection
differs from previous works. While unlearnable examples [20],
[18], [19] use similar bi-level optimization to degrade test
performance for image tasks, we target training data leakage
reduction for language models and do not seek to degrade test
performance. Another work [15] extends bi-level minimiza-
tion [20] for text protection but distorts original text through
replacement-based perturbations. In contrast, we preserve
readability via Equation (), which is more challenging but
necessary for web content.



TABLE II: Individual privacy metrics/scores comparison.

Metrics/Scores Iiitj;%e Standardized? - Calibrated? ii?;l:lrcig?
MIA-Loss [28] ‘ v y N v
MIA-LiRA [16] v X v v
Canary Exposure [17] | v/ v X X
Instance Exploitation | v/ v v v

B. Evaluating the Individual-Level Defense

Given the defined problem, we need an effective individual-
level metric to evaluate how well a solution ¢; reduces the
risk of the protected x; as formulated in Equation (Z). Thus,
dataset-level metrics such as success rate or TPR [16] for
MIA or extractable rate [4] for data extraction are inapplicable.
Besides, it should be: a) standardized to generally compare
risks among different architectures; b) calibrated to accurately
capture the risk improvement caused by model training; and
c) efficient to compute for large language models.

1) Standardizing Individual Risk via Log-Rank: Evaluating
Equation (2) by considering all attacks is impractical, thus
we need a proxy metric for various 4. Log-perplexity is a
natural choice [17] as it represents negative log-likelihood of
generating x given 6. A small value indicates high extraction
probability and easier MIA identification of x. For equal-
length text, loss (defined in Equation (1)) and log-perplexity
differ only by the factor the sequence length, so we use them
interchangeably. Since loss is not standardized across models,
we use exposure [17] to standardize £(x; ) by ranking against
candidate losses from the same distribution, as in Definition

Definition 1 (Exposure [17]). Given the target model 0, let
ranky(x) = |[{x’ € D : L(x/;0) < L(x;0)}| represent the
rank of L(x;0) among losses of all samples in the domain D.
The exposure Eg(x) is defined as

Ey(x) := In|D| — Inranky(x) (6)
B ranky(x)
= —InPryep [Lo(x') < Ly(x)]. 3)

Essentially, Definition [T] quantifies the advantage of a model-
informed adversary over a baseline adversary in a guessing
game. The baseline attack AL assumes uniform distribution
over all candidates in D and requires on average |D|/2
guesses to find x. In contrast, the model-informed attack Ajarger
leverages 6 to prioritize candidates with lowest loss, requiring
only ranky(x) guesses on average. The exposure measures
how much the knowledge of 6 reduces the expected effort
required for guessing a target secret x € D.

2) Calibration with Informed Adversary: The exposure
metric was originally designed for fixed-template random
canaries, which follow uniform distribution. However, text
has a non-uniform distribution, making the uniform baseline
AWl weak and leading to overestimated privacy risks. For
example, commonly occurring text (e.g., phrases partially seen
during pre-training) will artificially inflate privacy risk scores.

Algorithm 1 PRIVACY GAME FOR INFORMED INFERENCE
1: procedure INFORMED-INFERENCE(T , D\,, D, x)

2 Z + ExpShield (x) if self-guard; else X + x

3: 0 < T(D\x U{X}) / Trainer trains target model
4: O\x < T(D\x) / A,’Z:i”l, trains reference model
5

6
7

Aiifee, sorts descending x; € D with Ex(x;; 6, 0\)
X A{erget(D\x, T, D) // Guess from top candidates

return Afo, wins if X = x; otherwise fails

To address this limitation, we propose a much stronger,
informed baseline A" inspired by the worst-case assumptions
in differential privacy [29]. This baseline adversary knows
all other training data except x and can train a reference
model 6\, < T (D\x) using the same training procedure 7.
Since 6\ and ¢ share identical training procedures (including
initialization), they exhibit similar loss distributions. Thus,
one optimal strategy for the informed baseline is prioritizing
candidates with the lowest loss according to 6\,. We define
instance exploitation by calibrating the target model’s exposure
against this informed baseline, as shown in Definition @

Definition 2 (Instance Exploitation). Given two datasets D
and D\ and models trained by ‘T over the two datasets 0
and O\, the instance exploitation Ex is defined as

Ex(x; D, T) := Ep(x) — Ep,, (%)

N Pryep [ﬁe\x (x') < Lo, (x)] (10)
Pryep [Lo(x) < Lo(x)]

Essentially, Definition [2] measures the guessing advantage:

it quantifies how much easier it becomes to identify x
when the model is trained on it, compared to an informed
baseline that knows all other training data. Mathematically,
this corresponds to the ratio ranky, , (x)/ranky(x) between
the expected number of guesses required by A and Agyger-
A higher instance exploitation value indicates greater ad-
versarial advantage from training on x. We define a perfect
defense as achieving zero or negative instance exploitation, as

formalized in Property [T}

©))

Property 1 (Perfect Defense). A defense mechanism is perfect
with respect to a training algorithm T and domain D if, for
any instance X, the following holds:

Ex(x;D,T) <0 or, equivalently Egy(x) < Eqg,(x).

Informed Attacks and Reducibility. The informed adversary
assumptions in our instance exploitation metric naturally lead
to stronger attack strategies. By leveraging the same knowledge
(access to D\ and 7, an adversary can construct an enhanced
attack Ajpfe, that prioritizes guessing on candidates with top
instance exploitation scores rather than raw loss rankings, as
formalized in Algorithm

This provides theoretical justification for our metric through
privacy game reducibility [30], [31]. When privacy game G is
reducible to G5 (i.e., G is at most as hard as G2), any defense
effective against (G; also protects against GG. Our exploitation
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Fig. 2: Approximation on instance exploitation for efficient
estimation. We take the pre-trained GPT-2 as 0. and fine-tune
it with Patient dataset D\, which excludes the evaluated sample
x for obtaining ¢\ . The modeled skew-normal distribution
matches the sampled log-perplexity perfectly because the
Kolmogorov-Smirnov goodness-of-fit test [32] fails to reject
the null hypothesis with p > 0.1.

metric captures the advantage of a highly informed adversary
Aigfget, which is similar to informed MIA attacks reducible to
data extraction and standard MIAs. Thus, defenses that reduce
exploitation scores provide protection against a broad spectrum
of weaker attacks. This is particularly relevant in practice,
as real-world adversaries rarely access the complete training
dataset D\, and exact training procedure 7 assumed by the
adversary in our metric.

Connection to DP. If a model is trained with differential
privacy (DP), by the data-processing inequality, the instance
exploitation of each training sample is bounded by its DP
budget as shown in Lemma [I| The transition from DP to
instance exploitation is one-directional because Definition [2]
is an evaluation metric rather than an algorithm that provides
theoretical DP guarantee.

Lemma 1. If T performs (e,8)-DP training, the instance
exploitation for any sample x in any D satisfies Ex(x; D, T) <
€ with a failure probability of 9.

3) Approximation for Efficient Estimation: Now we discuss
how to efficiently compute the proposed metric Definition [2]

Computing the exposure Ey(x) exactly requires computing
losses for all samples in the domain D, which is inefficient
when |D| is very large. Given auxiliary data D,,x € D not
trained on 0, the loss distribution can be modeled as a skew-
normal distribution [17] with mean u, standard deviation o,
and skew a. The exposure can then be efficiently estimated as:

R Lo (x)
Ey(x) =~ Eg(x) = —ln/ p(x)dz, (11)
0

where p(z) is the continuous density function.
Additionally, computing exploitation requires training ¢\ x

for each target secret x, which is inefficient for large models.
For protection set Dy, C D, we approximate 6\, by training

TABLE III: Summary of Proxy Solutions.

Main Objective Constraint Requirement Defender’s Capability
min Adv(x; 05,.A) | Eq.(2)-(5) D\, T, A X
min Ex(x) Eq.(2)-(5) D\, T, Daux X
max ,ng (x) Eq.(2)-(5) D\, T X
max Lo, (xs) Eq.(3)-5) Bproxy V' (Our TP-OP)
Optimization-free Eq.(3)-(5) | N/A; Oproxy is optional | v'(Synthetic perturbation)

on the remaining unprotected data:
Ex(x;D,T) ~ Ex(x; D, T) = Eg(x) — Eo, . (x). (12)

When all secrets in D are protected, this equals using the
initial model 0 in place of 6\,. As shown in Figure |2}
Eq,. (x) closely approximates the exact calibration Ey,, (x
with minimal fluctuation from training randomness and cross-
sample influence [33]. The approximation accuracy improves
with smaller protection ratios |Dypy|/|D| due to reduced inter-
instance influence.

C. Challenges and Proxy Solution Overview

We now discuss how to solve the defined problem as the
defender O. Ideally, O should optimize the bi-level problem
in Equation for each possible adversary A, which is
impractical. Similarly, due to lack of capability, other alternative
proxy objectives are hard to solve as summarized in Table

Given the key bottleneck of lacking access to 7 and D\,
we propose two practical alternatives:

a) Single-Level Optimization: While 5 in Equation (3) is
unpredictable, it operates on natural text and shares foun-
dational knowledge with existing open-source models. We
replace ¢5 with an accessible proxy 6@poxy and optimize
max Ly, (X5) given the absence of A or D,y The intuition
is that the perturbations with a high loss on the proxy model
are likely to be abnormal patterns against general text and thus
can encourage the target model to fit the shortcut. When a
perturbation maximizes the loss on a proxy model, it is likely
to mislead the target model. This single-level approach follows
successful precedent in adversarial examples, where bypassing
bi-level optimization produces effective poisons [18].

b) Synthetic Perturbation: Discrete optimization over vo-
cabulary incurs substantial computational costs, particularly
for long sequences xs and large models Oproxy. We propose
a lightweight alternative using synthetic perturbations that
naturally create training shortcuts, encouraging the model
to fit 6 rather than memorize x. This approach builds on
recent work demonstrating that synthetic patches can effectively
replace bi-level optimized perturbations [19]. While lacking
explicit optimization objectives, we verify in Section
that synthetic perturbations implicitly encourage max Lo: (x).

We primarily employ synthetic perturbations for their effi-
ciency and effectiveness, reserving single-level optimization
(TP-OP) for scenarios with constrained perturbation budgets.

IV. SELF-GUARD AGAINST EXPLOITATION
A. Invisibility Strategies

For Equation @I), we consider two strategies to hide
perturbation in web page rendering: 1) invisible style, including



TABLE IV: Summary of ExpShield variants. OOV is out-of-
vocabulary; pitfall means artificially created outlier tokens.

Methods Perturb Location Filling Strategy Invisibility

UDP (§ [IV-BI Deterministic Uniform Style

UNP (§ [IV-B1 Non-Deterministic Uniform Style
Mem. Trigger Uniform Style
Mem. Trigger Outlier pitfall Style
Mem. Trigger Optimized pitfall Style
Mem. Trigger OOV pitfall Character

adjusting CSS properties like font size or absolute position for
inserting random text; 2) invisible charactezﬂ including zero-
width and invisible whitespace characters [34]. Both invisible
characters and styles have been leveraged in attacks [34], [33]],
while we use for defense purposes. We elaborate details with
a simplified demonstration in Appendix [C]
Robustness against Normal Pre-processing. Crawled content
includes visible text, HTML tags, and formatting markers.
Standard parsing tools like Beautiful Soup [36] decode entities
and strip markup while preserving hidden DOM elements. We
provide a demo [37] showing that ExpShield successfully
embeds tokens that remain intact in text extracted by four
popular web-scraping tools without changing page appearance.

Our defense is robust against other normal pre-processing
by its design. For example, we avoid repeated patterns, so
deduplication [38] poses no threat. And quality filtering [1]]
may trigger removal on the whole sentence, which enhances
protection by preventing training entirely.
Robustness of Active Bypass. An adversarial 7 may attempt
to bypass ExpShield by perfectly stripping self-guards while
preserving original content. Assuming constant-time O(1)
verification per token, the time complexity is O(T), and the
tokenized sequence length 7" of all concatenated text can reach
hundreds of billions [1]]. Stripping invisible styles incurs larger
constant overhead as they permit arbitrary vocabulary inser-
tions, requiring additional operations to recover tokenization
boundaries. While removing invisible characters (e.g., zero-
width spaces) has less verification overhead, it maintains O(T')
complexity. A thorough character stripping is possible but it
may degrade model robustness [39], [40].

Advanced bypass strategies involve embedding or perplexity
analyses before manual perturbation removal. We demonstrate
robustness against such detection-based attacks in Section

B. A Basic Random Perturbation for Defense

1) Uniform Random Augmentation: We start with a straw-
man perturbation with uniformly random tokens. Let x =
{z1, 9, -+ ,2¢} denote the tokenized sequence with length
of ¢, we randomly sample m augmented random noise tokens
as § = {01,082, -+ ,0,} € V™ from a typical vocabulary set
V. And m = |b*t] is limited by the perturbation budget b.
We split random tokens into K pieces and insert them into K
slots within the original x, where K <t — 1. We create two
versions with different inserting positions:

Zhttps://invisible-characters.com
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Fig. 3: (Left) Difference between embedding gradients of UDP
and baseline without perturbation, with x-axis as the embedding
dimension and y-axis as the protected token’s sequence. (Right)
Loss comparison between protected text (mem-samples) and
non-member samples compared to the No-Guard (NG).

o Uniform and Deterministic Perturbation (UDP): The token
sequence is split into K equal-length blocks, with m random
tokens inserted evenly.

o Uniform and Non-deterministic Perturbation (UNP): K
slots are randomly chosen and filled with m random tokens,
which is a nondeterministic insertion.

2) Verifying the Implicit Objective of Perturbation: Though
the synthetic perturbation such as UDP and UNP does not
optimize towards an explicit objective, we now demonstrate it
essentially encourages the implicit objective of max Loz (x).

In Figure 3] (Left) with UNP as an example, the gradient of
protected tokens’ embeddings change drastically compared
to the case without perturbation (NG) across embedding
indices (horizontal lines) and dimensions (vertical lines), which
directly influences model update and results in Figure [3| (Right).
With moderate perturbation (b = 1), the influence on testing
performance is trivial and the implicit target Lo (x) increases,
indicating that the target model is less likely to generate x.

According to the analysis in Table a larger loss on the
target model Lo- (x) is expected to lower the general risk
proxy of exploitation Ex(x) as well as Adv(x;0},.4). We
will demonstrate both degradations in Section

C. Memorization Trigger Hypothesis

To enhance defense efficacy, we first investigate how
language models (LMs) memorize specific texts. Unlike gener-
alization, memorization occurs when a model captures sample-
specific patterns rather than generalizable features. From
Equation (T), we observe that rare or challenging tokens—those
with higher initial loss values—leave a stronger imprint on
the trained model compared to others. This suggests that the
model prioritizes memorizing these tokens over other easy
tokens during training. Thus, we hypothesize that:

The model’s memorization of input x primarily stems from
its retention of hard-to-predict tokens in x—which we term
memorization triggers.
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Fig. 4: Memorization trigger hypothesis: tokens with higher
loss on a proxy model are memorization triggers that enhance
the sample-specific memorization.

Transferable Identification. We define hard-to-predict tokens
as tokens assigned low probability by a general-domain
pretrained model in their respective contexts. In implementation,
we leverage an open-source pre-trained model as a proxy Gproxy
and select tokens whose prediction probability f  (2¢|z<¢)
belong to the K lowest-probability tokens in the sequence
as a set S (x). Figure 4a| reveals that models across scales
and families have a consistent identification on memorization
triggers identification, indicating an architectural independence
between proxy and target models, which is a key advantage
for data owners acting as defenders.

Attack-defense Duality. Then, we verify the existence of
memorization triggers from both attack and defense perspec-
tives with K/|x| = 0.4. From the attack perspective, recent
improvement on attack sheds similar light on the memorization
trigger. As shown in Figure bl MinK [41]] outperforms loss-
based MIA by only aggregating losses over low confidence
tokens in the given sequence, implying that attackers rely on
the improvement of the model’s prediction capability on outlier
tokens. From the defense perspective, when memorization
triggers are removed from the training data (as shown in
Figure b)), the MIA AUC drops to near random-guess level
(= 0.56). However, removing random tokens with identical
ratio (K /|x| = 0.4) still maintains AUC 0.68, demonstrating
the important role of memorization triggers in defense.

In summary, the memorization trigger hypothesis reveals the
key mechanism for mitigating sample-specific memorization. In
addition to being immediately applicable to proactive defense,
this approach may also extend to later phases including pre-
processing and training.

D. Targeting on Memorization Triggers

Based on above hypothesis, a natural idea to enhance self-
guard is to focus on perturbing identified memorization tokens.

1) Targeted Perturbation: A simple extension is to insert
random tokens right before the identified trigger tokens.

« Targeted Perturbation (TP): Instead of randomly sampling
K slots for inserting perturbation, we first identify Top-K
tokens in x with minimum prediction probabilities by a proxy
model via fg, . (7¢|r<¢). Then, we insert uniform tokens as
in UNP to fill slots before each of K trigger tokens.

2) Outlier Tokens as Pitfalls: Furthermore, instead of inter-
fering model learning on the naturally existed memorization
triggers Sk (x) as in TP, we propose to create artificial
memorization triggers to take the place of the original S (x) as
pitfalls. By redirecting the model’s optimization efforts toward
these pitfall tokens, it mitigates model’s memorization on the
original Sk (x). Hence, we propose:

o Targeted Perturbation with Pitfalls (TP-P): After identify-
ing memorization triggers Sk (x), we feed preceding tokens
before each slot at position ¢ to the proxy model 6oy, and
select the token arg min,ey fo,,,, (v|2<¢) as pitfall token to
fill the slot iteratively until spending all budget b.

3) Optimized Pitfalls: From previous methods, we notice
that the usage of the proxy model is insufficient, because the
perturbation is sampled or generated. Besides, instead of only
considering the prefix of current token, we can also consider
its context in the following variant.

o Targeted Perturbation with Optimized Pitfalls (TP-OP):
We first identify &' memorization triggers via the Gpoxy. Then
we optimize tokens to fill the position set Z as follows.
Considering limited capabilities of defenders on training

data and training algorithms as summarized in Table [III]

we reformulate the bi-level optimization as single-level

optimization by substituting the target model with the proxy
model oy, trained on general text. By optimizing J towards

a maximized loss given Oproxy, it creates a pitfall for the target

model to fit during training. While on the contrary, a minimized

loss can also help because the whole perturbed text is ignored
by target model given the shortcut. The two intuitions

correspond to max and min cases in previous work [18]].
We employ Greedy Coordinate Gradient (GCG) [42] to

optimize candidate tokens via the following objective, detailed

in Algorithm

Inéin Lp = m(sin[ﬂlEiEI‘C(Xé [ZL X5 [< 7’}7 eproxy)

+ 52]Ei61£(x5[7; + 1}; X6[< v+ 1]; 9proxy)]7 (13)

where coefficients 31,82 € {1,—1} represent error-

minimization or error-maximization strategies. By default, we

use error-maximization with coefficient -1.

4) Out-of-Vocabulary (OOV) Tokens as Pitfalls: Previous
methods perturb between tokens, leaving characters within
original memorization triggers connected. We propose an
enhanced perturbation by breaking common tokens into
out-of-vocabulary tokens that are harder to predict. For
example, inserting an invisible zero-width space in the word
‘language’ as ‘lang\u200Buage’ completely transforms the
original token sequence from [16129] to [17204, 9525, 84,
496] when using the GPT-2 tokenizer. Given the set of all
invisible characters C, we propose:

o OOV-based Targeted Perturbation (TP-OOV), which first
identifies memorization triggers as in Section [[V-D] then
randomly splits characters of each trigger token with a
randomly sampled invisible character ¢ € C' within budget b.

Additionally, we can combine this with Algorithm [2] by

replacing the candidate set A; in Line 3 with set C, denoting



Algorithm 2 TP-OP: Optimizing Pitfalls with GCG

Require: Iterations 7, batch size B, number of token candi-
dates k, position index set before K memorization triggers
7, token vocabulary V), batch size B
Ensure: Optimized pitfall tokens {zs;}icz
Randomly initialize inserted token embeddings {zs;}icz
1: for j € [r] do
2: for i € Z do // Compute Top-k promising candidates
given the gradient of token embedding e,, where i € |V

3 X; = Top-k(—=V,, Lr(xs))

4: for b=1,...,B do // Create a batch for searching
5: T :), 1= T1.m // Initialize with current n tokens
6: igbgnzz Uniform(X;), where ¢ = Uniform(Z)

7: Tim 1= :igb;z, where b* = arg min, ,Cp(i"gl:jzn)

this as TP-OOV++. In practice, invisible characters should
be filtered from both inputs and outputs in inference APIs for
safety [’} which actually favors our defense since the artificial
memorization triggers of OOV tokens will never be triggered
during inference.

V. EXPERIMENTS
A. Experimental Setup

Tasks and Datasets. We conduct comprehensive evaluation on
general language modeling and vision-to-language modeling
(VLM) tasks. We include representative data sources requiring
protection but potentially disclosed in web content: 1) En-
ron [43] with personal information (emails, names, medical
records), 2) Patient [44] with domain knowledge (healthcare),
3) CC-News [45] with copyrighted work (news articles), and
4) TAPR-TC-12 [46] with natural images and descriptions for
VLM tasks. Dataset details are in Appendix

For risk evaluation, we split the dataset at a ratio 1:4:4:1,
with D for training the target model, D,,x for reference model
or privacy backdoor, Dy, as non-members, and D for testing.
We split D by marking a fraction r € (0, 1] as protected (Dpro)
and the rest as unprotected (Dyy).
Models and Training Configuration. We evaluate on open-
source models due to our requirement for per-sample losses and
token-level probabilities—information unavailable through com-
mercial APIs. We use GPT-2 as the proxy model for all tasks,
showing architecture independence. We evaluate on models
of different scales: GPT-2-124M [47]], OPT-125M/350M [48]],
Llama2-7B [49] for LM, and BLIP-2-ViT (3.8B) for VLM.
The VLM model processes image inputs and autoregressively
generates text conditioned on preceding inputs.
Evaluation Configuration. For individual-level risk evaluation,
we use the exploitation metric defined in Definition [2] and we
approximate 6\, with 6\ p_ as in Equation (12).

For dataset-level risk evaluation, we cover practical attacks
including data extraction and membership inference attacks

3https://www.promptfoo.dev/docs/red-team/plugins/ascii-smuggling/

(MIA). For MIA, we evaluate using state-of-the-art threshold-
based black-box MIAs with signals: 1) Loss [28] (model’s
loss on target samples), 2) Loss-Ref [4] (loss calibrated
against reference model), 3) MinK [41] (K% tokens with
lowest likelihood scores), and 4) Zlib [4] (loss normalized by
compression size). We use ‘user-level’ (each sample belongs
to one user) and ‘sample-level’ (documents chunked to full
window size) evaluation, with the sample index as the user
ID, except for Enron, which has explicit user IDs. For data
extraction, we follow the recent work [27] to evaluate success
of extracting T-length sub-sequences in Dy, over N trials.
For the worst-case risk evaluation, we follow recent works
and assume a malicious and powerful model trainer who
can manipulate a significant portion of D\, to insert privacy
backdoor [22]], [23] with details in Appendix [D]
Evaluation Metrics. Following previous work [16]], we mea-
sure MIA risk with AUCJ, true positive rate at low false positive
rate (TPR@1% FPR]) and ROC curves. We report bootstrapped
metrics [S0] for stability. At the individual-level, we report
approximated exploitation Ex(x) J for each sample. Lower
values indicate lower privacy risk. For utility cost, we report
perplexity (PPLJ) on held-out test data, reflecting the implicit
cost to model trainers since data owners are not obligated to
maintain high performance.
Baselines. Supposing the model trainer is neutral and not
motivated to perform training-phase defense, we compare
ExpShield with the baseline of No Protection (NP) where
users release their text contents without any protection. To
fully investigate each proposed strategy, we evaluate all our
variants in Table with moderate perturbation budget b.

B. Effectiveness Evaluation

Effectiveness against MIAs. As shown in Table [V| we
compare MIA risks across different tasks and datasets. The
gap between NP and our variants demonstrates overall defense
effectiveness under identical training and attack pipelines for
Dyy. Sample-level evaluation exhibits higher MIA metrics
than user-level evaluation due to longer chunk lengths [51]].
We intentionally train models with slight overfitting—large
models with billions of parameters (Llama2-7B and BLIP2-
ViT-3.8B) achieve an AUC of ~ 1 for NP, representing the
worst-case scenario for defenders.

Comparing UDP and UNP results confirms that non-
deterministic perturbation outperforms the deterministic variant,
as models can learn to ignore deterministic patterns.

We observe consistent TP improvements over UNP across
different architectures, including Enron results where proxy
and target models differ, confirming the model transferability
demonstrated in Figure [a of Section Notably, transfer-
ability performs better for memorization identification than
pitfall creation—TP-P shows slightly higher risk than TP
for Enron. When proxy and target models share identical
architectures (Patient dataset), replacing random tokens in TP
with outlier pitfalls in TP-P yields only marginal improvements.

With perturbation budget b = 0.4, TP-OOV achieves superior
defense effectiveness among all variants, primarily due to


https://www.promptfoo.dev/docs/red-team/plugins/ascii-smuggling/

TABLE V: Membership inference evaluation with maximum metrics reported for across Loss-Ref, Loss, Min-K, Zlib due to
space limit, leaving full results in Appendix. TPR is calculated at 1%FPR. BD indicates that the pre-trained model is backdoored
to maximize the privacy risk of training data, i.e., BD represents the worst privacy leakage case.

MIA Level Method Patient Enron Patient CC-News Patient IAPR-TC-12
GPT-2 OPT-350M GPT-2 w/ BD OPT-125M w/ BD Llama2-7B BLIP2-ViT-3.8B
\ \ AUC TPR AUC TPR AUC TPR AUC TPR AUC TPR AUC TPR
NP 0.888 0.364 0.997 0.983 0.953 0.545 0.998 0.982 0.986 0.726 1.000 0.980
UDP (b=0.4) 0.771 0.242 0.994 0.950 0.831 0.182 0.997 0.970 0.861 0.260 0.984 0.510
UNP (b=0.4) 0.695 0.182 0.986 0.735 0.766 0.152 0.983 0.467 0.852 0.164 0.984 0.560
Sample TP (b=0.4) 0.686 0.182 0.979 0.621 0.765 0.182 0.978 0.580 0.856 0.219 0.509 0.010
TP-P (b=0.4) 0.682 0.212 0.989 0.837 0.772 0.182 0.991 0.746 0.793 0.123 0.550 0.000
TP-OOV (b=0.4) | 0.594 0.091 0.892 0.254 0.587 0.091 0.890 0.083 0.753 0.082 0.551 0.000
TP-OOV (b=1) 0.590 0.060 0.684 0.119 0.550 0.076 0.621 0.053 0.630 0.055 0.519 0.010
NP 0.676 0.047 0.987 0.585 0.741 0.047 0.966 0.035 0.936 0.452 0.974 0.377
UDP (b=0.4) 0.617 0.039 0.968 0.439 0.649 0.047 0.948 0.035 0.749 0.096 0.901 0.057
UNP (b=0.4) 0.598 0.039 0.933 0.269 0.622 0.039 0.912 0.032 0.740 0.082 0.907 0.140
User TP (b=0.4) 0.584 0.039 0.921 0.219 0.618 0.039 0.918 0.035 0.746 0.082 0.511 0.003
TP-P (b=0.4) 0.588 0.039 0.951 0.282 0.619 0.039 0.923 0.035 0.667 0.068 0.541 0.007
TP-OOV (b=0.4) | 0.539 0.039 0.777 0.123 0.542 0.039 0.783 0.035 0.682 0.082 0.535 0.003
TP-OOV (b=1) 0.567 0.031 0.640 0.090 0.567 0.031 0.605 0.035 0.545 0.041 0.523 0.003

memorization trigger identification and out-of-vocabulary sub-
tokens. On GPT2 and BLIP2, TP-OOV with sufficient budget
b = 1 approaches random performance, indicating that GPT-2
tokenizer-generated OOV pitfalls generalize across different
target models. This effectiveness stems from shared lexical
knowledge across language models, and tokens that are out-of-
vocabulary in one LM typically remain so in others.
Effectiveness against Data Extraction. In Figure [5 we
evaluate discoverable data extraction [27] risk using TP-OOV
against unprotected baseline NP. We model realistic adversaries
performing N = 10° extraction attempts on subsequences of
length T' € {10,20} using Top-k decoding (k = 10), which
sets a loose upper bound on the adversary’s access capability.
The extraction probability quantifies the likelihood that the
target model generates the protected subsequence within NV
attempts. The extraction advantage measures how much more
information the target model provides compared to a GPT-2
proxy model about protected subsequences.

Results in the top row demonstrate that TP-OOV consistently
reduces extraction advantage across all N, T', and protection
ratios r. When advantage approaches zero as the case for
r = 0.8, N < 100, the target model provides no more
information than the proxy model. Defense effectiveness is
particularly strong for shorter sequences (1" = 10) and scales
with protection coverage—larger r values yield greater risk
reduction due to reduced overlap with unprotected content.
In the bottom figures, analyzing the Top-1% most vulnerable
subsequences confirms a statistically risk degradation.
Effectiveness under Privacy Backdoor. Furthermore, as an
empirical defense, it is necessary to evaluate it under the current
most powerful privacy attacks. Therefore, we apply the recent
privacy backdoor [22], [23] to amplify the privacy risk of fine-
tuning training data by assuming that the pre-trained model
is released and crafted by the privacy attacker. Specifically,
we warm up the pre-trained backbone on D, for 2 more
epochs before fine-tuning, which pushes the model to enter the
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Fig. 5: Discoverable Data Extraction Evaluation.

memorization-only stage earlier than using a benign pre-trained
model and to memorize more unique details of its training
samples. Additionally, we use the warmed-up pre-trained model
as the reference model in Loss-Ref MIA.

As shown in Table [V] comparing the privacy risk of Patient
dataset with the same attack and training setting, the privacy risk
is indeed amplified. Similarly, for CC-News dataset on OPT-
125M model, the AUC and TPR approach 1 for Loss-Ref and
MinK, indicating that the attack is near perfect. Nonetheless,
by applying TP-OOV with b = 1, ExpShield reduces the
maximum TPR at 1% FPR across MIA signals from 0.982
to 0.053. In general, the MIA evaluation demonstrates that
ExpShield successfully offers protection to the data owner by
reducing the overall privacy risk of Dy, even when the MIA
is near perfect.

Instance-Level Risk Evaluation. Beyond the averaged risk
over Dy, we evaluate individual-level risk for vulnerable
instances using the proposed instance exploitation defined in
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Fig. 7: Effectiveness of optimization-based method on most
vulnerable instances given a small portion of defender r» = 0.01
and small portion of perturbation budget.

Definition 2} As shown in Figure [6a] we compare the instance
exploitation for each sample (corresponding to each point) in
Dy as a function of the sample x’s instance exposure Fg\x(x)
obtained from a model not trained on it.

We first identify a general pattern in the unprotected baseline
(NP) across different datasets and models: The sample that
is originally more exposed than other samples (with a higher
Eg\x(x)) typically has a higher instance exploitation after
the model is trained on the sample. In other words, naturally
vulnerable instances are prone to being more exposed in future
training, which aligns with our memorization trigger hypothesis.
And the reason is that the training objective is designed to
focus on samples with higher loss. CC-News and Enron exhibit
analogous trends (Appendix Figure [T3).

As two representative methods without a proxy model (UNP)
and with proxy model (TP-OOV), we observe that the instance
exposure even for the naturally exposed samples is significantly
reduced. Furthermore, by leveraging the proxy model to identify
memorization triggers and creating pitfalls in TP-OOV, all pro-
tected instances have instance exploitation below 0.5, meaning
that ExpShield prevents the protected instance from being
exploited beyond the general knowledge in training distribution.
Extending to Vision-Language Modeling. In Table [V] we can
observe that perturbing memorization triggers (TP) significantly
reduces the privacy risk from perfect attack to near random
guess with AUC around 0.509. In Figure [6b] we observe a
similar trend as in LM that more vulnerable samples which
have a higher reference instance exposure tend to have higher
instance exploitation for NP. Even for those vulnerable samples,
the instance exploitation of each text sample approaches zero
with a small budget b = 0.2 for TP-OOV, indicating a perfect
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Fig. 8: Disturbing strategy evaluation on deterministic pertur-
bation (UDP) and non-deterministic perturbation (UNP).

individual defense for VLM. Due to the space limit, we present
the details and additional results in Appendix [H]
Effectiveness of Optimization. We now evaluate the effective-
ness of optimization-based method with variant TP-OP and the
extended version TP-OOV++ for TP-OOV by integrating it with
the optimization based method as discussed in Section
We note that optimizing for one sentence is affordable, but it is
time-consuming to perform the optimization over every instance
in Dyy,. Since we have shown that instances having a naturally
high exposure are more prone to having high exploitation, we
focus on the most vulnerable data points when we evaluate the
optimization-based extension. Thus, we first select a portion
r = 0.1 as Dy, and use the rest of the unprotected samples to
train a reference model ¢\ . Then we calculate Exq\ (x) for
every x € Dy, and only keep the vulnerable subset with the
Top-20 highest exposure instances in Dy, for perturbation.
After training on Dy, N Dy, we can obtain the instance
exploitation as shown in Figure [}

We can observe that optimizing over inserted tokens (TP-OP)
has similar effectiveness to breaking up the top memorization
triggers (TP-OOV). In addition, extending TP-OOV by search-
ing for an OOV that has a maximized loss via [3; -1
further reduces the instance exploitation for the highest-
exposed instance. We leave similar results under different b in

Appendix [E]

C. Hyper-Parameter and Ablation Analysis

We conduct detailed hyperparameters and ablation analysis
to understand the rationale of different variants of ExpShield.
Influence of Disturbing Pattern. We show that the variant
of non-deterministic perturbation (UNP) is superior to deter-
ministic perturbation (UDP) as shown in Figure [8] especially
when b is larger, because the model can learn how to ignore
the perturbation when there is a deterministic pattern.
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TABLE VI: Hyper-parameter analysis for TP-OP. Optimal
metrics are bold and underlines indicate improvement over
random perturbation in UNP.

Method Sample-level User-level
Max-AUC Max-TPR@1% ‘ Max-AUC Max-TPR@1%

NP | 0.888 0.364 | 0676 0.047

UNP ‘ 0.881 0.364 ‘ 0.674 0.039
B1=1,2=0 0.837 0.303 0.646 0.039
B1=0,B2=1 0.782 0.242 0.619 0.070
B1=1,B2=1 0.788 0.242 0.624 0.070
1=-1,82=1 0.784 0.273 0.623 0.039
B1=—-1,02=-1 0.788 0.242 0.632 0.047

Influence of Filling Strategies. We compare different filling
strategies in Figure 0] We observe that filling with pitfall tokens
(TP-P) enhances the defense against most MIAs especially
when the perturbation budget b < 0.6. And filling with
optimization-based pitfall tokens is more effective than other
variants on decreasing the privacy risk across all signals, under
the perturbation constraint of b = 0.01.

Influence of 3; and (5;. We then analyze the choice of (31
and B in Equation (I13)) where a positive coefficient indicates
error-minimization and a negative coefficient denotes error-
maximization. As shown in Table[V]] in general we observe that
either a negative or positive coefficient helps to reduce privacy
risk. Setting 51 = 1 is less effective, as we are optimizing the
perturbation to make it as fluent as possible given previous
context, which makes the target model ignore the inserted
token. On the contrary, (o 1 yields lower risk, as we
encourage the connection between the inserted tokens and the
identified memorization triggers, which creates a dependency
from memorization-triggered tokens on the inserted token and
fools the model to focus on learning perturbation.

Influence on Model Utility. We also compare the model
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TABLE VII: Training and validation performance.

Method | Val-PPL  Val-Loss | Train-Loss Mem-Loss
Initial model ‘ 65.412 4.181 ‘ 5.522 4.219
NP 38.321 3.646 3.562 3.586
TP-OOV (b=0.4) | 46.813 3.846 3.103 3916
TP-OOV (b=1) 49.226 3.896 2.351 4.023

TABLE VIII: Compare TP-OOV with data filtering (OUT) on
privacy and utility. Privacy is evaluated with Loss-Ref MIA.
N/A denotes a worse model performance than pre-training. *
denotes random guess in MIAs as » = 1 means all samples
are removed for OUT.

Metric | Method | r=0.05 r=0.1 r=0.5 r=0.8 r=1

ouT 0.000 0.557 0.047 0.004 0.01*
(v

TPR@1% TP-OOV ‘ 0.000 0.000 0.000 0.000 0.009

AUC OuT 0.577 0473 0498 0.491 0.5%
TP-OOV | 0.552 0463 0.504 0.494 0.494
OuT 0.173 0.544 3.781 8.622 27.062

AVal-PPL ‘ TP-OOV ‘ 0.258 0.785 4.311 10905 N/A

utility with the initial pre-trained model and the model trained
without any protection (NP) in Table Even when the
defender portion (r = 0.8) and perturbation budget (b = 1)
are large, the validation performance for a model trained on
TP-OOV drops compared to NP. It is still significantly better
than the initial model, indicating that the model is able to learn
from the unprotected data. The ‘Mem-Loss’ is the average
loss of all protected instances, which remains high at 4.023
while the ‘Mem-Loss’ for NP baseline decreases a lot to 3.586,
indicating that the model does not learn much information
from Dp,. We also notice that there is a significant decrease
in the training loss to 2.351, which means the model learns
from the combination of unprotected and protected samples
rapidly. This is because inserted pitfalls are designed to be
outliers in D, and the model is prone to focus on this pattern.

In Table we present the utility degradation for OUT,
which removes all protected instances from D, and for TP-
OOV, given different defender ratio r with budget b = 1 for
Patient dataset. We observe that self-guarding with ExpShield
achieves a slightly higher utility drop than filtering out protected
samples directly. But when all samples are self-guarded and
the perturbation against reference-model-based MIA is strong,
it is possible that the model’s validation performance is worse
than the initial pre-trained model. While in a more realistic
setting where only the minority of web content is self-guarded
(r < 0.1), the utility loss compared to OUT is small.
Influences on Risk of Other Instances. We further investigate
the broader influence of a self-guard on other instances, as a
consideration for the privacy onion effect [33]]. For the influence
within defenders, the defense effectiveness in Table [VIIT] is
stable across various r. This observation does not depend on
the specific b and methods as we leave similar results for the
weakest variant UDP in Appendix.

Furthermore, we demonstrate the risk influence on the 1 —r
portion of unprotected samples in Figure When the majority
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of instances are self-guarded (r = 0.8), the individual risk of
unprotected instances is higher than with no protection, as
unprotected samples become outliers when the outlier pattern
has been rapidly learned by the model. Considering the large
amount of public web content, 7 is usually small in practice.
In such cases, e.g., » = 0.05, unprotected samples also benefit
from a slightly lower risk than with no protection, attributed
to the regularization effect introduced by perturbation [52].

D. Robustness Analysis

As discussed in Section ExpShield is naturally
robust to normal data pre-processing such as deduplication, and
an active bypass requires hundreds of billions of verifications
for perfect stripping. Now we evaluate the robustness of
ExpShield with two active strategies that an aggressive trainer
takes: 1) performing active detection to locate self-guarded
texts for manual stripping, and 2) conducting continuous
training on clean data for recovering hidden protected text.
Perturbation Filtering. Model trainers may use perplexity
filtering [S3]] or embedding detection [54] to improve data
quality. A large b leads to poor-quality texts, so the whole
sample can be filtered out. In this case, there would be no
violation on protected instances. In the opposite case, when b

is not high enough (such as 0.1) to filter out the whole sample.

Figure [ITa| shows that our proposed perturbation cannot be

easily distinguished via both perplexity and embedding spaces.

As a result, the perturbation remains in the protected text,
acting as a shield.

Effect of Continual Training with New Clean Data. LLMs
are commonly reused through continual training on new
data [55]. We evaluate robustness by fine-tuning GPT-2 on
dataset D (containing both protected and unprotected text),
then continuing training on disjoint dataset Dey. While prior
work [56] shows continual training can recover previously
unexposed secrets, Figure demonstrates that MIA risk
on Dy, steadily decreases as the model shifts focus to new
data. Notably, TP-OOV benefits more from continual training
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than NP, with AUC dropping from 0.75 to 0.6, confirming
ExpShield’s robustness to post-processing model updates.

VI. RELATED WORK

As we aim to protect unauthorized content from being
memorized and leaked by language models, our work is closely
related to privacy defense and copyright protection.

Privacy Defenses. There are substantial privacy defenses that
can be applied to avoid generating training data from LMs, but
all of them rely on collaboration from other parties. In data
pre-processing, deduplication [8] and scrubbing [9] require
a trusted data curator, and it is hard to remove all sensitive
information. In the model training stage, differentially private
(DP) optimization [S7], [58], [59] ensures a theoretical privacy
bound for each training record but requires a trusted model
trainer who is willing to afford significantly higher training
costs, especially for large LMs [60], [61]. Model alignment [ 11]]
requires carefully designed alignment tasks. In the inference
stage, output filtering [62], machine unlearning [63], or model
editing [64] can be applied but require a trusted model curator
and poses other risks [65], [66]]. Distinguished from above
privacy defenses, we aim to provide a broader protection, i.e.,
unauthorized content rather than only private content, and we
do not rely on other parties.

Copyright Protection. One strategy to protect copyrighted
content is making it unlearnable. The term unlearnable ex-
ample [20], [67], [68], [69], [19], [LS] is proposed to prevent
models from learning any knowledge from the perturbed dataset,
and the success indicator is typically a poor inference-stage
performance. Unlike traditional unlearnable examples, we aim
to degrade the exposure risk of an individual text. Instead
of image data or classification tasks in previous works, our
defense targets language modeling tasks, requiring unique
understanding of how generative models memorize training
corpus. The other strategy of copyright protection is to claim the
data ownership by embedding data watermarks and detecting
them via membership inference after model training [70], [[71].
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Although ExpShield was not designed for watermarking, we
discuss how ExpShield can be used for data watermark in

Appendix [F
VII. DISCUSSION

We discuss the benefits and limitations in practical scenarios.
Easy-to-Use Protection. Besides the advantage of not relying
on other parties, we naturally provide a personalized protection
strength and scope. The computational cost is affordable for
defenders, even with proxy models, e.g., only taking <2 GB
GPU memory for GPT-2 or millisecond-level API latency for
online models. Besides, the run-time overhead of perturbed
webpage is small. In our demonstration [37], the loading time
averaged over 10 trails only increase by ~2%. The cost will
be even lower for smaller budget (e.g., b=0.01 in Figure [7).
Compatibility to Privacy Defenses. As an owner-side defense,
ExpShield is compatible to other privacy defenses that may be
implemented by other parties. For example, since ExpShield
has no repeated pattern and does not contain meaningful entities,
it is robust when integrating with privacy defenses in preprocess-
ing, such as deduplication [8] and scrubbing [9]. Also, the extra
layer of ExpShield does not violate the theoretical guarantee
of DP training [10] and other inference phase defenses [12].
Generalization to Other Languages. In principle,
ExpShield can be used for other languages, as it operates at
the token level without relying on English-specific syntax, inde-
pendent of specific word segmentation. Specifically, our OOV-
based perturbation also applies to CJK characters, because sev-
eral CJK characters can be merged into a single token in popular
tokenizers (BPE, SentencePiece). For languages such as Thai or
Khmar where zero-width character is used for line breaking, we
suggest to use style-level perturbation to avoid rendering issues.
Against High-Resource Crawlers. While our main target is
large-scale automatic crawlers instead of aggressive crawlers
with high-resource computation, ExpShield is still possible
to reduce risks because there is no guarantee for perfect
sanitization. In Figure [7| only =~ 1% surviving perturbation
still lower memorization risk. Defenders can even combine
multiple ExpShield variants to enhance the complexity of
sanitization. While Optical Character Recognition (OCR) is
powerful, mainstream LLMs [72], [[73] use HTML extraction
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instead of OCR for collecting large-scale webpages, probably
due to its accuracy and cost (around 100-300x more costly).
Impacts on User Experience. The negative impacts on the
user experience of perturbed webpages are minimal. Website
owners can exclude the self-injected perturbation to ensure
accurate internal site search, and mark perturbed pages as
noindex to avoid the mismatch issue on legitimate search
engine optimization (SEO). In the extreme case where every
word is perturbed by invisible characters, browser search, word
selection, screen reading, text highlighting are unaffected;
the translation remains functional for most words. And the
style-level perturbation is functional with a small budget (e.g.,
b < 0.1). In Figure [/} even a small budget demonstrates the
effectiveness of the defense, so the overall impact is marginal.
Collaborative Mitigation of Data Misuse. When protected
data is unintentionally misused, such as being collected by third-
party crawlers, model trainers who are aware of the defense are
encouraged to either: (i) exclude all segments that may contain
perturbations to avoid degrading training quality and data
misuse; or (ii) include the perturbed data during training while
filtering out invisible characters at inference time, both to reduce
the risk of privacy attack and mitigate safety-related abuses.

VIII. CONCLUSION

We present ExpShield, a proactive self-guard that empowers
data owners with direct control over their content’s usage in Al
training, addressing ineffective crawl prevention and third-party
dependency.

Our approach fills the critical gap where content creators
lack protection against unauthorized LLM memorization
through a practical, independent solution requiring no third-
party cooperation. We formalize individual text protection as
constrained bi-level optimization that minimizes adversarial
advantage while preserving readability and budget constraints.
For principled evaluation and design, we introduce instance
exploitation—a standard, calibrated, and efficient individual-
level privacy metric that is informative for a wide scope of
attacks. By establishing and verifying the memorization trigger
hypothesis, we develop targeted perturbations that focus on
influencing important tokens for memorization. It is promising
for future works to design more informed individual-risk



metrics and extend the memorization trigger hypothesis for
improving defenses during or after training.

We comprehensively validate the defense effectiveness across
various tasks with LMs and VLMs, showing its capability to
reduce the near-perfect attack to random membership guess.
Additionally, we extend discussions of its feasibility in practice
and advocate a collaborative view for responsible Al where
data protection rights and innovation coexist.
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APPENDIX

A. Dataset Information

o Enron [43] is a large collection of email data from the
Enron Corporation, which contains sufficient PII information
such as phone numbers, email addresses, and names. The
dataset comprises emails from 150 users, primarily senior
management of Enron.
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« Patient [44] consists of doctor-patient conversations cover-
ing various medical conditions, symptoms, diagnoses, and
treatment plans, with an average length of 8 turns per
conversation.

e CC-News [45] is derived from the Common Crawl News
dataset, containing news articles from various online sources
published between 2016-2019. The articles span diverse
topics and writing styles, providing a rich test bed for
evaluating privacy preservation in copyrighted content.

TABLE IX: Defense Strategy Comparison on Scenarios and
Compatibility

Personal UGC Screen Reader DOM Element Count

Defense Type Websites Platforms Compatibility Impact

Style-Level v X Medium Slightly increase
Character-Level v v High No change

B. Perturbation operation discussions

A previous work [34]] proposes adversarial examples by
inserting imperceptible characters, such as invisible characters,
homoglyphs, reordering characters, and deletion characters,
into text inputs. These perturbations as follows are designed
to be undetectable by human users while significantly altering
the output of natural language processing (NLP) models.

« Augmentation: Augment original text by modifying the

C. Demonstration of invisible perturbation

Three Methods to Make Text Invisible in HTML

<!-— Method 1: Using CSS display
property ——>

<div style="display: none;">This text is
invisible</div>

<!-- Method 2: Using zero-width
characters —--—>

<span>Visible text&#8203;z&#8203;e
&#8203;r&#8203;0&#8203; —&#8203;w
&#8203;1&#8203;d&#8203;t&#8203;h
&#8203; characters hidden here</span>

<!-— Method 3: Using CSS positioning and
size ——>
<div style="position: absolute; left:
-9999%px; font-size: 0;">
This text is positioned off-screen and
has zero font size
</div>

Fig. 12: A simplified demonstration of invisibility strategy

We demonstrate a few ways of creating invisible styles in Fig-

encoding style without altering its visual display. Tech-
niques include applying CSS properties like font-size or
absolute position to make text invisible, inserting zero-
width or invisible whitespace characters, and hiding text
within HTML comment tags. In our TP-OOV, examples of
invisible characters include the Zero Width Space (U+200B),
Zero Width Non-Joiner (U+200C), and Zero Width Joiner
(U+200D). These characters do not render visually but are
encoded in the HTML, allowing for subtle modifications.
Deletion: Remove characters to obscure text, either through
delete-characters (e.g., Backspace, Delete) that are font
and platform-independent, or using JavaScript to condi-
tionally hide content, making it platform-dependent. These
approaches are effective against basic scrapers but less
so against those that can execute JavaScript. CSS pseudo-
elements such as ‘::before’ or ‘:after’ and replacing hidden
text with SVG graphics can also hide partial text.
Replacement: Replace characters with HTML entities, or
visually similar homoglyphs (e.g., replacing Latin letters
with visually similar Cyrillic ones), which are character-
dependent. This technique confuses basic scrapers but may
lead to imperfect readability.

Shuffling: Use control characters like Carriage Return (CR),
Backspace (BS), or Delete (DEL) to reorder or hide parts of
the text. This method is platform- and character-dependent,
effective at shuffling content without reducing readability
when done carefully.

Furthermore, we compare character-level and style-level
perturbation with respect to practical application in Table
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ure @] and provide a concrete example in demonstration [37]:

e Method 1: Uses CSS display: none to prevent the
element from rendering in the document flow.

e Method 2: Inserts zero-width space characters (Unicode
U+200B) between letters, making the text invisible while
maintaining its position in the document.

o Method 3: Combines absolute positioning (moving the
element far off-screen) with zero font size to hide text.

D. A Variant of Informed-MIA via Privacy Backdoor

When demonstrating the dataset-level risk with variants of
MIAs, we aim to use a more informed MIA game by assuming
a stronger (informed) adversary knowledge, thus the mitigation
under such strong privacy game can be reducible to other
weaker attacks in practice. Thus, we follow previous works
of privacy backdoor [22], [23] by assuming the adversary has
the capability to craft and release the pre-trained model. The
informed MIA game is shown in Algorithm [3]

Algorithm 3 BACKDOORED AND INFORMED MIA GAME

1: procedure BACKDOORED-MIA(T, A, D\, X; Daux)
2: Oaav < Acrait(Daux, Opre) // Insert privacy backdoor
3: s < Unif({x, L}) / Sample membership status
4: 0 < T(D\x U{X[s # L};0uay) #/ Train on released
data with the backdoored pre-trained model
§ < A(bn, aay, X; Danx) // Guess membership of x
6: return 5§ = s

W
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Fig. 13: Instance-level analysis via instance exploitation, with
the corresponding maximum MIA AUC as 0.605 for CC-News
(b = 1), and 0.621 for Enron (b = 1) obtained with privacy
backdoor.

E. Instance Exploitation

Additional Results for CC-News and Enron. We complement
results of Figure [6a] on two extra datasets CC-News and
Enron in Figure [I3] with the similar trend that after applying
ExpShield the instance exploitation for most text instances
approaches to zero. The gain of perturbing with OOV compared
to uniform token sequence is significant for all datasets.

Results with Different Budgets. We complement results of

Comparison under small b and r=0.01
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Fig. 14: Effectiveness of optimization-based method on most
vulnerable instances given a small portion of defender » = 0.01
and small portion of perturbation budget.

Figure [7] with different perturbation budget b in Figure

FE. Perturbation for Data Watermark

Although we target for proactive memorization mitigation
while data watermark is a reactive strategy for data proving, we
have similar technique of perturbing text in general. Technically,
ExpShield can be extended as data watermark for claiming the
ownership. Specifically, prior works [70]], [71] insert random
canary into protected content, query the model with the canary,
and then perform MIA for watermark detection.

Although watermarking is not our focus, we demonstrate
ExpShield’s feasibility as data watermark in Table [X] Using
p-value and z-score metrics for hypothesis testing (lower values
indicate stronger detection), ExpShield provides extremely
strong detection power. TP-P with artificial memorization
tokens performs best among variants. While TP-OP should
theoretically excel, optimization across multiple samples proves
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Fig. 15: Influence of disturbing in UDP.

time-consuming, yielding insufficient pitfall optimization. Nev-
ertheless, all variants detect data watermarks effectively.

TABLE X: Detection effectiveness for Patient dataset and GPT-
2 Model when ExpShield serves as data watermark.

Detection w/o context Detection w/ context

Method | p-value z-score | p-value z-score
UDP | 6.90E-07 -12.858 3.57E-07 -12.122
UNP | 2.34E-17  -20.696 2.20E-22  -25.265

TP 2.74E-11  -19.769 | 1.75E-292 -122.483
TP-P | 1.90E-87  -48.648 | 4.14E-305 -101.609
TP-OP | 7.47E-09  -15.860 | 1.29E-233 -116.993

G. MIA Results

Influence of Defender Portion. We demonstrate the influence
of defender portion r on the defense effectiveness in Table [XI]
A smaller defender ratio results in a lower privacy risk, or
equally a better defense effectiveness under both sample-level
and user-level MIA.

Full Results of Variant MIA Signals. Due to space limitation,
we omit the MIA results for each MIA signal and only report
the maximum MIA AUC and TPR across different MIA signals.
We report the full results with privacy backdoor Table [XTI] and
omit the one without privacy backdoor due to space limitation.

TABLE XI: Influence of defender portion r for UDP.

UDP ‘ Sample-Level User-Level
Defender Portion r | AUC  TPR@1% | AUC TPR@1%
1.000 0.791 0.068 0.616 0.008
0.800 0.775 0.112 0.612 0.011
0.500 0.779 0.130 0.598 0.009
0.100 0.743 0.091 0.602 0.000
0.050 0.734 0.059 0.601 0.078

H. Vision-Language Modelling

Setup. We use IAPR TC-12 dataset [46] covering diverse
subjects (sports, people, animals, cities, landscapes) with image-
caption pairs including title, description, location, and date. We
focus on image captioning using BLIP2-ViT-gOPT2.7B [74]]
(3.8B parameters) with standard causal language modeling. The
setup takes an image and partially masked caption as input,
outputting the next caption word. We employ LoRA (rank=16)
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TABLE XII: Membership inference evaluation with privacy backdoor.

MIA level | Patient GPT-2 \ Loss-Reference Loss MinK Zlib

w/ Backdoor ‘ Method ‘ AUC TPR@1%FPR ‘ AUC TPR@1%FPR ‘ AUC TPR@1%FPR ‘ AUC TPR@1%FPR

NP 0.953 0.545 0.792 0.364 0.815 0.303 0.783 0.303

UDP (b=0.4) 0.831 0.121 0.710 0.152 0.704 0.121 0.697 0.182

UNP (b=0.4) 0.766 0.091 0.674 0.152 0.679 0.091 0.658 0.152

Sample-level TP (b=0.4) 0.765 0.091 0.671 0.152 0.644 0.061 0.657 0.182

TP-P (b=0.4) 0.772 0.091 0.676 0.152 0.654 0.061 0.655 0.182

TP-OOV (b=0.4) 0.566 0.061 0.587 0.061 0.503 0.030 0.562 0.091

UNP-OOV (b=0.4) | 0.648 0.091 0.648 0.121 0.614 0.061 0.624 0.152

NP 0.741 0.000 0.652 0.047 0.672 0.047 0.540 0.023

UDP (b=0.4) 0.649 0.000 0.599 0.047 0.611 0.039 0.528 0.023

UNP (b=0.4) 0.622 0.000 0.582 0.039 0.598 0.039 0.524 0.023

User-level TP (b=0.4) 0.618 0.000 0.581 0.039 0.585 0.039 0.523 0.023

TP-P (b=0.4) 0.619 0.000 0.580 0.023 0.592 0.039 0.523 0.023

TP-OOV (b=0.4) 0.542 0.000 0.538 0.039 0.521 0.039 0.515 0.023

UNP-OOV (b=0.4) | 0.566 0.000 0.566 0.039 0.574 0.039 0.520 0.023

MIA level ‘ CC-News OPT-125M ‘ Loss-Reference Loss MinK Zlib

w/ Backdoor ‘ Method ‘ AUC TPR@1%FPR ‘ AUC TPR@1%FPR ‘ AUC TPR@1%FPR ‘ AUC TPR@1%FPR

NP 0.998 0.982 0.642 0.006 0.668 0.006 0.700 0.036

UDP (b=0.4) 0.997 0.970 0.594 0.006 0.605 0.006 0.650 0.030

UNP (b=0.4) 0.983 0.467 0.556 0.006 0.559 0.006 0.613 0.030

Sample-level TP (b=0.4) 0.978 0.580 0.554 0.006 0.548 0.006 0.610 0.024

TP-P (b=0.4) 0.991 0.746 0.560 0.006 0.555 0.006 0.615 0.024

TP-OOV (b=0.4) 0.890 0.083 0.518 0.006 0.510 0.006 0.577 0.024

TP-OOV (b=1) 0.621 0.053 0.498 0.006 0.495 0.006 0.554 0.018

NP 0.966 0.032 0.620 0.032 0.648 0.035 0.551 0.007

UDP (b=0.4) 0.948 0.028 0.582 0.032 0.607 0.035 0.542 0.007

UNP (b=0.4) 0.912 0.028 0.559 0.032 0.581 0.032 0.535 0.007

User-level TP (b=0.4) 0.918 0.028 0.557 0.032 0.573 0.035 0.536 0.007

TP-P (b=0.4) 0.923 0.032 0.559 0.032 0.577 0.035 0.536 0.007

TP-OOV (b=0.4) 0.783 0.028 0.532 0.032 0.547 0.035 0.531 0.007

TP-OOV (b=1) 0.605 0.028 0.521 0.032 0.543 0.035 0.527 0.007

AUC of Loss MIA on VLMs
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Fig. 16: Loss MIA performance on VLMs.

on query and value matrices across vision encoder, Q-former,
and LLM components for efficiency. We use 3K image-caption
pairs for D (10% protected as Dy,), train reference models on
separate 3K pairs, and optimize for 20 epochs using AdamW
(Ir=5e-4) with validation on 500 images.

Results of Loss MIAs. TP-OOV effectively reduces MIA
performance, consistent with main paper results. Figure [16]
shows ROC curves where baseline NP marginally affects MIAs
(AUC: 0.8—0.77/0.75 for b = 0.01/0.02), while TP-OOV
significantly reduces AUC to 0.56 (b = 0.2) and 0.61 (b = 0.01)
from 0.80.
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1. Ethical Considerations

This work presents a proactive defense to safeguard users’
released text from potential LLM misuse, aligning with the
ethical principles of "Respect for Persons" and "Beneficence"
(e.g., as outlined in the Menlo Report [75]]) by promoting
individual autonomy and data privacy.

While providing a valuable safeguard, our text modification
technique introduces dual ethical considerations. First, the
mechanism could be maliciously exploited by adversaries to
embed imperceptible modifications, potentially leading to data
poisoning, backdoor vulnerabilities, or performance degradation
in trained models. Second, the pursuit of individual protection
may inadvertently impact collective fairness. For instance,
a data owner’s successful defense marginally increases the
likelihood of other users’ unprotected text being exposed
through model outputs.

Therefore, we perform analysis related to above consider-
ations. 1) Our extensive experiments show that training on
a small portion of protected text does not degrade model
performance. 2) We discussed the collaborative mitigation in
Section by removing the whole perturbed and protected
content from training corpus. 3) We demonstrated that the
fairness issue is not observed given a reasonably small portion
of protection set (with 7 < 0.5 in Figure [T0). Meanwhile, we
encourage users and practitioners must remain vigilant to these
broader ramifications, ensuring system integrity and collective
fairness are not inadvertently compromised.
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