Analysis of the Security Design, Engineering, and
Implementation of the SecureDNA System

Alan T. Sherman, Jeremy J. Romanik Romano,
Edward Zieglar, Enis Golaszewski, Jonathan D. Fuchs

Cyber Defense Lab

University of Maryland, Baltimore County (UMBC)

Baltimore, Maryland 21250

Email: {sherman,jeremyr2,eziegll,golaszewski,jfuchs2} @umbc.edu

Abstract—We analyze security aspects of the SecureDNA
system regarding its system design, engineering, and imple-
mentation. This system enables DNA synthesizers to screen
order requests against a database of hazards. By applying
novel cryptography involving distributed oblivious pseudoran-
dom functions, the system aims to keep order requests and the
database of hazards secret. Discerning the detailed operation
of the system in part from source code (Version 1.0.8), our
analysis examines key management, certificate infrastructure,
authentication, and rate-limiting mechanisms. We also perform
the first formal-methods analysis of the mutual authentication,
basic request, and exemption-handling protocols.

Without breaking the cryptography, our main finding is
that SecureDNA’s custom mutual authentication protocol SCEP
achieves only one-way authentication: the hazards database and
keyservers never learn with whom they communicate. This
structural weakness violates the principle of defense in depth
and enables an adversary to circumvent rate limits that protect
the secrecy of the hazards database, if the synthesizer connects
with a malicious or corrupted keyserver or hashed database. We
point out an additional structural weakness that also violates the
principle of defense in depth: inadequate cryptographic bindings
prevent the system from detecting if responses, within a TLS
channel, from the hazards database were modified. Consequently,
if a synthesizer were to reconnect with the database over the same
TLS session, an adversary could replay and swap responses from
the database without breaking TLS. Although the SecureDNA
implementation does not allow such reconnections, it would be
stronger security engineering to avoid the underlying structural
weakness. We identify these vulnerabilities and suggest and verify
mitigations, including adding strong bindings. Software Version
1.1.0 fixes SCEP with our proposed SCEP+ protocol.

Our work illustrates that a secure system needs more than
sound mathematical cryptography; it also requires formal spec-
ifications, sound key management, proper binding of protocol
message components, and careful attention to engineering and
implementation details.

I. INTRODUCTION

The combination of gene editing technology (e.g.,
CRISPR [1]), DNA synthesis, and Al [2] poses an existential

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.241138
www.ndss-symposium.org

William E. Byrd
Hugh Kaul Precision Medicine Institute
Heersink School of Medicine
University of Alabama at Birmingham
Birmingham, Alabama 35294
Email:webyrd @uab.edu

threat to humanity. Advances now enable a single malicious
actor, with modest resources, to synthesize pathogens capable
of starting pandemics. As an initial response to this threat, an
international group of eminent biologists and cryptographers
designed and implemented the SecureDNA system [3]], which
provides a method for honest DNA synthesis labs to screen
synthesis-order requests for known biohazards. In late 2022,
the SecureDNA Foundation [4] launched the system.

SecureDNA is significant for its advanced technology and
impactful policy. It is the first fully privacy-preserving, crypto-
graphically verifiable screening system. It operates in near real
time through a distributed network of independent authorities
and supports standardized verifiable compliance. SecureDNA’s
long-term strategy is to push for regulation mandating univer-
sal screening of DNA synthesis orders. Unfortunately, cur-
rently a malicious entity could avoid SecureDNA controls by
purchasing their own synthesis machine for less than $50,000,
or by sending their request to a lab that does not screen.

Using a distributed oblivious pseudorandom function (DO-
PRF), the system enables synthesizers to screen order requests
against a curated database of hazards while keeping the
database and requests secret [3], [6]. To eliminate a possible
single critical point of failure, the system distributes the key
used by the DOPRF among n keyservers using Shamir secret
sharing [[7], [8].

We analyze security aspects of the SecureDNA system, fo-
cusing on its system design, engineering, and implementation.
As part of this study, we perform the first formal-methods
symbolic analysis of the two main protocols in SecureDNA
for structural (fundamental logical) weaknesses. These proto-
cols are the basic order-request protocol and the exemption-
handling protocol, which permits a qualifying customer to
order certain dangerous sequences. Our work studies the
security of the SecureDNA system design and implementation.
We do not review the bio-design, high-level crypto-design,
or low-level software security. We do not examine the non-
public monitoring and auditing that play an important role in
operational system security.

Because the available written descriptions do not adequately
describe the protocols, we first discern these protocols in
part by examining the source code (Version 1.0.8) [9]. We



also examine PCAP data from our working local copy of
the system. We then model these protocols and precisely
state security goals. Using the Cryptographic Protocol Shapes
Analyzer (CPSA) [10], we analyze whether the models achieve
the goals. Our analysis includes a careful examination of
SecureDNA’s key and certificate management systems and
their use in authentication and rate-limiting of queries to the
hazards database.

Despite rigorous universal composability (UC) proofs [L1]
of the abstract cryptography [5]], the concrete protocols in
use in the SecureDNA system lack detailed descriptions and
formal models, and the written descriptions lack verifiable,
precisely-stated security goals of the system. Thus, our starting
point is largely the SecureDNA system’s whitepaper [3] and
publicly-released source code [9].

Experience shows that there is great value in formal-
methods analysis of cryptographic protocols, including in the
design phases, because humans are poorly suited to analyze
their complex nuanced security properties and their many pos-
sible execution sequences. For example, in 1995, using a pro-
tocol analysis tool, Lowe [[12] identified a protocol-interaction
attack on the 1978 Needham-Schroeder (NS) public-key au-
thentication protocol [13]], based on a subtle structural flaw
which had gone unnoticed for 17 years. We point out a similar
attack on SecureDNA’s basic request protocol that circumvents
rate limiting. We first discovered this flaw through our formal-
methods analysis.

Aside from its monitoring, SecureDNA depends crucially
on four mechanisms to achieve its security goals: a custom
mutual-authentication protocol (SCEP), exemption-list tokens
(ELTs) to implement its exemption-list feature, an associated
certificate management system, and Transport Layer Security
(TLS) [14], [15], [16] to protect communication channels.
SecureDNA uses TLS 1.3 and 1.2, but only with ECDH
and not with RSA. If TLS fails, then a Man-in-the-middle
(MitM) attack would be possible and the only security goal
that SecureDNA would achieve would be secrecy of orders.

Our analysis uncovers undesirable vulnerabilities concern-
ing how SecureDNA uses these mechanisms, violating the
principle of defense in depth. First, due to a structural weak-
ness, SecureDNA’s custom authentication protocol provides
only one-way authentication: the hazards database and key-
servers never learn with whom they communicate. Conse-
quently, an adversary, who tricks an honest synthesizer S
into connecting with a malicious or corrupted database or
keyserver, could masquerade as S to circumvent rate limiting.
Our proof-of-concept implementation of this MitM attack
demonstrates its feasibility.

Second, structural protocol weaknesses involving inade-
quate cryptographic bindings of ELTSs, authentication cook-
ies, and responses from the hazards database, prevent the
system from detecting if responses, within a TLS channel,
from the hazards database were modified. These inadequate
bindings create a “latent vulnerability”: if a synthesizer were to
reestablish a connection with the database over the same TLS
session, an adversary could replay and swap responses from

the database without breaking TLS. Although the current Se-
cureDNA implementation does not allow such reconnections,
the vulnerability might manifest under future implementations
or TLS configurations.

Recently we made a responsible disclosure of our findings
to the SecureDNA team, and we had fruitful discussions with
them. We learned that part of their (undocumented) security
strategy is based significantly on monitoring, detecting, and
responding to certain types of malicious behaviors rather than
on preventing such behaviors. They stated that, with the aid
of source code that we have not seen, their strategy includes
automatic and manual intervention based on automatic alerts,
which aim to detect unexpected deviations from typical behav-
iors, whether due to errors or malice. Their whitepaper does
not mention this strategy.

Our contributions include: (1) A validated discernment of
the SCEP, basic request, and exemption-handling protocols
of the SecureDNA system based in part on an examination
of the source code. (2) CPSA models of these protocols.
(3) Formal statements of security goals of these protocols, and
formal-methods symbolic analysis of the models for structural
weaknesses with respect to these goals. (4) Identification of
structural flaws in SecureDNA’s SCEP protocol, showing that
the protocol achieves only one-way authentication. We also ex-
hibit rate-limiting and denial-of-service (DoS) attacks based on
this vulnerability. (5) Identification of structural weaknesses in
the SecureDNA protocols involving inadequate authentication
and cryptographic bindings, including of ELTs, authentication
cookies, and responses from the hazards database. We also
explain how an adversary could exploit this vulnerability to
replay and swap responses from the database, without breaking
TLS, if a synthesizer were to reconnect with the database using
the same TLS session. (6) Recommendations for strengthening
the SecureDNA system, and formal-methods validation of our
suggested improvements to SCEP and to authentication and
the bindings of protocol message components.

Section |[X] presents our formal-methods analysis of SCEP,
and Section [X] analyzes our improved SCEP+. Appendix [C]
summarizes the results of our analyses in two tables. All of
our artifacts are available on GitHub [17], including our proof-
of-concept implementation of our MitM attack and complete
CPSA input models and output shapes. For more details, see
our full paper [18].

II. PREVIOUS WORK

Aside from the abstract cryptographic studies by Baum et
al. [5], [6, and a 2022 course project by Langenkamp et
al. [19], to our knowledge, our work is the only security
analysis of the SecureDNA system. Whereas Baum et al.
describe and analyze a cryptographic protocol for computing
DOPRFs when some keyservers are malicious, we analyze the
security of the SecureDNA system design, engineering, and
implementation, with a focus on its query protocols. Baum et
al. do not consider rate-limiting or DoS attacks.

Kane and Parker [20] and Hoffman et al. [21] review the
landscape in DNA screening. The U.S. Department of Health



and Human Services [22]] offers non-binding security consider-
ations, but there are no standards or laws that require screening
for dangers. Founded in 2009, the International Gene Synthesis
Consortium is a coalition of synthetic DNA providers and
stakeholders that use a common screening protocol [23l].
Johns Hopkins [24] maintains a hub of useful information,
including a list of screening companies and tools. We are not
aware of any previous work that analyzes the design, security
engineering, and implementation of any such system. Previous
work deals mainly with biosafety, not cybersecurity.

III. BACKGROUND

We present brief relevant background regarding protocol
analysis, strand spaces, and CPSA. For more details about
these topics, see [25]].

A. Protocol Analysis

Formal-methods analysis of a protocol involves expressing
the protocol in a formal mathematical model, stating propo-
sitions that reflect the protocol’s desired security properties,
and proving or disproving those propositions. Often, this
process requires the assistance of specialized theorem-proving
tools, such as ProVerif [26], Tamarin Prover [27], Maude-
NPA [28], or CPSA [29]. Symbolic, versus computational,
formal-methods analysis looks for structural (fundamental log-
ical) weaknesses, not cryptographic weaknesses. Such formal-
methods analysis of protocols will not detect implementation
errors nor the application of protocols to inappropriate settings.

B. Strand Spaces

Strand spaces [30] are a useful symbolic formalism for
modeling the authentication and secrecy properties of cryp-
tographic protocols. In the strand-space formalism, a cryp-
tographic protocol is a set of roles that form a template
for legitimate strands. A strand is a sequence of sent and
received messages, where each message is an element of a
term algebra that contains operations such as encryption and
message concatenation. The strand space for a cryptographic
protocol is the set of all strands formed by term substitutions
on the roles of the protocol or adversary strands.

In the strand space formalism, executions of a protocol
are modeled as bundles. A bundle for a protocol P is a set
of strands (or prefixes of strands) from the strand space of
‘P such that every reception node in the bundle corresponds
to a unique transmission node in the bundle that sends the
same message that was received. The directed graph with
edges connecting consecutive nodes on the same strand, and
connecting corresponding reception and transmission nodes,
must be acyclic so that the events in the bundle respect
causality. Bundles are of central importance in formal-methods
analysis using strand spaces because each bundle provides an
interpretation of a security goal formula. A protocol achieves
a security goal if and only if the security goal is true under
the interpretation of all of the protocol’s bundles.

C. CPSA

CPSA [29] is an open-source tool for analyzing crypto-
graphic protocols within the strand-space model. CPSA dis-
tinguishes itself as a model-finder. Its input is a model, which
comprises strands consisting of roles, messages, variables, and
a set of initial assumptions. When executing to completion,
CPSA provably identifies all essentially different executions
of the protocol within a Dolev-Yao (DY) network intruder
model [31] and outputs them as “shapes” [32]. CPSA’s model
finding enables users to identify the strongest achieved security
goal for an input model [33]]. Users define CPSA models using
LISP-like s-expressions that implement a custom language.
In these models, which superficially resemble (but are not)
executable source code, users specify one or more roles,
associated variables and messages, and assumptions.

IV. SECUREDNA SYSTEM

The SecureDNA system [3] provides a way for honest
synthesizers to screen DNA synthesis-order requests for bio-
hazards. We summarize how this system works by explaining
its architecture, security goals, oblivious search for hazards,
certificate infrastructures, authentication tokens, exemption-list
tokens, and source code.

A. Architecture

As envisioned by its inventors, the SecureDNA system
involves eight logical entities: a Customer C sends an order
request, and a Synthesizer S [EIO receives and processes
the order request. There is a Plain Text Database D of
hazards, and a Keyed Hashed Database H [E7] of hazards.
A Curator R populates D. A Biosafety Officer B grants
exemption tokens to C. Using Shamir secret sharing of a hash
key k, a Distributed Keyserver K [E4] applies keys needed
to populate and query H. A SecureDNA Administrator F—
the SecureDNA Foundation—is the singular root of trust that
generates the hash key, establishes the root certificate for
each of the three certificate hierarchies, processes requests for
synthesizer and exemption certificates, and releases system
software and updates. In addition, it is prudent to include
a ninth entity, an Authentication Backend A, that verifies
authentication requests for exemption tokens. See Figure

B. Security Goals

Based on the SecureDNA whitepaper [3], we understand
that the SecureDNA system aims to accomplish four security
goals, which we state informally:

SG1 Keep the sequences in D secret to everyone except the
Curator R.

Keep each synthesis order request s secret to everyone
except C and S.

Return to S a valid answer to whether a synthesis order
request s is in D.

When C presents an ELT to S, enable S to determine
whether C is authorized to receive the synthesis of order
request s, even if some sequences in s are in D.

SG2
SG3

SG4

IThe notation “[E10]” means see Endnote 10 in Appendix J of [18].



Synthesizer S

M M I
15 s,ds,Csy rr>dse, Crr, rr

Customer C

E - [ - <48 ==
Tér,me,A T I
‘ E‘
EI
H ]
T
Y
H
Biosafety Officer B Q "
CEL,FI: ds = l ?Tu?

Keyserver K

K M
k1 TIC,F? d)C, CFR,.FR

Keyed Hashed Database H
T’;‘I{?:Lfa d'H.a C,J}\'%,}'"Rz C_:%R,}"R

Authentication
Backend A
- Plain Text

SecureDINA

Database D
Foundation F |

Key

I
Crr 71, dFr

o

T)‘/EY: Token of type W issued to X by ¥ k: Keyed hash key

C w .

Xz ¥V Certificate of type W issued to

X of level Z by Y of level V

dx: Private key of X i Basic

Initialization

mx,y: Authenticator device
of X for backend Y

1 Exemption

i Request | Request

all root certs Curator R
all root private keys
all intermediate certs

all intermediate private keys

Fig. 1. Architecture of the SecureDNA system showing the roles and cryptographic variables held by each role.

Neither the SecureDNA whitepaper [3] nor the initial tech-
nical cryptographic manuscript [[6] states any of these goals
precisely. The more recent cryptographic article [5] deals
only with the abstract mathematical cryptography and does
not address SG3 or SG4. Instead, this article focuses on
ensuring correct operations of JC when some of the distributed
keyservers are malicious.

To analyze these goals, it is essential to identify the adver-
sarial model (see Section [VI). The whitepaper [3] vaguely
mentions the semi-honest and malicious models without
clearly articulating what model is applied in what context. The
semi-honest model is a very weak model (participants must
follow the protocol) and usually is insufficient for meaningful
protection in many network environments. Following well-
accepted practice, we adopt the DY model.

Concerning SG1, documentation states that “secrecy [of the
database of hazards] should be protected at the highest possible
level while preserving usability,” [6, p. i] and “leakage of H
about D must be kept to a minimum.” [3, p. 17].

However, when we presented our rate-limiting attack to
the SecureDNA team, they asserted that SG1 is not very
important, in part, because most known hazards are already
described in publicly available documents. They explained
that one important aspect of SG1 concerns the relatively few
newly discovered hazards that are not yet widely known. We
consider SG1 an important goal; much simpler designs would
be possible if SG1 were eliminated.

Another important aspect of SG1 involves SecureDNA’s
subtle biological strategy for detecting functional mutants of

hazards, which are too numerous to list individually in D. Ev-
ery “re-spinning” of H involves selecting new representative
mutants to include in D, then rehashing H. To evade detection
of mutants, it would be helpful to know which mutants are in
D. An adversary might attempt a database-scraping attack
to learn parts of D and to learn which mutants are in D.
Re-spinning complicates learning what mutants are in D by
changing them, but re-spinning does not prevent attacks that
aim to learn the non-mutant entries of D. Rehashing only
makes such attacks less efficient. Although monitoring and re-
spinning provide significant defenses, better protocols would
provide stronger protections.

We sensed that SecureDNA is extremely concerned about
adoption, and to that end, their most important security goal is
SG2. They are also very concerned about non-security goals,
including speed and quality of service.

C. Screening for Hazards

The SecureDNA system screens for biohazards by per-
forming a type of oblivious search that uses a keyed hashed
database ‘H of hazards. Because of its dangerous information,
and to complicate evading detection of hazardous variants,
the corresponding plain text database D must be kept secret.
Sequences in D are relatively short (as small as 60 bits) to
prevent the synthesis of longer hazards from shorter sequences.

The system depends in part on rate-limiting queries to H
to prevent an adversary from searching a large number of the
possible short sequences, even if an exhaustive search of such
sequences were computationally infeasible. The system also



periodically re-spins H to thwart the adversary from learning
which mutants are in H (see Section [IV-B)).

D. Certificate Infrastructures

The SecureDNA system manages a custom certificate-based
public-key infrastructure (PKI) to support authentication and
exemptions. There are three separate hierarchies: manufacturer
(to authenticate S), infrastructure (to authenticate K and
‘H), and exemption (to prove C is authorized to synthesize
some exempted sequences). Each hierarchy has a separate
root of trust created by the Administrator F: manufacturer
root C %%_ FR> infrastructure root C ﬁ‘R, FR> and exemption root
CER, FR- SecureDNA distributes these roots of trust in its
software release.

Each node in the hierarchy is a certificate, which crypto-
graphically binds an identity with its public key. Each non-root
certificate is digitally signed by the private key of its parent
in the hierarchy. Each certificate has the following format:

C;/E/y = (N:m context, {M(N:m Context)}dy)7 (l)

where
context = h,o,py, Ny, Dy, 0. )

x is the subject (receiver); y is the issuer; M is a cryptographic
hash function; and d,, is the private key of y. For any data v
and any key z, {v}. denotes encryption or signature of v under
key z. Here, h is a description of the certificate, which contains
a version, type W (manufacturer, infrastructure, exemption),
and hierarchy level (root, intermediate, leaf). o is a randomly
generated identifier assigned to the certificate, which identifies
x. N, and N, are the identifiers of x and y, respectively,
containing a name and email. p, is the public key of z; p,, is
the public key of y; and § is a validity period, comprising a
start and end date [E1,E2,E3]. In our notation C)Vg/z,yv’ W is
the type from h; X is the subject; Z is X’s hierarchy level;
Y is the issuer; and V is the issuer’s hierarchy level.

There are special types of certificates, called tokens, in-
cluding authentication tokens and exemption-list tokens. The
format of each token is similar to that of a certificate:

T, = (7, U, context, { M (7, ur, context)}q,), (3)

where 7 is a certificate type, and the contents of field u,
depend on the certificate type .

Each token is a leaf of a certificate chain. The usage of
“leaf” in the hierarchy level of certificates is a misnomer,
as leaf certificates are intermediate certificates used to issue
tokens. We will use SecureDNA’s notation throughout the
paper. Each token is bundled with a chain of certificates that
can be verified to the corresponding root. SecureDNA manages
the creation and distribution of root certificates, creation of
intermediate certificates, usage of intermediate certificates
to sign leaf certificates, and revocation of certificates. Our
notation for tokens is similar to that for certificates, but with
no hierarchy level for subjects or issuers, because tokens have
no hierarchy, and all issuers are leaf certificates.

F provides K and H with a list of token identifiers o
and public keys p, for revoked tokens. The SecureDNA team
explained that they did not incorporate standard revocation
protocols for X.509 (such as OSCP [34]) because of the
additional burden on SecureDNA. Similarly, they did not
empower S to act on revocation lists for K and H. Instead,
if JIC or H is compromised, they plan to re-key H. Whenever
the root key is changed, SecureDNA would also have to issue
a new client, because the root certificates are embedded into
the client software.

E. Authentication Tokens

SecureDNA uses three types of authentication tokens: S
uses Synthesizer tokens T:%; to authenticate to H and X
[E11,E12]. Each has a wups field containing an identifier for
the synthesizer, and a rate limit p for the synthesizer. These
tokens are bundled with chains rooted in C’%%’ rr- Keyserver
K uses Keyserver infrastructure tokens T\ ’; to authenticate to
S. Each has a uji field containing K’s ID in the secret sharing
scheme [E5,E6]. H uses Database infrastructure tokens T;Z‘
to authenticate to S. Each has an empty upy [E8,E9]. The
keyserver and database infrastructure tokens are bundled with
chains rooted in C;‘R, TR

F. Exemption-List Tokens

C uses exemption tokens Tfy to permit synthesis of dan-
gerous sequences. Each has a up containing a list of exempt
sequences sg, and an identifier m¢ 4 for an authenticator
device (e.g., YubiKey) issued by A [E13,E14]. These tokens
are bundled with chains rooted in C%; z. The public key p,
in Tgfy is optional, and is not used for authenticating token
users. The only use of the key pair (p,,d,) is to issue sub-
tokens T'E | which are copies of T.F, with the restriction that

z,y°
the sequences in u s must be a subset of the sequences in ug.

G. Source Code

The SecureDNA system is written mostly in the Rust pro-
gramming language [35]], which enforces memory safety. We
analyzed Version 1.0.8 of the source code [9]], which comprises
approximately 64,000 lines of source code across nearly 300
files. SecureDNA adopts a TLS implementation from a Rust
package. To our knowledge there is no external documentation.
There are only sparse comments for the internals of the code
and only sparse descriptions of user-facing functionality. F
distributes software using a trusted Linux package manager.

V. SECUREDNA PROTOCOLS

We explain the two main protocols that the Synthesizer S
uses to screen order requests for hazards: the basic order-
request protocol and the exemption-handling protocol. These
protocols transform sequences s using a keyed DOPRF
fr(s) = M(s)*, where k is a key and M is a cryptographic
hash function. These computations take place in a prime-order
group in which the Decisional Diffie-Hellman (DH) Problem is
hard [36]. Figures summarize how these protocols work;
for more details, see the associated Ladder Diagrams @-@



2. § and K mutually
authenticate

Synthesizer S
M M T
T5.s,ds, Cs,rr,ds., Crp,7r

1. sequences s
!. .,
~

___——-_‘—-ﬁ
5. § and H mutually authenticate ‘

Keyserver K

G & T, dx, C¥ rr

-
-
-
-

T

8. synthesis request response

Customer C 3. blinded sequences M (s)”

4. blinded keyed hashed sequences f(s)?

—==SSEERRREZS

(accept/deny)

7. query response 6. keyed hashed sequences f(s)

Key

(present/not present)

T)‘?:Y: Token of type W issued to X by Y

C.%/Z.YV: Certificate of type W issued to

1 HTTP
X of level Z by Y of level V
Keyed Hashed Database H dx: Private key of X
T;{z:t;, du, C}%,IR k: Keyed hash key HTTPS

fi(z): DOPRF function applied to data x

Fig. 2. The basic order-request protocol. Steps 2 and 5 call a custom mutual authentication protocol SCEP (see Section [VIII-A).

When & communicates with the Keyserver or the Hashed
Database, the entities first establish authentication using a
custom authentication sub-protocol SCEP that involves ex-
changing nonces and authentication tokens (see Figures fH3).

A. Basic Order-Request Protocol

As shown in Figure [2] the basic order-request protocol
begins with the Customer C sending its synthesis request s
to S. Synthesizer S blinds s and sends it to K (actually,
to several keyservers). The keyservers apply their keyshares,
and return the results to S. Then S combines the responses
from the keyservers and unblinds the result to form the keyed
hash of the request. S sends this keyed hash to . Next, H
responds stating whether the keyed hash is in its database.
Finally, S reports back to C whether their synthesis request
is allowed or denied. Because the communication between
C and S is intended to be hosted locally, by default this
communication occurs via HTTP; optionally, HTTPS can be
used. Communication between S and H, and between S and
K, occurs in a one-way authenticated TLS channel supported
with certificates for H and . At the beginning of these
communications between S and H, and between S and K,
the roles complete a custom mutual authentication protocol

SCEP (see Section [VIII-A).

B. Exemption-Handling Protocol

As shown in Figure [3] the exemption protocol is similar to
the basic order-request protocol. C' sends to S its synthesis re-
quest s, exemption-list token TCE7  obtained from the Biosafety
Officer B, and authenticator code a (a one-time passcode)
from the authentication device listed in the exemption-list
token. S performs the same exchange involving & with K
as in the basic order-request protocol. Then, & performs a

second round with K to hash each of the sequences in 7| Cth.
After S has assembled all keyed hashed sequences, S sends
to H the keyed hash sequences, chjB» and a. Then, H verifies
the appropriateness of TCB?B by sending to the Authentication
Backend A the authenticator device name, a, and a timestamp.
A responds with an OK or error. If A responds OK, #H checks
if the keyed hash of s is in its database. If it is, 7 checks
if s is in the exemption list. H then reports back to S if
the keyed hash request is in its database, and if so, if it is
in the exemption token. S reports back to C whether their
synthesis request is granted. The communication from H to
A is an HTTPS request. Communication between S and H,
and between S and KC, occurs in a one-way authenticated
TLS channel supported with certificates for H and K. At
the beginning of these communications between S and H,
and between S and /C, the roles complete a custom mutual
authentication protocol SCEP (see Section [VIII-A).

VI. ADVERSARIAL MODEL

We assume a malicious model in which a protocol commu-
nicant does not have to follow the protocol. More specifically,
we assume the DY model in which the adversary has full
control over all messages on the network and can manipulate
an unbounded number of protocol sessions. The adversary
can perform the roles of the legitimate communicants. The
adversary cannot break cryptographic primitives but can com-
pute keyed cryptographic primitives when the adversary knows
the keys. Objectives of the adversary include learning the
sequences in the order request, learning some or all plain text
entries in the hazards database, and causing the synthesizer to
synthesize a sequence in the hazards database (for which the
adversary does not have permission to synthesize).



Synthesizer S

1. sequences s,

TCL:B, Auth Device Code

Customer C a Lo — O
E I-'l lv.
TC,B) me, A T <
10. synthesis request response

(accept/deny)

M M '
TS,SE dS) CSL,}'L dSLJ C}'R,}'R

2. § and K mutually
authenticate

Keyserver K
K M
l k: TlC,}'a d'(a CIR,FR

00

3. blinded sequences and
exemption sequences M (s)?, M(sg)?

4. blinded keyed hashed sequences
fr(9)?, fr(se)’

5.8

and ‘H mutually authenticate ‘

9. query response
(present/not present)

Authentication 8. authentication

Backend A  response (OK/ERR)
Keyed Hashed
@n 1 E Database H
ES T’){i?-,tfv d’H-J

7. auth device code,

C]\/I CE
. FR,FR:» Y FR,FR
auth device name,

timestamp

Fig. 3. The exemption-handling protocol. C’s request includes an ELT signed

6. keyed hashed sequences fr(s), fr(sE), TCL:B, Auth Device Code

Key

T;(/‘,,Y: Token of type W issued to X by YV

C;)(VZ,YV: Certificate of type W issued to

HTTP
X of level Z by Y of level V
dx: Private key of X
k: Keyed hash key HTTPS

mx y: Authenticator device of X for backend Y

fr(x): DOPRF function applied to data x

by B and a one-time passcode (the “Auth Device Code”). In H’s response

to S, H sends a list of sequences that are in its database, with boolean flags indicating which sequences are also in the exemption token. H verifies that C
included a valid passcode. Steps 2 and 5 call a custom mutual authentication protocol SCEP (see Section [VIII-A).

Inherent limitations of the system include that the customer
and synthesizer learn whether the order request is in the
Database D, and a malicious synthesizer can synthesize any
sequence.

VII. CIRCUMVENTING RATE LIMITING

SecureDNA includes rate-limiting mechanisms that aim to
make exhaustive “dictionary attacks [on D] impossible” by
limiting the number of queries that can be made on A in a
given time [3| p. 3]. We explain how rate limiting works and
point out an attack that exploits the failure of SCEP to provide
mutual authentication.

The main stated purpose of rate limiting is to achieve SG1.
The SecureDNA team explained that another purpose is to
detect software errors. We note that rate limiting can also try to
defend against certain types of DoS attacks. Without debating
the significance of SG1 (see Section [V-B) and without dis-
cussing technical biological issues involving the relationship
of SG1 to determining functional variants of hazards, we will
analyze SecureDNA’s rate-limiting mechanisms.

A. How Rate Limiting Works

SecureDNA includes two classes of rate-limiting mecha-
nisms: (1) software mechanisms that attempt to limit the num-
ber of times K executes the DOPRF, which limits the number
of queries & can make on H, and (2) auditing mechanisms that
attempt to monitor, detect, and react to unreasonable behaviors,
implemented by non-public software (which we have not seen)
and human intervention.

The software mechanisms work as follows. Every time S
executes the basic-request or exemption-handling protocol, K
and H separately record in their own query-databases the
time and number of sequences requested by S. Entities X
and #H index their query-database by the identifier o in S’s
authentication token Té‘{s. Entities X and H check if the total
number of sequences requested by S within the previous 24
hours exceeds the rate limit y in 7. é\,{s [E20].

The SecureDNA team explained that auditing mechanisms
provide their main defense against dictionary attacks and cer-
tain other malicious behaviors. They stated that their reactive
capabilities include the ability to revoke tokens, certificates,
and entire certificate chains.

B. Potential Vulnerabilities

The failure of SCEP to provide mutual authentication is
a serious vulnerability for rate limiting and DoS: because
neither H nor K know with whom they are communicating,
it is difficult to identify which actor is initiating a request.
The SecureDNA team stated that knowing the identity of
the initiator is not necessary because queries are associated
with authentication tokens, not actors. We will show, however,
that it is possible for the adversary to steal and misuse
authentication tokens.

Concerning the software mechanisms, the following facts
might in some contexts be potential vulnerabilities [E21]:
(1) F has no control over the rate limit pu: S creates its own
authentication token Té‘{s, setting its own u, which can be any
64-bit integer. Note, however, that servers now limit queries



operationally (see Appendix [B). (2) F has no control over
the token identifier o in T2%, which S chooses. (3) There is
no limit on the number of authentication tokens S can create.
(4) & can manufacture any number of valid leaf certificates.
(5) The Auth Device Code is not bound to context, enabling a
corrupt I or H to steal and misuse it. The SecureDNA team
explained that they do not view these facts as vulnerabilities
because they guard against rate-limiting attacks primarily with
auditing and re-spinning. They also explained that, to avoid
undue administrative burden, they do not want F to authorize
tokens 745 created by S.

C. Attacks

(1) We describe a rate-limiting attack that exploits the
weakness that SCEP provides only one-way authentication. In
this attack, the adversary is a malicious K’, which is possible
within SecureDNA’s adversarial model [5], [6] and our DY
model. For example, K’ might be the adversary performing
the role of KC or it might be a compromised . An honest S
connects with K’, which enables I’ to learn S’s authentication
token without breaking TLS. This connection is possible if S
trusts a compromised signing key included in K’s certificate
chain. Then, following a strategy similar to that in Lowe’s [12]]
attack on NS, K’ connects with an honest I masquerading as
S, using S’s authentication token. After authenticating, the
adversary K’ now can issue as many queries as they desire
without detection, up to the rate limit for S and the auditing
limit. From the perspectives of K and auditors, the queries are
associated with S. See Appendix [D] for details.

The adversary K’ can repeat this attack exploiting different
synthesizers without detection by the software controls. Even-
tually, the auditing controls would likely notice a suspicious
increase in the total volume of requests, even though they
would not necessarily know the cause of this increase. The
SecureDNA team stated that their monitoring software would
identify the offending server.

As a proof-of-concept, we implemented our MitM attack
against a corrupt keyserver. The attack works as we envisioned.
For source code and pcap files, see our artifacts [17].

A very similar rate-limiting attack is also possible involving
a corrupt H’, who can masquerade as S to H. The attack can
also be adapted as a DOS attack, using ideas from (2).

(2) Before we learned of SecureDNA’s auditing strategy,
we pointed out that, if the system worked solely as defined in
the publicly available software, then an adversary could carry
out certain malicious activities without detection. For example,
due to intentional design and implementation features, anyone
could circumvent query rate limits by setting a high rate
limit or generating many additional nodes and tokens in the
certificate hierarchy. Also, an adversary could cause DoS by
creating and misusing tokens with identifiers that collided with
those of legitimate tokens, prompting SecureDNA to revoke
legitimate tokens (e.g., for exceeding rate limits).

We observe, however, that the adversary could not in
other contexts directly reuse a harvested authentication token
because the adversary would also need its private key. The

adversary might not be able to reuse an ELT directly because
the ELT is also protected by a two-factor device m.

D. Risks

The risk of Attack (1) is low. The adversary must trick
synthesizers into connecting with X', for example, by compro-
mising ' or manipulating the management of root certificates.
Eventually auditing will detect a suspicious increase in total
volume of queries, including queries associated with X' or H’;
and there is limited value in learning D. Also, a malicious X'
or H' could carry out other simpler attacks, such as disabling
rate limiting or returning incorrect answers. Nevertheless, the
adversary would likely be able to learn some entries of D.
It would be stronger security engineering to prevent this
protocol-interaction attack by requiring mutual authentication,
as Release 1.1.0 now does.

The SecureDNA team stated that Attacks (2) would be
detected and shut down by their auditing mechanisms, and
that collisions would be detected upon revocation.

VIII. WEAK AUTHENTICATION AND INADEQUATE
BINDINGS

We identify structural weaknesses in SecureDNA’s SCEP
custom mutual authentication protocol and in bindings of
ELTs, authentication tokens, and responses from H. These
vulnerabilities violate the principle of defense in depth, and
the binding weakness permits a response-swapping attack if S
were to reconnect with 7 over the same TLS session (which
the implementation disallows). We begin by explaining SCEP.

A. Server Connection Establishment Protocol (SCEP)

As shown in Figure [ in the basic-request and exemption-
handling protocols, when S communicates with /C or H, rather
than using mutual TLS (mTLS) [37], SecureDNA engages in
a custom mutual authentication protocol, called the Server
Connection Establishment Protocol (SCEP) [E15,E16,E17].
For a discussion of this design choice, see Section
SecureDNA’s documentation clearly reveals that SecureDNA
intended for SCEP to achieve mutual authentication—for
example, the file containing the functionality is called “mu-
tual_authentication.rs” [E22]. SCEP begins by establishing a
TLS channel, which by default is based on one-way authenti-
cation. During SCEP, § receives a HTTPS request cookie w,
which & uses to authenticate future messages in the basic-
request or exemption-handling protocol. This cookie w is
different from a SecureDNA authentication token.

B. Vulnerabilities

As shown in Section SCEP does not achieve mutual
authentication. S authenticates the server (H or ), but the
server does not know with whom it is communicating. The
security properties of TLS with SCEP, including with respect
to authentication, are only slightly greater than those of
TLS alone. In terms of Lowe’s authentication hierarchy [38]],
using SCEP adds only the lowest guarantee—Iiveness. This
vulnerability stems from the omission of session parameters



w and the server certificate from S’s signed response; that is,
the vulnerability stems from a failure to cryptographically bind
the response to the context.

Similarly, in the basic-request and exemption-handling pro-
tocols, neither any response from X nor any response from H
is cryptographically bound to S’s request. Consequently, an
adversary might—in some situations—be able to replay and
swap these responses out of context, as we will next show. The
one-time passcode a sent by C is not bound to the context and
hence can be reused by any malicious recipient.

C. A Latent Response-Swapping Attack

SecureDNA’s weak authentication and binding are unde-
sirable characteristics that violate the principle of defense
in depth. Section [VII| explains a rate-limiting attack made
possible by SCEP’s one-way authentication.

We now explain how the inadequate binding of H’s re-
sponses might permit a latent response-swapping attack with-
out violating the TLS channel. Suppose S reconnects with
‘H over the same TLS session (with the same keys). The
adversary could then potentially violate SG3 and SG4 by
swapping a query response in the second connection with the
corresponding one from the first connection. This hypothetical
attack does not assume a malicious S, H, or K.

To carry out this attack without detection, the adversary
would have to deal with the following technical issues, which
might depend in part on the TLS implementation. First, the
response swapping can be accomplished by manipulating bits
at the TCP network layer, which is easy to do [39]. Second,
the swapping must not change the TLS MAC value [13], [16],
which depends in part on the sequence number. For TLS
1.2 and 1.3, the sequence number is direction specific and
always begins with zero [15]], [16l]. Thus, responses in the
same locations from the two connections using the same keys
will have the same sequence numbers and thus can be swapped
without changing the MAC value.

We observe, however, that if the adversary modified mes-
sages sent from S to K, the adversary would be detected given
the “active security” measures in place for protecting against
malicious K’s [5]].

D. Risks

The risk of the response-swapping attack depends in part on
the likelihood of S reconnecting with 7 over the same TLS
session. We understand that the SecureDNA implementation
does not permit reconnections or 0-RTTs, so this attack is
not possible. Specifically, by default, TLS 1.3 implementations
set reconnections and O-RTT off [E23]. If, however, a future
SecureDNA implementation allowed reconnections, the con-
sequence could be that S takes incorrect actions, synthesizing
hazards and denying legitimate synthesis requests. Although
the overall risk might be relatively low, it would be stronger
security engineering to avoid this latent vulnerability.

The new Version 1.1.0 release includes an optional mode
(which we have not studied)—called verifiable screening—
in which S sends a hash of the query to H, and H returns

to S a signed hash of several items including the hash of the
query, H’s response, and metadata. Although the purpose is to
enable S to save proof that it had screened the order, properly
executed this strategy can also solve the binding weakness,
albeit inefficiently.

IX. FORMAL-METHODS ANALYSIS OF SCEP

We apply the strand-space formalism to analyze security
properties of the custom SCEP protocol (see Section [VITI-A),
which executes within a one-way authenticated TLS session.
The purpose of SCEP is to mutually authenticate the synthe-
sizer S with the infrastructure system K or H. To carry out our
analysis, we (1) define a strand space (Definition [X.I)) for the
combined TLS-SCEP protocol, (2) formalize the SCEP mutual
authentication security goal as a pair of logical formulas
describing properties of distinct execution models on the
SCEP strand space, and (3) use CPSA to verify the formal
security goals. Our CPSA inputs and outputs are available on
GitHub [17].

It is useful to introduce the concept of a trace, which is a
finite, non-empty sequence of events (message transmissions
or receptions) that take place within a designated channel.

Definition IX.1 (Strand Space). A directed term is a pair
(d,t), where t € A (A is the set of all possible protocol
terms, or messages) and d is either incoming (—) or outgoing
(+). A strand s comprises a trace of directed terms, where s
specifies the actions of a legitimate party or of the adversary.
A strand space is a set X of strands.

A. SCEP Strand Space

To define the SCEP strand space (Definition [X.8), we
define penetrator strands that model adversarial behavior and
regular strands that model behavior of legitimate protocol
roles. Definition specifies the set X,., of penetrator
strands. Definition specifies sets of regular strands that
carry out the roles of the synthesizer ¥scpp_sr and the
responder Xscrp-_rs. We use the SCEP strand space, which
combines the penetrator and regular strands, to model protocol
executions that potentially incorporate adversarial behavior.

Definition IX.2 (Penetrator Strands). Let 77 C A be a set
of atoms that represent principals, string literals, keys, and
nonces. Let K C T be a set of all encryption keys, including
inverse keys. Let e(t, k) be the encryption of term ¢ under key
k. Depending on whether £ is a symmetric or asymmetric key,
e(t, k) may denote either symmetric or asymmetric encryption;
k is a symmetric key when k~' = k. The set X,.,, is a set of
all strands p, where p has one of the penetrator traces below:

1) Generate(t): [+t] where t € T

2) Encrypt(g,k): [ — g,—k,+e(g, k)] where g € Ak €
K.

3) Decrypt(e(g, k), k=1): [—e(g, k), —k~1, +g] where g €
Ak ' e K.

4) Hash(g): [ — g,+h(g)] where g € A.

5) Concatenate(g,h): [ — g, —h,+gl||h] where g,h € A.

6) Separate(g|lh): [ — g||h, +g,+h] where g, h € A.



Because SCEP depends on an existing one-way authenti-
cated TLS connection, we provide and incorporate traces for
TLS 1.2 with ephemeral DH key-exchange (Definition [[X.4).
SCEP supports TLS 1.2 and TLS 1.3 channels, specifying that
TLS 1.2 must use an ephemeral DH ciphersuite. Based on
a previous analysis [40], traces of TLS 1.2 with ephemeral
DH and TLS 1.3 are cryptographically equivalent. SCEP
and the underlying TLS connection depend on asymmetric
cryptography. In Definition the function pk expresses
a principal’s public key, and sk expresses the corresponding
private key.

Definition IX.3 (Public and Private Keys). Let pk : Name —
K and sk : Name — K be one-to-one functions with disjoint
images such that pk(a) = sk(a)~! for all a € Name.

Definition IX.4 (TLS Traces). We define traces that establish
a TLS handshake between a client C' and a server .S. First, we
define the terms we use within the trace:

e C,S,CA € Name
ra,rs € Nonce
es,ec € Fxpt
Certg : S||pk(S)|le(h(s, g°%), sk(C A)))
Sk : 9% le(h(relrsllg*®). sk(S))
PMS : ges*ec
CwriTe : h(PMS,rc, g, “client-write”)
SwriTe : h(PMS,ro,rg, “server-write”)
Cruesc :rollrs||Certs||Ske
Crin:
e(h(PMS||“client-fin”
SrIN :
€(h(131\45||“SeI‘V€1’-ﬁH”||CYF]\/[ESG||C'F[N)7 SWRITE)-
Let trace
TTTLSfC(Ca S, CA, re,rs,€s, ec) =
1) +rc
2) —rg||Certs||SkE
3) +9°°l|CrIn
4) —SpIn.
Let the complementary trace
TTTLsfs(C, S, CA, re,rs,€s, ec) =
D
2)
3)
4)

Cryvesa), CwRITE)

—ro
+Ts||Ce7“ts||SKE
—9°°l|CrIN
+SFIN.

For the SCEP strand space, we specify a simple token
(Definition [[X.5) that acts as a certificate of a principal’s public
asymmetric key. By contrast, the system implementation to-
kens embed custom SecureDNA certificates and corresponding
signatures. From our analysis, this simplification provides
equivalent security guarantees (under the assumption that
the SecureDNA foundation is an honest certificate authority
(CA)), while simplifying execution models resulting from the
SCEP strand space.

Definition IX.5 (SCEP Token). Let X,Y € Name, data €
Text.

10

Let Tokx,y = “Token”|| X ||pk(X)||Y||pk(Y)||data.
We define an SCEP token as a compound term with the
structure

TX,Y = TOkX7y||€(h(TOkX7y), Sk‘(Y))

Definition IX.6 (SCEP Traces). We define traces that carry
out SCEP between S and a responding infrastructure server
IKC or H, which we define as WW. As before, we first define the
terms that we use within the traces:

o« SW,M,CA € Name
TS, W, s, T, w € Nonce
es,ew € Fxpt
Ts ar (Definition [IX.5)
Tw ca (Definition
SwriTe : h(g®s %W, rls, 1)), “client-write”)
WwriTe : h(g°S W, 15, 1)y, “server-write”).
Let TTSCEP*SW(Sv W7 M, CA, rs, "W, Tfs, ’l"{,\” w,es, ew) :
D) Trrps—c(S,W,CA, 75,7}y, es, ey) (Definition [X.4)
2) +e(rs||Ts,n, SwriTE)
3) —e(wllrwl|Tw.ca
||e(h(“server-mutauth”, rs, ryw, Tw.ca), pk(W)),
WwRITE)

4) +e(w
[le(h(“client-mutauth”, rs, rw, Ts ar), pk(S)),
SWRITE)-

Let Trscgpp—ws be complementary to Trscep—sw.
such that Trscgp_ws (1) includes Trpps_g rather than
Trrrs—c, and (2) inverts the directions of terms 2, 3, and
4.

Definition IX.7. We define two sets of “regular” strands that
carry out the SCEP protocol:

1) Let Xscrp_syy be the set of all strands with a trace of
the form Trscepp_sw.

2) Let Xscrp_ws be the set of all strands with a trace of
the form Trscep_ws.

Definition IX.8 (SCEP Strand Space). The SCEP strand space
comprises Xy, U Xscpp-sw U Xscep-ws.

B. Security Goals
We state formal security goals (Definitions [IX.13} [IX.14)

for SCEP. To begin, we first formalize confidentiality (Defini-
tion[IX.10) and agreement (Definition [X.TT)). These high-level
security goals assert that, within a given strand space P and
under an explicit set of origination assumptions, there exist
no execution models (i.e., shapes), for which the specified
properties do not hold. Later, we compose these definitions of
confidentiality and agreement to define specific security goals
for SCEP and the SecureDNA query and exemption protocols.

To prove confidentiality properties of execution models
within a strand space P, we define listener strands (Defini-
tion . To test the confidentiality of a sensitive value x, we
define a listener strand with trace 7'r - (z). An execution model
of P that satisfies Tr,(x) illustrates a manner in which z
leaks to the adversary. Thus, to prove confidentiality, we show



that there exists no listener strand Tr.(z) in any complete
execution of P.

Definition IX.9 (Listener Strands). A listener strand for t is
any strand with trace Trz(t) = [ — t,+t], where ¢t € A is an
arbitrary term. Let ¥ be the set of all listener strands.

Definition IX.10 (Confidentiality). Let T'ry be any trace in
P. Let ¢ be any term for which to test confidentiality. Let orig
be the conjunction of origination predicates. Let V be a list
of parameters of trace T'rx, such that the term ¢ is an element
of V. For any strand » € P, r : T'r indicates that r has trace
T'r. Then,

Confp(Try,t,orig) &f

(Vr,l e PUS,,r: Tra(V)AL: Tre(t) Aorig = 1).

Definition IX.11 (Agreement). Let Trx be any trace in P.
Let T'ry be any trace in P such that Try # Try. Let c
be any list of values for which to test agreement. Let Vy be
a list of parameters of the trace T'ry and Vy be a list of
the parameters of trace T'ry. Let orig be any conjunction of

origination predicates. Then,

Agreep(Trx, Try, 6, orig) &f

(VreP,r: TTX(YX UﬂC’) A orig —
dseP,s: Try(Vyul)).

Definition IX.12 (SCEP Terms). Let T be the list of terms:

1) SW,M,CA € Name
2) rs,TW, T, T, w € Nonce
3) es,eyw € FEapt.

We formalize security goals of SCEP from the perspective
of § (Definition and from the perspective of W (Defi-
nition [X.14). Each of these definitions specifies origination
assumptions of the cryptographic perspective of S or W,
and comprises a conjunction of subgoals: (1) confidentality
of w, and (2) agreement on the identities S and W, the
corresponding nonces s, 7y, and w. Should both goals hold
for all unique execution models in the SCEP strand space,
we prove that w does not leak to the adversary and that
S and W achieve injective agreement [38] on the SCEP
session parameters. Because of a crucial weakness in the SCEP
(Section [X-C)), we find SCEP is not “W-S” secure.

Definition IX.13 (SCEP S — W Secure). Let orig be the
conjunction of the following origination assumptions on 7":

1) Non(sk(S)), Non(sk(W)), Non(sk(M)),
Non(sk(CA)), where Non indicates non-origination,
and

2) Unig(w), Unig(rs), Uniq(rs), Unig(es), Unig(ew)),
where Uniq indicates unique origination.

Uniquely originating terms are unknown to protocol partic-
ipants and the network until a legitimate strand emits them as
part of a message, enabling us to model random nonces, fresh
secret keys, and other values that must be unique for each
execution of a protocol. Non-Originating values are values
such as private keys, which the adversary does not know,

11

cannot guess, and will never appear on the network in a
decryptable form.

An SCEP strand space P is S — W secure if and only if
(iff) the conjunction of the following security goals holds:

—.

1) Confp(Trscep-sw(T),w,orig), and
2) Agreep( . .
Trscep—sw(T), Trscep-ws(T),
[87 Wa rs,Tw, WL OI‘ig).

Definition IX.14 (SCEP W — S Secure). Let orig be the
conjunction of the following origination assumptions on 7"
1) Non(sk(S)), Non(sk(W)), Non(sk(M)),
Non(sk(CA)), where Non indicates non-origination,
and
2) Unig(w), Unig(rw), Uniq(ry,), Unig(es),
Uniq(ew)), where Unig indicates unique origination.
An SCEP strand space P is W—S secure iff the conjunction
of the following security goals holds:

—.

1) Confp(Trscep-ws(T),w,orig), and

2) Agreep(Irscep-ws(T),
TTSCEP—SW (T)7 [87 W7 rs,Tw, OJ], Orig)'

C. Analysis

Using CPSA, we describe all minimal, essentially different
execution models (shapes) within a strand space under a spe-
cific security goal’s origination assumptions. Theorems |LX.
and prove assertions about these SCEP security goals. A
security goal holds iff it is true for all shapes possible within a
strand space, which CPSA might verify by exhaustive search.
A single counterexample is sufficient to disprove a security
goal, when CPSA constructs a potential attack.

Theorem IX.1 (SCEP & — W Security). If P is an SCEP
strand space, then P is S — W secure.

Proof by Enumeration. Carrying out an exhaustive search,
CPSA enumerates all essentially different (unique) shapes
under the S — W security goal assumptions. None of these
shapes contradict the security goal. O

Theorem [X. 1] holds because S establishes a confidental and
authenticated TLS channel with WW. As a result, the synthesizer
believes w to be confidential and agrees on w and the nonces
rs, Ty with the responder.

Theorem IX.2 (SCEP W — S Security). If P is an SCEP
strand space, then P is not VW — S secure.

Proof by Counterexample. Using CPSA, we identify all
unique shapes that contradict the confidentiality and agreement
subgoals.

Confidentiality. In each shape, a listener strand learns the
value of w when VW communicates with penetrator strands
masquerading as a legitimate client.

Agreement. In each shape, a legitimate strand with the trace
of W fails to agree on the values of w, rs, 7y with any regular
strand. O



In counterexamples that prove Theorem penetrator
strands establish parallel TLS connections with the legitimate
W and S. Consequently, an adversary is able to break the
confidentiality and agreement subgoals. This failure results
from (1) the one-way authentication of TLS, which only
authenticates the server to the client, and (2) SCEP’s failure
to mutually authenticate S and W.

SCEP fails to mutually authenticate because it fails to make
explicit the intended recipients of Messages (3) and (4) in the
trace (Definition [[X.6), enabling a MitM attack. This flaw is
similar to that of the 1978 NS public-key protocol. Due to this
weakness, composing SCEP with TLS produces an outcome
no more secure than one-way authenticated TLS, which fails to
satisfy the SCEP goal of mutual authentication. In Section
we propose and formally verify improvements to the SCEP
that enable mutual authentication, and thus W — S security.

X. SUGGESTED IMPROVEMENTS, INCLUDING TO SCEP

We propose and verify a correction to the SCEP that satisfies
our formal security goals (Section [X-B). In summary, the
SCEP fails to mutually authenticate because it does not bind
critical values (token of the other party, request cookie) to the
hash that each communicant signs and transmits. The result
is that S is certain of the identity of YV (because SCEP
runs within a one-way authenticated TLS session), but W
has no guarantee that the cookie w remains confidential, and
W cannot determine that it communicates with any legitimate
instance of S. To correct this error, we modify the SCEP traces
in Section and repeat our analysis on the resulting strand
space for our improvement, which we call SCEP+.

First, we update the SCEP traces (Definition [IX.6)) to include
additional information in the hashes by incorporating both
communicant tokens and the cookie into each hash (Defini-
tion [XI). Each party signs its hash using a key unknown to
the adversary. This step binds w and the tokens Té‘f[M, T{VF cA
within a single SCEP session.

Definition X.1 (SCEP+ Traces). Let Trscep+-sw
and Trscep+—ws modify the traces Trscrpp_sy and
Trscep—ws (Definition [[X.6) with the alterations:

1) h(“server-mutauth”, rs,mw,w, Ts ar, T ca)
2) h(“client-mutauth”, rs,rw,w, Ts am, Tw.cA)-

Next, we update the definitions of SCEP & — W (Defini-
tion and W — S (Definition security with the
SCEP+ traces. Because we are not adding any terms, the
security goals do not change. We refer to these security goals
as SCEP+ S — W and SCEP+ W —S.

Finally, we state and prove two new theorems that assert
confidentiality of w and agreement on the session parameters
for SCEP+. Because SCEP+ includes sufficient encrypted
information in each message, both parties are able to authen-
ticate each other. As a result, we prove Theorem @] and
Theorem [X.2] using CPSA.

Theorem X.1 (SCEP+ S — W Security). If P is an SCEP+
strand space, then P is S — W secure.

12

Proof by Enumeration. There exists no shape that contradicts
S — W security. O

Theorem X.2 (SCEP+ W — S Security). If P is an SCEP+
strand space, then P is WW — S secure.

Proof by Enumeration. There exists no shape that contradicts
W — S security. O

Our improvement, SCEP+, does not require any additional
cryptographic calls and requires minimal changes. SCEP+
achieves SCEP’s goal of mutual authentication. Software re-
lease 1.1.0 implements our recommended SCEP+ protocol,
which change involved approximately five lines of code.

XI. DISCUSSION

Our study highlights that a secure system requires more than
sound abstract mathematical cryptography and UC proofs;
a secure system also needs careful attention to design, en-
gineering, implementation, usability, key management, and
procedures, and careful attention to many associated details.
Useful, clever, novel cryptography underlies the SecureDNA
system [3]], but to achieve its security goals, the system also
depends on its protocols, system design, and implementation.

The way the SecureDNA system deals with authenticated
channels is problematic and inconsistent. Communications are
initiated with one-way TLS, not mTLS. In addition to TLS,
SecureDNA uses its own flawed custom mutual authentication
protocol SCEP. If SecureDNA trusts TLS, then deploying
an additional authentication protocol would add unnecessary
complexity. If SecureDNA does not trust TLS, then it should
use a strong protocol that performs effective cryptographic
bindings (see Section [XII-B).

Our analysis of SecureDNA highlights several important se-
curity engineering principles that can serve as lessons learned
for others. (1) Cryptographically bind protocol messages to
their full context so that they cannot be misused out of context.
Almost all known structural weaknesses of protocols violate
this essential principle. (2) Favor proven standard solutions
over custom protocols. Carefully document and justify de-
viations from this principle. (3) When designing protocols,
work throughout the process with experts in formal-methods
analysis to ensure that appropriate security goals are achieved.
(4) Be aware that secure channels might fail at the PKI level
for a variety of reasons, and where appropriate, add a second
layer of defense at the application layer.

Although it would be impossible for us to know all of the
rationale behind the SecureDNA team’s design choices, we
understand that their decision not to use mTLS was interwoven
with their decision not to use X.509. They explained that
they avoided using X.509 because of its complexity, failure
to support threshold roots, and limited support in the Rust
ecosystem. In making this engineering tradeoff, they assumed
greater risk in the subtle non-trivial task of designing their
own mutual authentication protocol.

SecureDNA relies heavily on security operations center
(SOC) software and procedures against rate-limiting attacks



and other malicious behaviors. Although there is a role
for such monitoring, it would be better where possible to
strengthen the protocols rather than to rely on SOC as a
first line of defense. Even if auditing procedures are currently
meticulously followed, there is no assurance that they will
continue to be properly followed in the future. Experience
shows that effective monitoring is expensive and difficult to
maintain over long periods of time. There is no assurance
that the SOC software is free of errors, and all controls
must be sensitive to differences among providers. Although
SecureDNA’s SOC provides significant protection against our
rate-limiting attacks, better protocol design and engineering
practices might reduce the risk of human error in these areas.

The SecureDNA protocols depend strongly on the confi-
dentiality, authentication, and integrity properties of the TLS
channel. In some settings, however, TLS channels can be
defeated due to poor management of root TLS certificates or
vulnerabilities with a corporate firewall that acts as a MitM
TLS proxy to monitor traffic [41]]. SecureDNA cannot control
the security practices of the providers.

The structural vulnerabilities we uncovered in the protocols
might have been avoided if formal-methods analysis had
been used throughout the design and evaluation process. It
would have been helpful to state security goals formally, to
construct formal protocol models, and to perform formal-
methods analyses on those models. It would have been helpful
to collaborate with experts who have the capability to perform
such formal-methods analyses.

Open problems include a security review of the software im-
plementation, including the auditing capabilities. For example,
the SecureDNA system deploys a web form through which B
applies for an ELT. Vulnerabilities are very common in such
forms, and a vulnerability in this form might enable attacks
that circumvent . Given that SecureDNA depends critically
on TLS, it would be prudent to perform a thorough security
review of its implementation and integration of TLS.

XII. FINDINGS AND RECOMMENDATIONS

We summarize our major findings of vulnerabilities and
offer recommendations for mitigating them.

A. Findings

(1) The custom SCEP protocol achieves only one-way
authentication. This structural weakness enables the adversary
to circumvent rate limits and mount DoS attacks, if S connects
with a malicious or corrupted H or .

(2) The system lacks adequate cryptographic bindings of
certificates, tokens, and responses, including of responses from
‘H to S. This undesirable structural weakness prevents the
system from detecting if responses, within a TLS channel,
from the hazards database were modified. If a synthesizer
were to reconnect with H over the same TLS session (which
the implementation disallows), the adversary could replay and
swap responses from H without breaking TLS.

(3) Appendix [B] points out several additional security issues,
including providers possibly storing passphrases in plain text

13

files, and depending in part on the assurance of email for
auditing alerts and records. These examples illustrate diffi-
cult challenges stemming from engineering tradeoffs, limited
options, and lack of control over provider actions.

(4) From discussions with the SecureDNA team, we learned
that part of SecureDNA’s security strategy depends signifi-
cantly, not on a model of prevention, but on a model of mon-
itor, detect, and respond. SecureDNA carries out this strategy
using non-publicly released source code (unavailable to us)
and a combination of automatic and manual interventions.

B. Recommendations

To mitigate the security vulnerabilities we identified, we
recommend the following:

(1) To mitigate the vulnerabilities from Section in-
stead of using the custom authentication protocol SCEP, use
mTLS [37]]. Given that SecureDNA provides certificate hierar-
chies, it would be relatively simple to do so. Similarly, instead
of using a custom certificate structure, start with a standard one
such as X.509 [42] (see also Appendix . In the alternative,
as newly released Version 1.1.0 does, replace SCEP with our
suggested SCEP+, as explained in Section

(2) In each of the protocols, strengthen the cryptographic
binding of messages to context. For example, bind each
response from H to the associated query from S. Also, bind
messages and tokens to the channels in which they are used
(e.g., see [25], [43]).

(3) Perform a thorough security review of SecureDNA’s
implementation and integration of TLS.

(4) As is true for most systems, it is important to devote
great attention to detailed issues of system design and opera-
tions, including those identified in Appendix [B] For example,
SecureDNA does recommend to providers that they store
keys appropriately, including in TPMs [44] when suitable, but
SecureDNA cannot control such practices.

XIII. CONCLUSION

Our main findings are the two structural weaknesses (one-
way authentication and inadequate cryptographic bindings)
summarized in Section Even if these attacks pose low
risks, including due to monitoring, eliminating the underlying
structural weaknesses would strengthen the system. Other
attacks might be possible.

SG2 (secrecy of the query) appears solidly protected by
the blinding mechanisms, and this goal does not depend on
the strength of the TLS implementation and integration. The
other security goals depend critically on TLS, and the security
engineering devoted to protecting them is less convincing.

We prove that our improved SCEP+ satisfies our precisely-
stated security goals (including mutual authentication) in the
DY model. Release 1.1.0 implements our suggestion.

Our study demonstrates that secure systems require more
than sound abstract mathematical cryptography. Our study
also highlights tensions between security and fielding a us-
able system that providers will adopt. Although a malicious
entity could avoid controls by using their own synthesis



machine, or using a synthesis provider that does not screen,
the SecureDNA system can meaningfully raise the safety
of legitimate synthesis labs. We hope that our analysis and
suggested mitigations will strengthen the SecureDNA system.

ACKNOWLEDGMENTS

This work builds in part on three student projects at UMBC:
two [43]], [46] from Sherman’s fall 2024 INSuRE cybersecurity
research course [47], [48] and one [49] from Sherman’s
cryptology class. Sherman was supported in part by the Na-
tional Science Foundation under DGE grants 1753681 (SFS)
and 2138921 (SaTC). Sherman, Golaszewski, and Romano
were supported in 2024-2025 by the UMBC cybersecurity
exploratory grant program. Fuchs was supported in 2024-
2025 by a UMBC cybersecurity graduate fellowship. We thank
Leonard Foner of the SecureDNA team for helpful discussions,
and we thank Kathleen Romanik for editorial suggestions.

REFERENCES

[1] R. Barrangou and J. A. Doudna, “Applications of CRISPR technologies
in research and beyond,” Nature biotechnology, vol. 34, no. 9, pp. 933—
941, 2016.

[2] D. Kokotajlo, S. Alexander, T. Larsen, and E. L. R. Dean, “Al 2027.”
https://ai-2027.com/, April 2025.

[3] C.Baum, J. Berlips, W. Chen, H. Cui, I. Damgard, J. Dong, K. M. Esvelt,
L. Foner, M. Gao, D. Gretton, M. Kysel, J. Li, X. Li, O. Paneth, R. L.
Rivest, F. Sage-Ling, A. Shamir, Y. Shen, M. Sun, V. Vaikuntanathan,
L. Van Hauwe, T. Vogel, B. Weinstein-Raun, Y. Wang, D. Wichs,
S. Wooster, A. C. Yao, Y. Yu, H. Zhang, and K. Zhang, “A system
capable of verifiably and privately screening global DNA synthesis,”
arXiv preprint arXiv:2403.14023, 2024.

[4] SecureDNA Foundation, “SecureDNA website.” https://securedna.org/,
2025.

[5] C. Baum, J. Berlips, W. Chen, I. B. Damgérd, K. M. Esvelt, L. Foner,
D. Gretton, M. Kysel, R. L. Rivest, L. Roy, F. Sage-Ling, A. Shamir,
V. Vaikuntanathan, L. V. Hauwe, T. Vogel, B. Weinstein-Raun, D. Wichs,
S. Wooster, A. C. Yao, and Y. Yu, “Efficient maliciously secure oblivious
exponentiations,” JACR Communications in Cryptology, vol. 1, no. 3,
2024.

[6] C.Baum, H. Cui, . Damgérd, K. Esvelt, M. Gao, D. Gretton, O. Paneth,
R. Rivest, V. Vaikuntanathan, D. Wichs, et al., “Cryptographic aspects
of DNA screening.” https://people.csail.mit.edu/rivest/pubs/BE20.pdf,
2020.

[71 A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612-613, 1979.

[8] D. R. Stinson, “An explication of secret sharing schemes,” De-
signs, Codes and Cryptography, vol. 2, no. 4, pp. 357-390, 1992.
10.1007/BF00125203.

[9] SecureDNA Foundation, “SecureDNA source code.” https://github.com/
SecureDNA, 2025.

[10] M. D. Liskov, J. D. Ramsdell, J. D. Guttman, and P. D. Rowe, The
Cryptographic Protocol Shapes Analyzer: A Manual, 2016.

[11] R. Canetti, “Universally composable security,” Journal of the ACM
(JACM), vol. 67, no. 5, pp. 1-94, 2020.

[12] G. Lowe, “An attack on the Needham-Schroeder Public-Key Authenti-
cation Protocol,” Inf. Process. Lett., vol. 56, no. 3, pp. 131-133, 1995.

[13] R. M. Needham and M. D. Schroeder, “Using encryption for authentica-
tion in large networks of computers,” Commun. ACM, vol. 21, pp. 993—
999, Dec. 1978.

[14] E. Rescorla, SSL and TLS: Designing and Building Secure Systems.
Addison-Wesley, 2001.

[15] E. Rescorla and T. Dierks, “The Transport Layer Security (TLS) Protocol
Version 1.2.”” RFC 5246, Aug. 2008.

[16] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.3.”
RFC 8446, Aug. 2018.

[17] Anonymous, “SecureDNA CPSA Model Repository.”
https://anonymous.4open.science/r/securedna-cpsa-anon-
BB46/README.md, July 2025.

14

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]
(32]

[33]

(34]

[35]
[36]

(371

(38]

[39]

[40]

A. T. Sherman, J. J. R. Romano, E. Zieglar, E. Golaszewski, and J. D.
Fuchs, “Analysis of the security design, engineering, and implementation
of the SecureDNA system,” arXiv preprint arXiv:2512.09233, 2025.
M. Langenkamp, A. Lin, A. Quach, and G. Hu, “Improving the
securedna system.” Course project for 6.857 at MIT, 2022.

A. Kane and M. T. Parker, “Screening state of play: the biosecurity
practices of synthetic dna providers,” Applied Biosafety, vol. 29, no. 2,
pp. 85-95, 2024.

S. A. Hoffmann, J. Diggans, D. Densmore, J. Dai, T. Knight, E. Lep-
roust, J. D. Boeke, N. Wheeler, and Y. Cai, “Safety by design: Biosafety
and biosecurity in the age of synthetic genomics,” Iscience, vol. 26,
no. 3, 2023.

N. S. A. B. for Biosecurity, “Addressing biosecurity concerns related to
the synthesis of select agents.” National Institutes of Health, Bethesda,
MD, 2006.

I. G. S. Consortium, “Harmonized screening protocol
v2.0.” https://genesynthesisconsortium.org/wp-content/uploads/
IGSCHarmonizedProtocol11-21-17.pdf, 2017.

J. H. B. S. of Public Health Center for Health Science, “Gene
synthesis screening information hub.” https://genesynthesisscreening.
centerforhealthsecurity.org/.

E. Golaszewski, E. Zieglar, A. T. Sherman, K. Abou Elsaad, and J. D.
Fuchs, “Limitations of wrapping protocols and TLS channel bindings:
Formal-methods analysis of the Session Binding Proxy protocol,” in
International Conference on Research in Security Standardisation (SSR
2024), pp. 81-119, Springer, 2024.

B. Blanchet, “Automatic verification of security protocols in the sym-
bolic model: The verifier ProVerif,” in Foundations of Security Analysis
and Design VII - FOSAD 2012/2013 Tutorial Lectures (A. Aldini,
J. Lopez, and F. Martinelli, eds.), vol. 8604 of Lecture Notes in Computer
Science, pp. 54-87, Springer, 2013.

S. Meier, B. Schmidt, C. Cremers, and D. A. Basin, “The TAMARIN
prover for the symbolic analysis of security protocols,” in Computer
Aided Verification - 25th International Conference, CAV 2013, Saint
Petersburg, Russia, July 13-19, 2013. Proceedings (N. Sharygina and
H. Veith, eds.), vol. 8044 of Lecture Notes in Computer Science,
pp. 696-701, Springer, 2013.

S. Escobar, C. Meadows, and J. Meseguer, “Maude-NPA: Cryptographic
protocol analysis modulo equational properties,” in Foundations of Secu-
rity Analysis and Design V, FOSAD 2007/2008/2009 Tutorial Lectures
(A. Aldini, G. Barthe, and R. Gorrieri, eds.), vol. 5705 of Lecture Notes
in Computer Science, pp. 1-50, Springer, 2007.

M. D. Liskov, J. D. Ramsdell, J. D. Guttman, and P. D. Rowe, The
Cryptographic Protocol Shapes Analyzer: A Manual. The MITRE
Corporation, 2016.

F. J. Thayer, J. C. Herzog, and J. D. Guttman, “Strand spaces: Proving
security protocols correct,” J. Comput. Secur., vol. 7, no. 1, pp. 191-230,
1999.

D. Dolev and A. Yao, “On the security of public key protocols,” IEEE
Transactions on Information Theory, vol. 29, no. 2, pp. 198-208, 1983.
M. Liskov, P. Rowe, and J. Thayer, “Completeness of CPSA,” tech. rep.,
MITRE, 2011. https://www.mitre.org/sites/default/files/pdf/12_0038.pdf.
P. D. Rowe, J. D. Guttman, and M. D. Liskov, “Measuring protocol
strength with security goals,” Int. J. Inf. Sec., vol. 15, no. 6, pp. 575—
596, 2016.

A. Malpani, S. Galperin, and C. Adams, “X.509 Internet public key
infrastructure online certificate status protocol-ocsp,” tech. rep., IETF,
2013. RFC 6960, 2013.

C. Cartas, “Rust — The programming language for every industry,”
Economy Informatics Journal, vol. 19, pp. 45-51, 09 2019.

D. Boneh, “The decision Diffie-Hellman problem,” in International
algorithmic number theory symposium, pp. 48—63, Springer, 1998.

B. Campbell, J. Bradley, N. Sakimura, and T. Lodderstedt, “RFC 8705:
Oauth 2.0 mutual-tls client authentication and certificate-bound access
tokens,” 2020.

G. Lowe, “A hierarchy of authentication specifications,” in 10th Com-
puter Security Foundations Workshop Proceedings, pp. 31-43, IEEE CS
Press, 1997.

B. Harris and R. Hunt, “TCP/IP security threats and attack methods,”
Computer Communications, vol. 22, no. 10, pp. 885-897, 1999.

W. Burgers, R. Verdult, and M. C. J. D. van Eekelen, “Prevent session
hijacking by binding the session to the cryptographic network creden-
tials,” in Secure IT Systems - 18th Nordic Conference, NordSec 2013,
Hlulissat, Greenland, October 18-21, 2013, Proceedings (H. R. Nielson


https://ai-2027.com/
https://securedna.org/
https://people.csail.mit.edu/rivest/pubs/BE20.pdf
https://github.com/SecureDNA
https://github.com/SecureDNA
 https://genesynthesisconsortium. org/wp-content/uploads/IGSCHarmonizedProtocol11-21-17.pdf
 https://genesynthesisconsortium. org/wp-content/uploads/IGSCHarmonizedProtocol11-21-17.pdf
https://genesynthesisscreening.centerforhealthsecurity.org/
https://genesynthesisscreening.centerforhealthsecurity.org/
https://www.mitre.org/sites/default/files/pdf/12_0038.pdf

and D. Gollmann, eds.), vol. 8208 of Lecture Notes in Computer Science,
pp- 33-50, Springer, 2013.

[41] M. O’Neill, S. Ruoti, K. Seamons, and D. Zappala, “Tls proxies: Friend
or foe?,” in Proceedings of the 2016 Internet Measurement Conference,
pp. 551-557, 2016.

[42] “X.509 : Information technology - open systems interconnection - the
directory: Public-key and attribute certificate frameworks recommenda-
tion X.509.” https://www.itu.int/rec/T-REC-X.509,

[43] E. Golaszewski, A. T. Sherman, and E. Zieglar, “Cryptographic binding
should not be optional: A formal-methods analysis of FIDO UAF au-
thentication,” in International Conference on Research in Security Stan-
dardisation (SSR 2025), Lecture Notes in Computer Science, Springer,
December 2025. in press.

[44] Trusted Computing Group (TCG), “TPM 2.0 Library.” https:/
trustedcomputinggroup.org/resource/tpm-library-specification/, 2025.

[45] J. R. Romano, S. Bokka, Z. Heck, T. Caplan, W. Zheng, and S. Stultz,
“Modeling and formal analysis of authentication in the SecureDNA pro-
tocol.” CMSC-491/691: Cybersecurity Research (INSuRE), University
of Maryland, Baltimore County, December 2024.

[46] B. Guest, I. Roland-Reid, T. R. Walke, M. Asatkar, and T. Sarkar, “Se-
curity analysis of registration, exemption handling, and web app security
of the SecureDNA protocol.” CMSC-491/691: Cybersecurity Research
(INSuRE), University of Maryland, Baltimore County, December 2024.

[47] A. T. Sherman, M. Dark, A. Chan, T. Morris, L. Oliva, J. Springer,
B. Thuraisingham, C. Vatcher, R. Verma, and S. Wetzel, “The INSuRE
Project: CAE-Rs collaborate to engage students in cybersecurity re-
search,” IEEE Security & Privacy, vol. 15, Aug. 2017.

[48] “Information Security Research and Education (INSuRE).” https://
caecommunity.org/initiative/insure, [Online; accessed 15-May-2025].

[49] J. R. Romano, “Analysis of SecureDNA system key management.”
CMSC-652 Cryptology, University of Maryland, Baltimore County, May
2025.

[50] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, “Proactive secret
sharing or: How to cope with perpetual leakage,” in Advances in Cryp-
tology—CRYPT0’95: 15th Annual International Cryptology Conference
Santa Barbara, California, USA, August 27-31, 1995 Proceedings 15,
pp. 339-352, Springer, 1995.

[51] D. J. Bernstein and T. Lange, “Post-quantum cryptography,” Nature,
vol. 549, no. 7671, pp. 188-194, 2017.

APPENDIX

A. Ethical Considerations

We have responsibly disclosed our findings to the Se-
cureDNA team by sharing preliminary drafts of our paper,
exchanging emails, and meeting with them remotely. These
meetings took place on June 3, 2025, and July 30, 2025.
Newly released Version 1.1.0 of the SecureDNA system fixes
SCEP with our proposed SCEP+ protocol. It also implements
an optional “verifiable screening” mode, which can mitigate
the response-switching attack.

B. Other Security Issues

This section briefly identifies several additional security
design issues of the SecureDNA system we reviewed that
are noteworthy of consideration, even if they do not present
imminent high risk. Some of these issues highlight tradeoffs
inherent in engineering systems, including tradeoffs between
security strength and user requirements.

(1) The published descriptions [3] and source code of the
SecureDNA system do not describe how they would replace
the shared DOPRF key k should it ever be compromised.
All security systems should address re-keying procedures. The
SecureDNA team explained that, should they need to replace
k, they would do what they do whenever they regenerate #:

15

generate a new k and regenerate H, which they say they can
do quickly.

(2) In the current system implementation, the DOPRF key
is generated centrally, not in a distributed fashion as per their
design, creating a single point of failure. The SecureDNA team
stated that a future update will address this issue.

(3) Some intended potentially important security features
were not yet implemented at the time of our review. These
features include proactive secret sharing [50] (in which key
shares are rotated to mitigate the threat that an adversary might
eventually compromise all keyservers, a few at a time). The
SecureDNA team explained that, instead of rotating the key
shares, they can re-key and regenerate . They also explained
that a new version of the code now checks for high rate limits,
and that they monitor and enforce rate limits at servers when
clients make requests.

(4) The system encrypts stored keys with user-entered
passphrases, but writes these passphrases as plain text to a
provider-specified location. This location might be an ordinary
file, possibly defeating any benefit from encrypting the keys.
While DNA synthesis providers have the option to institute
stronger security practices (e.g., involving a password manager
or TPM), these practices are not mandated and SecureDNA
cannot control them.

(5) Some of the auditing and record-keeping mechanisms
depend in part on the integrity and assured operation of
email. For example, the exemption-handling protocol sends
an alert to B via email whenever it processes an ELT [E24].
A powerful attacker might be able to block email notifications.
The SecureDNA team explained that providers and B typically
use cloud-based email services and that all of the auditing
emails are encrypted.

(6) Rather than using a well-vetted library to support
certificate infrastructure, SecureDNA creates its own custom
infrastructure, unnecessarily increasing complexity and risk of
security errors. Given that the X.509 standard [42] includes
an optional user-defined field, we feel there is no compelling
reason to create a custom infrastructure (see also Section [XI)).

(7) In the basic-request protocol, S’s response to C includes
information that is potentially dangerous, especially for novel
hazards: if the request is denied, S includes in its response
which sequence(s) in the requested list of sequences are haz-
ardous. It also states the pathogen from which the hazardous
sequence came and why that pathogen is dangerous. The
SecureDNA team explained that clients and providers demand
this information, and novel hazards are treated differently.

(8) The implemented DOPRF is not post-quantum se-
cure [51]. The SecureDNA team doubted that any post-
quantum secure DOPRF would meet their time and space
performance requirements. They also said that a post-quantum
adversary would be able to break TLS.


https://www.itu.int/rec/T-REC-X.509
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://caecommunity.org/initiative/insure
https://caecommunity.org/initiative/insure

C. Summary Results from Formal-Methods Analyses of SecureDNA Protocols

TABLE I
SECURITY PROPERTIES OF SCEP AND SCEP+. FOR EACH MODEL, A CHECK (v') INDICATES THAT, FOR ALL POSSIBLE EXECUTION MODELS UNDER
CORRESPONDING GOAL’S SECURITY ASSUMPTIONS, THE LOGICAL SECURITY GOAL HOLDS. A CROSSMARK (X ) INDICATES THAT CPSA FINDS A
COUNTEREXAMPLE THAT DISPROVES THE CORRESPONDING SECURITY GOAL. SEE DEFINITION [[X. 13| AND DEFINITION[[X.T4]FOR THE SECURITY GOAL
DEFINITIONS.

Model | S-W Secure | W-S Secure
SCEP v X
SCEP+ v v

TABLE I
SECURITY PROPERTIES OF BASIC QUERY AND EXEMPTION QUERY. TO ACHIEVE CONFIDENTIALITY OF M (s) AND AGREEMENT ON M (s)*, M (sF),
AuthCode, Resp, THE PROTOCOL MUST SATISFY THE CORRESPONDING SECURITY GOAL DEFINITIONS IN APPENDIX B (BASIC QUERY PROTOCOL) OF
[18] AND APPENDIX C (EXEMPTION QUERY PROTOCOL) OF [13]].

Model Confidentiality of | Agreement on

M(s) M(s)k, M(s¥),

AuthCode, Resp
Basic Query (No TLS) | v X
Basic Query v X
Exemption Query v X
Basic Query (SCEP+) v v

D. Rate-Limiting Attack by Corrupt Keyserver

We provide more details about the rate-limiting attack described in Section Whenever a legitimate synthesizer S
makes a request to a corrupt keyserver K’, the following rate-limiting attack presents itself to K’. A similar attack is possible
if S connects with a corrupt H.

[1] S — K’: Nonce(S), Token(S)

Following this exchange, X' now knows Nonce(S) and possesses Token(S). Assume that S is far below their current rate

limit. JC now has the opportunity to masquerade as S to other keyservers or to 7. Let VV denote any legitimate responding
infrastructure (e.g., H).

[21 K’ — W: Nonce(S), Token(S)

[3] K’ + W: Cookie, Nonce(W), Token(W), x = Sign[Hash(“server-mutauth”, Nonce(S), Nonce(W),
Token(W)), Privk(WV)]

K’ also knows Nonce(W) and Token(WV), and has a signed copy of the hash that S expects. K’ can now exploit the weakness
of SCEP to trick S into authenticating ' to W.

[4] S + K’: Cookie, Nonce(W), Token(W), x
[5]1 S — K1 Cookie, y = Sign[Hash(“client-mutauth”, Nonce(S), Nonce(W), Token(S)), Privk(S)]

Step 5 is important: K’ obtains the critical value y. Knowledge of y enables K’ to masquerade as S to W.
[6] K' — W: Cookie, y
W now believes K’ is S. Thus, K’ is able to use the rate limit budget of S for their own requests to other keyservers or

‘H. Behold K’ can perform this attack on many different instances of S simultaneously. This attack is within SecureDNA’s
adversarial model, but Baum et al. [3]], [6] did not consider rate-limiting attacks.

16



E. Ladder Diagrams of SecureDNA Protocols

Synthclient & Keyserver K

or
Keyed Hash Database H

Ng: Fresh, random nonce

operation: "keyserver" or "screen"

Ts: Synthclient token

IDy: Keyserver system identifier ("keyserver" only)

(1): Establish One-Way TLS Channel (S authenticates K or H)

(2): Ng, operation, Ty, [IDg]

I 1

N 4 Fresh, random nonce

Tk #: Infrastructure Token

w: Fresh client cookie
dy\ % Secret signing key

(3): @, N\ 5, T \H
o< °
enc(hash("server-mutauth", Ng, N\ 3, T %), dec .\ %)

u: Number of client sequences ("keyserver" only)
ds: Client signing key

(4): o, [y .
T enc(hash("client-mutauth", Ng, Ng . 5, Ts), ds) T

Fig. 4. Ladder diagram of the custom mutual authentication (SCEP) protocol. Vertical lines correspond to communicating roles (S, /C, H). Arrows between
vertical lines indicate roles transmitting and receiving protocol messages. SCEP assumes an existing one-way authenticated TLS channel between the synthesizer
S, and the keyserver KC or the keyed hash database 7{. Some message components appear only when S communicates with X; we indicate these components
by surrounding them with brackets ([]). The responder nonce NN, token 7', and secret signing key d correspond to the entity with which S communicates.
Upon completing SCEP, S obtains a request cookie w, which S transmits in a subsequent request to /C or H.

17



Synthesizer § Keyserver K Keyed Hashed Database H

(1): SCEP("keyserver", ID )

wi: Keyserver cookie

s: Client sequences
sg: Client exemption sequences
B: Random blinding value

M(s)x: DOPRF under key x

(2): Wi, M(s)8, [M(sg)|

N
»

k: Keyserver key

(3): M(s)e%, [M(se)]

A

(4): SCEP("screen")

wy: Database cookie

TE: Exemption token
O4: Auth device code

(5) oy, M(s)k, [TE, O4, M(sg)¥|

(6) Query Response

&
€

Fig. 5. Ladder diagrams of the basic order-request and exemption-handling protocols. Because S communicates with /C and # over separate, one-way
authenticated TLS connections, S completes the SCEP mutual authentication protocol (see Figure [ in Steps 1 and 4 to obtain request cookies wy and wsy.
When completing SCEP with K, S includes K’s identifier ID. In Step 2, S transmits to K the cookie wy, blinded sequences M (s)? and (optionally) the
blinded exempt sequences M (s Ezﬁ. In Step 5, K transmits wyy, M (s)k, and an optional tuple (exemption token T'F, second-factor authentication code O 4,
and exemption sequence M (sg)”), to which K receives a query response that grants or denies the synthesis request in Step 6.

18



	Introduction
	Previous Work
	Background
	Protocol Analysis
	Strand Spaces
	CPSA

	SecureDNA System
	Architecture
	Security Goals
	Screening for Hazards
	Certificate Infrastructures
	Authentication Tokens
	Exemption-List Tokens
	Source Code

	SecureDNA Protocols
	Basic Order-Request Protocol
	Exemption-Handling Protocol

	Adversarial Model
	Circumventing Rate Limiting
	How Rate Limiting Works
	Potential Vulnerabilities
	Attacks
	Risks

	Weak Authentication and Inadequate Bindings
	Server Connection Establishment Protocol (SCEP)
	Vulnerabilities
	A Latent Response-Swapping Attack
	Risks

	Formal-Methods Analysis of SCEP
	SCEP Strand Space
	Security Goals
	Analysis

	Suggested Improvements, Including to SCEP
	Discussion
	Findings and Recommendations
	Findings
	Recommendations

	Conclusion
	References
	Appendix
	Ethical Considerations
	Other Security Issues
	Summary Results from Formal-Methods Analyses of SecureDNA Protocols
	Rate-Limiting Attack by Corrupt Keyserver
	Ladder Diagrams of SecureDNA Protocols


