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Abstract—I2P (Invisible Internet Project) is a popular
anonymous communication network. While existing de-
anonymization methods for I2P focus on identifying potential
traffic patterns of target hidden services among extensive network
traffic, they often fail to scale effectively across the large and
diverse I2P network, which consists of numerous routers. In this
paper, we introduce I2PERCEPTION a low-cost approach revealing
the IP addresses of I2P hidden services. In I2PERCEPTION,
attackers deploy floodfill routers to passively monitor I2P routers
and collect their RouterInfo. We analyze the router information
publication mechanism to accurately identify routers’ join (i.e.
on) and leave (i.e. off) behaviors, enabling fine-grained live
behavior inference across the I2P network. Active probing is used
to obtain the live behavior (i.e., on-off patterns) of a target hidden
service hosted on one of the I2P routers. By correlating the
live behaviors of the target hidden service and I2P routers over
time, we narrow down the set of routers matching the hidden
service’s behavior, revealing the hidden service’s true network
identity for de-anonymization. Through the deployment of only
15 floodfill routers over the course of eight months, we validate
the precision and effectiveness of our approach with extensive
real-world experiments. Our results show that I2PERCEPTION
successfully de-anonymizes all controlled hidden services. 1

I. INTRODUCTION

I2P (Invisible Internet Project) is a widely used anonymous
communication network, supporting activities such as website
browsing, email, file sharing, Internet Relay Chat (IRC), and
cryptocurrency access, with around 45,000 active routers and
over 15,000 daily users and services [2]. As a decentralized
peer-to-peer system, I2P enables anonymous data transmission
through routers that voluntarily share bandwidth and storage.
A subset of routers, referred to as floodfill routers, maintain a
distributed database containing access information for all routers
and hidden services on I2P. Like Tor [3], I2P uses multilayer
encryption and multihop tunnels to secure communication,
ensuring that no single router can correlate client-service
interactions or identify the hosting router of a specific hidden
service, for the sake of privacy and secure communication.

To assess the security and limitations of anonymous networks,
a large volume of prior work has investigated deanonymizing
methods. These efforts have primarily concentrated on the Tor
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network, one of the most prevalent anonymous communication
systems, and are mainly based on the traffic correlation
approaches [4]–[35]. Such approaches typically require the
attacker to first use techniques like DoS attacks to occupy key
positions in the target hidden service’s circuit [36]–[38], in
order to conduct traffic correlation. However, while I2P employs
a multi-hop tunnel architecture comparable to Tor’s circuit for
achieving anonymity, it adopts a different approach from Tor
for selecting participants for a hidden service’s tunnel. Given
the current scale of the I2P network, it is exceedingly difficult
for an attacker to successfully control the routers participating
in a target hidden service’s tunnels, thereby making traffic
correlation unachievable.

Although I2P’s network communication mechanisms and
scale seemingly allow a hidden service to hide well within the
‘crowd’, we demonstrate that the online and offline patterns of a
hidden service, referred to as its live behavior, can still serve as
a powerful side-channel for compromising its anonymity. Our
approach relies on two key observations. First, an I2P hidden
service is hosted on an I2P router, resulting in its live behavior to
closely align with that of its hosting router. Second, user behav-
ior in peer-to-peer (P2P) systems, including I2P, is inherently di-
verse [39]–[43], causing significant variations in router behavior
due to the heterogeneity of user activity. Therefore, by identify-
ing the router whose live behavior most closely aligns with that
of a target hidden service, we can accurately infer the location
of the hosting router and de-anonymize the hidden service.

However, the practical implementation of the aforementioned
deanonymization method presents significant challenges. First,
achieving large-scale, stealthy, and fine-grained monitoring
of I2P routers’ live behavior simultaneously is highly difficult.
Active probing of approximately 45,000 routers daily is
impractical due to excessive overhead, the risk of exposing
probing intentions, and potential degradation of network
performance. Passive monitoring faces grand challenges
too, as only RouterInfo (which contains the router’s contact
information and is periodically published to floodfill routers) is
passively obtainable, and I2P employs obfuscation mechanisms
to prevent RouterInfo from revealing detailed behavior
information. Second, even if the router’s live behavior could
be inferred from RouterInfo, the large scale of I2P makes it
exceedingly difficult to collect complete data in a cost-effective
manner. Accurately inferring a router’s live behavior under
incomplete data conditions poses a significant challenge.

In this paper, we introduce I2PERCEPTION, a large-scale
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deanonymization approach designed to reveal the real IP
address of a target I2P hidden service. First, we leverage
only 15 floodfill routers to passively collect RouterInfo at low
cost from all I2P routers to create a RouterInfo trace for each
router. Using these traces, we exploit the periodic RouterInfo
publication patterns across different I2P implementations to
achieve coarse-grained online session inference of each router.
We then investigate the RouterInfo publication mechanisms
during the join and leave periods of routers to precisely
identify their join and leave behaviors, achieving fine-grained
router behavior inference. To mitigate the impact of incomplete
data due to our low-cost data collection strategy, we propose
a data-recovery-based online session complement method.
Next, we apply active probing to infer the live behavior of
the target hidden service. Finally, we introduce a live behavior
correlation method to measure the similarity between the
inferred live behaviors of routers and the target hidden service,
allowing us to identify the host router of the hidden service.

Our major contributions can be summarized as follows:

• We propose a large-scale and long-lasting I2P hidden
server deanonymization framework, I2PERCEPTION, based
on the similarity of the live behavior of the target hidden
service and I2P routers, which can be used to deanonymize
any target hidden service in the I2P network within a
proper monitoring window.

• We design methods that can accurately identify the join and
leave behaviors of routers by delving into the RouterInfo
publication mechanism during the startup and offline
periods. We introduce an online session recovery method
to mitigate the impact of incomplete data caused by the
low-cost data collection strategy, achieving highly accurate
inferred live behaviors for all routers in the I2P network.

• To demonstrate the feasibility and effectiveness of
I2PERCEPTION, we conduct extensive real-world experi-
ments by deploying 15 floodfill routers and 10 I2P routers
hosting hidden services over a period of approximately
eight months. The accuracy of deanonymizing our con-
trolled hidden services approaches nearly 100%.

The key novelty of this work is that we exploit a user’s
characteristic on–off behavior when operating an I2P hidden
service and introduce new measurement techniques that accu-
rately capture that pattern to deanonymize the service. The
scientifically generalizable takeaway is that user behavior can
serve as a measurable side channel that leaks identity.

Responsible Disclosure. Upon discovering the
vulnerabilities, we disclosed our findings to the I2P
maintainers to support timely mitigation. Our work was
acknowledged by the I2P project, and as of this submission,
the reported issues have been addressed [44].

II. BACKGROUND

In this section, we first provide an overview of the I2P net-
work structure, and then present its communication mechanism.

A. Architecture of I2P

The Invisible Internet Project (I2P) is a decentralized
peer-to-peer communication system enabling anonymous data
transmission. As shown in Fig. 1, the I2P network comprises
four key components: I2P routers, I2P clients, hidden services,
and netDB [45].

I2P router. I2P routers form the backbone of I2P’s commu-
nication infrastructure. Upon installation, router functionality is
enabled by default. During its initial startup, the router contacts
specific bootstrap sites to discover other routers, thereby joining
the I2P network and relaying data for other participants. Routers
can operate in either floodfill mode or non-floodfill mode.
While non-floodfill routers primarily relay data, floodfill routers
also gather and maintain information about all routers in the
I2P network, including both floodfill and non-floodfill routers.

I2P network

Hidden client

netDB

RouterInfo

LeaseSet

…

…

Upload LeaseSet

Require LeaseSet

Upload RouterInfo

Inbound
tunnel

Floodfill router
I2P router

Encrypted message

Hidden server

Outbound
tunnel

Fig. 1: I2P Architecture.
I2P client. The I2P software includes several default applica-

tion clients, such as an IRC client and a BitTorrent client. The
software also supports an HTTP proxy, allowing various clients
to connect to the I2P network through the router. A router that
hosts a client, referred to as a host router, relays client data via
multiple two-hop, unidirectional inbound and outbound tunnels.

I2P hidden service. I2P provides a web service for users
to deploy hidden web services on the network. Additionally,
an I2P router supports a simple anonymous messaging (SAM)
protocol, enabling various services to interact with the host
router. Like an I2P client, a hidden service uses the host router
to establish inbound and outbound tunnels to relay its data.

netDB. The netDB is a distributed database composed of
all floodfill routers, maintaining information about I2P routers
and hidden services. Floodfill routers are organized using a
distributed hash table (DHT) based on the Kademlia algorithm
[46]. The netDB stores two types of data: RouterInfo and
LeaseSet. RouterInfo contains router details, such as IP address,
port, and public key. An I2P router periodically selects a
floodfill router to upload its RouterInfo, with the floodfill router
returning an acknowledgment message confirming the upload.
A hidden service or client records its details, including a public
key and the entry router of its inbound tunnel in the LeaseSet
data. Hidden services upload their LeaseSet to the netDB,
while clients send their LeaseSet to a target hidden service
via the outbound tunnel when interacting with the service. A
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Fig. 2: Format of RouterInfo data.

LeaseSet expires based on the service’s configuration, while
RouterInfo, expires after one hour unless updated.

B. Garlic Routing

I2P uses garlic routing to facilitate anonymous communi-
cation between hidden services and clients. Routers obtain
RouterInfos from the netDB (floodfill routers) to discover other
routers. A hidden service or client relies on its host router to se-
lect suitable routers and establish paired, unidirectional, two-hop
inbound and outbound tunnels for data transmission, as shown
in Fig. 1. Each tunnel consists of three I2P routers, including
the host router, and the data transmitted through these tunnels
are called garlic messages. To connect to a hidden service, a
client derives the service’s I2P address and queries the netDB to
retrieve its LeaseSet, which contains the entry router for the ser-
vice’s inbound tunnel. The client then selects an outbound tun-
nel to establish the connection, sending its LeaseSet to the hid-
den service. By learning the entry router for the client’s inbound
tunnel from the LeaseSet, the service initiates a connection to
the client’s inbound tunnel through its outbound tunnel. Bidi-
rectional communication is achieved through the concatenated
four-hop tunnels. Each router in these tunnels can only identify
the IP addresses of its immediate predecessor and successor,
making it difficult to correlate client-server communication.

C. RouterInfo

Structure. Fig. 2 illustrates the structure of the RouterInfo.
The first field, Identity, uniquely identifies the router within the
I2P network and is generated upon the router’s initial launch.
The publishment field records the creation time of the Router-
Info, while the size field indicates the number of associated
RouterAddress entries. Each RouterAddress contains essential
connection details, such as cost, expiration (deprecated), I2P
transport protocol (NTCP or SSU), IP address, port, and an abil-
ity field. The cost value is assigned by the router, where a lower
cost increases the likelihood of being chosen for connections.
The ability field indicates whether the router offers a peer testing
service (with a ‘B’ flag) or an introducing service (with a ‘C’
flag). The ‘B’ flag means the router can test reachability, while
the ‘C’ flag indicates it can function as a reverse proxy for NAT-
bound routers. The final two fields, signature and options, ensure
integrity and store the router’s profile, including operational
mode, bandwidth, congestion level, port reachability, and version
number. Floodfill routers are marked with an ‘f’ flag in the
options field, distinguishing them from non-floodfill routers.

Propagation. I2P implements a specific mechanism for
uploading and propagating RouterInfos. Each router selects
a target floodfill router to upload its RouterInfo, based on a

parameter known as the Routingkey, which is computed using
the SHA256 hash algorithm as follows:

Routingkey = Hash(Hash(identi f ier)+date) (1)

Here, date denotes the formatted timestamp of the RouterInfo
publication, and identifier refers to the router’s unique ID
within the I2P network. The router then selects the floodfill
router whose identifier has the smallest XOR distance to its
own Routingkey [46]. However, since the router lacks global
knowledge of all floodfill routers in the network, there may
exist others with identifiers even closer to its Routingkey. To
address this, each floodfill router is also responsible for further
propagating RouterInfos. After extracting the originating
router’s identifier and publication time, a floodfill router
recomputes the corresponding Routingkey and forwards the
RouterInfo to three additional floodfill routers from its known
set, based on the same selection rule. Forwarding is skipped if
no suitable floodfill routers are available or if the RouterInfo
has already been processed by the router. This propagation
mechanism ensures that each RouterInfo data could be received
by numerous floodfill routers upon publication.

III. DEANONYMIZING I2P VIA LIVE BEHAVIOR

A. Problem Statement

Our objective is to stealthily uncover the real IP addresses of
target I2P hidden services. Specifically, we aim to identify the
I2P router hosting the hidden service. However, this task can be
challenging. As depicted in §II-B, the multi-hop garlic routing
ensures that both the client and the server only know the IP ad-
dresses of their respective tunnel entry routers, without revealing
each other’s actual IP addresses. Additionally, each participant
router within these tunnels is only aware of the IP addresses of
its predecessor and successor. This design prevents routers from
not only correlating the communication relationship between
the client and the hidden services but also identifying whether
a specific hidden service is hosted on an I2P router.

B. Threat Model

We make three key assumptions for our method. First, an
attacker can deploy several floodfill routers to join the I2P
network and collect RouterInfo data from other routers. This
is feasible due to I2P’s open and decentralized nature, which
allows anyone to deploy routers and participate. By modifying
the configuration, the attacker can enable floodfill mode on these
routers to monitor routers’ live behavior using their uploaded
RouterInfos. Second, the attacker targets a specific hidden
service for deanonymization, which is accessible without restric-
tions. The target server cannot distinguish between the attacker’s
access and that of other users, preventing it from revealing the
attacker’s IP address. This allows the attacker to observe the
service’s live behavior. Third, the target hidden service is not
hosted on a router in hidden mode. Collecting hidden routers’
RouterInfo is extremely challenging, making them nearly impos-
sible to monitor. However, this assumption is reasonable since
routers operate in non-hidden mode by default and, according
to our long-term measurements of the I2P network, we believe
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that hidden routers constitute a very small fraction of the
network. The difficulty in obtaining their RouterInfo arises for
two reasons: (1) floodfill routers do not broadcast the RouterInfo
of hidden routers; and (2) hidden routers reject all inbound
connections and can only be detected by routers, including
floodfill routers, to which they initiate outbound connections.
Over the monitor of one year, we deployed 15 floodfill routers,
added 5 more for two months, and operated an additional 10 non-
floodfill routers for eight months. Throughout this period, none
of our controlled routers were contacted by any hidden routers.

C. Basic Idea

We leverage two fundamental observations that arise from
the characteristics of I2P’s design to de-anonymize a target
hidden service. First, since each hidden service is hosted on an
I2P router, its live behavior mirrors that of the hosting router.
This means that by identifying the router’s live behavior, we
can infer the hidden service’s behavior. In addition, we observe
that I2P routers periodically upload their RouterInfo to the
netDB, a regular pattern that can potentially be used to infer
their live behaviors.

Second, the live behaviors of I2P routers exhibit significant
variation. Previous studies [47] show that only 31.15% of
I2P routers remain active for more than 30 days, with many
exhibiting intermittent availability. Other research [39], [40],
[42] on P2P networks indicates that user behavior is inherently
diverse, with substantial behavioral differences among users.
This diversity in router behaviors further reduces the anonymity
set — the group of I2P routers with similar behaviors —
making it easier to distinguish individual routers.

By combining these observations, an attacker can monitor
the live behaviors of I2P routers and correlate them with the
live behavior of the target hidden service. Due to behavioral
divergence among routers, the overlap between their live
behaviors naturally decreases over time. As the monitoring
period extends, the number of routers whose behavior matches
the target service gradually decreases. This allows the attacker
to progressively narrow down the set of potential hosting
routers, ultimately achieving deanonymization.

D. Challenges and Solutions

While deploying the de-anonymization approach is theoreti-
cally straightforward, several practical challenges arise during
its implementation. We address these challenges as follows.

(C-I) Large-scale Analysis of Routers’ Fine-grained Live
Behaviors. A typical method for inferring the fine-grained live
behavior of an I2P router involves periodically and actively
probing its availability. An attacker can leverage the router’s IP
address and port information from the RouterInfo to perform
port scanning. However, this approach introduces significant
overhead, especially when monitoring a large number of I2P
routers simultaneously (approximately 45,000 active routers
each day [2]). Furthermore, active probing risks exposing
the attacker’s intentions, potentially alerting the targets and
prompting evasive actions. Consequently, passive monitoring

approaches, which can unobtrusively monitor the live behavior
of a large number of routers, are crucial for large-scale analysis.

However, passive monitoring poses specific challenges due
to limited data availability for inferring router behavior. While
I2P routers periodically upload RouterInfo to the netDB—
an activity that can be leveraged to infer coarse-grained live
behavior—the system intentionally introduces randomness into
the intervals between successive routine uploads to obfuscate
predictability. This randomness undermines the reliability of
coarse-grained inference methods, increasing their susceptibility
to errors, particularly when routers experience short-term offline
periods. Consequently, fine-grained identification of online
sessions, which is capable of precisely determining router online
and offline times, remains a nontrivial task.

(S-I) RouterInfo-publication-based Live Behavior
Inference (§IV-C). Through a detailed investigation of the
RouterInfo publication mechanism, we propose a passive, low-
cost, large-scale monitoring method for identifying fine-grained
live behavior. Regardless of the I2P implementation (Java or
C++), an online I2P router is designed to perform multiple
tasks to generate and upload its RouterInfo to the netDB (i.e.,
floodfill routers), thereby informing other routers in the network
of its current status, such as reachability and load. We focus on
the periodically executed tasks and analyze the characteristics
of the generated RouterInfo to identify which publications
are associated with these tasks. By only passively deploying
15 floodfill routers, we can infer the implementation of the
I2P router based on the periodic update intervals and further
identify gaps between routine publications that are longer than
expected, and interpret them as offline periods. To achieve
fine-grained identification of temporary offline behavior, we
find that I2P routers display distinctive RouterInfo publishing
patterns when going online and offline, allowing us to
determine the exact start and end times of each online session.

(C-II) Accuracy of Low-cost Live Behavior Identification.
Our live behavior inference method for I2P routers relies
heavily on RouterInfos collected by only 15 controlled floodfill
routers. However, gathering complete RouterInfos from a large
number of routers may require deploying hundreds or even
thousands of additional floodfill routers, as approximately
4,000 already operate daily, servicing around 45,000 active
routers [2]. While deploying sufficient floodfill routers can
capture RouterInfos to accurately infer online sessions, this
approach introduces substantial overhead and may compromise
stealth. To reduce costs, the attacker may limit the number of
floodfill routers, resulting in incomplete RouterInfo collection,
which complicates accurate online session identification.

Additionally, while the RouterInfo propagation mechanism
(Appendix A) enables the attacker to collect most network-wide
data with a limited number of floodfill routers, network churn–
—the continuous arrival and departure of thousands of routers—–
can cause RouterInfos to be uploaded to different floodfill
routers or propagated via different paths over time. This vari-
ability leads to partial RouterInfo collection for each I2P router,
reducing the accuracy of live behavior inference and causing
mismatches when comparing router behaviors to that of the tar-
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Fig. 3: I2PERCEPTION Overview.

get hidden service. Mitigating the impact of incomplete Router-
Info data on inference accuracy remains a significant challenge.

(S-II) Data-recovery-based Session Complement (§IV-D).
We propose a router behavior complement method to mitigate
the impact of incomplete RouterInfo data. Each online session
is expected to include explicit start-up and offline behaviors.
For incomplete sessions, we first determine whether the issue
arises from a single session being erroneously split into two
due to missing RouterInfo, or from absent startup or shutdown
indicators. Based on this determination, we adopt a context-
aware strategy to insert the missing RouterInfos at suitable
points, allowing for accurate reconstruction of the session.

IV. DESIGN OF I2PERCEPTION

In this section, we first present the workflow of
I2PERCEPTION and then introduce its five phases in
detail. A theoretical analysis is provided at the end to show
why the target hidden service can be uniquely identified.

A. Workflow

Figure 3 illustrates the overall workflow of I2PERCEPTION,
which consists of five sequential phases. (i) Low-cost RouterInfo
collection (§IV-B). We passively collect RouterInfo from all
observable I2P routers using a small number of controlled
floodfill routers, constructing a RouterInfo trace for each router.
(ii) Fine-grained router live behavior inference (§IV-C). Using
these RouterInfo traces, I2PERCEPTION infers each router’s
online sessions. We first derive coarse-grained sessions based
on periodic RouterInfo publication, and then identify precise
join and leave behaviors to obtain fine-grained online/offline in-
tervals. (iii) Online session complement (§IV-D). Since low-cost
data collection may miss certain RouterInfo, I2PERCEPTION
applies a data-recovery–based complement mechanism to
reconstruct incomplete sessions and restore missing join or
leave behaviors. (iv) Live behavior probing for the target hidden
service (§IV-E). In parallel, I2PERCEPTION actively probes the
target hidden service to obtain its live behavior sequence, which

reflects the availability of its hosting router. (v) Live behavior
correlation (§IV-F). Finally, I2PERCEPTION computes the
similarity between the hidden service’s live behavior and
that of all routers. The router with the highest behavioral
consistency over time is identified as the hosting router.

B. Low-cost RouterInfo Collection

We collect RouterInfos from I2P routers by deploying only
15 controlled floodfill routers to participate in the netDB.
Since I2P routers actively upload their latest RouterInfo to the
netDB, we can passively gather this data from the controlled
floodfill routers. Upon receiving RouterInfos, the routers
extract and store the data fields into our database, allowing
us to compile a series of RouterInfo traces for each router.
We demonstrate the effectiveness of the low-cost collection
approach using only 15 floodfill routers in Appendix A.

C. Live Behavior Inference

Our live behavior inference framework consists of three com-
ponents: (i) Online session inference: We utilize the periodic
status-maintenance mechanism of I2P routers, through which
they generate and publish routine RouterInfo. By extracting
all routine RouterInfos from the raw trace and analyzing the
time intervals between them, we determine whether they are
published within the same online session, enabling a coarse
identification of each router’s online and offline periods. (ii)
Join behavior identification: We exploit the distinctive Router-
Info publication pattern exhibited by I2P routers during startup
to identify join behavior at the beginning of each online session,
thereby determining the router’s precise join time. (iii) Leave
behavior identification: For routers that publish a RouterInfo
as part of their shutdown procedures, we identify these leave
behavior RouterInfos at the end of each online session to
determine the router’s exact leave time. Table I summarizes the
inherent RouterInfo management and publication mechanisms
leveraged by each component, as well as how these mechanisms
are exploited across different I2P router implementations.
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TABLE I: Inherent mechanisms and exploitation approaches of each live behavior inference framework component.

Framework
component Router Inherent mechanism Exploitation approach

Online
session
inference

Java Evaluate router status every 8–10 minutes, and forcibly
publish a routine RouterInfo after every four evaluations.

Use a 32–43-minute interval to identify routine RouterInfos and
divide sessions by how continuously they appear.

C++ Evaluate congestion level every 12 minutes; update and
republish a RouterInfo if the congestion flag changes.

Treat RouterInfos with congestion-flag changes as routine. Split
online sessions when two consecutive routine RouterInfos are not
separated by a multiple of 12 minutes.

Join
behavior
identification

Java Upon startup, a router publishes an initial RouterInfo,
which has a distinctive time gap (i.e., startup interval)
from the first routine RouterInfo.

Using the startup interval, trace back from the first routine
RouterInfo in an online session to find the initial RouterInfo and
determine the join time.

C++ At startup, the router initializes the congestion timer and
issues its first RouterInfo after 0.5 seconds.

Trace back from the first routine RouterInfo to one published
12min×n−0.5s earlier, thereby identifying the router’s join time.

Leave
behavior
identification

Java Before going offline, a floodfill router publishes a
RouterInfo announcing it is no longer floodfill.

Determine the router’s leave time by detecting when its operation
mode changes. (floodfill only)

C++ Before going offline, the router publishes a RouterInfo
with an ‘E’ congestion flag to prevent new connections.

Find the RouterInfo with the highest congestion level; its
publication time is the router’s leave time.

For clarity of exposition, we describe the fine-grained
inference techniques using Java-based I2P routers below, as
Java is the original implementation of I2P and most faithfully
reflects the core design principles of the system. Due to space
constraints, the corresponding technical details for C++-based
routers are provided in the extended version of the paper
available at [1]. The overall analytical structures for the two
implementations remain the same, with differences arising
primarily from implementation-specific publication schedules
and event-driven behaviors.

Coarse-grained online session inference for Java-based
routers. Java-based routers periodically execute an update
task that checks their status (e.g., network congestion) and
publishes a new RouterInfo if any status change is detected.
The update interval, denoted as Dc, typically ranges from 8 to
10.5 minutes, calculated as follows:

Dc =

(
T × 3

4
+ random(S)

)
÷4, (2)

where T is a constant (default value of 43) and S is a
random value between 0 and 10, to obfuscate the update time.
Additionally, the execution of an update task is delayed until at
least nine minutes have elapsed since the previous successful
RouterInfo publication. Regardless of status changes, a router
publishes a RouterInfo every fourth update task (approximately
every 32 to 43 minutes, i.e., 4×Dc). We refer to these periodic
publication as routine publish tasks, and the data generated
by them as routine RouterInfos.

We identify a Java-based router’s online sessions by analyz-
ing its routine RouterInfos, distinguishable by specific publica-
tion intervals. If the interval between two RouterInfo publica-
tions equals four update intervals (4×Dc), such pairs are classi-
fied as routine RouterInfos. Starting from the first RouterInfo in
a trace, we check if a subsequent publication appears within 32
to 43 minutes. If not, the first data point is not considered rou-
tine. This process continues until a pair of routine RouterInfos is
found. Once identified, each routine RouterInfo serves as a base-
line to locate the next, repeating the process until no further rou-
tine RouterInfo is found. All identified routine RouterInfos and

the data between them are grouped into a single online session.
We then resume the search from the RouterInfo following the
last routine data to identify the next session using the same ap-
proach. Additionally, any non-routine RouterInfo between two
sessions is assigned to the preceding session if its time gap from
the session’s last routine data is shorter than the routine interval.

Relying solely on routine RouterInfos may miss temporary
offline behaviors due to random RouterInfo update intervals,
which can vary by up to 10 minutes. As a result, RouterInfo
from adjacent online sessions may overlap with routine
intervals during temporary offline behavior, causing the coarse-
grained method to misidentify session boundaries. This leads to
two types of errors: mismatch and misidentification of routine
RouterInfo. Mismatch errors occur when the interval between
the last routine RouterInfo from the previous session (Rr

p) and
a RouterInfo from the next session (Rs) coincides with the
routine interval. This leads to two distinct results, depending
on the characteristic of Rs: (1) If Rs is non-routine (Case 1 in
Table VI), Rs is mistakenly assigned to the previous session,
causing incorrect inferences about the previous session’s end
time and the subsequent session’s start time. (2) If Rs is routine
(Case 2 in Table VI), the two sessions are incorrectly merged,
missing the offline period in between. Misidentification occurs
when a non-routine RouterInfo after the last routine RouterInfo
in the previous session (Rp) and Rs from the next session are
mistakenly treated as successive routine publications. Since a
floodfill router always sends a non-routine RouterInfo before it
goes offline (we discuss it in our leave behavior identification
method), this error generally occurs when dealing with floodfill
routers, leading to two possible outcomes: (1) If Rs is also
non-routine (Case 3 in Table VI), Rp and Rs are incorrectly
treated as part of the same session, splitting two sessions into
three. (2) If Rs is routine (Case 4 in Table VI), Rp is assigned
to the next session, also causing incorrect inferences about
the previous session’s end and the subsequent session’s start
times. To address these challenges, we propose a fine-grained
join behavior identification method for online sessions.

Join behavior identification for Java-based routers. To
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Fig. 4: Startup workflow of Java-based I2P routers.

enable fine-grained online session inference, we analyze the
publication pattern of Java-based routers to identify their join
behavior during startup. The routine RouterInfo is published
every 4 update intervals, with a state variable C counting the
tasks since startup. Specifically, RouterInfo is published when
C mod 4= 0. Upon startup, C starts at 0, and the first RouterInfo
is published within 10 seconds, incrementing C to 1. The next
task is scheduled 90 seconds later but cannot execute until 9 min-
utes after the latest upload. If the first upload succeeds within
90 seconds (i.e., the acknowledgment message for RouterInfo is
received), the second task executes between 9 and 10.5 minutes,
resulting in an interval of 3×Dc (25-31.5 minutes) between the
first and first routine RouterInfo. Alternatively, if the router fails
to receive the acknowledgment within 90 seconds, C increments
to 2 after approximately 90 seconds. After two more update
intervals, C reaches 4, triggering the first routine RouterInfo,
with the interval between the first and first routine RouterInfo
being approximately 90+2×Dc (17.5-22.5 minutes).

By analyzing the publication pattern during the startup phase
of Java-based routers, we can accurately determine the start time
of each online session. Starting from the first routine RouterInfo
of an online session, we scan the entire trace for RouterInfo
entries that match one of two possible join behaviors (i.e., a time
interval of 3×Dc or 90+2×Dc) to identify the first RouterInfo
published after the router’s startup. This approach allows
for fine-grained identification of join behaviors, effectively
addressing challenges posed by temporary offline behaviors.

While the join behavior identification method effectively
corrects all the issues introduced by the coarse-grained method
when dealing with the router’s temporary offline behavior, it
requires a complete join behavior—characterized by a distinct
interval between two RouterInfo publications. If the router
briefly returns online and publishes only one RouterInfo, the
join behavior is incomplete (Case 5 in Table VI), rendering
the method inapplicable. In this case, we instead rely on the
leave behavior identification method to correctly infer the end
of the previous online session, and thereby infer the correct
start time of the subsequent online session.

Leave behavior identification for Java-based routers. We
find that only Java-based floodfill routers display explicit leave
behavior. Immediately before shutdown, they publish a final
RouterInfo whose options field removes the ‘f’ flag, indicating
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Fig. 5: Three solutions for online session complement.

they will cease floodfill service. By scanning backward from
the last routine RouterInfo in an online session, we locate this
publication and use its timestamp as the router’s leave time.
This allows us to identify a router’s offline behavior even if its
join behavior is lost or absent in subsequent sessions. For non-
floodfill routers, which lack explicit offline patterns, we estimate
offline times to reduce discrepancies, as discussed in §IV-D.

D. Online Session Complement

While our live behavior inference method can theoretically
group online sessions accurately, the low-cost deployment
of floodfill routers leads to incomplete RouterInfo collection
in practice. To address this issue, we verify the integrity of
each identified session, detect missing join or leave behaviors,
and supplement the missing information by analyzing the
publication context. Although the analytical principles are
consistent for both Java- and C++-based routers, the events
that cause missing RouterInfo differ across implementations.
To avoid redundancy, we present the Java-based techniques
here and provide the corresponding C++-specific procedures
in the extended version of this paper [1].

Missing RouterInfo can lead to three issues: loss of routine
RouterInfo (Cases 6–8 and 14 in Table VI), join behavior
(Cases 10–12 and 15), and leave behavior (Cases 9 and 16),
each causing errors in session inference. In the first issue,
missing consecutive routine RouterInfo splits a session, leaving
the second session without join behavior. In the second and
third issues, missing data indicates the absence of join or leave
behavior. We propose three solutions to address each issue
and present how to handle online session inference errors in
these situations, as shown in Fig. 5.

Solution 1: Online session concatenation. When join
behavior is missing in both the first and second issues, we
attempt to concatenate consecutive sessions to verify whether
they belong to the same one (Case 8 in Table VI). For Java-
based routers, if the time interval between the final routine
RouterInfo of the preceding session and the initial routine
RouterInfo of the succeeding session matches a multiple of the
routine interval, the sessions are merged. This condition can
be expressed as:{

min(Dc)⩽
Ik
mt

⩽ max(Dc)

mt = 4× k, k = 2,3
(3)

where Ik is the interval between two routine RouterInfo, and
mt is the number of update intervals within Ik. We limit Ik
to a maximum of three routine intervals, as empirical testing
shows no instance of consecutively losing more than two
routine RouterInfo.
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Solution 2: Join behavior supplementation. If a session
has no join behavior and cannot be merged using Solution 1,
the join behavior is considered missing or incomplete. For Java-
based routers, the join behavior consists of two RouterInfos.
When one is missing, we determine which publication is absent
and infer its expected position based on the characteristic
startup interval. The initial RouterInfo should be published an
interval before routine behavior begins, referred to as the startup
interval, measured as either 3×Dc or 90+ 2×Dc, denoted
by Ds1 and Ds2, respectively. If the first routine RouterInfo is
missing (Case 6 in Table VI), the expected gap between the
initial and the next routine publication becomes the sum of the
startup and routine intervals—either 7×Dc or 90+6×Dc. We
thus search backward from the first captured routine RouterInfo
within this time window to locate a potential initial RouterInfo.
If found, its publication time is regarded as the session’s
start time. If not, we infer that the missing data is the initial
RouterInfo (Case 10 in Table VI). In this case, we compute
the expected values for Ds1 and Ds2 as follows:{

E(Ds1) = 90+2×E (Dc)

E(Ds2) = 3×E (Dc)
(4)

where E (Dc) is the expected duration of an update interval,
given by 3T+4E(S)

16 . According to Equation (2), and given that
the probabilities of these two cases are generally equal, the
expected value of the startup interval, E f , is calculated as

E f =
E(Ds1)

2
+

E(Ds2)

2
= 45+

15T +20E(S)
32

(5)

Thus, the start time of the online session can be estimated as E f
earlier than the publication time of the first routine RouterInfo.

Solution 3: Leave behavior supplementation. Our goal is
to estimate the expected remaining online duration after the
router’s final observed RouterInfo (Case 9 and 16 in Table VI).
For Java-based routers, non-floodfill routers do not exhibit
explicit leave behavior, while floodfill routers may lose the
RouterInfo without a ‘f’ flag, which serves as an indicator
of leave behavior. In both cases, since no additional routine
RouterInfo is received after the router’s last RouterInfo, we
can approximate that the router goes offline before the next
routine RouterInfo would appear. We first estimate the expected
publication time for the next routine RouterInfo Tn by:

Tn = Tr +4×E(Dc) (6)

where Tr denotes the publication time of the last routine
RouterInfo. Then the inferred offline time To is given by

To =
Tn −Tf

2
+Tf =

Tr +Tf

2
+2E(Dc) (7)

where Tf represents the publication time of the last RouterInfo
in the online session.

Discussion: We analyze the remaining cases (Cases 7, 11,
and 12 in Table VI) caused by missing RouterInfo that cannot
be resolved using the proposed solutions. Case 7 occurs when
the last routine RouterInfo for a non-floodfill router is lost.
Without explicit leave behavior, this results in insufficient
timing information to infer the router’s leave time, leading
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Fig. 6: Process of accessing a hidden service.

to an inference bias of about 35–45 minutes. Case 11 arises
when the initial RouterInfo for a Java-based non-floodfill router
is lost after a brief offline period, causing an incomplete join
behavior. If the interval between the first routine RouterInfo of
the subsequent session (Rs

f ) and the last routine data (Rp
ℓ ) of

the previous session equals the sum of the startup and routine
intervals, our Solution 2 may incorrectly infer that a routine
RouterInfo between them is lost, treating Rp

ℓ as the initial
RouterInfo of the current session. Although this error cannot
be corrected without both join and leave behaviors, the two
sessions remain distinguishable, and both inference biases of
the previous session’s end time and the subsequent session’s
start time are within a routine interval (less than 40 minutes).
If the interval between Rs

f and Rp
ℓ coincides with the routine

interval, the coarse-grained method may incorrectly merge the
sessions (Case 12). Although uncorrectable, this case is rare
due to the specific timing requirement.

E. Live Behavior Probing for Hidden Service

Unlike the passive method for routers, we use an active
probing approach to infer the live behavior of a target hidden
service. As shown in Fig. 6, the process for an I2P client to
access a hidden service involves three stages: (i) the client
establishes a pair of unidirectional tunnels for communication.
(ii) The client queries the netDB for the target hidden service’s
LeaseSet. If the response message R2 includes the LeaseSet, the
lookup is successful; otherwise, it indicates that the LeaseSet
is not present in the netDB. (iii) Using the LeaseSet, the client
connects to the hidden service as depicted in §II-B and sends
a service request, receiving acknowledgment via message R3.

Based on this mechanism, the hidden service’s live behavior
can be inferred from the messages at each stage. If a failure
response R2 is received, it indicates the hidden service has
been offline for more than 10 minutes, causing the LeaseSet to
expire. If the LeaseSet is retrieved but no connection is made,
the service is inferred to have been offline within the last
10 minutes. Successfully receiving R3 confirms the service’s
availability. By periodically repeating this access task, the live
behavior of the hidden service can be inferred. Due to the I2P
network’s inherent anonymity, our client remains unexposed to
the hidden service. In addition, I2P reliably delivers probing
messages to the target service by using the SSU (Secure
Semireliable UDP) and NTCP (NIO-based TCP) transport
protocols, as well as the application-layer streaming library.
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The network environment has limited impacts on the attack’s
effectiveness. I2P provides approaches to ensure the reliability
of data transmission. At the transport layer, I2P implements the
SSU and NTCP protocols based on UDP and TCP, respectively,
to ensure reliable message delivery. At the application layer, I2P
provides the streaming library for the same purpose. Because
of the above strategies, as long as the host router’s RouterInfo
and the hidden service’s response to probing by the attacker
could be delivered correctly, our attack can succeed.

F. Live Behavior Correlation

We propose a dynamic time warping (DTW)-based
correlation method to evaluate the similarity between the live
behaviors of routers and a target hidden service. First, we
serialize the inferred live behavior by representing online and
offline states with positive and negative integers, respectively,
while recording the duration of each state. For example, if a
router stays online for 5 minutes and then offline for 5 minutes,
its state sequence would be: 1, 2, 3, 4, 5, -1, -2, -3, -4, -5. The
DTW algorithm then computes the alignment cost between
two sequences by calculating the pairwise distance between
corresponding elements. Unlike traditional methods that rely on
predefined distance metrics (e.g., Euclidean distance), we use
a customized distance function: if two numbers are identical,
the distance is 0; if they share the same sign, the distance
is 1; and if they have opposite signs, the distance is 2. The
DTW algorithm outputs a distance score, where a lower score
indicates higher similarity between the two live behaviors.

G. Theoretical Analysis

We now prove that a target hidden service exhibits a unique
live behavior pattern over time and can therefore be uniquely
identified if this behavior is measurable, as demonstrated in
this paper. We can model the live behavior of a hidden service
as an on-off stochastic process. Therefore, n hidden services
correspond to n on-off stochastic processes. Assume that their
on periods follow the same discrete probability distribution and
have k values with probabilities a1, . . . ,ak. Their o f f periods
follow the same discrete probability distribution and have l
values with probabilities b1, . . . ,bl . While one might assume
the n hidden services are more distinct, this model assumes
they are more similar, presenting a worse-case scenario for
the attacker. Assume that the n processes are independent and
their on-off cycles are independent, where one cycle contains
one on period and one o f f period.

Theorem 1: The probability PA that one particular on-off
process A does not produce the same length-m on-off sequence
with any of the other on-off n−1 processes can be calculated
as follows,

PA =
(
1− (SaSb)

m)n−1
, (8)

where

Sa =
k

∑
i=1

a2
i , Sb =

l

∑
j=1

b2
j . (9)

The detailed derivation can be found in Appendix B. It can
be observed that in Equation (8), SaSb < 1. Therefore, when

m is large, PA approaches 1. That is, we can uniquely identify
a hidden service given a long observation of its live behavior.

Corollary 1.1: If A and the other on–off processes are
synchronized in their on–off behavior, they become identical
and cannot be distinguished based solely on that behavior.

V. EVALUATION

We implemented I2PERCEPTION and conducted extensive
experiments within the real-world I2P network under controlled
conditions. In this section, we first present details of our
experimental setup and then present the experimental results,
addressing three research questions as follows:
(RQ1): Are the inferred live behaviors of I2P routers consistent

with their actual behaviors using RouterInfo data (§V-B1)?
(RQ2): Can our method accurately reconstruct the router’s live

behavior when we have incomplete data (§V-B2)?
(RQ3): Can I2PERCEPTION effectively deanonymize the target

hidden service (§V-B3)?

A. Experiment Setup

Experiment environment. We deploy 25 I2P routers on
virtual private servers (VPS) running Ubuntu 22.04, distributed
across various regions. Each VPS is configured with 1 virtual
CPU, 1 GB RAM, and 32 GB storage. All routers use
customized I2P software to collect RouterInfo data and log
essential information without disrupting normal network
operations. 15 routers operate in floodfill mode to support
large-scale RouterInfo collection, with the sufficiency of 15
floodfill routers demonstrated in Appendix A. The remaining
10 routers host the hidden services used as targets in our
deanonymization experiments: 5 Java-based and 5 C++-based.
Among the Java-based routers, 3 have reachable ports and two
are firewalled. One of the reachable Java routers is configured
in the floodfill mode to validate our leave behavior identification
method. All five C++-based routers are configured in the non-
floodfill mode, with 3 having reachable ports and 2 firewalled.
An I2P client is deployed on a Windows 11 machine (Intel
Core i7-1165G7, 16 GB RAM) to probe the controlled hidden
services and process data for the deanonymization prototype.

Dataset Collection. We collect RouterInfo data from 15
controlled floodfill routers over a period of more than 8
months. To create a ground truth dataset, we locally record
the RouterInfo publication logs from 10 host routers, resulting
in a complete, lossless dataset. This ground truth dataset
serves to evaluate the contribution of each component in the
fine-grained inference method and to validate the accuracy of
inferred live behavior under ideal conditions. Additionally, we
capture RouterInfos from the 15 deployed floodfill routers to
build an evaluation dataset, which may experience partial data
loss due to network dynamics. This dataset is used to assess
both the necessity of the online session complement strategy
and the overall effectiveness of the live behavior inference
framework under realistic conditions. These two datasets allow
us to evaluate the performance of our inference method in
both ideal (no data loss) and realistic (with data loss) settings.
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Fig. 7: Results of the ablation experiments. Subfigures (a–c) show results for Java-based routers under different offline durations:
(a) 45–60 min (S1), (b) 30–45 min (S2), and (c) 5–10 min (S3). Subfigure (d) presents results for C++-based routers with
mixed offline durations (S4). J-R-FF, J-R-nFF, and J-U denote Java-based floodfill, non-floodfill, and unreachable-port routers,
respectively. C-R and C-U refer to C++-based routers with reachable and unreachable ports.

Controlled Online/Offline Behavior Scenarios. We config-
ure the online/offline behaviors of the controlled host routers
and consider seven scenarios as shown in Table II to evaluate
the accuracy of our live behavior inference method. Router
behaviors are controlled using crontab scripts to follow the spec-
ified configurations automatically. S1 to S4 represent hidden
services that exhibit frequent on–off patterns, posing challenges
for inferring the live behavior of their host routers, specifically,
accurately mapping each RouterInfo to its associated online
session. Services in S1 to S4 run for two months. Their daily
behavioral patterns are defined in Table II. Positive values
indicate the duration of online sessions, while negative values
represent offline periods, with their absolute values denoting
the length. S5 to S7 correspond to long-lived hidden services,
with the hidden services in S5 to S7 run for the number of
days specified in Table II.

For scenarios of hidden services with frequent on-off
behaviors, S1 to S3 target the services hosted on Java-based
routers. S1 tests the coarse-grained method’s ability to segment
online sessions, with routers remaining offline for 45–60
minutes, longer than the routine publication interval but
shorter than the RouterInfo expiration, causing a false online
identification by floodfill routers. S2 introduces two types of
errors (routine RouterInfo mismatches and misidentifications)
to evaluate the effectiveness of the join behavior identification
method, with offline durations set to 30–45 minutes, aligning
with the routine publication interval. S3 evaluates the leave

TABLE II: Live behavior settings for different scenarios.

Hidden services with frequent on-off behaviors (Time values are in minutes)

S1 100, -45, 110, -50, 120, -55, 130, -60, 100, -55, 110, -50, 120, -45, 130, -160
S2 120, -30, 110, -35, 100, -40, 120, -45, 110, -40, 100, -30, 10, -35, 120, -30,

10, -35, 100, -40, 120, -60
S3 140, -10, 130, -5, 120, -10, 110, -5, 10, -10, 100, -10, 130, -5, 10, -10, 120,

-10, 110, -5, 100, -10, 110, -5, 10, -10, 120, -15
S4 160, -20, 160, -15, 160, -10, 10, -5, 160, -30, 160, -40, 10, -10, 160, -50,

160, -60, 10, -50

Hidden services with stable live behaviors

S5 Online for nine days; Offline on Day 10
S6 Online for 28 days; Offline on Day 29
S7 Online for 50 days; Offline on Day 51

behavior identification method by introducing incomplete join
behaviors, with offline durations reduced to 5–10 minutes,
increasing the likelihood of mistakenly merging sessions due
to a short offline period. S4 focuses on the services hosted on
C++-based routers, where the offline duration has a minimal
impact on the coarse-grained method. This is due to the
lack of randomness in routine publication intervals, which
eliminates the mismatch and misidentification issues commonly
encountered with Java-based routers. Thus, we randomly select
offline durations between 5 and 60 minutes to create a varied
environment for evaluating the inference method.

For scenarios of long-lived hidden services, in S5, a hidden
service stays online for nine days and goes offline on Day
10. In S6, a hidden service remains online for 28 days
before going offline on Day 29. In S7, a hidden service runs
continuously for 50 days before shutting down on Day 51.

B. Experiment Results

1) Consistency (RQ1)

TABLE III: Occurrence of each case in Table VI, triggered
by different types of routers under various scenarios. In S1-
S3, R-FF, R-nFF, and U denote floodfill, non-floodfill, and
unreachable-port routers, respectively. In S4, R and U refer to
C++-based routers with reachable and unreachable ports.

S1: 45-60 (J) S2: 30-45 (J) S3: 5-10 (J) S4: MIX (C)

R-FF R-nFF U R-FF R-nFF U R-FF R-nFF U R U

Case 1 - - - 77 152 228 76 86 256 - -
Case 2 - - - 19 22 41 117 137 178 - -
Case 3 - - - 252 - - - - - - -
Case 4 - - - - - - 161 - - - -
Case 5 - - - 25 23 42 67 67 68 - -
Case 13 - - - - - - - - - 51 65

In the experimental scenarios we constructed, along with the
corresponding live behaviors assigned to routers, all cases chal-
lenging the effectiveness and reliability of the coarse-grained
method occur. Table III reports the occurrences of routine
RouterInfo mismatches (Cases 1 and 2), misidentifications
(Cases 3 and 4), and incomplete join behaviors (Cases 5 and
13), underscoring the need for our proposed join and leave
behavior identification methods.
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Fig. 8: Comparison of live behavior inference biases with and without the online session complement method, using the
evaluation dataset. Subfigures (a–d) show results under four offline duration settings: (a) S1 (45–60 min), (b) S2 (30–45 min),
(c) S3 (5–10 min), and (d) S4 (mixed). Router categories and scenario definitions follow those in Fig. 7.

We conduct ablation experiments to evaluate the necessity
of each component in our I2P router live behavior inference
framework. Beginning with the coarse-grained method, we
incrementally incorporate join and leave behavior identification,
as well as the leave behavior complement method, to achieve
fine-grained inference. Accuracy is measured by the absolute
time difference (in seconds) between actual and inferred join
and leave times. Results for all four controlled scenarios of
S1–S4 are presented in Fig. 7.

Fig. 7a shows that in S1, the coarse-grained method ac-
curately infers all online session start times, with a median
bias of just 6 seconds. However, the accuracy of leave time
inference varies across router settings. Since all RouterInfo
are correctly assigned to their respective sessions and the first
RouterInfo of each session is accurately identified, the join
behavior identification method offers no further improvement.
For floodfill routers, the coarse-grained method achieves high
accuracy in leave time inference, with a median bias below 10
seconds, as it captures all RouterInfo published after the last
routine RouterInfo within the same session. In contrast, for
non-floodfill routers lacking explicit leave behavior, the median
leave time bias reaches approximately 900 seconds, which can
be reduced to around 500 seconds using the leave behavior
complement method.

Fig. 7b and Fig. 7c show that the coarse-grained method
exhibits significant biases in inferring the join times of
controlled routers in scenarios S2 and S3, with several exceeding
2000 seconds, despite a median below 10 seconds. After
incorporating the join behavior identification method, these
biases are dramatically reduced to less than 10 seconds.
Likewise, applying the leave behavior complement method to
non-floodfill routers cuts the leave time bias by more than half,
lowering the median from 1400 seconds to below 700 seconds
(12 minutes), which has minimal impact on the similarity
between inferred and actual live behaviors. These results
confirm the fine-grained method’s effectiveness in enhancing
inference accuracy.

Fig. 7d presents the live behavior inference results for C++-
based routers in S4. The coarse-grained method, limited to
approximating session boundaries, yields substantial inference
biases. Incorporating the join and leave behavior identification

methods significantly improves accuracy, reducing the median
join time bias to under 5 seconds and the median leave time
bias to below 10 seconds. Although observable leave behavior
occasionally fails to appear—resulting in a few outliers—the
leave behavior complement method effectively bounds all leave
time biases within 15 minutes.

The above results indicate that when we have complete data,
our live behavior inference method maintains a high level of
consistency with the ground truth across various scenarios.

2) Reliability (RQ2)
Table IV presents the occurrences of incorrect inferences in

the fine-grained online session inference method caused by miss-
ing RouterInfo, as listed in Table VI, using the evaluation dataset
collected from controlled floodfill routers. All cases occur,
though with varying frequencies. Cases 6–10, and 14–16 appear
more often and are successfully corrected by our online session
complement methods. We further analyze the two unresolvable
cases: 11 and 12. Case 11 is observed to be extremely rare. Al-
though it could theoretically arise in S2 for non-floodfill routers
with reachable ports, no such instance is observed in practice.
Similarly, while Case 12 may substantially affect inference
accuracy, its occurrence is also, as expected, exceedingly rare.
Then we quantify the effectiveness of our online session com-
plement method by comparing the accuracy of inferred join and
leave times with and without the session complement method.

To evaluate the effectiveness of the online session com-
plement method, we quantitatively compare the live behavior
inference biases across different router types and scenarios,

TABLE IV: Occurrence of each case in Table VI, triggered by
different types of routers under various scenarios.

S1: 45-60 (J) S2: 30-45 (J) S3: 5-10 (J) S4: MIX (C)

R-FF R-nFF U R-FF R-nFF U R-FF R-nFF U R U

Case 6 - - - - 13 21 - 37 55 - -
Case 7 - 35 28 - 22 16 - 25 14 - -
Case 8 33 49 57 27 43 51 48 45 59 - -
Case 9 11 - - 17 - - 19 - - - -
Case 10 11 10 18 8 19 33 7 15 26 - -
Case 11 - - - - 0 0 - 5 12 - -
Case 12 - - - - 3 3 - 2 7 - -
Case 14 - - - - - - - - - 26 21
Case 15 - - - - - - - - - 47 51
Case 16 - - - - - - - - - 31 22
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TABLE V: Upper quartile value of inference biases in join
and leave times for various router categories, with and without
session complement method, and the corresponding similarity
distance to the ground truth per hidden service’s online session.

Compl-
ement

J-R-FF J-R-nFF J-U C-R C-U

join leave τ join leave τ join leave τ join leave τ join leave τ

✗ 353 1147 25 1677 2336 66 2652 3722 106 868 2380 54 867 542 23
✓ 6 606 10 361 702 18 561 1436 33 2 430 7 3 162 3

using the fine-grained inference method alone and with the
complement method, based on the evaluation dataset. The
results are presented in Fig. 8.

Fig. 8a shows the inference biases of controlled host routers’
join and leave times in S1. Java-based floodfill routers, which
exhibit explicit join and leave behaviors, are minimally affected
by missing RouterInfo, with median inference biases for both
join and leave times below 10 seconds. In contrast, Java-
based non-floodfill routers are more vulnerable to data loss.
When using only the fine-grained method, the median leave
time bias reaches 1400 seconds, while the online session
complement method reduces it to 600 seconds. For Java-based
unreachable routers, limited connectivity hampers RouterInfo
propagation compared to reachable routers, resulting in more
missing RouterInfos. Consequently, the fine-grained method
produces median biases of 1350 seconds for join times and
2600 seconds for leave times, which the complement method
effectively reduces to 600 and 1700 seconds, respectively.

Fig. 8b presents the performance of the online session
complement method in S2. The method significantly improves
inference accuracy for Java-based floodfill routers, achieving
median biases of less than 10 seconds for both join and leave
times. For non-floodfill routers, since multiple cases occur more
frequently than in floodfill routers (as shown in Table IV), larger
inference errors are observed. Regarding routers’ join times, the
online session complement method decreases the median bias
from 1130 seconds to 230 seconds. For leave times, although
the complement method slightly raises the median bias, it
effectively eliminates most outliers by correcting the majority
of online session misidentifications, thereby concentrating the
inference biases within a lower range of 600–1500 seconds.
Finally, for unreachable routers, the online session complement
method is also highly effective, reducing the median inference
biases for join times from 1250 seconds to within 10 seconds,
and for leave times from 1300 to 800 seconds.

Fig. 8c shows that, in S3, the online session complement
approach significantly enhances the accuracy of join and leave
time inference for Java-based routers. Along with the results in
Fig. 8a and Fig. 8b, these findings demonstrate the robustness
of I2PERCEPTION in accurately inferring the live behaviors of
Java-based routers under real-world conditions.

Fig. 8d illustrates the performance of our session-complement
approach for C++-based routers in S4. For reachable routers,
the method reduces all join time inference biases to within 10
seconds and eliminates most inference biases when inferring
leave times, keeping 75% of values below 550 seconds. For
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Fig. 9: Hidden services’ anonymity set size vs. time. Note:
When a scenario contains only a single service and no other
synchronized services, that service can be uniquely identified:
S1, S2, S3, and S4 on Day 2; S5 on Day 10; S6 on Day 26;
and S7 on Day 34.

unreachable routers, join time inference accuracy is comparable
to that of reachable ones. The leave time inference shows
even greater improvement, with nearly all inference biases
constrained within 240 seconds.

Table V summarizes the inference accuracy of join and leave
times for different types of I2P routers across all scenarios,
comparing the results of using the fine-grained online session
inference method alone and in combination with the online
session complement method. In the table, each ‘join’ column
represents the upper quartile of biases (i.e., 75% of biases are
less than or equal to this value) for all inferred join times of
the corresponding router type. Likewise, the “leave” column
indicates the upper quartile of leave time inference biases.
These results highlight that the session complement method
substantially enhances the inference accuracy of router live
behaviors in real-world conditions.

Based on the join and leave time inference biases discussed
above, we derive the similarity thresholds used to partition
anonymity sets in deanonymization attacks against hidden
services in the real-world environment. The experimental results
indicate that inference biases vary across different router types.
Accordingly, for each online session (i.e., one on–off cycle) of
a target hidden service, we assign distinct similarity thresholds
to different router categories to determine whether a router
belongs to the service’s anonymity set. ThrDTW in Table V
denotes the per-session similarity threshold for each router
type, derived from its corresponding live behavior inference
accuracy. Consequently, the overall threshold for determining
a router’s inclusion in the anonymity set is defined as n× thrc,
where n is the number of the hidden service’s online sessions
and thrc is the category-specific threshold.

3) Effectiveness (RQ3)
To evaluate the real-world performance of I2PERCEPTION,

we conduct deanonymization attacks on controlled hidden
services under the scenarios defined in Table II. For each

12



scenario S1–S4, five hidden services are configured to follow
the same live behavior described in §V-A. For the long-lived
scenarios S5 and S6, eight services are deployed for each
configuration, while one service is run for S7. Throughout
their runtime, we continuously monitor the I2P network and
record the size of each hidden service’s anonymity set at the
end of each day. Please note: In practice, it is unlikely for
two hidden services to exhibit the same on-off pattern, and
a real-world hidden service will be uniquely identified. We
create synchronized processes to illustrate Corollary 1.1.

Fig. 9 presents how the anonymity sets of controlled hidden
services shrink over time. For the short-lived hidden services
(S1–S4), their anonymity sets rapidly shrink from 5,000-6,000
I2P routers to approximately 10 on the first day. By day 2 and
onward, their anonymity sets shrink to 5, corresponding to the
number of synchronized services. In the long-lived scenarios
S5–S7, 915, 1,307, and 1,035 I2P routers go online around
the same time. These routers form their initial anonymity sets.
After one day, these sets shrink to 129, 223, and 164 routers. In
S5, the set further decreases to 57 routers by day 9 and to 8 by
day 10, corresponding to the number of synchronized services.
In S6, routers in the initial set gradually go offline, reducing the
anonymity set to 8 by day 26. Finally, the single hidden service
in S7 is successfully deanonymized after 34 days of monitoring.
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Fig. 10: Experimental results from long-term monitoring of the
I2P network. (a) Number of routers with different anonymity
set sizes (k). (b) CDF of the number of routers exhibiting
unique behaviors over the monitoring period.

We also evaluate the behavioral distinguishability of real-
world I2P routers by examining how many exhibit on–off
patterns that are unique with respect to our live behavior
inference framework and a predefined similarity threshold
(Refer to Appendix C for the choice of the threshold). We
include all routers that appeared online on the first monitoring
day and track their behaviors for the subsequent eight months.
Each day, we compute the similarity distance between every
router and all others to derive its anonymity set. A router is
classified as behaviorally unique once no other router remains in
its anonymity set. Fig. 10a summarizes the results. Among all
monitored routers, 37,982 eventually exhibit unique behaviors,
while 468 share a similar behavior with at least one other router.
Fig. 10b further shows how quickly uniqueness emerges: 90%
of the unique routers become distinguishable within the first
18 days. These findings highlight the substantial behavioral
diversity among I2P users, which implies that hidden services

hosted on such routers may produce similarly distinguishable
behavioral patterns, potentially increasing their deanonymiza-
tion risk. For routers without unique behaviors, our method may
not deanonymize them immediately, but it significantly reduces
their anonymity set from thousands to tens or hundreds, enabling
strong adversaries to focus active attacks (e.g., DoS, water-
marking, fingerprinting) on a much smaller candidate pool.

VI. MITIGATION

To ensure a comprehensive treatment of the security implica-
tions of our findings, we also analyze potential countermeasures
to our attack. Mitigation can be considered from two comple-
mentary perspectives: (I) protocol-level defenses that reduce
information leakage from RouterInfo publication, and (II) user-
side measures that make hidden services harder to correlate.

Protocol-Level Defenses. We propose two protocol-level
strategies. (a) Randomizing Publication Intervals: We
can enhance the randomness of RouterInfo publication by
substituting the fixed four update interval publication rule (as
introduced in §IV-C) with a randomized mechanism that sets
the next mandatory publication within 10–55 minutes after
each one. This broad randomization window prevents attackers
from identifying online sessions through periodic patterns and,
in real-world environments, removes the analytical basis for
handling uncaptured RouterInfo. Importantly, this approach
still guarantees timely RouterInfo refreshing in the netDB,
since the maximum publication interval remains shorter than
the RouterInfo timeout threshold (i.e., one hour),making this
mitigation strategy both secure and operationally adaptable.
(b) Eliminate Join and Leave behaviors: Eliminating special
RouterInfo publication patterns during router initialization
and shutdown phases can prevent attackers from precisely
identifying the start and end of online sessions. Also, without
these behaviors, a real-world attacker cannot determine whether
the first RouterInfo within a RouterInfo trace is the initial
one published after a router starts or if previous RouterInfos
were lost. This makes it infeasible to recover complete online
sessions when only partial RouterInfo data is available.

Real-World Deployment by the I2P Team. Following
our responsible disclosure, I2P provides a patch to mitigate
the anonymity risk from three perspectives. First, to introduce
randomization, the patch dictates that each routine RouterInfo
publication has a 1-in-32 chance of being skipped. Second,
the patch refines the management of the update counter
and removes the specific code branch executed for the
initial RouterInfo publication, effectively eliminating the
‘join behavior’ outlined in §IV-C. Finally, a floodfill router
now does not publish a non-floodfill RouterInfo during a
non-graceful shutdown, thus removing the ‘leave behavior’.

We also propose two user-side measures: (a) Synchronizing
the behavior of a group of I2P hidden services. By
coordinating several hidden services to exhibit identical
behaviors, the host routers of these services can collectively
form a larger anonymity set, preventing attackers from
associating a single hidden service with a unique router.
Although this strategy can effectively expand the anonymity
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set, it is generally impractical because hidden services operated
by different users typically act independently. (b) Detecting
active probing of I2P services. Although the hidden service
cannot observe a client’s IP address, it can observe the client’s
I2P identity. Repeated or periodic probing from the same
identity, or probing with distinguishable timing patterns from
different sources may reveal attempts to infer live behavior,
allowing the service to ignore or throttle such requests.

VII. RELATED WORK

Over the years, numerous anonymous communication
systems have been developed, such as Tor [3], I2P [48], to
provide users with anonymous access to Internet services.
Meanwhile, various attacks have been investigated to break
the users’ anonymity. Broadly speaking, the core idea of
deanonymization is to exploit identifiable behavioral patterns
over time to gradually reduce the anonymity set of a target
user, ultimately isolating the target from a crowd of users.

In the I2P network, researchers have applied deanonymization
strategies by leveraging the network’s unique protocol behaviors
and inherent vulnerabilities. Herrmann et al. [49] attempted
to trace hidden services by correlating traffic observed on
controlled routers participating in the service’s tunnels. Other
attacks have targeted specific protocol vulnerabilities. Egger et
al. [50], for instance, launched a Sybil attack against hidden
services. Their method involved using numerous floodfill
routers to intercept the published RouterInfo of a service’s
host router, thereby revealing the identity of the associated
tunnel’s exit router. In another approach, Crenshaw et al. [51]
proposed a side-channel method that correlates anonymous
I2P websites (eepsites) with their public-facing counterparts on
the clearnet to uncover the server’s true IP address. Although
prior studies have demonstrated successful deanonymization,
they either exploited protocol vulnerabilities in I2P or relied
on traffic-correlation techniques. The protocol vulnerabilities
leveraged by previous work have been patched and are no
longer exploitable. Moreover, traffic-correlation attacks require
the adversary to occupy specific positions within a hidden
service’s client tunnel, which is extremely difficult to achieve
in the I2P network at its current scale.

More recently, research has shifted toward analyzing
behavioral patterns of I2P routers. Simioni et al. [52] inferred
a router’s online and offline status based on the duration
its RouterInfo remained in the netDB, thereby identifying
behavioral differences among routers. However, their work
does not uncover the RouterInfo publication mechanism and,
as a result, cannot achieve high accuracy when inferring I2P
routers’ live behaviors. Moreover, in real-world scenarios
where capturing all RouterInfos is impossible, their method
cannot handle the impact of RouterInfo loss, thus making it
unable to achieve reliable deanonymization.

Previous researchers on Tor have adopted different types of
identifiable patterns, ranging from embedding actively crafted
traffic features into flows of anonymous systems [4]–[12],
mining intrinsic traffic characteristics of anonymity systems
[13]–[35], detecting side-channel behaviors such as clock skew

on the host of a target hidden service [53], to identifying pro-
tocol flaws that cause behavioral deviations across anonymous
users [37]. Existing deanonymization methods for Tor hidden
services do not leverage user-driven behavioral patterns that
produce distinctive on–off activity in hidden services.

VIII. CONCLUSION

We propose I2PERCEPTION, a de-anonymization framework
for I2P hidden service. Using the routers’ live behaviors inferred
by a passive monitoring approach to correlate with the service’s
live behavior obtained via an active probing approach, we may
identify the server’s host router to reveal the IP address of the
hidden server. To precisely infer the I2P router’s fine-grained
live behavior, we explore the publication rules of RouterInfo
data during join and leave period to precisely identify the
router’s join and leave behavior. Also, we investigate the online
session recovery method to reduce the impact of the incomplete
data caused by low-cost data collection strategy. The real-world
experiment results shows that the live behavior inferred by
I2PERCEPTION has high consistency with the router’s actual
live behavior. Moreover, all the hidden services we deployed
were successfully deanonymized by I2PERCEPTION.
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ETHICS CONSIDERATIONS

In this paper, we collected I2P router’s RouterInfo data, and
periodically sniffed several controlled I2P hidden services, aim-
ing to correlate the live behavior of the target hidden services
with their host routers, so as to achieve de-anonymization. We
took the following steps to ensure that our experiments were
conducted ethically:

Responsible Disclosure: Upon discovering the vulnerabili-
ties, we disclosed our findings to the I2P maintainers to support
timely mitigation. Our work was acknowledged by the I2P
project, and as of this submission, the reported issues have
been addressed in a prior I2P release. [44].

Controlled Deployment: All hidden services considered as
attack targets are deployed on controlled routers by ourselves,

14



and the identities of these services are not disclosed to anyone,
ensuring that no user could accidentally access these hidden
services.

I2P Academic Research Guidance: Our experiments strictly
adhere to the security recommendations on the I2P Academic
Research website [54]. Specifically, we ensure the following: no
active exploits or Denial of Service (DoS) attacks are performed
on the I2P network; no social engineering is conducted targeting
I2P team members or community participants; and no physical
or electronic attempts are made against I2P property or data
centers.

Data Protection: We implemented multiple safeguards to
minimize potential harm from data collection. All data were
obtained exclusively from 15 floodfill routers that we deployed,
which participated in normal netDB maintenance and tunnel
construction without disrupting the I2P network. Data analysis
was conducted entirely offline. We ensured strict confidentiality,
with no data or metadata shared with third parties. All data
were transmitted over SSH-encrypted channels and stored on a
secure, access-controlled campus server. Our interaction with
the data was purely observational: no modifications were made.
All collected data were anonymized and deleted after paper
submission.
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APPENDIX A
LOW-COST DEPLOYMENT STRATEGY FOR FLOODFILL

ROUTERS

We evaluate the data collection effectiveness of 15 floodfill
routers using two key metrics: the network-wide router coverage
and the RouterInfo capture rate from controlled routers. Over an
8-month monitoring period (2023.06–2024.02), we continuously
recorded the number of unique I2P routers detected each day
and compared it with the official statistics [2] to validate our
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Fig. 11: Floodfill routers’ effectiveness. (a) Comparison be-
tween our collected data and official data. (b) RouterInfo
Capture Rate vs. Number of Controlled Routers.

network coverage, as shown in Fig. 11a. With 15 floodfill
routers, our system achieved 98% coverage of the officially
reported router count, with only marginal gains observed beyond
13 routers. We further assessed the capture rate of RouterInfo
data by comparing the records collected by our floodfill routers
with the actual number of RouterInfo publications logged locally
by the controlled host routers. Fig. 11b presents the average
capture rates achieved using different numbers of floodfill
routers. A 15-router deployment yields a 90% capture rate,
comparable to that of 18 routers. Therefore, we use 15 floodfill
routers in all real-world experiments to ensure reliable data
collection with minimal resource overhead.

APPENDIX B
PROBABILITY THAT NO TWO PROCESSES ARE THE SAME

AFTER m CYCLES

A. Problem Definition

Given n on-off stochastic processes. Their on periods follow
the same discrete probability distribution and have k values
with probabilities a1, . . . ,ak. Their o f f periods follow the
same discrete probability distribution and have l values with
probabilities b1, . . . ,bl . The n processes are independent and
their on-off cycles are independent. One cycle contains one on
period and one o f f period.

What is the probability PA that one particular process A does
not produce the same length-m sequence with any of the other
n-1 processes?

B. Solution

Step 1. Model a single cycle. One cycle C is an ordered
pair (O,F) where O is an on-period chosen from {1, . . . ,k}
with probabilities a1, . . . ,ak, and F is an off-period chosen
from {1, . . . , l} with probabilities b1, . . . ,bl . Since O and F are
independent,

P(C = (i, j)) = aib j, (10)
where i = 1, . . . ,k and j = 1, . . . , l. Note:

k

∑
i=1

ai = 1,
l

∑
j=1

b j = 1 (11)
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Fig. 12: Distribution of similarity distances between inferred
live behaviors of router pairs sharing the same behavior

Step 2. Probability PC two independent processes match
on one cycle. Let process A produce cycle C and an independent
process B produce cycle C′. The probability they coincide on
a particular cycle value (i, j) is

P(C = (i, j))P(C′ = (i, j)) = (aib j)
2. (12)

Summing over all possible outcomes gives

PC =
k

∑
i=1

l

∑
j=1

(aib j)
2 =

(
k

∑
i=1

a2
i

)(
l

∑
j=1

b2
j

)
. (13)

Define

Sa =
k

∑
i=1

a2
i , Sb =

l

∑
j=1

b2
j . (14)

Therefore,
PC = SaSb. (15)

Step 3. Probability Pm that two processes of length-m
match. A length-m sequence consists of m independent cycles.
Two processes produce the same sequence exactly when they
match in all m cycles. Since cycles are independent,

Pm = (SaSb)
m. (16)

Step 4. Probability PA that none of the other n-1 processes
match process A. Fix the realized length-m sequence of process
A. For any other process B, the probability it matches A on
that fixed sequence is Pm = (SaSb)

m. Thus the probability it
does not match is 1−Pm. Since all n−1 other processes are
independent,

PA =
(
1−Pm

)n−1
. (17)

APPENDIX C
DISCUSSION ON THE SIMILARITY THRESHOLD FOR

DISTINGUISHING ROUTER BEHAVIORS

To assess whether two I2P routers exhibit indistinguishable
behavioral patterns, we analyze the similarity distance between
the inferred live behaviors of controlled routers that share the
same ground-truth behavior. For each day in the evaluation
dataset(refer to §V-A), we compute the pairwise similarity

distances among all controlled routers with identical ground-
truth behaviors, as shown in Fig. 12. Routers with stable
online patterns (S5 and S6) display consistently low distances,
with 85% below 37 and a maximum of 62. In contrast,
routers exhibiting frequent on–off transitions (S1–S4) show
substantially larger distances ranging from 6 to 389. The results
indicate that even when routers share the same ground-truth
behavior, the similarity distance between their inferred live
behaviors increases with the number of on–off switches. We
therefore examined the distribution of online sessions in the
real I2P network. Except for routers that remain continuously
online, 99.74% of routers experience fewer than four online
sessions per day. Motivated by this observation, we recomputed
similarity distances for controlled routers sharing the same
behavior and exhibiting one to four sessions. Nearly all
distances fall below 166, with only rare outliers reaching 189.
Based on these results, we set the similarity threshold to 200,
which provides a conservative upper bound ensuring that routers
following identical behaviors are unlikely to be incorrectly
excluded from each other’s anonymity sets, thereby minimizing
false negatives. Although such a relaxed threshold may allow
inclusion of some dissimilar routers, behavioral divergence that
accumulates over longer observation windows can still enable
an adversary to gradually shrink the target’s anonymity set.

APPENDIX D
LIVE BEHAVIOR CASES WITH DATA LOSS AND

NON-DATA-LOSS CASES

Table VI provides a comprehensive enumeration of all live-
behavior cases that challenge our inference framework. Specif-
ically, it includes (i) cases where the coarse-grained session
inference becomes inaccurate under no–data-loss conditions
(Cases 1–5 and Case 13), and (ii) cases where the fine-grained
inference method may misidentify join or leave events due to
data loss (Cases 6–12 and Cases 14–16). Whereas the main
text (Section IV-C and Section IV-D) discusses these cases
individually when explaining the design rationale of each live
behavior inference component, this appendix consolidates them
in one place to support systematic cross-case comparison.

Each row of Table VI represents a distinct live behavior
pattern and the resulting RouterInfo publication pattern of that
behavior in either Java- or C++-based routers, along with the
root cause of the inference error, a schematic comparison of
inferred versus actual live behaviors, and a concise description
of how the inference error arises. The last 3 columns indicate
which technical components of our framework (join behavior
identification, leave behavior identification, and online session
complement) can correctly handle the case. The table thus
highlights the functional contribution of every technical compo-
nent and clarifies why all components are necessary to achieve
robust live behavior inference.
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TABLE VI: The situations needs to be handled and the functional contributions of each technical component across varying
situations.

Index Lang. Data
Loss Root Cause Schematic Diagram Description Coarse-

Grained
+ Join

Behavior
+ Leave
Behavior

+ Session
Comple-

ment

1

Java

✗

Routine
RouterInfo
mismatch

I(Ri
r ,R

i+1
f ) = Ir ✗ ✓ - -

2 I(Ri
r ,R

i+1
r ) = Ir ✗ ✓ - -

3 Routine
RouterInfo

misidentifica-
tion

I(Ri
ℓ,R

i+1
f ) = Ir ✗ ✓ - -

4 I(Ri
ℓ,R

i+1
r ) = Ir ✗ ✓ - -

5 No routine
feature

No routine RouterInfo is
published within the (i+1)th

online session. I(Ri
r ,R

i+1
f )< Ir

✗ ✗ ✓ -

6

✓

Loss of a
routine

RouterInfo

The first Ri+1
r is lost.

(non-floodfill only). ✗ ✗ ✗ ✓

7 The last Ri
r is lost. (non-floodfill

only) ✗ ✗ ✗ ✗

8 Loss of any Ri
r other than the

first or the last. ✗ ✗ ✗ ✓

9
Loss of the

final
RouterInfo

The Ri
f is lost. Several Ri

r may
also lost. (floodfill only). ✗ ✗ ✗ ✓

10

Loss of the
initial

RouterInfo

Ri+1
f is lost, and I(Ri

r ,R
i+1
r ) ̸= Ir . ✗ ✗ ✗ ✓

11
Ri+1

f is lost, be mistakenly
handled as Case 6 (non-floodfill

only).
✗ ✗ ✗ ✗

12 Ri+1
f is lost, and I(Ri

r ,R
i+1
r ) = Ir ,

(non-floodfill only).
✗ ✗ ✗ ✗

13

C++

✗
No routine

feature Identical to case 5. ✗ ✗ ✓ -

14

✓

Loss of
routine

RouterInfo

A Ri
r is lost, the next RouterInfo

has different congestion flag
with the previous Ri

r .
✗ ✗ ✗ ✓

15
Loss of the

initial
RouterInfo

Ri+1
f is lost. ✗ ✗ ✗ ✓

16
Loss of the

final
RouterInfo

Ri+1
ℓ is lost. ✗ ✗ ✗ ✓

Diagram explanation: Each diagram displays both the actual live behavior of the router (top section) and the inferred live behavior (bottom section).
Each yellow rectangles represent router’s one online session. Within each online session, the blue short line ending with a circle indicates the publish
time of routine RouterInfo data, the red short line with a hollow square marks the publish time of the final RouterInfo data, and the purple short line
terminating in a solid circle denotes the publish time of initial RouterInfo data within the session. Dashed line represents the RouterInfo data that is
lost. Additionally, in cases 1-5, gray rectangles between two online sessions indicate approximately one routine interval. Specifically, the time interval
between the two RouterInfo data located at the leftmost and rightmost edges of the gray rectangle equals one routine interval.
Formal definition: We define the function I(RouterInfo 1,RouterInfo 2) to calculate the time interval between two RouterInfo data, with Ir representing
the routine interval. Next, we assign identifiers to important RouterInfo data. For a given RouterInfo R, the superscript (e.g., i) indicates RouterInfo
data published within the ith online session. Subscripts (e.g., r, f and ℓ) to indicate whether the RouterInfo is a routine, the initial or the last RouterInfo
data within an online session, respectively.
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