
Distributed Broadcast Encryption for Confidential
Interoperability across Private Blockchains

Angelo De Caro
IBM Research Zürich
adc@zurich.ibm.com

Kaoutar Elkhiyaoui
IBM Research Zürich
kao@zurich.ibm.com

Sandeep Nishad
IBM Research India

sandeep.nishad1@ibm.com

Sikhar Patranabis
IBM Research India

sikhar.patranabis@ibm.com

Venkatraman Ramakrishna
IBM Research India

vramakr2@in.ibm.com

Abstract—Interoperation across distributed ledger technology
(DLT) networks hinges upon the secure transmission of ledger
state from one network to another. This is especially challenging
for private networks whose ledger access is limited to enrolled
members. Existing approaches rely on a trusted centralized proxy
that receives encrypted ledger state of a network, decrypts it, and
sends it to members of another network. Though effective, this
approach goes against the founding principle of DLT, namely
avoiding single points of failure (or single sources of trust).

In this paper, we leverage fully-distributed broadcast encryption
(FDBE in short) to build a fully decentralized protocol for confi-
dential information-sharing across private networks. Compared to
traditional broadcast encryption (BE), FDBE is characterized by
distributed setup and key generation, where mutually distrusting
parties agree on a BE’s public key without a trusted setup, and
securely derive their decryption keys. Given any FDBE, two pri-
vate networks can securely share information as follows: a sender
in one network uses the other network’s FDBE public key to
encrypt a message for its members. The resulting construction is
secure in the simplified universal composability (UC) framework.

To further demonstrate the practicality of our approach, we
present the first instantiation of an FDBE that enjoys constant-
sized decryption keys and ciphertexts, and evaluate the resulting
performances through a reference implementation that considers
two private Hyperledger Fabric networks within the Hyperledger
Cacti interoperation framework.

I. INTRODUCTION

Blockchain and distributed ledger technology (DLT) net-
works were originally designed for public access and open
participation, as evidenced by the popular Bitcoin [62] and
Ethereum [76] networks, and more recently, by networks
like Algorand [44] and Solana [79]. Though ideal for global
cryptocurrency transactions, this model cannot support com-
merce involving digital assets where parties need more pri-
vacy, performance, and auditability than what public DLTs
offer. Therefore, interest in private or permissioned DLTs
arose within enterprises and governmental institutions, which

adapted decentralized consensus-based shared ledgers for use
as shared systems-of-record for transactions among members
of private groups (or business consortiums) [27], [28]. Private
DLTs, in combinations with public ones, have enabled applica-
tions like supply chains [5], [18], [13], trade finance [16], [19],
central bank digital currency (CBDC) [17], [21], securities
trading [3], [21], and regulatory compliance [33] to be built at
scale. In these scenarios, mutually untrusting parties (like ex-
porters, importers, and banks) cannot rely on common trusted
central authorities to manage ledgers, yet need a trustworthy
decentralized transaction processing method with audit trails
for dispute resolutions.

Background on DLT Interoperability. DLT networks with
different trust and governance models have proliferated in both
public and private forms. This in turn has driven research in
interoperability, a necessity for these networks to fulfill their
potential and serve useful functions. Interoperability allows
networks with interdependent business processes to link with
each other, break siloes, and manage digital assets jointly [21],
[24], [23]. Technically, interoperation enables transactions to
span multiple networks, primarily to (i) share state and drive
operations [26], (ii) exchange assets atomically [20], [63]
(e.g., delivery-vs-payment (DvP) [21], [24], [23]), and (iii)
transfer assets securely [53], [4]. All these patterns at their
core rely on foolproof cross-network communication [80], or
the ability to convey information held in one distributed ledger
to another. A unique feature of cross-blockchain/DLT network
communication is that the senders and receivers of information
are decentralized networks, or mutually mistrustful groups of
entities without shared trusted proxies or spokespersons [61].

Communication solutions invariably involve intermediary
components like bridges [32], settlement chains [75], [58],
relay nodes [26], and even global messaging systems like
SWIFT [4]. Some of these components are external to the
intercommunicating networks whereas others lie at least partly
within them (i.e., have partial access to network resources).
Though designed for both public and private DLT networks,
such intermediaries pose unique challenges and threats to
the latter. This is because a private network is not simply a

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.241200
www.ndss-symposium.org

Fig. 1: Cross-Network Communication Model for Private DLTs

constrained form of a public network but is a distinct class
of distributed systems. The ledger state and transaction logs
of private networks, unlike those of public networks, are by
default not visible to nor verifiable from the external world.
But external visibility and verifiability are (by definition) key
requirements for cross-network communication, without which
transactions across DLT networks cannot be supported.

Communication intermediaries fulfill these requirements but
introduce other threats, namely the ability to tamper with data
integrity (relevant to both public and private networks) and
to exfiltrate a network’s ledger data (relevant only to private
networks). Let us examine the latter threat closely. By design,
a private DLT network’s data is kept confidential within its
group of members. Such networks have internal consensus
protocols to overcome faulty or malicious members, just like
public networks do. The threat model covers network nodes
tampering with ledger and transaction integrity but does not
cover private ledger state leakage to external entities. New
threat vectors are introduced when private networks must com-
municate ledger data back-and-forth via intermediaries, which
cannot be trusted to maintain the privacy of communicated
data, unlike the network’s nodes (members), which have a
vested interest in keeping the data confidential among them-
selves. Prior interoperability research has focused on ensuring
end-to-end communication integrity (information possessed by
nodes in one network must reach relevant nodes of another
network without intermediaries being capable of tampering
with the information) as this impacts both public and private
networks. Ensuring end-to-end communication confidentiality,
which only impacts private networks’ abilities to engage in
cross-network transactions, has received less attention.

In a typical end-to-end cross-network communication in-
stance (see Figure 1), an intermediary component extracts
information from a source network’s nodes, typically via
smart contracts. This information is conveyed (often via other
intermediary components) to a subset of the nodes of a des-
tination network, which process this information and update
their ledger (again, via smart contracts). Because these are
DLT networks, the smart contracts may only run deterministic

procedures, preventing them (or the nodes that host them)
from being active participants or initiators of operations or
from establishing communications with external components.
Instead, they are only allowed to process transactions and
queries submitted by clients (or Layer-2 entities) with network-
issued credentials. It is possible then for these clients and other
communication intermediaries (e.g., bridges, relays) to tamper
with the information (motivating the need for end-to-end
integrity) or exfiltrate the information to unauthorized external
entities (motivating the need for end-to-end confidentiality).

Research on blockchain and DLT interoperability has fo-
cused primarily on cross-network communication and set-
tlement mechanisms, and generating proofs of ledger state
that can be independently validated by parties external to the
network [1], [29], [2], [71], [59], [55], [56]. This problem
has a shared technical challenge with the scalability problem
in public blockchains, which has been solved by a variety of
techniques typically involving sidechains that handle a smaller
portion of the workload separate from the main chain [67],
[66], [64], [22], [72]. To summarize, ensuring the integrity
of communication across DLT networks/chains (independent
or main chain-sidechain) has been well-researched in recent
years. However, the challenge of providing confidentiality in
addition to integrity has not been considered. The only prior
work that tackles the challenge of providing confidentiality
(to some extent) in addition to integrity is the data sharing
protocol provided by Hyperledger Cacti [25], [9], but this
realizes a weaker security model involving a centralized trust
assumption on a network client/proxy (more on this later).

We tackle the open question of enabling confidential yet
decentralized communication across (private) blockchain/DLT
networks without relying on trusted intermediaries. Our goal is
to enable the following: a group of nodes in the source network
should be able to agree on some content and then send it
across in a confidential manner such that the content can only
be accessed (and subsequently, validated and agreed upon)
by a designated group of receiver nodes in the destination
network. One can further decouple the goals of ensuring
agreement and content validity from that of confidentiality.
The first two challenges, which impact end-to-end integrity,
are addressed through existing decentralized solutions such
as distributed consensus [78] and threshold signatures [68].
The core challenge that we address is confidential cross-
network communication (with integrity assurance), where the
sender (which may be a single entity or a group of entities)
can efficiently and confidentially share private content with a
specific group of receivers.

We note that such a mechanism is likely to be of broader
interest to any setting involving groups sending or receiving
private information, including (but not restricted to) private
DLT interoperability. Sensors and end user devices in IoT
pipelines can use it to send information confidentially to
selected stream processors and data warehouses via untrusted
message brokers. Users and groups in a social networking
platform like WhatsApp [65] can use it to send messages
confidentially to targeted members of other groups without

2

creating a new group for every possible subset of users (which
will introduce cognitive overhead and scalability challenges).
Drawbacks of Existing Approaches. Known techniques for
confidential cross-network communication either require the
sender to encrypt the message separately for each recipient in
the destination network, or rely on a dedicated (semi-trusted)
network proxy to disseminate the message to the intended set
of recipients. The first approach does not have any practical
instances to the best of our knowledge, since typical DLT
networks disallow direct exchange of cross-network messages
between individual parties. This approach is also inefficient
with respect to bandwidth consumption, as the sender needs
to send multiple ciphertexts, and must incorporate all of the
destination public keys (possibly wrapped in certificates) in the
payload. For the second approach, the closest practical exam-
ple that we encountered ([25], [9]) uses a semi-trusted network
client as a proxy that decrypts the confidential data on behalf of
the recipient group and then disseminates it to the intended re-
cipients. This approach inherently requires a (centralized) trust
assumption on the proxy for data confidentiality and integrity,
which goes against the founding principle of DLT, namely
avoiding single points of failure. In particular, a malicious
proxy with the ability to decrypt data from another ledger
could exfiltrate that data to unauthorized third parties instead
of submitting the data to its network’s peers (as intended). This
motivates us to ask: can we efficiently realize confidential yet
fully decentralized cross-network communication?

A. Our Contributions

We answer the above question in the affirmative, and intro-
duce a novel, fully decentralized, and provably secure protocol
for confidential and authenticated cross-network communica-
tion, with low bandwidth requirements and key management
overheads. This enables the first (to the best of our knowledge)
framework for confidential communication across private DLT
networks that does not rely on trusted intermediaries. We
summarize our key technical contributions below.
Modeling Confidential Cross-Network Communication. We
formally model confidential and decentralized communica-
tion across private DLT networks as an ideal functionality
in the simplified universal composability (sUC) framework
from [42]. As noted in [42], the sUC framework is a prac-
tically meaningful, easy-to-use alternative to the traditional
UC framework from [41]. For simplicity of exposition, our
functionality uses a simplified abstraction of a private DLT
network (and the corresponding private ledger), and focuses
on capturing the core data confidentiality requirements. The
detailed description appears in Section III.
Realization from Fully Distributed Broadcast Encryption.
We present a protocol that securely emulates the above
functionality while relying (in a black-box manner) on a
fully decentralized version of Broadcast Encryption (BE) [49],
[48], [36], [38], [39], [52], [57], [51], [45], [46]. We call
this primitive fully distributed BE (or FDBE in short). We
formally define FDBE in Section IV-A. We then describe our

Scheme Setup |pp| |sk| |ct|

[77] Decentralized O(n2) O(n) O(1)

[57]-1 Trusted O(n) O(1) O(1)

[57]-2 Trusted O(n2) O(1) O(1)

[46], [45], [51] Trusted O(n) O(1) O(1)

FDBE (this work) Decentralized O(n) O(1) O(1)

TABLE I: Comparison of bilinear pairing-based BE schemes with dis-
tributed key generation. Here n denotes the total number of parties, |pp|
denotes the size of the public parameters (including the public key), |sk|
denotes the size of the decryption key for each party, and |ct| denotes the
size of the ciphertext. [46] and [45] essentially use the same underlying DBE
scheme proposed in [51], so we group them together.

FDBE-based protocol !CN and prove its security in the sUC
framework in Section IV-B.
Concrete Instantiation of FDBE. We present the first FDBE

scheme with constant-sized keys and ciphertexts that (i) sup-
ports fully decentralized setup and distributed key generation,
(ii) achieves comparable encryption and decryption efficiency
to the most efficient, trusted-setup based BE schemes (such
as [36], [38], [52]), (iii) relies on cryptographic hardness
assumptions over bilinear groups, and (iv) is suitable for
deployment in private blockchain/DLT networks (we expand
more on this in the discussion below). Plugging this into our
generic construction !CN yields an instantiation of confiden-
tial and decentralized cross-network communication from the
same assumption with low bandwidth requirements and small
key management overheads. We call this solution CN-FDBE.
In particular, the encryption and decryption overheads of
CN-FDBE depend only on the broadcast-group size (not the
overall network-size), the ciphertext sizes are constant, and the
overheads of computing/storing/updating decryption-keys are
also constant. See Section IV-C for the detailed construction
of our FDBE scheme.

In Table I, we compare our FDBE scheme to recently
proposed pairing-based BE constructions with distributed key
generation [57], [51], [45], [46] (we note that [46] and [45]
essentially use the same underlying DBE scheme proposed
in [51]). While these schemes match our FDBE scheme in
terms of efficiency, all of them require a (one-time) trusted
setup to generate a common reference string. To the best of our
knowledge, the only other FDBE scheme in the literature with
a fully distributed setup was proposed in [77]. However, [77]
has O(n2)-sized public parameters and O(n)-sized keys (n
being the total number of parties). The corresponding over-
heads for our FDBE scheme are O(n) and O(1), respectively,
resulting in significantly greater practical efficiency.

The main technical challenge we overcome in designing our
FDBE scheme is distributing the setup and key generation
procedures while preserving collusion-resistance, which is the
core security property of broadcast encryption. Informally,
collusion resistance in FDBE requires that party-i alone is
able to compute her secret decryption key given the public
parameters and her own share of the master secret key. It turns
out that naïvely decentralizing the setup procedure in existing
BE schemes like [36] using techniques such as secure multi-

3

party computation (MPC) does not natively maintain semantic
security against collusions. We address this in our FDBE

scheme by carefully augmenting the public parameters in the
original scheme of [36] to include some additional terms such
that the setup can be decentralized while (provably) ensuring
that no party other than party-i can compute her decryption
key.

A natural question to ask is if one could obtain FDBE

schemes by distributing the trusted setup procedure in [57],
[51], [45], [46] using MPC. While this is theoretically feasible,
deploying this in private blockchain/DLT networks (which
is our target use-case in this paper) incurs major practi-
cal barriers. In particular, generic MPC protocols often rely
crucially on point-to-point communication channels between
each pair of parties. This requirement is fundamentally in-
compatible with the native infrastructure of existing private
blockchain/DLT networks. Our FDBE scheme avoids this
issue by decentralizing the setup in a round-robin manner,
where each (sequential) round only requires the involvement
of a single party, and the corresponding output is written
to the private blockchain/distributed ledger (thereby avoiding
the need for point-to-point communication channels between
parties). The sequential nature of our distributed setup protocol
is, in fact, ideally compatible with the inherently sequential
nature of writing to a private blockchain/distributed ledger.

Additionally, generic MPC protocols only achieve abort
security (as compared to stronger security guarantees) when a
majority of the parties are maliciously corrupt [47]. With abort
security, even if a cheating party is identified and discarded,
the protocol would require restarting from scratch. Our FDBE

scheme achieves a stronger notion of malicious security where
each cheating party is identified, and setup can simply proceed
by discarding the corresponding round, without re-starting
from scratch.
Implementation and Benchmarking. We implement and
benchmark our proposed FDBE scheme and concretely com-
pare its performance against the pairing-based BE schemes
from Table I in Section V-A. We further demonstrate the
practicality of the FDBE-based instantiation of !CN, which
we call Cross-Network-FDBE (abbreviated as CN-FDBE

henceforth), through a reference implementation that enables
confidential interoperation across two private Fabric networks
within the Hyperledger Cacti interoperation framework. We
show that overheads introduced by FDBE-based communi-
cation are negligible or tolerable for networks of practically
realistic sizes. See Section V-B for details.

II. PRELIMINARIES

This section presents preliminary background material.

A. Bilinear Pairings
We present background material on bilinear pairings, which

are used crucially in our FDBE construction in Section IV-C.
Symmetric Bilinear Pairing. Informally speaking, in a sym-
metric bilinear pairing, the pairing map is a bilinear function
that takes as inputs two elements from the same group G and

outputs an element in the target group GT . The pairing map
should additionally satisfy certain non-degeneracy and com-
putational efficiency properties to be useful in cryptographic
applications. We present a more detailed exposition below.

Definition 1 (Symmetric Bilinear Pairing). Let G and GT be
cyclic groups of known prime order p (where p is typically
a O(ω)-bit prime for security parameter ω). A symmetric
bilinear pairing is a map e : G → G ↑ GT satisfying the
following properties:

• Bilinearity: For all P,Q ↓ G and all a, b ↓ Fp, the
pairing satisfies

e(P a, Qb) = e(P,Q)ab.

Equivalently, the pairing map e is linear in each argu-
ment, i.e., for all P, P →, Q,Q→

↓ G, the pairing satisfies

e(P · P →, Q) = e(P,Q) · e(P →, Q)

e(P,Q ·Q→) = e(P,Q) · e(P,Q→)

• Non-degeneracy: If P ↓ G is a non-identity element of
G, then ↔Q ↓ G : e(P,Q) ↗= 1. That is, the pairing is not
the trivial map that always outputs the identity in GT .

• Efficient computability: There exists an efficient algo-
rithm to compute e(P,Q) for all P,Q ↓ G.

Cryptographic Realizations. In cryptographic applications,
the group G and GT are typically realized using elliptic curves.
Specifically, the group G is typically realized as an additive
subgroup of the group of elliptic curve points E(Fq) of order
p, while the group GT is typically realized as an order-p
multiplicative subgroup of a finite extension field F↑

qk , where
k is the embedding degree.

A symmetric pairing can be instantiated using functions
such as the Weil pairing [74], [60] or the Tate pairing [70],
[69]. Symmetric pairings are also sometimes referred to as
Type-1 pairings.
Asymmetric Bilinear Pairings. Informally speaking, in an
asymmetric bilinear pairing, the pairing map takes as inputs
elements from two groups G1 and G2 that are not necessary
identical (unlike in the symmetric case, where the inputs to
the pairing map are from the same group). We present a more
detailed exposition below.

Definition 2 (Asymmetric Bilinear Pairings). Let G1, G2,
and GT be cyclic groups of known prime order p (where p
is typically a O(ω)-bit prime for security parameter ω). An
asymmetric bilinear pairing is a map e : G1 → G2 ↑ GT

satisfying the following properties:
• Bilinearity: For all (P,Q) ↓ G1 →G2 and all a, b ↓ Fp,

the pairing satisfies

e(P a, Qb) = e(P,Q)ab.

Equivalently, the pairing map e is linear in each argu-
ment, i.e., for all P, P →

↓ G1 and all Q,Q→
↓ G2, the

pairing satisfies

e(P · P →, Q) = e(P,Q) · e(P →, Q)

4

e(P,Q ·Q→) = e(P,Q) · e(P,Q→)

• Non-degeneracy: If P ↓ G1 is a non-identity element,
then ↔Q ↓ G2 : e(P,Q) ↗= 1. Similarly, if Q ↓ G2 is
a non-identity element, then ↔P ↓ G1 : e(P,Q) ↗= 1. In
other words, the pairing is not the trivial map that always
outputs the identity in GT .

• Efficient computability: There exists an efficient algo-
rithm to compute e(P,Q) for all (P,Q) ↓ G1 →G2.

Categories. Asymmetric pairings are commonly categorized
into Type-2 (there exists an efficiently computable homomor-
phism ε : G2 ↑ G1, but not conversely) and Type-3 (no
efficient homomorphisms exist between G1 and G2).
Cryptographic Realizations. Type-3 pairings are typically
preferred in practice due to better security and efficiency. In
many cryptographic constructions, the groups G1, G2, and GT

of a Type-3 pairing are realized from elliptic curves. More
specifically, G1 is realized as an order-p additive subgroup of
E(Fq) (same as in symmetric bilinear pairings), G2 is often
realized as an order-p additive subgroup of E(Fqk) (k being
the embedding degree), and GT is often realized as an order-p
multiplicative subgroup of F↑

qk .
In practice, Type-3 pairings such as (optimal) Ate pair-

ing [54], [73] are implemented using elliptic curves with a
small embedding degree k and a large prime-order subgroup.
Common examples include the Barreto–Lynn–Scott (BLS)
family of elliptic curves [30] and the Barreto–Naehrig (BN)
family of elliptic curves [31].
Remark. We remark here that symmetric bilinear pairings are
often used to describe cryptographic applications for simplicity
purposes (see [34], [35], [37], [36], [38] for a non-exhaustive
list of examples). We use the same approach in Section IV-C
to describe the construction of FDBE. However, in practice,
asymmetric bilinear pairings allow for more efficient instan-
tiations. Accordingly, our implementation of FDBE also uses
asymmetric bilinear pairings.

B. NIZK Arguments of Knowledge
We recall the formal definition of non-interactive zero-

knowledge (NIZK) arguments of knowledge.

Definition 3 (Ternary Relation). A ternary relation R is de-
fined by a triple (pp, ,ϑ) where pp is the public parameters,

the instance, and ϑ the witness. If triple (pp, ,ϑ) satisfies
R, then we write R(pp, ,ϑ) = 1. Else R(pp, ,ϑ) = 0. We
refer to LR = {(pp,) : ↔ϑ s.t. R(pp, ,ϑ) = 1} as the
language of relation R.

Definition 4 (Interactive Argument of Knowledge). Let
(G,P,V) be the following three algorithms.

• Generator G takes as input of security parameter 1ω and
a description of relation R and returns public parameters
pp.

• Prover P takes as input pp, and ϑ, whereas verifier
V takes as input pp and . P and V are interactive
algorithms, whose joint interaction results in a transcript
tr ↘ ≃P(pp, ,ϑ),V(pp,)⇐.

The interaction between P and V concludes by having V

output a bit b = ≃P(pp, ,ϑ),V(pp,)⇐. b = 1 indicates
that tr is accepted by V; otherwise, tr is rejected.

The triple (G,P,V) defines an interactive argument of
knowledge if it satisfies the following properties.

Completeness: (G,P,V) is complete if for all security
parameters ω ↓ N and all probabilistic polynomial time (PPT)
adversaries A:

Pr





R(pp, ,ϑ) = 0

⇒

≃P(pp, ,ϑ),V(pp,)⇐ = 1

pp ↘ G(1ω,R)

(,ϑ) ↘ A(pp)



 = 1 .

Knowledge Soundness: (G,P,V) is knowledge-sound if
for all security parameters ω ↓ N and all PPT adversaries A,
there exists an extractor X such that:

Pr





R(pp, ,ϑ) = 0

⇑

≃A(st,),V(pp,)⇐ = 1

pp ↘ G(1ω,R)

(st,) ↘ A(pp)

ϑ ↘ X
A(st,)(pp)





⇓ negl(ω) .

Definition 5 (Public-Coin Interactive Arguments of Knowl-
edge). An interactive argument of knowledge (G,P,V) is
public-coin if all messages that V sends to P are generated
uniformly at random. In other words, V’s messages to P

(called also challenges) correspond to V’s randomness.

A public-coin interactive argument of knowledge (G,P,V)
is zero-knowledge if tr ↘ ≃P(pp, ,ϑ),V(pp,)⇐ leaks zero
information about the witness ϑ. More formally:

Definition 6 (Zero-knowledge). (G,P,V) is zero-knowledge if
for all security parameters ω ↓ N and all PPT adversaries A,
there exists a PPT simulator S such that the following holds:

Pr





(pp,) ↓ LR

⇑

A(tr) = 1

pp ↘ G(1ω,R)

(,ϑ, chal) ↘ A(pp)

tr ↘ ≃P(pp, ,ϑ),V(pp, ; chal)⇐





⇔ Pr





(pp,) ↓ LR

⇑

A(tr) = 1

pp ↘ G(1ω,R)

(, chal) ↘ A(pp)

tr ↘ S(pp, , chal)



 .

where chal is the public-coin randomness of V .

NIZK Arguments of Knowledge. In the random oracle
model, public-coin interactive (zero-knowledge) arguments of
knowledge can be made non-interactive using the Fiat-Shamir
heuristic [50]. In particular, in the case of Sigma protocols, the
resulting arguments are defined by triple (G,P,V), such that
G(1ω,R) outputs the public parameters pp that also contain
a description of a hash function. P(pp, ,ϑ) computes the
challenge as the hash of the first message to be sent to V and
returns the corresponding proof !. Finally, V(pp, ,!) returns
a bit b, where b = 1 signifies that ! is valid.

5

III. MODELING CONFIDENTIAL CROSS-NETWORK
COMMUNICATION IN THE SIMPLIFIED UC FRAMEWORK

In this section, we formally model cross-network confi-
dential communication as an ideal functionality FCN in the
simplified universal composability (sUC) framework of [42].

A. Notations and Background Assumptions

Notations. Let N0 and N1 be two private DLT networks
operated by parties P0 = {p1, ..., pn0} and P1 = {p→1, ..., p

→
n1
}

respectively. Given that N0 and N1 are permissioned networks,
each party in P0 and P1 is equipped with a long-term identity
that enables her identification and the verification of her
authorizations. We do not make any assumptions on how the
identities and the authorizations are verified. However, it’s
safe to assume that these operations will leverage a public-
key infrastructure. As DLT networks, N0 and N1 maintain
each a state ledger: L0 for N0 and L1 for N1. The ledgers are
key-value stores and their updates are governed by the smart
contracts running on top of the underlying DLT network. We
denote by Lb[K] the value stored in Lb at key K.
Background Assumptions. We assume that the parties in
P0 and P1 collectively guarantee the safety and liveness of
the consensus protocols underlying N0 and N1. Namely, if
f0 and f1 are the corruption thresholds beyond which the
security of the consensus protocols underlying N0 and N1

cannot be assured, then we assume that only f0 (within P0)
and f1 (within P1) parties can be corrupted. For simplicity, we
consider that the smart contract deployment and execution are
out of scope. We stress that, thanks to the transparency and
verifiability of DLT networks, each party in P0 and P1 can
check for herself whether a deployed smart contract matches
the agreed-upon specifications and whether the ledger state
updates correspond to correct smart contract executions.
Communication Bridges. A cross-network communication
protocol aims at allowing a subset of parties in P0 to exchange
data with another subset of parties in P1, and vice versa.
We refer to this operation as "RemoteRead" in contrast with
"Read". The latter corresponds to a party in P0 (or P1) locally
reading the value of a key in L0 (or L1). We consider, in the
following, that each network independently defines the policies
controlling remote access to the state of the ledger. We also
consider, for simplicity, that an honest RemoteRead operation
can only be performed if the intersection P0 ↖ P1 ↗= ↙. We
call the non-empty intersection a communication bridge, which
will relay RemoteRead requests between N0 and N1. If all
the parties in the communication bridge are corrupt, then the
communication between P0 and P1 can be disrupted, and we
say that the bridge is corrupt. Indeed, a corrupt bridge may
refuse to deliver messages from P0 to P1 and vice versa.

B. The Ideal Functionality FCN

We require a cross-network communication protocol to be
correct and confidential. Correctness refers to the property
that if the bridge P0 ↖ P1 is not corrupt, then any subset
of parties in P0 (P1) that are authorized to RemoteRead the

value of a key in L1 (L0) will always receive that value
upon request. Confidentiality, on the other hand, refers to the
property that honest parties in P0 and P1 will not inadvertently
violate RemoteRead policies: i.e., an honest party in P0 (P1)
will only share data with parties in P1 (P0) that satisfy the
RemoteRead policies. Finally, cross-network communication
should be authenticated: the party receiving data in one
network should be able to authenticate its source in the other
network; this is usually addressed using signatures.
Modeling in Simplified UC. To formally capture these three
properties (i.e., correctness, confidentiality, and authenticity),
we turn to the sUC framework [42], which leverages the
real/ideal world paradigm. In the ideal world, we find an ideal
functionality FCN that satisfies the desired security properties
by construction, and a simulator S that corrupts parties in both
P0 and P1. S and the honest parties interact with FCN through
a set of predefined interfaces, through which they submit
their inputs to FCN and receive the corresponding outputs. By
contrast, in the real world, we encounter a candidate protocol
! and an adversary A that corrupts the same set of parties as
S . The environment Z supplies the inputs of honest parties
and reads their outputs, and in addition, interacts with S in
the ideal world and A in the real world.

In this paper, we consider a static corruption model and
assume that S and A corrupt at most f0 and f1 parties in P0

and P1 respectively (f0 and f1 are the corruption thresholds
tolerated by DLT networks N0 and N1 respectively); we
denote by C the set of corrupt parties.
The Ideal Functionality FCN. Fig. 2 depicts ideal function-
ality FCN, which is parameterized with networks N0 and N1.
Each network exposes a CheckAuth interface that helps FCN

check if a remote read request is authorized. This captures the
property that access control is enforced by the honest parties in
N0 and N1. In addition, FCN provides access to two interfaces
RemoteRead and SendValue.

RemoteRead Interface. RemoteRead allows a party in Pb̄ to
send a request to read the value of a key in Lb, b ↓ {0, 1}
and b̄ = 1 ∝ b. The RemoteRead request carries a request
identifier rid, identifies a key K in Lb, and specifies a set of
intended recipients R. Upon such a request, FCN checks if
the parties in P0 ↖ P1 are all corrupt, and if so, waits for
S’s OK before transmitting the request to the parties in Pb.
This indicates the ability of a corrupt communication bridge
to censor RemoteRead requests. Otherwise, if there is at least
one honest party in P0 ↖ P1, then FCN directly forwards the
request to the parties in Pb. Notice that during a RemoteRead
invocation, S learns all the information contained in the
request.

SendValue Interface. SendValue allows a party p in Pb to
send the value in Lb[K] to a set of recipients R ′ Pb̄, as a
response to a RemoteRead request rid. If p is honest, then
FCN sends to Nb a CheckAuth request to verify whether the
parties in R are authorized to read the value v ↘ Lb[K]. If
that’s not the case, then FCN aborts. However, if p is corrupt,

6

RemoteRead On query (RemoteRead, rid,K,R,Lb) from a
party p → Pb̄, send message (RemoteRead, rid, p,K,R,Lb) to
S and await the go-ahead. On receiving the go-ahead do:

1) if (P0 ↑ P1) ↓ C then await S’s response.
a) if S sends OK then continue.
b) else abort.

2) else continue.
3) send message (RemoteRead, rid, p,K,R) to Pb.

SendValue On message (SendValue, rid,K,R,Lb, v) from party
p → Pb, send message (SendValue, rid,K,R,Lb, p) to S and

await the go-ahead. On receiving the go-ahead do:
1) if p → Pb \ C then send message (CheckAuth, p,K,R) to Nb

and await the response.
a) if Nb sends OK then continue.
b) else abort.

2) else continue.
3) if (P0 ↑ P1) ↓ C then await S’s response:

a) if S sends OK then continue.
b) else abort.

4) send message (SendValue, rid,K,Lb, p, v) to R.
5) if (R ↑ C) ↔= ↗ then send message (SendValue, rid, v) to S.

Fig. 2: Ideal functionality FCN for confidential cross-ledger communication between two permissioned networks N0 and N1, operated by party sets P0
and P1 that maintain state ledgers L0 and L1 respectively.

then FCN skips the authorization check. Next, FCN checks if
P0 ↖ P1 ′ C. If so, then FCN only forwards RemoteRead
response to R after it receives S’s go-ahead. If P0 ↖P1 ↗′ C,
then FCN directly distributes the RemoteRead response. The
latter consists of tuple (SendValue, rid,K,Lb, p, v). Providing
the identity of the sender p within the response reflects that
the recipients authenticate the origin of the received value (i.e.,
the authentication property). In addition, if R ↖ C ↗= ↙, then
FCN communicates the value v to S . This signifies that if p is
honest, then S learns v only if one of the intended recipients
is corrupt, capturing thus the confidentiality property.

We would like now to clarify why SendValue sends values
from individual parties in Pb, as opposed to a value from
network Nb as a whole. Our rationale is two-fold: (1) DLT
networks do not guarantee that all honest parties will store
the same exact copy of the ledger at the same time. Instead
they guarantee that within some time bound – which is known
in the case of the synchronous setting and unknown in the case
of partially-synchronous setting – the honest parties will store
the same copy. (2) The recipients could decide themselves the
policies that determine, depending on the sender, whether they
trust a received value or not. For example, they could define
policies that state that they will accept a value only if they
receive it from fb + 1 or 2fb + 1 parties, or from a specific
party that they deem trustworthy.

Definition 7 (Secure Cross-Network Communication). A
cross-network communication protocol ! securely realizes
FCN, if for any PPT adversary A and any PPT environment
Z , there exists a PPT simulator S such that REAL!,A,Z ⇔c

IDEALFCN,S,Z , where REAL!,A,Z is the random variable de-
noting the output of Z in the real world, IDEALFCN,S,Z is the
random variable denoting the output of Z in the ideal world,
and ⇔c denotes computational indistinguishability.

IV. REALIZING FCN USING FULLY DISTRIBUTED
BROADCAST ENCRYPTION (FDBE)

In this section, we describe a cross-network communication
protocol !CN that securely realizes the ideal functionality FCN

using fully distributed broadcast encryption (FDBE).

A. Fully Distributed Broadcast Encryption (FDBE)

Let P = {p1, ..., pn} be a set of parties who wish to partic-
ipate in an FDBE scheme. Each party pi is deterministically
assigned a broadcast slot (i.e., index) in [n], and FDBE is
defined by the following set of algorithms.

Public Parameters Initialization
Init(1ω, n) ↑ pp0: On input of security parameter ω and the
size n of the set P supplied by some party in P , Init outputs
version 0 of the public parameters denoted pp0.

VerifyInit(pp0, n) ↑ 0/1: On input of pp0, VerifyInit outputs
1 if it deems pp0 well-formed, otherwise, it outputs 0.

Public Parameters Updates
Update(ppi↓1, x) ↑ (ppi,ϖi): Given version i ∝ 1 of the
public parameters ppi↓1 and a trapdoor x, Update returns
version i of the public parameters, denoted ppi, and a proof
of correctness ϖi. Hereafter, we assume that Update(ppi↓1, ϱ)
is called by the party assigned broadcast slot i.

VerifyUpdate(ppi↓1, ppi,ϖi) ↑ 0/1: On input of two consec-
utive versions of the public parameters ppi↓1 and ppi and a
proof ϖi, VerifyUpdate outputs 1 if ϖi is deemed a valid proof
demonstrating that ppi is a correct update of ppi↓1; otherwise,
it outputs 0. After everyone in P calls Update, the algorithms
described next can be invoked.

Decryption Key Extraction
ExtractDecKey(ppn, x) ↑ dk: On input of public parameters
ppn, and trapdoor x of party p ↓ P , ExtractDecKey returns
p’s decryption key dk.

Broadcast Encryption and Decryption
Encrypt(m,”, ppn) ↑ ct: On input of a message m, a set ” ′

[n] identifying the broadcast slots of the potential recipients,
and public parameter ppn, Encrypt computes ciphertext ct.

Decrypt(ct,”, dk, ppn) ↑∞ /m: On input of ciphertext ct, a
set ” ′ [n], a decryption key dk, and public parameters ppn,
Decrypt outputs either ∞ indicating that the decryption failed,
or a message m signaling that the decryption succeeded.

7

Adversary A begins by outputting a set C → P of corrupt parties. We
assume that A corrupts all parties except one that we refer to as party
p→ and that p→ is assigned broadcast slot k.

Public Parameters Initialization. On behalf of one of the corrupt
parties, A submits pp0. The challenger accepts pp0 only if 1 ↑

VerifyInit(pp0, n).

Public Parameters Updates. A first submits a series of updated
public parameters (pp1, ..., ppk↑1) and the corresponding proofs
(ω1, ...,ωk↑1) to the challenger. The challenger accepts only if ↓ 1 ↔

i < k : 1 ↑ VerifyUpdate(ppi↑1, ppi,ωi). The challenger then
calls (ppk,ωk) ↑ Update(ppk↑1, xk) on behalf of p→, and outputs
(ppk,ωk) to A. If k < n, then A is allowed to submit another series of
updated public parameters (ppk+1, ..., ppn) and proofs (ωk+1, ...,ωn),
and which the challenger accepts only if ↓ k + 1 ↔ i ↔ n : 1 ↑

VerifyUpdate(ppi↑1, ppi,ωi).

Challenge. On behalf of p→, the challenger runs dkk ↑

ExtractDecKey(ppn, xk). Next, A provides a message m and
identifies a set of broadcast slots ! → [n]. The challenger
executes, accordingly, ct ↑ Encrypt(m,!, ppn) and out ↑

Decrypt(ct,!, dkk, ppn).

A succeeds in this experiment iff k ↗ ! and out ↘= m.

Fig. 3: Key Extractability Experiment for FDBE

Adversary A begins by outputting a set R → P . We assume that A

corrupts all parties except R.

Public Parameters Initialization. On behalf of one of the corrupt
parties A submits pp0. The challenger accepts pp0 only if 1 ↑

VerifyInit(pp0, n).

Public Parameters Updates. A and the challenger engage in a series
of interleaved calls to Update such that A makes the calls on behalf
of the corrupt parties whereas the challenger makes the calls on behalf
of the honest parties R. This phase concludes by outputting a set of
public parameters ppn.

Challenge. A sends two messages m0 and m1 to the challenger.
The challenger randomly picks b ↗ {0, 1} and outputs ctb =
Encrypt(mb,!, ppn) to A, where ! is the set of broadcast slots
assigned to the parties in R.

Guess. A outputs a guess b
→ of b. A succeeds in this experiment iff

b = b
→.

Fig. 4: Confidentiality Experiment for FDBE

Correctness and Security Definitions. We consider a static
adversary A that corrupts parties before the assignment of
broadcast slots and the calling of Init. An FDBE scheme is
said to be secure if it satisfies the following security properties.

Correctness is twofold. It ensures that an honest execution of
Init yields public parameters that will always be accepted by
VerifyInit, whereas subsequent honest executions of Update
will result in public parameters that will always be accepted
by VerifyUpdate. More formally, the following equalities hold:

Pr[VerifyInit(pp0, n) ↑ 1 ⇑

∈1 ⇓ i ⇓ l : VerifyUpdate(ppi↓1, ppi,ϖi) ↑ 1|

pp0 ↘ Init(1ω, n)⇑

∈1 ⇓ i ⇓ l : (ppi,ϖi) ↘ Update(ppi↓1, xi)] = 1

It also guarantees that after an honest execution of Init fol-
lowed by consecutive honest executions of Update by all the

parties, the honest parties will always be able to extract their
decryption keys and decrypt relevant ciphertexts by calling
ExtractDecKey and Decrypt respectively. In other words, for
any party with broadcast slot in set ” and which has previously
called Update with some trapdoor x, the following holds:

Pr[Decrypt(ct,”, dk, ppn) ↑ m |ct ↘ Encrypt(m,”, ppn) ⇑

dk ↘ ExtractDecKey(ppn, x)] = 1

Security is also twofold in the sense that we require the
following (informal) properties to hold:

• Key extractability captures the property that corrupt par-
ties cannot prevent honest parties from computing their
decryption keys and correctly decrypting well-formed
ciphertexts that are intended for them. More formally, we
say that a FDBE scheme guarantees key extractability iff,
for any PPT adversary A, the probability that A succeeds
in the experiment depicted in Figure 3 is negligible.

• Confidentiality guarantees that for any ciphertext ct gen-
erated as ct ↘ Encrypt(m,”, ppn) for any (arbitrarily
chosen) message m and any subset ” ′ [n], only
the parties in ” can successfully decrypt ct and obtain
m. We consider chosen-plaintext security and formalize
confidentiality using the experiment described in Figure
4. Let qω,A be the probability that A succeeds in the
experiment, and ςω,A be the value qω,A ∝ 1/2. We say
that a FDBE scheme is secure against chosen-plaintext
attacks in the static corruption setting, iff for any PPT
adversary A, the value ςω,A as defined above is negligible.

B. Protocol Realizing FCN

In this subsection, we describe a cross-network communica-
tion protocol !CN that securely realizes the ideal functionality
FCN by using any FDBE scheme in a fully black-box manner.

Let N0 and N1 be two networks operated by parties P0 and
P1 respectively. As participants in permissioned blockchains,
every party in P0 and P1 is endowed with a pair of public and
secret keys. We assume that N0 and N1 expose, in addition
to CheckAuth, two interfaces Deploy and Execute that enable
the deployment and execution of smart contracts. The protocol
!CN comprises the following phases.
Setup. Parties in P0 and P1 are first assigned broadcast
slots in their respective networks. Next, for b ↓ {0, 1}, let
SCb be a smart contract that (i) stores the public keys of
the parties in Pb; (ii) implements the logic of VerifyInit and
VerifyUpdate of an instantiation of a distributed BE scheme
denoted FDBEb; and (iii) ensures that a party in Pb updates
the public parameters of FDBEb at most once, and in the order
prescribed by the broadcast slots. Parties in Pb send message
(Deploy, SCb) to deploy SCb on network Nb, and conclude the
setup if the smart contract deployment succeeds.
Public Parameters Initialization. A party p ↓ Pb first
calls Init(1ω, nb) ↑ ppb,0. She then prepares a signed Init
transaction itx = (SCb, Init, ppb,0, pk,φ), such that pk is
her public key and φ is her signature on (SCb, Init, ppb,0).
Finally, p sends message (Execute, itx) to Nb. This message

8

executes SCb on input (Init, ppb,0, pk,φ). SCb consequently
checks if: this is the first Init transaction, pk is the public key
of a party in Pb, φ is a valid signature on (SCb, Init, ppb,0)
relative to pk, and 1 ↘ VerifyInit(ppb,0, nb). If any of these
checks fails, then SCb rejects the initialization of the public
parameters. Otherwise, it adds entry Lb[FDBE.PP] ↘ ppb,0
and Lb[FDBE.Update] ↘ ↙.

Public Parameters Updates. Party p ↓ Pb, assigned
broadcast slot i, first fetches the current public parameters
by reading entry Lb[FDBE.PP] ↑ ppb,i↓1, then invokes
(ppb,i,ϖb,i) ↘ Update(ppb,i↓1, x), and prepares Update
transaction utx = (SCb,Update, ppb,i,ϖb,i, pk,φ), where
pk is the public key of p and φ is a signature on tu-
ple (SCb,Update, ppb,i,ϖb,i) using the corresponding secret
key sk. p concludes by sending message (Execute, utx)
to Nb. This message triggers SCb’s execution on input
(Update, ppb,i,ϖb,i, pk,φ), which entails checking all of the
following: (i) pk is the public key of a party in Pb;
(ii) pk ↗↓ Lb[FDBE.Update] (i.e., this is the first update
from party p); (iii) party associated with pk is assigned
the broadcast slot that matches the current update; (iv)
VerifyUpdate(Lb[FDBE.PP], ppb,i,ϖb,i) ↑ 1; (v) and φ is
a valid signature on (SCb,Update, ppb,i,ϖb,i) relative to pk.
If any of these checks fails, then SCb rejects the update.
Otherwise, it updates entries Lb[FDBE.PP] ↘ ppb,i and
Lb[FDBE.Update] ↘ Lb[FDBE.Update] ∋ pk.

Decryption Key Extraction. Using her trapdoor x, party p ↓

Pb retrieves her decryption key by invoking ExtractDecKey
with input (ppb,nb

, x).

Remote Reads. We assume that the public parameters ppb,nb

and the broadcast slots Pb are transmitted to Pb̄. A party
p ↓ Pb sends through the communication bridge P0 ↖ P1

a signed RemoteRead request to read the value of a key
K in Lb̄, on behalf of a group of recipients R ′ Pb.
The RemoteRead request correspondingly consists of tuple
(RemoteRead, rid,R,K, pk,φ), where rid is the unique session
identifier of the request, pk is the public key of p and φ is a sig-
nature on (RemoteRead, rid,R,K). While the method through
which this request is distributed to the parties in Pb̄ is out of
scope, it can be accommodated by using Nb̄ as a broadcast
channel. Basically, a party in P0↖P1 submits a transaction that
includes the RemoteRead request. Upon seeing the request,
a party p→ ↓ Pb̄ checks if: the party with public key pk
is authorized to issue RemoteRead requests; the recipients
in R are allowed to read the value stored at key K; and φ
is a valid signature on tuple (RemoteRead, rid,R,K) under
public key pk. If all the checks succeed, then p→ (i) fetches
value v ↘ Lb̄[K] from her local copy of the ledger; (ii) calls
Encrypt(v,”, ppb,nb

) ↑ ct (whereby ” is the set of broadcast
slots of the parties identified in R); (iv) computes a signature
φ→ on (rid,R,K, ct) using her secret key sk→; (v) and sends
through the communication bridge tuple (rid,R,K, ct, pk→,φ→),
where pk→ is her public key. The communication bridge then
distributes this tuple to the relevant parties by submitting a
transaction to Nb. On seeing the tuple, a party p ↓ R verifies

if: (i) she partook in a remote read for key K with session
identifier rid; (ii) pk→ is the public key of a party in Pb̄; (iii)
and φ→ is a valid signature on (rid,R,K, ct) relative to pk→. If
all checks succeed, p calls v ↘ Decrypt(ct,”, dk, ppb,nb

).

Theorem IV.1 (Security of !CN). Assuming that: (i) the un-
derlying FDBE scheme satisfies correctness, key extractability
and confidentiality, and (ii) the digital signature scheme sat-
isfies existential unforgeability under chosen message attacks,
the above protocol !CN securely realizes FCN.

We defer a detailed proof of this theorem to the full version
of the paper [43].

C. Bilinear Pairing-based Construction of FDBE
In this section, we present an FDBE scheme based on

bilinear pairings that supports constant-sized keys and cipher-
texts, and fully distributed public parameters setup and key
generation. This yields a concrete instance of our protocol
!CN from Section IV-B. The starting point of our design
is the bilinear pairing-based BE scheme with constant-size
decryption keys and constant-size ciphertexts from [36]. The
original scheme from [36] relies on a trusted (centralized)
setup and a trusted key generation procedure (where all
participants must contact a centrally trusted entity holding
the master secret key to obtain their individual decryption
keys). As a result, any compromise of this central trusted
entity completely breaks the security of the scheme. In our
design of FDBE, we augment and modify this scheme to
achieve decentralized setup and distributed key generation,
without relying on any central trusted party. Unlike recent BE
constructions with distributed key generation [57], [51], [45],
[46] that require trusted setup to generate a common reference
string, our scheme completely avoids any (centralized) trust
assumptions.
Notations. Let P = {p1, ..., pn} be a set of parties who wish
to participate in an FDBE scheme. Let G be a group of prime
order p that admits a non-degenerate bilinear map e : G→G ↑

GT , and let P and Q be two uniformly-random generators for
G (see Section II-A for background material on pairings). Let
[n] denote the set of integers {1, ..., n}. We use upper-case
letters to refer to elements in G, whereas lower-case letters
are used to refer to elements in Fp. Let H : {0, 1}↔ ↑ {0, 1}ω

and HG : {0, 1}↔ ↑ G be cryptographic hash functions.
Building Blocks. We use the following primitives as build-
ing blocks: (i) an IND-CPA secure symmetric-key encryp-
tion (SKE) scheme (E ,D) with ω-bit secret keys, and (ii) a
non-interactive zero-knowledge (NIZK) argument of knowl-
edge (G,P,V) that satisfies knowledge soundness and zero
knowledge (in the random oracle model, see Section II-B for
the formal definition). In particular, the NIZK argument of
knowledge is used to generate proofs for instance-witness pairs
of the form (,ϑ) = ((P, P →), x) where P, P →

↓ G and x ↓ Fp

satisfying the discrete log relation:

P → = P x (IV.1)

The Construction. We now present the detailed construction.

9

Setup. During setup, each party pi calls H on each party
identifier, and orders the resulting hashes lexicographically.
The broadcast slot assigned to pi corresponds to the placement
of the hash of her identifier in the lexicographic order.
Public Parameters Initialization
Init(1ω, n) ↑ pp0: On input of security parameter ω and the
total number n of potential participants, Init computes P =
HG(0) and Q = HG(1), and generates

pp0 = (P, P1, ..., Pn, Pn+2, ..., P2n, Q, T1, ..., Tn) where
Pj = P and Tj = Q

Finally, it outputs pp0. Observe that the generation of pp0 does
not involve any secrets.

VerifyInit(pp0, n) ↑ 0/1: On input of

pp0 = (P, {Pj}j↗[2n]\{n+1}, Q, {Tj}j↗[n])

VerifyInit outputs 1 if all of the following hold: (i) P = HG(0),
(ii) Q = HG(1), (iii) Pi = P for each i ↓ [2n] \ n+ 1, and
(iv) Tj = Q for each j ↓ [n]1. Otherwise, it outputs 0.

Public Parameters Updates
Update(ppi↓1, x) ↑ (ppi,ϖi): Given ppi↓1 and trapdoor x ↓

Fp from party assigned slot i, Update first parses ppi↓1 :=
(P, {Pj}j↗[2n]\{n+1}, Q, {Tj}j↗[n]) and computes

ppi = (P, P →
1, ..., P

→
n, P

→
n+2, ..., P

→
2n, Q, T →

1, ..., T
→
n)

P →
j = P xj

j ; T →
i = Ti ; ∈j ↗= i : T →

j = T xj

j

Update also produces a NIZK proof ϖi ↘ P((P →
1, P1), x) for

the relation in Eq. IV.1. Finally, Update outputs (ppi,ϖi).

VerifyUpdate(ppi↓1, ppi,ϖi) ↑ 0/1: On input ppi↓1, ppi and
proof ϖi, VerifyUpdate first parses

ppi↓1 := (P, P1, ..., Pn, Pn+2, ..., P2n, Q, T1, ..., Tn)

ppi := (P, P →
1, ..., P

→
n, P

→
n+2, ..., P

→
2n, Q, T →

1, ..., T
→
n).

Then, it verifies if (1) V((P →
1, P1),ϖi) = 1, (2) T →

i = Ti and
(3) the following equations hold

j ↗↓ {n, n+ 1} :e(P →
1, P

→
j) = e(P, P →

j+1) (IV.2)
e(P →

2, P
→
n) = e(P, P →

n+2) (IV.3)
j ↗= i :e(T →

j , Pj) = e(Tj , P
→
j)

If any of these checks fails, then VerifyUpdate rejects and out-
puts 0; otherwise, it accepts and outputs 1. Notice that thanks
to the Schwartz-Zippel lemma, the verification equations in
IV.2 and equation IV.3 can be aggregated into one equation.
Actually, if VerifyUpdate randomly chooses (↼,↽) ↓ F2

p and
the following equality holds:

e(P →
1,

n↓1∏

j=1

P →
j
εj

2n↓1∏

j=n+2

P →
j
εj

)e(P →
2
ϑ
, P →

n) =

e(P, P →ϑ
n+2

n↓1∏

j=1

P →εj

j+1

2n↓1∏

j=n+2

P →εj

j+1)

1
P and Q can also be computed using HG and any two seeds. The seeds

though need to be transmitted along with pp0.

then VerifyUpdate can conclude that equations IV.2 and IV.3
hold with overwhelming probability 1 ∝ (2n ∝ 1)/p. This
aggregation reduces the number of pairings required for the
verification from 6n∝ 4 pairings to 2n+ 1.

We note that if a party in P misses her round of update,
then the protocol moves onto the next round, and that party
is removed from the broadcast group. We argue that this is
fair, especially, if the ledger is censorship resistant, which
guarantees that the transactions of honest parties will always
be executed.

After everyone in P successfully updates the public param-
eters, the algorithms below are invoked.

Decryption Key Extraction and Broadcast Encryption
ExtractDecKey(ppn, x) ↑ dk: On input of public parameters
ppn = (P, {Pj}j↗[2n]\{n+1}, Q, {Tj}j↗[n]), and the trapdoor
x of the party assigned slot i, ExtractDecKey returns decryp-
tion key dk = T xi

i .

Encrypt(m,”, ppn) ↑ ct: On input of message m, set ” ′

[n] identifying the broadcast slots of the recipients, and public
parameters ppn, Encrypt outputs ciphertext ct = (h,C), where

h =



P r,



Q ·

∏

j↗”

Pn+1↓j




r

 ;

= e(P r
1 , Pn) ; K = H(#) ; C = E(K,m)

Decrypt(ct,”, dk, ppn) ↑∞ /m: On input of ciphertext ct =
(h = (h0, h1), C), set ” ′ [n] identifying the broadcast slots
of the recipients, the decryption key dk of the party assigned
slot i ↓ ”, and public parameters ppn, Decrypt computes

P ↔ =
∏

j↗”,j ↘=i

Pn+1↓j+i ;

#→ = e (Pi, h1)
/
e (h0, dk · P

↔)

and outputs m→ = D(H(#→), C).
Correctness and Security. Correctness follows immediately
from the completeness of (G,P,V) and correctness of (E ,D),
whereas key extractability follows from the equations verified
during VerifyInit and VerifyUpdate. Finally, confidentiality
is assured under the augmented n-bilinear Diffie-Hellman
exponent (n-BDHE) assumption, which we state below. This
assumption is an augmented version of the n-BDHE assump-
tion that was used to prove security of the original BE scheme
from [36].

Definition 8 (Augmented n-BDHE Assumption). Let G be a
group of prime order p that admits a non-degenerate bilinear
map e : G→G ↑ GT , and let P and H be uniformly random
generators for G. Let x1, ..., xn ↘ Fp, x =

∏n
i=1 xi, and

{Pi = P xi

}i↗[2n]\{n+1} ; {Ti,j = P
1/xj

j

i }i↗[2n],j↗[n]

$0 = e(P,H)x
n+1

; $1 ↘ GT .

For any PPT algorithm A, and any bit b ↓ {0, 1}, define

q
↓
ω,A,b = Pr

[
A
(
P, {Pi}i↔[2n]\{n+1}, {Ti,j}i↔[2n],j↔[n], H,!b

)
= 0

]

10

The augmented n-BDHE assumption states that for any
security parameter ω and for any PPT algorithm A,

∣∣q→ω,A,0 ∝ q→ω,A,1

∣∣ ⇓ negl(ω).

Theorem IV.2 (Correctness and Security of FDBE Scheme).
Our proposed FDBE scheme satisfies correctness assuming
that (E ,D) satisfies correctness and (G,P,V) satisfies com-
pleteness. Moreover, our FDBE satisfies key extractability.
Finally, assuming that: (i) the augmented n-bilinear Diffie-
Hellman exponent assumption holds over the group G, (ii)
(E ,D) is IND-CPA secure, and (iii) (G,P,V) satisfies knowl-
edge soundness and zero-knowledge, our proposed FDBE
scheme satisfies confidentiality.

Due to space limitations, we defer a detailed proof of this
theorem to the full version of the paper [43].

D. Additional Discussion
In this section, we present some additional discussion on

our FDBE and the corresponding realization of !CN, called
hereafter CN-FDBE.
Sequential Update Mechanism. CN-FDBE opts for sequen-
tial updates of the public parameters for two reasons. (1) If
the parties concurrently update the public parameters, then
they run the risk of seeing their updates rejected, as they may
be updating stale public parameters (i.e., public parameters
that have been updated between the time a party submits her
Update transaction and the time the transaction is verified by
the ledger). (2) The security of our FDBE’s instantiation relies
on a random oracle that assigns a broadcast slot to each one of
the parties, and once that party is alloted a slot, she can only
update the public parameters within the corresponding round;
in particular, the party with the last slot must update the public
parameters last, hence, mandating a sequential update.
Ledger and Network Assumptions. Our solution assumes
that the consensus mechanism underlying the ledger is censor-
ship resistant. This implies that Update transactions of honest
parties will always be processed and included in the ledger
within a bounded known delay %. We also assume that all the
parties are online during their assigned rounds. Otherwise, an
honest party may be unfairly excluded due to her not being
able to submit her Update transaction in her round. We note
that the above assumption (implicitly) requires the underlying
network to be synchronous. We leave the study of relaxing
this assumption as interesting future work.
Exclusion of Parties. If we define the duration of a round to
be %r = k →%, then if an honest party submits her Update
transaction before (k ∝ 1) →% elapses, the chances that that
transaction is not included in the ledger by the end of the round
are slim (in fact, this could only happen due to connectivity
issues). This follows from the censorship resistance property of
the ledger. We, therefore, argue that if all the parties are online
during their rounds and if %r is defined appropriately, then the
probability that an honest party is excluded from CN-FDBE

is low. Finally, note that removal of a potentially honest party
does not impact the security of other honest parties. In other

words, the properties of confidentiality and key extractability
would still hold with respect to the other honest parties.

On the off-chance that an honest party is excluded,
CN-FDBE can be extended to support re-execution of updates.
More specifically, a party who missed her update round
requests a freeze of the public parameters, and submits her
Update transaction, out of round. Then, all the parties assigned
the slots succeeding the slot of that party are required to submit
new Update transactions. In practice, that party submits a
Freeze transaction that indicates to the smart contract that a re-
execution should take place. Then, the smart contract verifies
whether the origin of Freeze missed her round, waits until
the current round elapses, and then starts processing Update
transactions for slots △ i, where i is the slot of the party
requesting the freeze. This extension calls for the parties to
stay online until the phase of updating the public parameters
finishes.

Handling Malicious Behavior. A malicious party can submit
bogus Update transactions during her round. In this case,
VerifyUpdate will fail and the transaction will be rejected.
She can also submit either well-formed or bogus Update
transactions outside her round. Also, in this case, VerifyUpdate
will reject the transaction. A malicious party could also just not
submit her Update transaction during her round, resulting in
her exclusion. Now the malicious party must submit a Freeze
transaction to be allowed back in, which she can abuse to have
CN-FDBE stuck in re-executions and not move forward. To
prevent this scenario, we recommend a rate limiting approach
that restricts the number of times any given party can submit
Freeze and successfully request re-execution.

E. Supporting Dynamic Addition of Parties

Our FDBE scheme can be naturally extended to support
dynamic addition of parties as long as the maximum number
of possible parties is upper bounded apriori by a fixed constant
N . In this case, the original set of parties in the network ini-
tially execute a distributed setup with respect to the parameter
N (note that only the public parameters size grows with N ,
and not the number of rounds required to set up the parameters,
which is still equal to the initial network size). But instead of
using lexicographic order after hashing the parties’ identifiers
to assign them the broadcast slots, we use universal hashing
with range [N].

Adding a New Party. Adding a new party to the network
would proceed as follows. If the round assigned to the party
has already passed, then the party is treated the same way as
a party who missed her round in the original protocol. That
is, a Freeze transaction is submitted, and a re-execution to
produce the new public parameters is triggered. The original
parties who already called Update and need to call it again,
can reuse their trapdoor. If the round has not passed, then
the party waits her round and updates the public parameters
accordingly.

In both scenarios, the parties update the decryption keys to
be consistent with the resulting public parameters. This simply

11

requires each party to locally execute the key generation step
using the updated public parameters and her own trapdoor
(which does not change when the new party joins). Note that
the correctness, security and efficiency guarantees follow in
exactly the same way as in the static version of the scheme.
Decrypting Historical Ciphertexts. We also note that the
dynamic version of our FDBE scheme outlined above fully
supports decrypting historical ciphertexts. Concretely, let N
be the maximum number of possible parties. Informally, let
“epoch”-j for any j ↓ [N] denote the period between the
timestamp when party pj joins and the timestamp when
party pj+1 joins. Let ppj denote the set of public parameters
associated with epoch-j, and let dki,j be the corresponding
decryption key for any party pi for i ↓ [j]. Then, by the
description of our FDBE scheme in Section IV-C, we have

dki,j = ExtractDecKey(ppj , xi)

where xi is the trapdoor of party pi, which remains unchanged
across epochs. Hence, given any historical ciphertext ct associ-
ated with epoch-j such that pi for any i ↓ [j] is in the intended
list of recipients ” of ct, pi simply does the following:

1) Look up ppj (recorded publicly on the underlying ledger
in an instantiation of !CN based on FDBE)

2) Derive the corresponding decryption key

dki,j = ExtractDecKey(ppj , xi)

3) Recover the plaintext message

m = Decrypt(ct,”, dki,j , ppj)

Note that the above process only requires pi to permanently
store xi (which matches our claim of constant-sized decryption
keys). In particular, pi need not permanently store dki,j , since
it can be computed on the fly as outlined above.
Relaxing the Upper Bound. Note that one could relax the
upper bound requirement by treating N as an epoch size
instead, where each epoch allows a maximum of N insertions
into the network, and the public parameters are reset at the end
of each epoch. If N is set to be sufficiently large, this results
in a reasonably infrequent resetting of the public parameters
in practice.

V. BENCHMARKS AND APPLICATION

A. Benchmarking Results for FDBE
In this subsection, we present benchmarking results for our

FDBE scheme from Section IV-C. We also present a detailed
comparison of FDBE with other pairing-based BE schemes
with distributed key generation listed earlier in Table I. We
note that [46] and [45] essentially use the same underlying
DBE scheme proposed in [51], so we just benchmark [51].
We use the BLS12-381 [30], [40] elliptic curve for the
group and pairing operations, and AES-GCM for symmetric
encryption/decryption. All measurements were made on a VM
running RHEL 9 with an 8-core CPU (each core running at
2.4GHz) and 32GB memory.

Scheme Setup n |pp| (in KB) |sk| (in KB) |ct| (in KB)

[77] Decentralized

10 17.27 2.30

0.85
20 56.41 4.21

50 351.96 9.95

100 1157.03 19.53

200 4501.56 38.68

500 27660.15 96.05

[57]-1 Trusted

10 4.73

0.19 0.74
20 9.65

50 24.42

100 49.0

200 98.25

500 245.91

[57]-2 Trusted

10 22.67

0.19 0.74
20 83.09

50 494.96

100 1945.05

200 7710.67

500 48003.55

[51] Trusted

10 3.01

0.19 2.11
20 6.02

50 15.04

100 30.08

200 60.16

500 150.39

FDBE (this work) Decentralized

10 4.29

0.19 0.74
20 8.39

50 20.71

100 41.23

200 82.27

500 205.64

TABLE II: Comparison of concrete component-sizes. Here n denotes the
total number of parties, |pp| denotes the size of the public parameters (in-
cluding the public key), |sk| denotes the size of the decryption key for each
party, and |ct| denotes the size of the ciphertext. [46], [45], [51] essentially
use the same underlying DBE scheme proposed concretely in [51], so we just
benchmark [51].

n [77] [57]-1 [57]-2 [51] FDBE (this work)

10 273.60 42.60 89.40 44.51 1.17

20 889.00 86.65 185.90 89.74 1.15

50 4020.40 231.26 507.14 247.62 1.14

100 14231.71 506.24 992.58 512.49 1.12

200 58072.74 1002.76 1994.06 1031.56 1.16

500 – 2465.99 4953.86 2589.93 1.15

TABLE III: Comparison of key generation time (in milliseconds) per party.
Again, n denotes the total number of parties in the system. All measurements
are averaged over 1000 experimental instances. We could not benchmark [77]
for n > 200 as the process ran out of memory.

Component Sizes. In Table II, we concretely compare FDBE

with the other schemes from Table I in terms of the sizes of
their public parameters, decryption keys, and ciphertexts. The
reported figures follow the asymptotic analysis in Table I. The
size of public parameters for FDBE is significantly smaller
than that of [77] and [57]-2 (even though the latter requires
a trusted setup), and marginally larger than that of [57]-1 and
[51]. The slightly larger public parameters is due to some
additional pre-processed public parameter components, and
is a tradeoff that allows FDBE to have significantly faster
distributed key generation per-party as compared to [57]-1
and [51] (illustrated subsequently). Finally, the decryption key
and ciphertext sizes for FDBE are constant, and are either
comparable to or smaller than those of the other schemes.
Notably, [77] has non-constant key size (grows linearly with
n) and ⇔ 15% larger ciphertext size than FDBE.

12

Fig. 5: Comparison of encryption and decryption times (in milliseconds) for fixed n (the total number of parties in the system) and varying sizes of the
target broadcast group. We present results for n = 100 and n = 200 (we could not benchmark [77] for n > 200 as the process ran out of memory, but
expect the trends for other schemes to remain the same for n > 200). All measurements are averaged over 1000 experimental instances.

Key Generation. Table III compares the schemes from Table I
in terms of the (public and decryption) key generation time
per party. Key generation in FDBE is significantly more
efficient than all other schemes and is effectively constant
across different values of n (the small deviations are due to
process variations across different runs). This is because key
generation in FDBE involves just a single exponentiation. This
is made possible by carefully pre-processing and including
a few additional group elements in the public parameters of
FDBE, as discussed earlier. In comparison, [57]-1,2 and [51]
require a linear (in n) number of exponentiations for key gen-
eration. The key generation time for [77] grows quadratically
with n, and we could not even benchmark it for n > 200 as
the process ran out of memory.

Encryption and Decryption. Fig. 5 compares FDBE with the
other schemes from Table I in terms of the encryption and de-
cryption overheads. Here, we present two sets of experiments
where we fix the total number of parties to n = 100 and
n = 200 (as mentioned earlier, the setup and key generation
procedures for [77] ran out of memory for n > 200) and
vary the target broadcast group sizes. We choose this setting
because the encryption and decryption overheads for all of
the schemes vary only with the target group size and not
the total number of parties. The trends are similar for both
n = 100 (figures (a) and (b)) and n = 200 (figures (c) and
(d)). In particular, [51] performs significantly worse than all
other schemes due to it highly involved encryption and decryp-
tion algorithms. Overall, FDBE offers a desirable balance in
terms of encryption and decryption performance. Notably, in
comparison with [77] (which is the only other scheme with
fully decentralized setup), FDBE supports significantly faster
encryption and concretely faster decryption (this is because,
unlike [77], FDBE avoids the heavy usage of target group
operations for encryption and decryption).

B. Benchmarking Results for CN-FDBE

In this subsection, we practically demonstrate the applica-
bility of CN-FDBE (the concrete instance of !CN based on the
FDBE construction from Section IV-C) in enabling confiden-
tial interoperability between private blockchain/DLT networks.
We present an augmentation of Hyperledger Cacti [25], an
open-source DLT interoperability framework, where networks
built on Hyperledger Fabric [27] use CN-FDBE to share

information confidentially (with integrity assurances addi-
tionally built in). Our implementation is available in the
following fork of the Hyperledger Cacti GitHub repository:
https://github.com/VRamakrishna/cacti/tree/crypto_dbe.

1) Hyperledger Cacti: Hyperledger Cacti is an open source
project within Linux Foundation Decentralized Trust [15] that
provides modules and libraries to enable transactions across
networks leveraging similar or different DLTs, thereby inter-
linking their workflows. Cacti enables networks to commu-
nicate directly using centralized node servers or decentralized
network-owned relays, hence, obviating reliance on third-party
chains for communications and settlements [7], [8]. Cacti
supports protocols and provides reference implementations
for networks to share (communicate) ledger data, atomically
swap (exchange) and transfer assets on demand [26] (us-
ing community-agreed standards [53]). Cacti provides DLT-
independent communication relays and DLT-specific connec-
tors, drivers, libraries, and smart contracts, for cross-network
transactions and associated ledger state management, and
supports networks built on Hyperledger Besu (an Ethereum
client), Hyperledger Fabric (HLF), R3 Corda, etc.

Data Sharing in Cacti. Cacti offers a cross-network data
sharing protocol; this was created in Weaver, originally a
separate interoperability framework, but now part of Cacti [14]
(see Fig. 6(a)). Here, a smart contract in a source network
receives a query (view request in Cacti parlance) for data
(in its ledger) from an application (client) in a destination
network (Steps 1-3). The client submits the ledger data (view
in Cacti parlance) it receives to a smart contract in its network
for validation, processing, and recording on the ledger (Step
9). For cross-network communication (Steps 1-2, 5-7), each
network uses a <relay, driver> pair to open a communi-
cation channel with other networks. The source network’s
peers running the smart contract generate an authenticity
proof via consensus for the view data (Step 4) which is
then independently validated by the destination network’s
peers (also via consensus). An authenticity proof typically
consists of digital signatures (ECDSA for HLF). The default
mode of Cacti cross-network communication (called Cross-

Network Plaintext or CN-PLAINTEXT henceforth) provides
no confidentiality against the communication channel. In this
mode, the optional operations in Fig. 6(a), i.e., encryption in
the source network, decryption at the destination client, and

13

https://github.com/VRamakrishna/cacti/tree/crypto_dbe

Fig. 6: Cacti Data Sharing Protocol (images adapted from Hyperledger Cacti Weaver RFCs [9]): (a) CN-PLAINTEXT when optional steps are skipped, and
CN-PROXY when optional steps are performed; (b) Our implementation of CN-FDBE.

matching the plaintext with the ciphertext during the validation
step in the destination network, are skipped.

Confidential Data Sharing in Cacti. Cacti also offers a mode
that adds confidentiality against the communication channel,
and hence, ensures that malicious relays or drivers will not
be privy to the plaintext view. This mode is called Cross-

Network Proxy (or CN-PROXY for short); it allows the client
to decrypt the view and, essentially, act as a proxy for the
peers of the destination network. After generating a view (with
authenticity proof), the peers of the source network encrypt
the view with the client’s ECDSA public key, using ECIES.
They also compute HMACs of the plaintext view (using pre-
shared secret keys) so that the client cannot tamper with the
plaintext view after decryption and before validation by the
peers of the destination network [9]. However, as discussed
in Section I, this protocol inherently relies on a centralized
trust assumption; indeed, there is no confidentiality guarantee
against a dishonest (potentially malicious) client/proxy.

Our Implementation: CN-FDBE. We enhance Cacti with a
new mode whereby the peers of the source network encrypt
the view using FDBE (instead of ECIES) and the peers of

the destination network decrypt the resulting ciphertext using
the corresponding decryption keys. Unlike CN-PROXY, the
client/proxy is no longer trusted to decrypt the data, and
therefore, can no longer access the view before the peers of
the destination network do. The view’s authenticity proof is
generated and validated exactly as in CN-PLAINTEXT and
CN-PROXY. We label this mode Cross-Network FDBE or
CN-FDBE (see Fig. 6(b)). While our implementation focused
on HLF networks, the methods and APIs are portable to other
DLTs (for e.g., Corda, Besu).

2) CN-FDBE – System and Implementation: Cacti offers
logic for generic interoperation primitives (such as genera-
tion/verification of views and proofs and asset locks/unlocks)
in interoperation modules [11]. These are implemented as
smart contracts for the supported DLTs, as their operations
impact ledger integrity, and thus, must operate through con-
sensus. In HLF, these interoperation modules are offered in the
form of the Weaver Fabric Interoperation Chaincode (WFIC)
(a chaincode is a smart contract in HLF parlance [12]), which
must be deployed on all the peers of a HLF’s ledger (also
known as channel) to make it interoperable with other Cacti-
enabled networks [10]. Fig. 6(a) illustrates the interoperation

14

Fig. 7: Cacti WFIC augmented with FDBE Capability

module deployed in both networks.
Overview of the Implemented Functions. The following
functions for CN-FDBE were implemented in the WFIC (in
Go): (i) bootstrapping the ledger state in the destination net-
work to initialize public parameters, sequentially update them,
and then extract the decryption keys, one for each organization
(in HLF, an organization is a sub-divison of the network’s
peers, acting as a redundancy set); (ii) encrypting data using
FDBE in the source network, and (iii) decrypting data using
FDBE in the destination network. The Cacti client library
for application clients, implemented as the Cacti Weaver
Fabric Interoperation Node SDK (WFIS) (published as an
NPM package [6]), required only one change for CN-FDBE;
namely, skipping view decryption (required in CN-PROXY)
and simply submitting it together with the authenticity proof to
the destination’s peers (this is identical to CN-PLAINTEXT).
Moreover, no changes were required to HLF’s relay and driver,
which process and communicate messages exactly the same
way as in CN-PLAINTEXT and CN-PROXY.

The WFIC, like any HLF chaincode, offers a transaction
API that can be directly invoked by HLF clients, and which are
backed by functions implemented within the chaincode. The
WFIC architecture, enhanced with CN-FDBE capabilities, is
illustrated in Fig. 7. Chaincode functions implemented for
CN-FDBE setup are called out as "Record and Lookup DBE
SRS Values" (SRS is "structured reference string", used to
denote the public parameters in our FDBE scheme from
Section IV-C). These functions support calls by the member
organizations of the network to initialize and update the public
parameters. Correspondingly, new ledger artifacts created for
CN-FDBE are called out as "DBE SRS Values & Protocol
State" and "DBE Secret Key (Local Filesystem)". (Note: the
former is maintained in the shared ledger whereas the latter
is maintained in each peer node’s local file system). We also
enhanced pre-existing chaincode functions – that handle view
requests and validations – with wrapper functions that generate
and decrypt FDBE-encrypted payloads respectively. See the
full version of the paper [43] for details of the modified WFIC.

Our implementation can be ported to other Cacti-supported
DLTs (e.g., Corda, Besu) by implementing FDBE functions

in the corresponding smart contracts and triggering functions
in the corresponding client libraries.

3) Cross-Fabric Network CN-FDBE Protocol: In this sub-
section, we present an abbreviated description of how our
implementation of CN-FDBE is used to achieve confidential
cross-network communication between two private HLF net-
works. Details appear in the full version of the paper [43].
Bootstrap or Setup Phase. One or more organization mem-
bers in the destination network trigger the initialization and
validation of public parameters. If the network has N organiza-
tions (parties), the public parameters update and corresponding
validation are triggered N times in sequence. Each update
is triggered by a member of a different organization, and is
idempotent (i.e., one organization may trigger an update ex-
actly once), and update success depends on the previous steps
having occurred in the right sequence. The accepted/correct
public parameters remain recorded on the ledger even if certain
operations are duplicated or triggered out of order.
Data Sharing Protocol Instance. This consists of Steps 1
to 9 (Fig. 6(b)). Aside from the communication of view
requests and responses, Step 4 allows the source network’s
peers to internally generate the requested view and calls
the FDBE encryption function, while Step 9 internally calls
FDBE decryption and validates the associated proofs in the
destination network.
Update Phase. This occurs when a new organization joins a
destination network with new peer nodes. It involves additional
steps for updating and validating the public parameters for the
latest (incremented) party count. The new peers are now ready
to decrypt views encrypted using CN-FDBE.

4) Benchmarks and Performance Evaluation: We bench-
marked our implementation of CN-FDBE and compared
it to existing implementations of CN-PLAINTEXT and
CN-PROXY (as illustrated in Fig. 6). In particular, we
measured the end-to-end latency (Steps 1-9) as well as the
sub-phases of the protocol: view generation (Steps 3-4) and
view validation (Steps 7-8). Our objective in running these
measurements was to determine whether the overhead incurred
by CN-FDBE is practically tolerable for the strictly higher
level of security it provides compared to a state-of-the-art
confidentiality mechanism like CN-PROXY.

Note: We did not attempt to measure/compare network
bandwidth usage or throughput for the three implementations.
Such measures, though interesting from an application’s (and
interoperability) perspective, are orthogonal to our contribu-
tions, which assume the necessity and practicality of cross-
network data sharing (see Section I) and tackle potential
attacks on the communication protocol. Furthermore, as shown
in Section V-A, our FDBE scheme requires less storage
compared to [77], which is the only other FDBE scheme with
a fully decentralized setup; indeed, we offer O(n) reduction
in the size of the public parameters and the decryption key
of each party. Plus, network throughput does not provide a
meaningful comparison measure against [77], as throughput
varies with ciphertext size, which is O(1) for both our FDBE

15

Fig. 8: CN-FDBE Performance: Measurements of Latency Across Two Networks (a-d) and Single-Network Setup (e)

and [77] (with our scheme being only a constant-factor better
concretely). Not needing to measure network resource usage
meant that we did not require multiple physical or virtual
machines for our blockchain network deployments, and instead
conducted our experiments (described below) on a single VM.

Setup. We augmented the sample test networks (test-
nets) offered by Cacti to run measurements for HLF
network pairs of various combinations of sizes (see the
‘weaver/tests/network-setups/fabric’ folder in our code
repository). Each testnet was launched with (i) a configurable
number of organizations (parties), each containing a peer node,
a CA node for identity issuance, and a Weaver identity syncing
agent (description of this is beyond the scope of this paper),
(ii) a Weaver relay, and (iii) a Weaver driver. The Cacti WFIC
was deployed on every peer in a testnet. In each experiment, a
pair of testnets was launched on a single VM running RHEL 9
with an 8-core CPU (each core running at 2.4GHz) and 32GB
memory using docker compose with individual services
running in separate Docker containers. We note that this is
a standard framework for testing/evaluating applications built
using HLF/Cacti.

Experiments. We ran experiments where the source network
had a single peer to generate a view but the destination
network size (i.e., number of organizations) varies from 2 to
10. Our network sizes did not exceed 10 because (i) HLF
networks larger than that on a single VM consume a lot
of resources and can be unstable, and (ii) almost all private
blockchain and DLT networks in practice have only a handful
of participants (fewer than 10), so running larger networks
does not lead to practically useful insights. In particular, we
highlight that we design experiments using a real blockchain
software-stack and real interoperability modules, as opposed
to standalone simulation (which could scale easily to larger
networks but does not necessarily yield meaningful bench-
marks). Our experiments target builders and administrators of
private networks concerned about the overhead imposed on

data-sharing protocols by encryption mechanisms.
As the Cacti data sharing protocol was designed to commu-

nicate view data between peer groups, we also ran experiments
where the destination network size was fixed (at 5 orgs)
while the source network size varied from 1 to 10 orgs. In
a source network of size k, there are k encrypting nodes, so
each destination network peer in CN-FDBE must decrypt k
views before validating and processing the view data through
consensus. This naturally increases the destination network
load in CN-FDBE but not in the other two protocols as they
either do not need to decrypt (CN-PLAINTEXT) or decrypt
once in the application client (CN-PROXY).

Results. We ran each protocol 300 times for each combination
of the above testnet sizes and computed the average. Fig. 8(a)
shows the changes in the end-to-end latency of the three
protocols. As expected, the latency for each protocol increases
with destination network size, roughly in a linear fashion,
though CN-FDBE seems to have a higher slope compared
to the other two. This indicates that CN-FDBE may perform
similarly or worse than CN-PROXY for large network sizes,
but for practical network sizes (10 or fewer), the former
significantly outperforms the latter. Thus, beyond enabling a
fully decentralized mechanism for confidential interoperability
across private networks, CN-FDBE also provides a significant
performance advantage over CN-PROXY.

During view generation, CN-FDBE has significant overhead
compared to CN-PROXY and CN-PLAINTEXT (both with
almost identical performance); see Fig. 8(b). This is expected
as the FDBE encryption mechanism is heavier than the
ECIES generation with HMAC used in CN-PROXY. But for
view validation (Fig. 8(c)), CN-PROXY performs significantly
worse than CN-FDBE. Since view generation is in the order
of tens of milliseconds and view validation in the order of
▽2 seconds, the latter dominates the former in the end-to-
end latency comparison, hence showing that CN-FDBE is a
significant improvement over CN-PROXY. Additionally, as

16

illustrated in Fig. 8(d), when we fix the destination network
size to 5 organizations and vary the size of source (encrypt-
ing) network instead, we see that CN-PROXY clearly gives
performance advantages for larger network sizes (greater than
4). But CN-FDBE outperforms CN-PROXY at lower numbers
of encrypting network peers, which are often encountered in
practice.
Analysis. CN-FDBE requires less processing within the client
of the destination network compared to CN-PROXY, which
calls for an ECIES decryption algorithm. Within the desti-
nation network peers, view validation using FDBE is faster
than HMAC and authenticity proof verifications when the
source network only has a single encrypting peer. But when
the number of encrypting peers increases (beyond 4), each
destination network peer must decrypt and compare payloads
from multiple source peers, which incurs a higher latency for
CN-FDBE compared to that of CN-PROXY. This is likely due
to a less optimized implementation of FDBE compared to that
of ECEIS. We leave further optimizing the implementation of
FDBE as an interesting open question.

Fig. 8(e) shows that the setup time increases linearly with
network size (duration of an update round is 6 seconds). Given
that this is a one-time operation, we believe that this latency
is an acceptable overhead in practice.
Summary. In summary, not only does CN-FDBE provide
a qualitative benefit over the state-of-the-art by enabling a
fully-decentralized mechanism for confidential cross-network
interoperability, but it also achieves performance gains for a
large subset of practical configurations.

VI. CONCLUSION

We introduced CN-FDBE – a novel, decentralized, practi-
cally efficient, and provably secure protocol for confidential
communication across private blockchain/DLT networks. We
modeled confidential cross-network communication as an ideal
functionality FCN in the simplified UC framework, and pre-
sented a protocol !CN that provably realizes this functionality
while resisting static corruptions based on a fully distributed
notion of broadcast encryption (FDBE) without trusted setup.
We realized CN-FDBE as a concrete instance of !CN based on
a new FDBE scheme with constant-sized keys and ciphertexts
from bilinear pairing groups. Reference implementations of
FDBE and CN-FDBE in Hyperledger Cacti were used to
demonstrate practically efficient and confidential information-
sharing between private Hyperledger Fabric networks. We
leave it as an interesting open question to explore the ap-
plicability of CN-FDBE in other blockchain networks and
interoperability frameworks, as well as in a broader class of
applications requiring private communication between decen-
tralized groups of participants.

ETHICS CONSIDERATIONS

In this paper, we proposed a new cryptographic mechanism
that enables decentralized and confidential interoperability
across private blockchain/DLT networks. We believe that it
is justifiable to use Hyperledger Cacti and Hyperledger Fabric

for our experiments given: (i) both Cacti and Fabric are open
source projects within the Linux Foundation Decentralized
Trust [15], (ii) the data sharing mechanisms in Cacti that
our experimentation and benchmarking focus on are pub-
licly documented [9], (iii) both Cacti and Fabric have been
extensively used for experimentation and benchmarking in
several prior works [27], [28], [53], [63], (iv) our findings
do not pose any risks to individuals or organizations/entities
currently using Cacti and/or Fabric, and (v) our findings do
not reveal any new vulnerabilities that need to be disclosed.
We further attest that the research team involved in this work
considered the ethics of this research, and we believe that the
research was done ethically. We plan to contribute our code
base (https://github.com/VRamakrishna/cacti/tree/crypto_dbe)
to the Hyperledger Cacti project, with the hope of encour-
aging the adoption of the proposed framework in real-world
confidential interoperability scenarios.

REFERENCES

[1] A Next-generation Smart Contract and Decentralized Application Plat-
form. URL.

[2] DOGETHEREUM: We can do this Dogether! URL.
[3] Dtcc press releases: Project ion platform. URL. (Last accessed: Aug

22, 2022).
[4] Dtcc: Swift explores blockchain interoperability to remove friction from

tokenized asset settlement. URL. (Last accessed: Jun 8, 2023).
[5] Global shipping business network. URL. (Last accessed: Aug 6, 2025).
[6] Hyperledger Cacti - Weaver Fabric SDK. URL.
[7] Hyperledger Cacti: Architecture. URL.
[8] Hyperledger Cacti: Project Scope. URL.
[9] Hyperledger Cacti: Weaver: End-to-End Confidentiality. URL.

[10] Hyperledger Cacti: Weaver: Fabric Interoperability Contracts. URL.
[11] Hyperledger Cacti: Weaver: Interoperation Modules. URL.
[12] Hyperledger Fabric: Smart Contracts and Chaincode. URL.
[13] Ibm food trust. URL. (Last accessed: Nov 30, 2021).
[14] Introducing Hyperledger Cacti, a multi-faceted pluggable interoperabil-

ity framework. URL.
[15] Linux Foundation Decentralized Trust. URL.
[16] Marco Polo Network. URL.
[17] Project ubin: Central bank digital money using distributed ledger tech-

nology. URL. (Last accessed: May 29, 2025).
[18] TradeLens. URL.
[19] we.trade. URL. (Last accessed: May 13, 2022).
[20] Hashed time-locked contract transactions. Bitcoin Wik, 2020. (Last

accessed: May 13, 2022). URL: https://en.bitcoin.it/wiki/Hash_Time_
Locked_Contracts.

[21] Banque de france demos ledger interoperability in cbdc trials. Finextra
Editorial, 2021.

[22] Zkporter: A Breakthrough in L2 Scaling. URL, 2021.
[23] Hqlax, j.p. morgan, ownera and wematch demonstrate a cross-ledger

repo. HQLAx Announcements, 2022. (Last accessed: April 22, 2025).
[24] The interoperability of cbdcs across networks and currencies. HSBC

Report, 2022. (Last accessed: April 22, 2025).
[25] Linux foundation decentralized trust - hyperledger cacti, 2025. Accessed

on 09-Jan-2025. URL: https://github.com/hyperledger-cacti/cacti.
[26] Ermyas Abebe, Dushyant Behl, Chander Govindarajan, Yining Hu,

Dileban Karunamoorthy, Petr Novotn!, Vinayaka Pandit, Venkatraman
Ramakrishna, and Christian Vecchiola. Enabling Enterprise Blockchain
Interoperability with Trusted Data Transfer (Industry Track). In Mid-
dleware, pages 29–35. ACM, 2019.

[27] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Kon-
stantinos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris,
Gennady Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet
Murthy, Binh Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessan-
dro Sorniotti, Chrysoula Stathakopoulou, Marko Vukolic, Sharon Weed
Cocco, and Jason Yellick. Hyperledger Fabric: A Distributed Operating
System for Permissioned Blockchains. In EuroSys, pages 30:1–30:15.
ACM, 2018.

17

https://github.com/VRamakrishna/cacti/tree/crypto_dbe
https://github.com/ethereum/wiki/wiki/White-Paper
https://people.cs.uchicago.edu/~teutsch/papers/decentralized_oracles.pdf
https://www.dtcc.com/news/2022/july/27/project-ion
https://www.dtcc.com/industry-connection/2023/june/08/swift-explores-blockchain-interoperability-to-remove-friction-from-tokenized-asset-settlement
https://www.gsbn.trade/
https://github.com/hyperledger-cacti/cacti/pkgs/npm/cacti-weaver-sdk-fabric
https://hyperledger-cacti.github.io/cacti/architecture/
https://hyperledger-cacti.github.io/cacti/vision/#project-scope
https://github.com/hyperledger-cacti/cacti/blob/main/weaver/rfcs/models/security/confidentiality.md
https://github.com/hyperledger-cacti/cacti/tree/main/weaver/core/network/fabric-interop-cc#fabric-interoperability-contracts
https://github.com/hyperledger-cacti/cacti/blob/main/weaver/rfcs/models/infrastructure/interoperation-modules.md
https://hyperledger-fabric.readthedocs.io/en/latest/smartcontract/smartcontract.html
https://tech.walmart.com/content/walmart-global-tech/en_us/blog/post/blockchain-in-the-food-supply-chain.html
https://www.lfdecentralizedtrust.org/blog/2022/11/07/introducing-hyperledger-cacti-a-multi-faceted-pluggable-interoperability-framework
https://www.lfdecentralizedtrust.org/
https://www.tradefinanceglobal.com/posts/marco-polo-network-successfully-completes-largest-blockchain-open-account-trade-finance-trial-on-r3s-corda-platform/
https://www.mas.gov.sg/schemes-and-initiatives/project-ubin
https://www.maersk.com/news/articles/2022/11/29/maersk-and-ibm-to-discontinue-tradelens
https://www.gtreview.com/news/top-stories/ibm-takes-another-shot-at-trade-digitisation-after-demise-of-we-trade-tradelens/
https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts
https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts
https://blog.matter-labs.io/zkporter-a-breakthrough-inl2-scaling-ed5e48842fbf
https://github.com/hyperledger-cacti/cacti

[28] Elli Androulaki, Marcus Brandenburger, Angelo De Caro, Kaoutar
Elkhiyaoui, Liran Funaro, Alexandros Filios, Yacov Manevich,
Senthilnathan Natarajan, and Manish Sethi. A Framework for Resilient,
Transparent, High-throughput, Privacy-Enabled Central Bank Digital
Currencies. IACR Cryptol. ePrint Arch., page 1717, 2023.

[29] Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory
Maxwell, Andrew Miller, Andrew Poelstra, Jorge Timón, and Pieter
Wuille. Enabling Blockchain Innovations with Pegged Sidechains. URL,
2014.

[30] Paulo S. L. M. Barreto, Hae Yong Kim, Ben Lynn, and Michael Scott.
Efficient algorithms for pairing-based cryptosystems. In CRYPTO 2002,
volume 2442, pages 354–368. Springer, 2002.

[31] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-Friendly Elliptic
Curves of Prime Order. In Selected Areas in Cryptography SAC 2005,
volume 3897, pages 319–331, 2005.

[32] Rafael Belchior, Jan Süßenguth, Qi Feng, Thomas Hardjono, André
Vasconcelos, and Miguel Correia. A brief history of blockchain
interoperability. Commun. ACM, 67(10):62–69, 2024.

[33] Kumar Bhaskaran, Peter Ilfrich, Dain Liffman, Christian Vecchiola,
Praveen Jayachandran, Apurva Kumar, Fabian Lim, Karthik Nandaku-
mar, Zhengquan Qin, Venkatraman Ramakrishna, Ernie G. S. Teo,
and Chun Hui Suen. Double-blind consent-driven data sharing on
blockchain. In 2018 IEEE International Conference on Cloud Engineer-
ing, IC2E 2018, Orlando, FL, USA, April 17-20, 2018, pages 385–391.
IEEE Computer Society, 2018.

[34] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the
weil pairing. In CRYPTO 2001, volume 2139, pages 213–229. Springer,
2001.

[35] Dan Boneh and Matthew K. Franklin. Identity-based encryption from
the weil pairing. SIAM J. Comput., 32(3):586–615, 2003.

[36] Dan Boneh, Craig Gentry, and Brent Waters. Collusion Resistant
Broadcast Encryption with Short Ciphertexts and Private Keys. In
CRYPTO 2005, pages 258–275, 2005.

[37] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the
weil pairing. J. Cryptol., 17(4):297–319, 2004.

[38] Dan Boneh and Brent Waters. A Fully Collusion Resistant Broadcast,
Trace, and Revoke System. In ACM CCS 2006, page 211–220, 2006.
doi:10.1145/1180405.1180432.

[39] Dan Boneh and Mark Zhandry. Multiparty Key Exchange, Efficient
Traitor Tracing, and More from Indistinguishability Obfuscation. In
CRYPTO 2014, pages 480–499, 2014.

[40] Sean Bowe. BLS12-381: New zk-SNARK elliptic curve construction
(Zcash blog, March 11 2017). URL, 2017.

[41] Ran Canetti. Universally Composable Security: a New Paradigm for
Cryptographic Protocols. In IEEE FOCS 2001, pages 136–145, 2001.
doi:10.1109/SFCS.2001.959888.

[42] Ran Canetti, Asaf Cohen, and Yehuda Lindell. A Simpler Variant of
Universally Composable Security for Standard Multiparty Computation.
In CRYPTO 2015, pages 3–22, 2015.

[43] Angelo De Caro, Kaoutar Elkhiyaoui, Sandeep Nishad, Sikhar Patran-
abis, and Venkatraman Ramakrishna. Distributed broadcast encryp-
tion for confidential interoperability across private blockchains (full
version). Cryptology ePrint Archive, Paper 2025/2237, 2025. URL:
https://eprint.iacr.org/2025/2237.

[44] Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed
ledger. Theor. Comput. Sci., 777:155–183, 2019.

[45] Arka Rai Choudhuri, Sanjam Garg, Julien Piet, and Guru-Vamsi
Policharla. Mempool Privacy via Batched Threshold Encryption: Attacks
and Defenses. In USENIX Security 2024, 2024.

[46] Arka Rai Choudhuri, Sanjam Garg, Guru-Vamsi Policharla, and
Mingyuan Wang. Practical mempool privacy via one-time setup batched
threshold encryption. In USENIX Security 2025, pages 3477–3495,
2025.

[47] Richard Cleve. Limits on the security of coin flips when half the
processors are faulty (extended abstract). In ACM STOC 1986, pages
364–369, 1986.

[48] Yevgeniy Dodis and Nelly Fazio. Public Key Broadcast Encryption for
Stateless Receivers. In Digital Rights Management, pages 61–80, 2003.

[49] Amos Fiat and Moni Naor. Broadcast Encryption. In CRYPTO’ 93,
pages 480–491, 1994.

[50] Amos Fiat and Adi Shamir. How to Prove Yourself: Practical Solutions
to Identification and Signature Problems. In CRYPTO ’86, volume 263,
pages 186–194, 1986.

[51] Sanjam Garg, Dimitris Kolonelos, Guru-Vamsi Policharla, and
Mingyuan Wang. Threshold Encryption with Silent Setup. In CRYPTO
2024, volume 14926, pages 352–386, 2024.

[52] Romain Gay, Lucas Kowalczyk, and Hoeteck Wee. Tight Adaptively
Secure Broadcast Encryption with Short Ciphertexts and Keys. In
Security and Cryptography for Networks, pages 123–139, 2018.

[53] Thomas Hardjono, Martin Hargreaves, Ned Smith, and Venkatraman
Ramakrishna. Secure Asset Transfer (SAT) Interoperability Architecture
(Active Internet-Draft). URL, 2023.

[54] Florian Hess, Nigel P. Smart, and Frederik Vercauteren. The ate pairing
on elliptic curves. In EUROCRYPT 2006, volume 4004, pages 346–359.
Springer, 2006.

[55] Aggelos Kiayias, Nikolaos Lamprou, and Aikaterini-Panagiota Stouka.
Proofs of Proofs of Work with Sublinear Complexity. In Financial
Cryptography and Data Security - FC 2016, volume 9604, pages 61–
78, 2016.

[56] Aggelos Kiayias, Andrew Miller, and Dionysis Zindros. Non-interactive
Proofs of Proof-of-Work. In Financial Cryptography and Data Security
- FC 2020, volume 12059, pages 505–522, 2020.

[57] Dimitris Kolonelos, Giulio Malavolta, and Hoeteck Wee. Distributed
broadcast encryption from bilinear groups. In ASIACRYPT 2023, volume
14442, pages 407–441. Springer, 2023.

[58] Jae Kwon and Ethan Buchman. Cosmos Whitepaper. URL, 2016.
[59] Andrew Miller. The High-Value-Hash Highway. Bitcoin Forum post.

URL, 2012.
[60] Victor S. Miller. The weil pairing, and its efficient calculation. J.

Cryptol., 17(4):235–261, 2004.
[61] Alex Murray, Dennie Kim, and Jordan Combs. The Promise of a Decen-

tralized Internet: What is Web 3.0 and How Can Firms Prepare? Business
Horizons, 05 2022. doi:10.1016/j.bushor.2022.06.002.

[62] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.
[63] Krishnasuri Narayanam, Venkatraman Ramakrishna, Dhinakaran

Vinayagamurthy, and Sandeep Nishad. Atomic Cross-chain Exchanges
of Shared Assets. URL, 2022.

[64] Jonas Nick, Andrew Poelstra, and Gregory Sanders. Liquid: A Bitcoin
Sidechain. Liquid White Paper, 2020.

[65] Meta Platforms. WhatsApp | Secure and Reliable Free Private Messaging
and Calling. URL: https://www.whatsapp.com/.

[66] Joseph Poon and Vitalik Buterin. Plasma: Scalable Autonomous Smart
Contracts. White Paper, pages 1–47, 2017.

[67] Joseph Poon and Thaddeus Dryja. The Bitcoin Lightning Network.
Scalable Off-Chain Instant Payments, pages 20–46, 2015.

[68] Victor Shoup. Practical Threshold Signatures. In EUROCRYPT 2000,
2000. doi:10.1007/3-540-45539-6_15.

[69] Joseph H Silverman. The arithmetic of elliptic curves, volume 106.
Springer, 2009.

[70] John T Tate. The arithmetic of elliptic curves. Inventiones mathematicae,
23(3):179–206, 1974.

[71] Jason Teutsch, Michael Straka, and Dan Boneh. Retrofitting a Two-Way
Peg between Blockchains. arXiv preprint arXiv:1908.03999, 2019.

[72] Louis Tremblay Thibault, Tom Sarry, and Abdelhakim Senhaji Hafid.
Blockchain Scaling Using Rollups: A Comprehensive Survey. IEEE
Access, 10:93039–93054, 2022.

[73] Frederik Vercauteren. Optimal pairings. In IEEE Transactions on
Information Theory, volume 56, pages 455–461, 2010.

[74] André Weil. Zur algebraischen theorie der algebraischen funktionen.(aus
einem brief an h. hasse.). 1938.

[75] Gavin Wood. Polkadot: Vision for a Heterogeneous Multi-Chain
Framework. URL, 2016.

[76] Gavin Wood et al. Ethereum: A secure decentralised generalised
transaction ledger. Ethereum project yellow paper, 151(2014):1–32,
2014. URL: https://ethereum.github.io/yellowpaper/paper.pdf.

[77] Qianhong Wu, Bo Qin, Lei Zhang, and Josep Domingo-Ferrer. Ad hoc
broadcast encryption. In ACM CCS 2010, pages 741–743, 2010.

[78] Jie Xu, Cong Wang, and Xiaohua Jia. A Survey of Blockchain
Consensus Protocols. ACM Comput. Surv., 55(13s), 2023.

[79] Anatoly Yakovenko. Solana: A new architecture for a high performance
blockchain v0. 8.13, 2018.

[80] Alexei Zamyatin, Mustafa Al-Bassam, Dionysis Zindros, Elefthe-
rios Kokoris-Kogias, Pedro Moreno-Sanchez, Aggelos Kiayias, and
William J. Knottenbelt. Sok: Communication across distributed ledgers.
Cryptology ePrint Archive, Paper 2019/1128, 2019. URL: https://eprint.
iacr.org/2019/1128.

18

http://www.%20opensciencereview.%20com/papers/123/enablingblockchain-innovations-with-pegged-sidechains
https://doi.org/10.1145/1180405.1180432
https://electriccoin.co/blog/new-snark-curve/
https://doi.org/10.1109/SFCS.2001.959888
https://eprint.iacr.org/2025/2237
https://datatracker.ietf.org/doc/draft-ietf-satp-architecture/
https://whitepaper.io/document/582/cosmos-whitepaper
https://bitcointalk.org/index.php?topic=98986.msg1083483#msg1083483
https://doi.org/10.1016/j.bushor.2022.06.002
https://arxiv.org/abs/2202.12855
https://www.whatsapp.com/
https://doi.org/10.1007/3-540-45539-6_15
https://github.com/w3f/polkadot-white-paper/raw/master/PolkaDotPaper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://eprint.iacr.org/2019/1128
https://eprint.iacr.org/2019/1128

	Introduction
	Our Contributions

	Preliminaries
	Bilinear Pairings
	NIZK Arguments of Knowledge

	Modeling Confidential Cross-Network Communication in the Simplified UC Framework
	Notations and Background Assumptions
	The Ideal Functionality FCN

	Realizing FCN using Fully Distributed Broadcast Encryption (FDBE)
	Fully Distributed Broadcast Encryption (FDBE)
	Protocol Realizing FCN
	Bilinear Pairing-based Construction of FDBE
	Additional Discussion
	Supporting Dynamic Addition of Parties

	Benchmarks and Application
	Benchmarking Results for FDBE
	Benchmarking Results for CN-FDBE
	Hyperledger Cacti
	CN-FDBE – System and Implementation
	Cross-Fabric Network CN-FDBE Protocol
	Benchmarks and Performance Evaluation

	Conclusion
	References

