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Abstract—Malicious actors on online social networks (OSNs)
use script-controlled social bots that engage users through replies
or comments. These bots are programmed to activate only when
specific trigger keywords appear in posts. We refer to such
advanced context-aware campaigners as trigger bot (TB) agents,
which aim to deceive users into making payments for illicit
products or revealing sensitive financial credentials. This paper
presents a systematic and data-driven study on the detection
and characterization of TB agents. We introduce TBTrackerX, a
novel framework designed to collect and analyze TB activity.
Using this system, we captured 4,452 TB agent replies from
2,647 unique TB agents, targeting our honeytrap account, and
uncovered interactions with over 84K users on X. Qur results
show that TB agents evade detection by using contextually similar
replies (with similarity scores up to 0.97), exhibiting intermit-
tent posting patterns (in bursts ranging from 15 seconds to 5
minutes), and adopting dormant behavior after peak campaign
activity. Furthermore, we identify a coordinated TB ecosystem,
characterized by fake TB followers and shared TB masters. This
study underscores the pressing need for better moderation and
detection mechanisms to combat these sophisticated forms of
social media manipulation.

I. INTRODUCTION

Online social networks (OSNs) have emerged as the pre-
dominant medium for communication, support, and influence.
While their openness facilitates rapid information sharing, it
also introduces systemic vulnerabilities. Adversaries exploit
these through increasingly sophisticated social media manip-
ulation (SMM) campaigns [1], often driven by automated
agents, or social bots, whose tactics, techniques, and proce-
dures have evolved over the past decade [2], [3].

Social bots are automated, script-controlled accounts that
are designed to mimic real users and perform targeted tasks.
They are now widespread across major OSN platforms, in-
cluding X (formerly Twitter) [4], [S], YouTube [3] and Face-
book [6], [7]. Once simple and easy to detect, bots have grown
more sophisticated, with advanced profile customization, nu-
anced content strategies, and coordinated behavior [1]. The
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emergence of large language models (LLMs) [8], [9], has
further advanced bot capabilities, enabling real-time context-
aware user engagement. Some bots now use LLMs to reply to
tweets, simulate human-like conversations, and produce per-
suasive content that seamlessly blends into political, financial,
or commercial discourse [10]-[13].

The growing sophistication of social bots blurs the line
between human and automated behavior, driving reply-based
malicious campaigns. On X, many such campaigns promoting
cryptocurrency scams [2], [11], phishing links [14], and polit-
ical propaganda [15] use bots to impersonate support agents
or push fake giveaways, tricking users into revealing sensitive
financial details. What makes these campaigns unique is their
use of trigger-based engagement: bots remain dormant until
a user’s post contains specific keywords (e.g., “metamask”,
“cashapp”, “hacked”). We refer to these as trigger bots (TBs):
automated entities that monitor posts in real time and respond
selectively when trigger terms appear (see §11-A). While many
TBs are malicious, others use similar tactics for legitimate
purposes (e.g., freelance support), making it essential to study
the full spectrum of TB behavior, from benign to malicious.

The risk deepens when TBs coordinate and use semantic
variation to evade detection. As shown in Figure 1, multiple
TB agents often coordinate to target the same victim with
semantically similar, but not identical replies, circumventing
duplicate content filters. Prior work [2], [11] has shown that
TB agents operating deceptive support scams have collec-
tively stolen at least 38.40 BTC. The scale, sophistication,
and impact of these operations underscore the need for a
measurement-driven investigation of the TB ecosystem across
multiple campaigns.

Despite causing significant harm, such as confirmed cryp-
tocurrency theft [2], the detection of TB agents remains largely
reactive and insufficient. This study addresses that gap by
conducting the first large-scale, empirical analysis of TB
agents, examining their behavior, campaign structures, and
detection strategies. To guide our study, we investigate the
following research questions:

RQ1: TB ecosystem discovery. What observable components
within the TB agent ecosystem enable their detection and
discovery?

RQ2: Profile and behavioral characteristics of TBs. How
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Fig. 1: Example of Trigger Bot (TB) agents replying to trigger key-
word (in bold) in Tweet on X. While appear benign, their semantically
similar replies are crafted to lure users to malicious campaigns.

do the actions and characteristics of malicious TB agents differ
from benign ones?
RQ3: Platform intervention and longitudinal evaluation.
How successful is X in identifying and suspending malicious
TBs? What longitudinal patterns explain why some TB agents
remain active despite platform enforcements?
RQ4: Detection strategies and stakeholder recommenda-
tions. Which detection methods are most effective? What
practical recommendations can be provided to stakeholders?
To address these questions, we developed TBTrackerX, a
honeytrap-driven measurement and detection framework that
uses trigger keywords to attract TB agents. From March
1-30, 2024, we deployed TBTrackerX using a controlled
X account and captured over 4,452 TB replies from 2,647
distinct TB agents across 10 trigger keywords (see §III-A).
We analyzed both malicious and benign TB agents across four
dimensions: profile characteristics, textual content, temporal
patterns, and social network structure. Our results show that
while 57% - 67% of malicious TB agents were suspended by
X, significant gaps remain in the platform’s mitigation efforts.
This highlights the importance of a deeper understanding of
malicious bot behavior and improved detection of SMM.
Our findings are summarized below as key contributions.

1) Measurement of TB agents. We present the first large-
scale, empirical study of TB agents, a novel and grow-
ing class of reply-based, script-controlled, and campaign-
driven social bots on X. To uncover these agents, we
develop TBTrackerX and introduce a novel honeytrap
methodology (cf. §III) to identify reply-based TB agents.
Our deployment identified 2,647 TB agents involved in
deceptive financial scams, illicit products/services, and
misleading romance schemes.

2) Multi-dimensional TB agent dataset. We compile a com-
prehensive dataset (cf. §1II-C) of TB agents, including their
replies, tweet history, metadata, and network footprints.
For each agent, we collect X profile metadata, the latest

100 tweets and replies, and a list of followers and friends,
enabling detailed analysis of coordinated bot campaigns.

3) Ecosystem and strategy analysis of TB agents. We
conduct multi-dimensional analysis of TB agents from
four vantage points: profile characteristics, reply content,
temporal patterns, and network structures, to address our
research questions. This includes quantifying suspension
rates (RQ3), identifying evasion strategies (RQ4), and
uncovering key differences between malicious and benign
TB agents (RQ1, RQ2), to inform effective detection
strategies.

4) Detection of TB agents. To benchmark detection per-
formance, we evaluate 15 diverse baselines across two
key tasks: malicious TB agent detection and campaign
classification. Additionally, we conduct an ablation study
to evaluate feature importance and a generalizability study
to assess the model’s robustness against unseen TB agents.
Our findings demonstrate that a classical XGBoost model
achieves strong performance with F1-scores of 0.88 for ma-
licious agent detection and 0.92 for campaign classification
(cf. §V).

Outline. Our study reveals how TB agents’ profile attributes
change across campaigns (cf. §IV-A), modify content to evade
detection (cf §IV-B), and exhibit irregular posting patterns (cf
§IV-C). Our research reveals that TBs are not just isolated
nuisances but part of a coordinated, evolving ecosystem that
uses timing, content obfuscation, and campaign-level orches-
tration to evade detection at scale (cf §IV-D, §IV-E, §IV-F). By
dissecting their behavioral and temporal fingerprints, we iden-
tify systemic gaps in current mitigation efforts. Our insights
provide a data-driven foundation for strengthening automated
defenses on OSNs (cf §V). Based on TBTrackerX’s findings,
we aim to advance research and guide stakeholders—including
OSN platforms, end users, and the web security community
to improve detection, transparency, and accountability in com-
bating sophisticated SMM activities, as discussed in §VI-B.

II. BACKGROUND AND RELATED WORK

This section provides the background and related work to
contextualize our work within existing literature and highlight
gaps our methodology aims to address.

A. Overview of TB Ecosystem Components

Definition 2.1 (Trigger Bots (TB)). A TB is a social bot
that interacts with and promotes a campaign to an OSN user
based on specific (trigger) keywords used by the OSN user. It
mimics humans and often engages in comments (in the form
of replies) with other OSN users. Depending on their nature,
campaigns can be classified as malicious or benign.

A close analysis of the collected TB replies reveals an
ecosystem composed of interconnected components. In par-
ticular, we observed that these TBs function as agents that
actively promote specific campaigns to regular OSN users,
aiming to direct them to the campaign masters behind the TB
activity. TB agents sustain an extensive network of coordinated
followers to enhance their credibility and operate covertly.



Interestingly, although TBs target different keywords, the
behavior of both agents and their followers appears to be
systematically organized and directly controlled by TB masters
or TB farms (account marketplaces), as illustrated in Figure 2.
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Fig. 2: TB ecosystem and components of TB operations.

Below, we outline each component of the TB ecosystem:

HoneyTrap Account. As the name suggests, we created
a controlled X account to attract TB agents by periodically
posting tweets containing trigger keywords. The account was
active for one month, posting once every 12 hours to comply
with the X’s policies and rate limits. Importantly, we did not
engage with TB agents through replies or direct messages
during the experiment and data collection.

TB Victims. We observed that OSN users frequently receive
replies from TB agents after including trigger keywords in
their tweets. These keywords serve as entry points for many
modern TB campaigns, signaling TB agents’ interest. As a
result, unsuspecting users who mention these keywords may
inadvertently become potential TB victims.

TB Agents. TB agents are programmable social bots ac-
tivated based on the trigger keywords and tasked with in-
teracting and engaging with OSN users. They are designed
to mimic normal or legitimate user behavior, often posing as
support representatives or service providers. Our analysis of
their replies revealed (see §IV-B) that the messages are often
contextually similar and appear to be paraphrased variations,
likely to evade detection while maintaining relevance (§IV-F).

TB Followers. These are followers of TB agents. Our
initial assumption was that TB agents solely promoted the
campaigns. However, our findings (see §IV-D) revealed that
TB followers, specialized supporting accounts, play a crucial
role in making the TB agents appear more legitimate. These
followers typically show minimal activity, such as an empty
profile or a single random tweet on their timeline, to hide
suspicion and avoid detection on OSN.

TB Masters. At the top of the ecosystem are the TB
masters, malicious campaigners who ultimately interact with
the victims. TB agents are deployed to manipulate users into
initiating contact with these campaigners, typically through
external channels such as email. Notably, we discovered (see
§IV-E) that TB agents and followers associated with different
trigger keywords often share similar characteristics, suggesting
that multiple campaigners may outsource their operations to
the same TB farms. In some instances, to increase campaign

efficiency, TB campaigners may also directly operate as TB
agents and interact through the direct messaging feature on X.

TB Farms. To maximize agents reach to potential TB
victims, TB masters utilize existing public or underground
online marketplaces like TB farms, entities that offer spe-
cialized services to buy, sell, and manage profiles of TB
agents and TB followers on X [16]. These farms mimic ‘like
farms’ [7] or distributed call centers [6], coordinating accounts
that simulate diverse geographical locations and behavior to
enhance authenticity and credibility.

B. Related Work

Figure 2 illustrates the core components for addressing the
TB ecosystem on OSNs. This subsection compares related
work across these components, highlighting how prior ap-
proaches differ from or align with ours.

Previous work has focused on specific entities such as
hashtags [17], lists [18], or mentions, whereas our use of
trigger words generalizes these, allowing broader applicability.
Methods like [1], [2] resemble our honeytrap but are limited
to fake cryptocurrency campaigns, overlooking other domains
such as misleading giveaways and illicit product campaigns.
Work in [17] only partially detects TB agents based on hash-
tags and static control (e.g., post/follower counts and friends),
which are unstable across accounts and campaigns. Other
efforts on fake follower campaigns [19] focus on inflating
popularity without addressing campaign context. Overall, prior
studies lack integration of TB agents and followers, a central
focus of our research.

Most work focuses only on bot detection, often including
benign bots, without capturing trigger behaviour or malicious
intent [20]. In contrast, our work distinguishes between mali-
cious and benign TB agents, going beyond standard detection.
While earlier research notes that bots reply during specific
hours [3], it lacks an analysis of temporal posting patterns.
We find that TB agents post intermittently to evade detection
(see §IV-C), a behavioral trait not previously reported.

Coordinated TB agent behaviour suggests the influence of
shared TB masters or farms, aligning with evidence of account
commodification on online marketplaces [16]. Although some
research has explored malicious TB agents on platforms such
as YouTube [3], [21] and Facebook [6], [7], little attention has
been given to TB followers and masters. We focus our study
on X, due to its large user base and its role as an initial target
for adversaries [1], [2]. To date, no study has comprehensively
mapped the full TB ecosystem, as shown in Figure 2.

III. TBTRACKERX

This section presents the TBTrackerX methodology for
deploying a honeytrap and tracking TB accounts on X. We
detail our TB data collection process and thoroughly explain
how ground truth data is established for precise measurement
and analysis.



A. TB-Related Keywords Selection

Identifying suitable trigger keywords is a key challenge in
attracting TB agents. Therefore, we conducted a systematic
investigation of TB-prone keywords. We examined an initial
list of 30 keywords previously reported in the academic litera-
ture [1], [2], journalistic investigations, and limited disclosures
from OSN platforms [11], [14]. Determining which keywords
remain effective (or active) over time requires ongoing vali-
dation, as TB masters constantly evolve their tactics. To this
end, we closely monitored the X platform and performed pre-
liminary tests to validate each keyword, ensuring its responses
reliably attracted TB agents. From the initial list, 19 keywords
were active and ongoing. After reviewing motivations of TB
agents from previous literature [1], [2], [22], [23], the scambait
forum and database [24], and internal discussions, we grouped
active keywords into four types of campaigns, discussed later
in this subsection. Then we narrowed the keywords from 19 to
10 as some of them overlap. We designed our methodology to
isolate the impact of each keyword, meaning each honeytrap
post included one keyword to observe keyword-specific TB
agents’ behavior independently.

Diversification of TB agents’ Campaigns. Responses from
TB agents may vary depending on the type of campaign, such
as fake giveaways, tech support, or product-related schemes.
To capture a representative range of TB agent behaviors, we
select keywords across three broad categories of malicious
campaigns, unlike those that are benign.

« Malicious Campaign 1: Deceptive support campaigns. In
this campaign, TB agents impersonate legitimate personnel
to deceive end users for financial gains [2]. Trigger key-
words such as ‘metamask’, ‘trustwallet’, and ‘hacked’
indicate illegitimate tech support profiles promoting these
campaigns. Specifically, both ‘metamask’ and ‘trustwallet’
are closely linked to cryptocurrency wallets. Meanwhile,
TBs posing as tech support under the guise of ‘hacked’
falsely present themselves to help OSN users regain account
access. These keywords have also been noted in previous
studies [1], [2].

« Malicious Campaign 2: Illicit product campaigns. Recent
studies show that adversaries have extensively misused X
to promote illicit goods and services [23]. In our list of
potential keywords, we found that TB agents responding
to ‘IPTV’ and ‘shrooms’ appear as sellers or affiliates of
prohibited products. IPTV refers to the technology that
delivers over-the-top (OTT) media services. IPTV TB agents
typically point to third-party IPTV sellers, often associ-
ated with pirated or redistributed content without proper
licensing. Conversely, ‘shrooms’ TB agents act as question-
able resellers of various illegal psychedelic drugs such as
shrooms (abbreviated for psilocybin magic mushroom) or
DMT (dimethyltryptamine) [25].

« Malicious Campaign 3: Misleading giveaway campaigns.
During our keyword analysis, we identified a community of
fake giveaway profiles on X, that respond to keywords such
as ‘sugar daddy’ and ‘cashapp’. These TB agents lure users

with false promises of gifts and build online relationships,
only to later demand and extort money. These are commonly
known as pig-butchering or romance scams [26], [27].

o Collecting Benign TB Agents. To distinguish malicious
TB agents’ behavior, we also consider agents that offer
legitimate services (e.g., freelance services), drawn to be-
nign trigger keywords. To gather such data, we select three
keywords: ‘logo’, ‘graphic designer’, and ‘essay’. TB
agents in this category often offer help with arts or digital
services. Their benign nature is evidenced by their tendency
to share creative portfolios or discuss their work. We also
observed that these TB agents stopped engaging once they
realized the inauthenticity of our honeytrap account.

With these additions, as shown in Table I, our data collection
captures agents based on N = 10 distinct trigger keywords. We
acknowledge that while not exhaustive, our measurement ex-
ercise encompasses a diverse spectrum of types of TB agents.
For additional details on how we address sampling bias, please
see Appendix VII-B. Finally, the overlapping keywords (e.g.,
robux similar to metamask) we excluded from our selection
also highlight how malicious campaigns have increasingly
broadened potential TB-prone keywords in recent years.

Abbr. as | TB Agent Campaign Name TB-prone Keywords
metamask

Mal. 1 Deceptive Support Campaigns trustwallet
hacked

Mal. 2 Illicit Product Campaigns Pty
shrooms

P seleadi B ; . cashapp

Mal. 3 Misleading Giveaway Campaigns sugar daddy
logo

Benign Benign Campaigns graphic designer
essay

TABLE I: Overview of campaigns and underlying TB keywords.

B. Data Crawling

This section outlines the data crawling process, detailing
the modules of TBTrackerX used to set up a honeytrap and
collect the dataset of TB agents for our analysis.

HoneyTrap Tweet Generator Module. This module gen-
erates honeytrap tweets, each containing a single trigger
keyword. Our honeytrap tweet consists of a single sentence
that contains a brief context, for example “I need help with
<trigger keyword>" before the trigger keyword to bait the
TB agents. Furthermore, we append unique UNIX timestamps
to each post to avoid appear consecutive identical tweets as
shown in Figure 1. Our tweet generator module corroborates
previous findings that TB agents respond to specific keywords
while ignoring the broader context.

Crawling Module. To study TB agents’ modus operandi
on X, our crawler focuses on the primary location where TB
agents operate: the comment sections of tweets containing
trigger keywords (cf. Figure 1). We used our Honeytrap
account to post tweets twice daily (every 12 hours) for 30
days—once per keyword—adhering to X’s rate limits.

After each tweet, we waited 12 hours before initiating data
collection. The crawler captured replies and profile metadata
from all accounts engaging with the tweet. When a TB agent
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Fig. 3: Monitoring of TB agents suspension by X. The plot shows
that as many as 57% to 67% of TBs have been suspended across
malicious campaigns by the end of December 2024.

replied, we collected their 100 most recent replies and network
metadata (including followers and followees). This provides
a broader view of the campaign behavior from four key
perspectives for analysis: profile characteristics, reply content,
temporal patterns, and network structures. For clarity, we refer
the replies made directly to our honeytrap tweets as “honeytrap
replies” and the most recent 100 replies by the same agent to
other OSN users’ tweets as “TB victim replies”. Collecting
only 100 recent replies is a trade-off balancing rate limit con-
straints, storage, and processing time. Prior work has shown
that 100 replies are sufficient to capture account behavior [28].

C. Dataset and Ground Truth Labeling

After configuring the crawling module and defining a set
of TB-prone keywords, we deployed TBTrackerX on the X
platform. Over 30 days, from March 1 to March 30, 2024, we
collected a dataset comprising 4,452 honeytrap reply messages
and 2,647 TB agents. Table II summarizes the distribution of
TB agents across different TB campaigns. Overall, the TB
agents interacted with over 84K unique potential TB victims,
which includes victims gathered from the recent 100 replies.
Additionally, the TB agents had an aggregate follower count of
over 500K, indicating their potential for wide dissemination.
Figure 10 (in Appendix §VII-D) presents a word cloud of
TB agent replies from our dataset, highlighting the diversity
in their content across campaigns. More screenshots of the
TB honeytrap replies can be found in the Appendix (§VII-H),
and keyword-specific collected TB agent data overview in
Appendix Table X.

Interestingly, we found that between 57% (illicit product
agents) and 67% (deceptive support agents) of malicious TB
agents that interacted with our honeytrap accounts across
different campaigns have been suspended by X’s enforcement
mechanisms, as shown in Figure 3. We use this suspension
data as part of our ground truth labeling strategy. However, 640
malicious TB agents remained active at the time of our final
snapshot (i.e., December 2024), suggesting that these actors
successfully evaded X’s detection systems (cf. §IV-F).

After preprocessing, we compiled the dataset for manual
labeling. Each active TB agent was assigned one of two labels:
(TB agent) bot or human. Three annotators, proficient in
English and with a postgraduate college education, carried out
the labeling process. The average inter-annotator agreement

Data Overview Mal. 1 Mal. 2 Mal. 3 Benign
TB Agent Count 1,201 724 504 247
TB HoneyTrap Replies 2,019 1,072 977 384
TB-Suspended 802 (67%) 411 (57%) 330 (65%) 31 (13%)
TB-Active 346 (29%) 179 (25%) 115 (23%) 196 (79%)
TB-Deleted 41 3%) 131 (18%) 55 (11%) 18 (7%)
TB-Changed Screen Name 21 2%) 24 (3%) 20 (4%) 13 (5%)
TB Victim Replies Count 105,416 60,189 48,002 18,235
TB Victim Unique Count 30,824 14,372 29,277 10,235
TB Followers Count 106,147 102,286 61,419 280,580
TB Friends Count 31,437 256,572 88,901 184,414

TABLE II: Overview of TB agent data collection. Here, Mal. (1, 2,
3), and Benign refer to deceptive support, illicit product, misleading
giveaway, and benign campaigns, respectively.

was 85.9%, demonstrating high consistency and reliability.
Overall, 96% of the active TB agents were labeled as bots
and 4% as humans. The small proportion of human-labeled
accounts indicates a minimal false positive rate for including
legitimate human accounts in the dataset. These results show
that our honeytrap module is highly effective in attracting
malicious TB agents. Please refer to Appendix VII-E for
additional information about the labeling process.

IV. TB ECOSYSTEM MEASUREMENT

In this section, we comprehensively analyze the collected
TB agents by examining their behavior across four key di-
mensions: profile characteristics, reply content, temporal pat-
terns, and social network structures. Moreover, our objective
is to identify consistent behavioral markers that distinguish
malicious TB agents from their benign counterparts.

A. Analysis of TB Agents Profile Characteristics

This section explores the TB agent’s profile across five
attributes: profile setup behavior, creation year, device pref-
erence, languages used, and TB agent’s reply preference (i.e.,
reply-to-tweet or reply-to-reply).

1) Profile Setup Behavior: Our results in Table III show
that over ~95% of TB agents in all four campaigns have
custom profile images, indicating an effort to appear genuine.
TB agents show differences in other parts of their profile setup
across campaigns. For example, deceptive support campaigns
exhibit significantly less manual intervention, suggesting more
script-controlled activity, compared to the misleading give-
away campaign. They are less likely to have filled out the
location field (21.2% vs. 51.4%), the description field (20.9%
vs. 71.2%), and to allow direct messages (8.8% vs. 88.5%).
This behavior highlights that this group of agents tends to be
anonymous and covert to avoid tracking. Conversely, agents
from misleading giveaway campaigns are more likely to stay
on X for further interaction with potential victims through
direct messages.

In contrast, the illicit products campaign resembles the
deceptive support and misleading giveaway campaigns. From
Table III, we observe that these TB agents tend to keep their
DM disabled, while many provide a description (52.1%) and
location information (71.1%). Conversely, benign TB agents
show greater authenticity, with a significant proportion includ-
ing descriptions and location details, and are DM-enabled.



Attribute Mal.1 Mal.2 Mal.3 All Mal. Benign
Profile Setup Behavior
- With Description 209%  52.1%  71.2% 40.4% 79.0%
- Location-Filled 212%  71.1%  51.4% 42.1% 55.5%
- DM-Enabled 8.8% 6.6%  88.5% 24.7% 47.0%
- Custom Profile Image 96.8% 99.0% 94.8% 97.0% 95.1%
- Verified 1% 0% 0% 0.5% 10.9%
Creation Year
- 2024 (January-February) 545%  43.7%  44.5% 49.3% 29.2%
- 2023 279%  487%  22.2% 32.7% 23.9%
- 2022-2009 17.7% 77%  33.3% 18.0% 47.0%
Device Preference
- Android 83.0%  87.8% 19.8% 70.2% 39.0%
- iPhone 16.4% 99%  77.1% 28.2% 7.5%
- Web App 0.6% 2.2% 3.1% 1.6% 45.4%
- TweetDeck 0% 0% 0% 0% 0.2%
- TweetDeck Web App 0% 0% 0% 0% 7.9%
Language Usage
- English 98.1%  982%  85.4% 95.3% 89.1%
- Undetermined (e.g., und) 0.1% 0.3% 9.4% 2.3% 4.6%
- Non-Standard (e.g., qme) 0.1% 0.8% 0.4% 0.4% 3.4%
- Others (e.g., tr, ja, fr, es) 1.7% 0.7% 5.8% 2.0% 2.9%
Reply Preference
- Direct (Reply-to-Tweet) 60.1%  772%  71.6% 57.5% 86.7%
- Threaded (Reply-to-Reply)  39.9%  22.9%  28.4% 42.5% 13.3%
TB Agents Count 1,201 724 504 2,411 247

TABLE III: Overview of TB agent profile analysis. Here, Mal. 1,
Mal. 2, Mal. 3, All Mal., and Benign refer to deceptive support, illicit
product, misleading giveaway, combined malicious campaigns, and
benign campaigns, respectively.

This indicates greater customization and user engagement.
Lastly, X verified profiles are more prevalent among benign
campaigners than among malicious ones, with 10.9% of be-
nign agents being verified compared to hardly any among the
malicious agents.

2) TB Agents Creation Year: Our results in Table III show
that of all 2,411 malicious TB agents, 49.3% (1260) agents
were created in the first two months of year 2024 (before
data collection started in March), followed by 32.7% (836) in
2023, indicating that more than 82% of TB agents (combined
for 2023 and 2024) were newly established within the past
two years. In contrast, the remaining 18% TB agents were
created between 2009 and 2022, which could represent older,
repurposed, or sleeper accounts. The data reveals the impor-
tance of monitoring newer agents for evolving tactics while
acknowledging that older agents may serve strategic purposes.

Conversely, out of 247 benign agents, 53.1% (140) agents
were created in 2023 and 2024 (combined), indicating a trend
of creating newer accounts among benign agents. However,
a significant number of agents, 47.0% (107), date back to
2022 or earlier, indicating the continued presence of older,
possibly long-standing users. In addition, most of these agents
remain active (79.2%), with only a small proportion suspended
(13.3%) or deleted independently (6.8%). The pattern of
agent creation and longevity underscores the platform’s overall
compliance and legitimacy among benign TB agents.

3) Preference of Devices Operated by TB Agents: Our
results in Table III show that all three malicious campaigns
exhibit high mobile device usage, particularly Twitter for An-
droid, which dominates in two campaigns: deceptive support
(83.0%) and illicit product campaigns (87.8%). It is plausible
to expect such behavior in bot farms that control automation
and emulation [2], [7]. Interestingly, the third malicious cam-

paign for misleading giveaways is heavily based on Twitter
for iPhone (77.1%), indicating a different operational style
and behavior. Among them, the use of the Twitter Web App
remains minimal, implying limited manual interaction.

In contrast, benign campaigns use devices in a balanced
way. For example, Twitter for Web App (45.4%) followed by
Android (39%), with some use of TweetDeck (8.1% combined
with their Web App) and iPhone (7.5%). The diverse use of
devices suggests a natural and varied user behavior, involving
probable manual intervention and scheduling within the cam-
paign. The distribution indicates the organic use of TB agents
by real individuals, unlike the coordinated, uniform TB farm
patterns observed in malicious campaigns.

4) Language Usage of TB Agents: Our analysis of
language attributes reveals that the TB agents use 38 lan-
guages. We observe that across both campaigns (malicious and
benign), English (en) overwhelmingly dominates responses,
accounting for 95.3% and 89.1% of the total replies by
the agents, respectively. Notably, a small fraction (each less
than 1%) of malicious agent replies appears in languages
such as Tagalog (tl), Turkish (tr), Japanese (ja), and French
(fr). Meanwhile, benign agents exhibit minor engagement in
Spanish (es), Indonesian (in), and Danish (da). This suggests
that these accounts primarily target an English-speaking audi-
ence. However, the usage of low-resource languages suggests
occasional multilingual shifts by TB agents. We speculate
that TB agents might use LLMs, text spinners, or machine
translation to generate multilingual replies.

Additionally, we note a small proportion of unspoken lan-
guages. These are non-standard, potentially obfuscated lan-
guages such as und (undetermined), (qgme), and (qam). They
appear in both campaigns, such as und (2.3% in malicious
and 4.6% in benign) and non-standard (0.4% in malicious and
3.4% in benign). The unconventional language suggests that
benign campaign agents are more prone to language-detection
uncertainty, likely because genuine individuals promoting their
work use shorter or more ambiguous tweets (containing only
URLSs, mentions, media, or hashtags). The finding corroborates
an existing study indicating that the presence of und, qme,
and qam often signifies a post composed of very brief text or
containing only mentions or URLs [29].

5) Reply Preference (Direct vs. Threaded): This analysis
compares how TB agents engage with trigger keywords in
conversations on X. For example, by replying directly to tweets
(i.e., reply-to-tweet) or by continuing threads called threaded
replies (i.e., reply-to-reply). The reply preference attribute
across both campaigns reveals notable behavioral differences.
Both illicit product agents and misleading giveaway agents
favor direct replies (77.2% and 71.6%, respectively).

In contrast, deceptive support agents have (39.9%) of replies
made to existing replies (i.e. reply-to-reply), indicating more
nested conversations. This suggests that deceptive support
agents more actively follow TB-prone keywords even within
replies. On the other hand, benign campaigns rely heavily on
direct replies (86.7%). This variation suggests that benign TB
agents are more likely to respond directly to original tweets



(perhaps through targeted engagements) than to engage with
unrelated tweets or to deeper multi-level interactions.

New Insights: The key takeaways are that (i) A significant
portion of the malicious TB agents are fresh accounts (49.3%
only created in the first two months of 2024), with a strong
preference for mobile platforms, such as Android (70.2%) or
iPhone (28.2%). (ii) We found 39.9% of deceptive support
agents engage more deeply in threaded conversations (reply-
to-reply). (iii) The primary language of all agents is English,
while some show multilingual capability in up to 38 languages.

B. Analysis of TB Agents Replies Content

In this section, we examine the replies from honeytrap
and TB victims to analyze three attributes. First, identify the
preferred contact methods (e.g., email, URLs) promoted in
replies. Second, assess content variation across campaigns,
and third, check linguistic consistency within campaigns using
syntactic (TF-IDF) and contextual (RoBERTa) representations.

1) Promoted Contact Methods in HoneyTrap Replies:
To facilitate further manipulation, TBs often include contact
methods, such as email addresses or URLSs, in their responses.
It is important to note that the choice of contact method sug-
gests how TB victims are lured to continue the manipulation—
through the platform or external to the platform. For example,
sharing an email address or URL directs users outside of X,
while the DM feature keeps the interaction within the platform.

Our results in Table IV show that all four campaigns favor
different contact methods in honeytrap replies. The agents in
deceptive support campaigns primarily use email addresses
likely to be disguised as legitimate tech support operators.
On the other hand, illicit product campaign agents typically
mention the names of other OSN accounts (internal to X or
external, such as Instagram, Telegram, and Facebook) more
often than they do other contact methods.

Interestingly, the misleading giveaway agents seek inter-
action through direct messaging, suggesting a more direct
mode of operation. In contrast, benign agents post URLs,
highlighting an interest in showcasing their external work
portfolios (on websites such as fiverr.com). In summary,
these communication methods reveal the varying openness and
intent of TB agent-driven interactions on the X platform.

Methods Mal.1 Mal.2 Mal.3 Benign C.
Email 1,225 3 4 5
X Direct Message 46 68 686 76
URLs 89 85 14 284
Mentions 563 955 77 7
Phone Number 28 9 8 8
Hashtags 63 169 20 25
All Methods 2,014 1,289 809 405
HoneyTrap Replies 2,019 1,072 977 384
Template-based Reply 1,031 6 3 11

TABLE IV: Distribution of communication methods used by TB
agents. Bold denotes the most used contact method.

2) Reply Content Variation Between Campaigns: We ex-
amine the text representations of response content (honeytrap
and TB victim) to examine how they vary across campaigns.

We filter out non-English replies for each campaign and
preprocess them (to remove email, URLs, etc.). Next, we
use RoBERTa, a transformer-based language model, to cap-
ture contextual meanings that convert each sentence into a
dense semantic embedding. Finally, we visualize the high-
dimensional embeddings in 2D using t-distributed Stochastic
Neighbor Embedding (t-SNE).

Our result, shown in Figure 4, shows that all four campaigns
form well-separated clusters in the embedding space for both
(honeytrap and TB victim) reply types. Ideally, this difference
in textual content is expected as content is tailored specifically
to the campaign’s needs and motives. However, we note that
(i) the left (honeytrap replies) plot of the Figure 4 shows two
sub-clusters of benign agents (in green), and (ii) the plot on the
right (TB victim replies) in Figure 4 shows a broader spread of
benign agent content (in green) in the embedding space. The
two insights reveal the heterogeneity and wider embedding
dispersion of benign TB agents, underscoring the variability
in responses generated by authentic human users.
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Fig. 4: The t-SNE visualization of (a) honeytrap replies (on the left),
and (b) TB victim replies (on the right) between campaigns. The
two plots show well-separated clusters and a broad (heterogeneous)
content diversity in benign campaigns.

3) Evaluating Linguistic Consistency Within Campaign:
We quantify linguistic consistency across all TB agents’ tex-
tual responses within their campaigns. For this, we employ
two complementary text representation methods: a contextual
embedding model and a lexical-based vectorizer. We use
RoBERTa for the contextual approach, as it captures nuanced
meanings and context beyond surface-level word overlap. We
then compute the pairwise cosine similarity scores for all
sentence pairs, yielding a symmetric similarity matrix. To
avoid redundancy, we extract only the upper triangular values
(excluding the diagonal), representing the unique pairwise se-
mantic similarities. In parallel, we apply the traditional TF-IDF
(Term Frequency-Inverse Document Frequency) method to
encode each sentence into sparse lexical vectors, emphasizing
the frequency and uniqueness of word usage. Cosine similarity
was similarly computed over these TF-IDF vectors to measure
syntactic similarity.

In the left plot of Figure 5, our results show that all
campaigns exhibit high context similarity (most similarities
> 0.90). About 50% of replies in all campaigns have a
RoBERTa similarity between 0.95 and 0.97. In contrast, up to
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Fig. 5: The distribution of (a) context (on the left) and (b) syntactic
similarity (on the right) of honeytrap replies. The plots show contex-
tual consistency within campaigns, but low word overlap, highlighting
different words—same meaning behavior.

95% of campaign replies have a TF-IDF similarity < 0.30,
indicating minimal word overlap. This contrasting finding
suggests extensive use of paraphrasing, highlighting different
words—same meaning behavior among TB agents, possibly to
evade content filters on OSNs. Additionally, the misleading
giveaway agents’ TF-IDF curve (in yellow) is notably flatter,
indicating a high level of vocabulary match. This aligns with
the observation that this group of TB agents frequently replies
with syntactically similar text pairs, often using brief messages
such as ‘DM me’ or ‘message me’.

Our previous subsection demonstrated that TB agents ac-
tively promote specific contact methods within their replies. In
this subsection, we observe that TB agents frequently employ
paraphrasing. We hypothesize that these agents rely on a gen-
eration mechanism that rephrases content while consistently
embedding contact methods such as email addresses, URLs,
or mentions enclosed in braces within sentences. To test this
hypothesis, we conducted an empirical analysis using a regular
expression to extract honeytrap replies that contain {}, [], or
() braces. Our experiment found that 1,031 replies (51.0%) in
deceptive support campaigns included these enclosed braces
to insert distinct email addresses. This finding suggests that
TB agents engaged in deceptive support campaigns follow a
template-based approach as shown in Table IV. In contrast,
other campaigns provided minimal evidence of similar struc-
tured template patterns. We further confirmed this observation
through manual analysis across all campaigns.

New Insights: The key takeaways are: (i) TB agents exhibit
a strong tendency to post contextually similar replies (simi-
larities > 0.90). These replies exhibit low-word overlap (<
0.30), indicating systematic paraphrasing intended to evade
detection on X. (ii) Different campaigns focus on specific
primary contact methods: deceptive support agents employ
email (1,225 times), illicit product use mentions (955 times),
and misleading giveaway agents request to direct message
(686 times) to facilitate subsequent stages of manipulation.

C. Analysis of TB Agents Temporal Patterns

In this subsection, we perform fine-grained session-based
temporal profiling of agents. By examining the timestamps of
TB victim replies, we uncover distinct session-level dynamics,
such as short, bursty activity versus prolonged idle periods,
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Fig. 6: Temporal session analysis of TB agent’s replies.

which constitute a critical part of a TB agent’s temporal
signature. We define a short-bursty session as a sequence
of five or more consecutive replies posted with inter-reply
intervals of 15 seconds or less. To facilitate this analysis,
TBTrackerX normalizes each agent’s timeline by assigning the
most recent reply a timestamp of zero and expressing all prior
reply times as relative offsets (in seconds). This transformation
enables consistent temporal feature extraction across accounts.

Subsequently, we apply a time-based sliding window
(t) approach with a varied range of window lengths
t € {15, 30,60, 120, 300, 600, > 600} seconds—selected based
on prior work in social bot detection [1]. For each window ¢,
we identify sessions that contain at least n consecutive replies
(where n is experimentally validated) and compute the number
of TB agents exhibiting such behavior over time. This profiling
yields features such as inter-reply intervals, burst durations,
and session lengths, which are instrumental for capturing the
underlying automation traits of TB agents.

In Figure 6, we present the results of session-based temporal
profiling using two configurations: n=5 (on the left) and n=10
(on the right), where n denotes the minimum number of con-
secutive replies within a session. Using our time-based session
detection approach, we observe that over 75% of TB agents
associated with misleading giveaway campaigns exhibit short-
burst behavior—posting at least five consecutive replies with
inter-reply intervals no greater than 15 seconds. This bursty
activity pattern is strongly indicative of automation, likely
orchestrated through scripts. Such uniform and rapid behavior
provides clear signals for detection and appears correlated with
X’s high suspension rates of these TB agents (cf. Fig. 3).

Notably, increasing the threshold to n = 10 does not
substantially alter the temporal signature of these TB agents,
underscoring the pervasive nature of their bursty activity. In
contrast, deceptive support agents display a markedly different
temporal pattern: more than 80% TBs in this category exhibit
inter-reply intervals of 300 seconds (5 minutes) or longer.
This behavior suggests a deliberate strategy to mimic benign
activity and evade detection systems by avoiding rapid posting.
In particular, we observe that increasing the session window
size (t) consistently captures a higher proportion of TBs.
Specifically, TB agents across campaigns exhibit intermittent
activity patterns, oscillating between dense short bursts of
replies and prolonged idle periods. This variability in posting
behavior is a distinctive temporal trait of malicious automation.
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Fig. 7: Profile attributes of TB followers in terms of count of
followers, friends, and lifetime posts across campaigns.

D. Analysis of TB Followers

A critical element of the TB ecosystem involves inauthentic
TB followers. These TB followers do not promote TB agents’
campaigns, as such overt coordination would reveal suspicious
behavior indicative of a botnet. Instead, these TB followers
operate as online sleeper agents capable of dynamically as-
sociating with or detaching from TB agents as needed. We
unveil the existence of such TB followers in deceptive sup-
port campaigns using the metadata attributes of the follower
accounts linked to TB agents. As shown in Figure 7, these
followers are primarily designed to follow a large number of
deceptive support TB agents, with a median nearing 250 TB
agents (highlighted in orange in the first plot). Simultaneously,
they exhibit minimal posting activity, often limited to a single
tweet (shown in blue), which provides just enough activity to
avoid detection while avoiding the red flag of an empty profile.

In contrast, TB followers in other campaigns exhibit more
moderate behavior with a balanced follower-to-following ratio
(shown in orange and green). However, we speculate that a
blend of inauthentic and benign followers exists in the other
two malicious campaigns. It should be noted that many online
tactics artificially inflate the OSN account metrics. A typical
example is #followdfollow and #like4like reciprocal tactics,
which bad actors may misuse to exploit less experienced users
seeking rapid online popularity. These reciprocal engagement
schemes create the illusion of popularity and trustworthiness,
which malicious agents can weaponize to boost follower
counts. Attracted by the prospect of quick visibility, naive
users may unknowingly amplify malicious agents, contributing
to scams, misinformation, or the expansion of inauthentic net-
works [15]. This form of SMM undermines platform integrity
and introduces artificial engagement across the ecosystem.

E. Analysis of TB Masters

In this subsection, we dive deep into the contact method
used in honeytrap replies to profile TB masters. Our anal-
ysis unfolds in two steps to substantiate the presence of
TB masters in orchestrating manipulation campaigns. First,
we treat each unique contact method (e.g., email address,
URL) as representing a distinct TB master, waiting to initiate
subsequent stages of manipulation. Second, we assess how
many of these TB masters are orchestrating campaigns with
at least n coordinating TB agents.

In Table V, we reveal extensive ongoing malicious activity,
with over 300 distinct TB masters each controlling at least
one TB agent across various campaigns. These findings indi-
cate that TB agents initiate their manipulation on X, before

TABLE V: Overview of the TB master operating campaigns with at
least n agents promoting unique contact methods in honeytrap replies.
The results demonstrate the varying degrees of campaign coordination
and reach in the TB ecosystem.

redirecting users to other platforms. In deceptive support and
illicit product campaigns, a majority of TB masters (356
and 302, respectively) operate outside the X platform. In
contrast, misleading giveaway campaigns are primarily driven
by internal actors with TB masters (around 355) engaging TB
victims through direct messages on the platform.

Notably, as n increases, we observe heightened coordina-
tion. For instance, 20 TB masters manage at least 10 TB
agents in deceptive support campaigns, while 9 TB masters do
the same in illicit product campaigns. This reflects significant
operational coordination. Meanwhile, in benign campaigns, we
observe no such coordination, even as n varies, indicating each
contact method corresponds to a distinct genuine individual.
Overall, our contact method effectively quantifies the scale and
coordination of malicious activity within the TB ecosystem.

F. Longitudinal Analysis of TB Agents

This section details a nearly year-long longitudinal analysis
of TB agents. Previous studies [1], [2], [23] suggest that
malicious TB agents have a short active life cycle of two to
six months before suspension. Based on these findings, we
periodically check the availability of the captured TB agents
four months after the initial data collection to assess evasion
rates (see Figure 3 in §III-C). We find 640 malicious TB agents
escaped suspension by bypassing X’s detection systems. To
fully understand the TB agent’s evasion strategy, we revisited
the active TB agents on X in Jan. 2025 to collect two profile
attributes: the time of the TB agent’s last reply and the latest
reported follower count.
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Fig. 8: Longitudinal analysis of active TB agents on X

In Figure 8, we illustrate the monthly count of TB agents,
categorized by the time of their most recent activity. Our
result highlights the following insights: (i) Most agents entered
dormancy periods. Across all malicious campaigns, TB agents
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Fig. 9: Longitudinal analysis of active TB agents in terms of change in count of followers compared between March 2024 and January
2025. The red area in the plot highlights that active malicious TB agents disassociate from inauthentic TB followers to evade detection.

observed a peak for a short period (till Jul. 2024) and stopped
activity by Aug. 2024, highlighting the time we started our
periodic suspension monitoring. (ii) Based on the TB agent’s
latest follower counts in Jan. 2025, we observe that many
malicious TB agents in deceptive support campaigns disas-
sociate or completely separate from TB followers to increase
longevity on the platform. This is highlighted by the (red)
change in the follower count plot illustrated in Figure 9. (iii)
In contrast, benign agents show stable or increasing followers
demonstrating a regular, continued activity.

V. DETECTION OF TB AGENTS

In this section, we systematically compare various models
for detecting malicious TB agents and their campaigns. We
begin by outlining the problem statement (§V-A), followed
by our approach to feature selection (§V-B) and evaluation
metrics used (§V-C). Next, we present the experimental study
and the baseline models considered (§V-D). Our primary
objective is to identify the model that performs best with
our selected features, including comparisons against state-
of-the-art (SOTA) baselines (§V-E1). Moreover, we conduct
an ablation study to determine the importance of individual
features (§V-E2). Lastly, we evaluate the generalizability of
the best-performing model by testing its detection performance
on previously unseen malicious TB agents (§V-E3).

A. Problem Statement

Given training data that consists of TB agent profiles
(I'B) and their corresponding triggered replies [, where
TB = {tby, thy, tbs..., tb; } represents the set of TB agents and

; = {R'} denotes the single triggered reply for each agent
tb;, we aim to perform two evaluation tasks in the testing data
— malicious TB agent detection and campaign classification:

e Malicious TB agent detection: This task involves predicting
a binary label indicating whether the agent is malicious
or benign. Formally, the output is y(T'B) € {0,1}, where
y(T'B) = 1 indicates that the TB agent tb; is malicious.

o Campaign detection: This is a multiclass classification task
where each TB agent is assigned to one of four campaign
categories. The output is y(T'B) € {0,1,2,3}, where
y(T'B) = 0 indicates that TB agent tb; € deceptive support,
y(T'B) 1 indicates tb; € illicit product, y(T'B) = 2
indicates tb; € misleading giveaway or y(7'B) = 3 indicates
tb; € benign campaigns.

B. Feature Selection

We extract four types of features for each TB agent: nu-
merical, boolean, categorical, and textual. Numerical features
include various profile attributes such as number of followers,
friend count, total status posts, and tweet frequency (computed
as the ratio of status posts to the account age in days). Boolean
features capture the presence or absence of specific profile
attributes such as the geographical location information, biog-
raphy description, and the direct message permission status.
Categorical features include the type of contact method and
the preferred device used by the agent. Textual features are
derived from raw reply content using ROBERTa, which gener-
ates campaign-aware embeddings. Finally, we concatenate all
extracted features to form a unified TB feature representation.

C. Evaluation Metric

We evaluate the performance of different models using
standard metrics such as FlI-score, recall, and Matthews
Correlation Coefficient (MCC). The Fl-score captures the
balance between precision and recall, reflecting the average
classification performance and the trade-off between correctly
and incorrectly identified TB agents. Recall, also called sensi-
tivity, is the detection rate, measuring the proportion of actual
TB agents correctly detected. The MCC assesses the overall
quality and stability of the classification by considering all
components of the confusion matrix (i.e., TP, TN, FP, and
FN). Given the class imbalance in both evaluation tasks, we
report the mean and standard deviation of the macro-averaged
results over 10 iterations, each using a different seed to ensure
robustness and reliability of the evaluation.

D. Baselines and Experimental Setup

We compare the detection performance of 15 SOTA base-
lines, including classical ML, ensemble-based, generative,
transformer, feature-based, and rule-based approaches:

o Classical ML-based: We include simple models, such as
support vector machine (SVM), logistic regression (LR),
and random forest (RF), as noted in prior works [1], [4],
[30]. We also consider XGBoost due to its fast and scalable
architecture [31]. Unless otherwise stated, we use the default
parameters for all models.

o Ensemble-based: We adopt a Mixture-of-Expert (MoE) ap-
proach, inspired by its recent success in scaling LLMs [32]
and social bot detection [33], [34]. MoE models use a gating
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mechanism to activate only a subset of “expert” components

per input, improving computational efficiency.

LILM-based: Motivated by recent work on LLMs for clas-

sification tasks, such as misinformation detection and troll

identification [35], [36], we evaluate five open-source LLMs
available via Unsloth [37] as baselines: Gemma (gemma-7b-
bnb-4bit, gemma-2-9b) [38], Llama (Llama3.1-8B-Instruct,

Llama3.2-3B-Instruct) [39] and Phi-4 [40]). In this paper,

we refer to these models (listed in Table XI) as Llama-3.1,

Llama-3.2, Gemma, Gemma-2, and Phi-4, respectively.

Transformer-based models: We include RoBERTa [41], a

general-purpose transformer-based model, and BERTweet,

specifically pre-trained on tweets [42]. Both models apply
self-attention mechanisms to capture contextual dependen-
cies and are fine-tuned using reply text from TB agents.

Feature-based approaches: We include Botometer Lite [30]

and BotHunter [43], which classify accounts based on pro-

file features. Both use Random Forest classifiers to handle
diverse input feature sets effectively.

o Anomaly or rule-based methods: We consider Swatting [17].
This recent lightweight and interpretable rule-based ap-
proach identifies malicious agents by applying fixed bound-
ary thresholds to selected feature values.

We intentionally excluded GNN- and CNN-based detec-
tors [44], [45], as these models require extensive data col-
lection involving spatial or neighborhood-level information.
While we acknowledge that this may be perceived as a
limitation of our work, such data is typically only accessible
to the platform operator. In scenarios where the detector is
deployed by an entity external to the OSN (e.g., government
or fact-checking agencies), access to the underlying structure
is often restricted or unavailable. Consequently, our decision
to focus on the selected baseline models is motivated by both
practical feasibility and domain-specific constraints.

Experimental Settings: We use the same dataset for both
evaluation tasks, but implement separate training and eval-
uation pipelines for each. In the first pipeline, we treat the
malicious TB agent detection as a binary classification task
by merging all three malicious campaign agents into a single
malicious class, resulting in a benign versus malicious classi-
fication setup. In the second pipeline, we formulate campaign
detection as a multiclass classification task, where the model is
trained to distinguish among four classes: the three individual
malicious campaign types and the benign class. For both
pipelines, we used a consistent 80:20 train-test split across
all models under a holdout evaluation strategy. Each selected
model is evaluated on both tasks using the corresponding
pipeline. For LLMs, we adopt in-context learning (ICL), a
widely used evaluation approach that is particularly effective
for few-shot and zero-shot settings [46]. We report details on
prompt engineering, LLM implementation, ICL results, and
other baseline settings in Appendix §VII-F.

E. Evaluation and Results

1) Performance Comparison: Table VI shows the per-
formance of multiple models on the tasks of malicious TB
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Task — \ Malicious TB Agent Detection \ Campaign Detection

Baselines | F1 Recall MCC | F1 Recall MCC
SVM 0.51+03 0.52£01 0.11tfo0s | 031103 0.331.02 0.224 04
LR 0.86+£.02 093102 074104 | 082102 0.83102 0.814 02
RF 0.80+.02 0.75£03 0.62+05 | 0.87102 0.864.02 0.874 .02
XGBoost 0.88+ 02 0.86+.02 0.774+ 03 0.924 01 0924 02 09241 o1
MoE ‘ 0.83+ .03 0.80+ .03 0.66+ .05 ‘ 0.88+ .02 0.88+ .02 0.89+ 02
Llama-3.1 0.734 02 0.864+.02 0.524 o4 090+ 01 091402 090+ 01
Llama-3.2 0.454 01 0.67+.02 0.19403 | 0.724.02 0.724 03 0.70+ .03
Gemma 0.794 .02 0.87+.02 0.61+ 04 0.824 02 0.82+02 0.80+.02
Gemma-2 0.734 02 0.87+.02 0.53+.04 | 0.894 02 090402 0.90+ 02
Phi-4 0.87+02 087102 0.74104 | 091402 090402 0.924 01
RoBERTa 0.824 .14 081413 0.64+30 | 0.86+02 0.86+.10 0.89+ 05
BERTweet 0.824.14 0.804.13 0.66+ 25 0.85+.09 0.84+07 0.88+05
BotHunter 0.824 02 0.794.02 0.64+ 03 0.804+.02 0.794+.02 0.75+ .03
Botometer 0.75+ 02 0.69+ 02 0.54+ 04 0.73+ .01 0.71+.01 0.69+ 02
Swatting ‘ 0.49+ 02 0514+ 01 0.07+ 08 ‘ NA NA NA
Model Wins ‘ (4/15) (3/15) (0/15) ‘ (10/15) (9/15) (14/15)

TABLE VI: Performance of baselines on malicious TB agent and
campaign detection. The bold and underlined values indicate the best
and second-best performance, respectively. Standard deviations are
given for 10 random seeds. The 3-shot performance is reported for
all LLM-based detectors. NA indicates that the model cannot perform
well on a multiclass evaluation task. “Model wins” counts baselines
where the model outperforms the other task.

agent detection and campaign classification. XGBoost achieves
the highest performance across both tasks, with Fl-scores of
0.88 and 0.92, respectively. As a gradient boosting method
with built-in regularization, XGBoost is well-suited for han-
dling datasets with complex relationships and feature types.
The input in both evaluation pipelines includes concatenated
numerical, categorical, boolean, and textual embedding fea-
tures, formats that XGBoost effectively handles. Interestingly,
despite being more complex, the Phi-4 model (LLM-based)
achieves the second-best performance in both tasks with 3-
shot F1-score of 0.87 and 0.91, respectively.

The results in Table VI yield five key insights: (i) XGBoost,
a classical ML-based model, consistently outperforms all
SOTA baselines across both evaluation tasks, demonstrating its
robustness and effectiveness in handling diverse feature types.
(i) We observe noticeable differences in performance across
different LLM families and model sizes, suggesting that the
extent of general prior knowledge varies significantly. Notably,
Phi-4 consistently outperforms other LLMs under both few-
shot and zero-shot settings (For comprehensive ICL results,
refer to Table XII in Appendix §VII-F). (iii) Transformer-
based models such as RoBERTa and BERTweet, which rely
solely on textual inputs, underperform in detecting malicious
TB agents. Misclassifications are especially common for TB
agents whose reply test falls outside the token length range
(10-60 tokens) used during BERTweet’s pretraining [42]. This
limitation highlights the importance of incorporating non-
textual features for robust classification.

(iv) Multi-dimensional behavioral feature-based methods
such as Botometer Lite [30] and BotHunter [43] offer sim-
plicity and interpretability. However, their lack of textual input
limits their ability to detect sophisticated TB agents that
closely resemble benign accounts. Without leveraging reply
content, these models struggle to capture the nuanced seman-



Ablation Setting

Malicious TB Agent Detection

F1-score

Recall

MCC

Campaign Detection

F1-score

Recall

MCC

full feature set (baseline)

w/o emb
w/o emb-cat
w/o emb-cat-bool

0.88

0.85 (-3.41%) |

0.67 (-23.86%) | *
0.66 (-25.00%) |

0.86

0.83 (-3.49%) |
0.64 (-25.58%) 1 *
0.63 (-26.74%) |

0.77

0.71 (-7.79%) |
0.36 (-53.25%) |*
0.33 (-57.14%) |

0.92

0.84 (-8.70%) |
0.71 (-22.83%) *
0.62 (-32.61%) |

0.92

0.84 (-8.70%) |
0.70 (-23.91%) *
0.61 (-33.70%) |

0.92

0.81 (-11.96%) |
0.69 (-25.00%) |*
0.57 (-38.04%) |

TABLE VII: Feature ablation study showing absolute values and percentage decrease from the full feature set (baseline). The marker |*

indicates a significant decrease from the baseline and previous ablation setting.

Type | Training Setting | Test on | Metric | Baseline +1% Unseen +5% Unseen +10% Unseen  +20% Unseen
. F1 069 072 (+003) 1 082 (+0.13) 1 085 (+0.16) T 0.90 (+021) 1

Benign vs. (Mal. 1 +Mal. 2) | Mal.3 | . 057 060 (+0.03) 1 076 (+0.19) 1 082 (+025) 1 089 (+032) 1

: FI 003 093 (+0.00) = 093 (+0.00) = 094 00D T 095 (:0.02) T

OWR | Benign vs. (Mal. 1 + Mal. 3) | Mal.2 | poo 094 094 (+0.00) > 094 (+0.00) - 096 (+0.02) +  0.97 (+0.03) 1
— : : FI 088 096 (+0.08) T 097 (+:0.09) T 097 (+0.09) = 097 (+0.09) =

Benign vs. (Mal. 2 + Mal. 3) | Mal. I\ g 083 096 (+0.13) 7 098 (+0.15)+ 098 (+0.15) —  0.99 (+0.16) 1

vl | 095 094 00D T 094 (+001) = 094 (:001) = 095 (+0.02) T

Benign vs. Mal, 1 ' Rec. | 090 092 (+0.02) 4 092 (+0.02) — 092 (+0.02) —  0.94 (+0.04) 1

s. Mal. s | 061 073 GOID T 079 G018 F 085 G028 F 092 (03D F

: Rec. | 046 060 (+0.14) 7 069 (+023) 1 079 (+0.33) 1 091 (+0.45) 1

w1 | 066 093 G02NT 096 G030 T 097 G030 T 097 +03D) =

ov0 | Benign ve. Mal, 2 : Rec. | 050  0.89 (+0.39)+ 095 (+0.45) 1 097 (+047) 1  0.98 (+0.48) 1
- Mal. s | 055 071 (+0.16)T 081 (+026)T 086 G030 T 087 (0327

' Rec. | 039 057 (+0.18) 1 072 (+0.33) 1  0.79 (+0.40) 1  0.82 (+0.43) 1

VL1 FI 038 084 (+046) T 095 #0570 T 097 (3059) T 097 (+0.59) =

Benign v Mal. 3 ' Rec. | 024 073 (+0.49) 1 093 (+0.69) 1 097 (+0.73) 1  0.98 (+0.74) 1

s. Mal. o | 078 089 010 T 093 (+0.15) T 093 (+0.15) = 094 (+0.16) T

: Rec. | 066 084 (+0.18) T 091 (+0.25) 1 093 (+027) 1  0.94 (+0.28) 1

TABLE VIII: Generalizability study across OvR and 0vO settings with incremental exposure to previously unseen variants of malicious TB
agents alongside benign agents during training. Results show absolute values and an increase from the baseline result highlighted in green.

The up arrow 1 indicates an increase from the previous column and

the right arrow — shows no increase. Mal. (1, 2, 3), and Benign refer

to deceptive support, illicit product, misleading giveaway, and benign campaigns, respectively.

tics often embedded in deceptive campaign replies. (v) The
campaign detection task achieves stronger performance than
the malicious TB agent detection task across most competing
baselines (10 model wins, 4 model losses) in terms of F1-
score. This outcome is expected, as fine-grained classification
introduces less ambiguity than binary classification, where
multiple malicious behaviors are collapsed into a single class.
Distinguishing among specific malicious campaign types al-
lows models to learn more discriminative patterns.

For simplicity and consistency, we refer—XGBoost, the best-
performing model, as the main model in subsequent evalua-
tions of robustness and generalizability in the rest of the paper.

2) Feature Ablation Study: To understand the contribution
of each feature category (numerical, boolean, categorical, and
textual), we conduct an ablation study using the XGBoost
model. Table VII illustrates the result, where we evaluate the
model’s performance as individual feature types are systemat-
ically removed from the full feature set. For clarity, we define
the ablation variants as follows: w/o emb: excludes textual
embeddings, w/o emb-cat: excludes both textual embeddings
and categorical features, and w/o emb-cat-bool excludes tex-
tual embeddings, categorical, and boolean features.

Across both detection tasks, performance drops significantly
when features are removed—especially in the Fl-score, as
highlighted in red in Table VII. This degradation is likely due
to the model’s reduced representational capacity, which hin-
ders its ability to effectively distinguish between classes when
deprived of necessary input signals. Notably, the w/o emb-
cat variant shows the most substantial decline, with F1-scores
dropping by 23.9% and 22.9% on the two tasks, respectively.

This finding underscores that the model derives most of its
predictive power from the textual embeddings (i.e., campaign-
aware content) and categorical features (e.g., the campaign’s
preferred contact method). These features capture essential
semantic and behavioral cues that are critical for distinguishing
between different types of TB agents and campaigns.

3) Generalizability Study: In this subsection, we evaluate
the generalizability of the model, its ability to maintain detec-
tion performance when encountering previously unseen mali-
cious TB agents that differ from those seen during training. To
assess this, we conduct experiments using two strategies: (i)
one vs. rest (OvR): each class is evaluated against all others,
and (ii) one vs. one (OvO): each pair of classes is evaluated
independently. These approaches allow us to test the model’s
robustness to variant malicious TB agents. Additionally, we
examine performance trends as we incrementally increase the
proportion of unseen TB agents included in the training data
(1%, 5%, 10%, and 20%).

Table VIII reveals three main insights: (i) Under the OvO
setting, training with deceptive support agents (mal. 1) results
in higher generalizability to other unseen types (e.g., illicit
product and misleading giveaway agents). This suggests that
mal. 1 may exhibit greater within-class diversity or more
representative patterns, enabling the model to better generalize
across unseen malicious behaviors. (ii) As the proportion of
unseen TB samples increases in the training data, F1-score
and recall show a steady upward trend. This improvement is
expected, as additional data enables the model to learn more
discriminative features. Notably, once the unseen sample size
reaches 20%, the Fl-score stabilizes above 0.90, indicating
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strong generalization. A similar trend is observed for recall.
(iii) Incorporating a wider variety of subclasses during training
significantly improves generalizability. This emphasizes the
importance of capturing a diverse distribution of agent be-
haviors to detect new or evolving TB agents more effectively.

VI. DISCUSSION

In this section, we summarize the main findings of our work
and discuss their practical and real-life implications.

A. Lessons Learned

Hidden Components in the TB Agents Ecosystem. This
paper provides the first large-scale empirical analysis of ~
2.6 K TB agents on X, collectively attracting over 500K TB
followers and impacting 84K unique TB victims. Additionally,
the study identifies common contact method-based campaigns
that suggest the presence of TB masters or TB farms, offering
key insights into the underlying structure and operational
dynamics of the TB ecosystem.

The Operational Taxonomy of Campaigns. We categorize
4.4K honeytrap replies into four distinct campaign types:
deceptive support, illicit product, misleading giveaways, and
benign campaigns. We observe that malicious TB agents
target specific user categories (e.g., cryptocurrency users,
psychedelic interest groups, pseudo-romantic victims), demon-
strating refined tactics and a purposeful exploitation of niche
communities. These patterns highlight a high degree of tactical
sophistication within the TB ecosystem.

Deceptive Practices: Evasion Strategies. By analyzing
TB profiles and their replies, we identify coordinated evasion
strategies employed by malicious TB agents. These include
highly paraphrased replies (up to 0.95 and 0.97 context sim-
ilarity) across campaigns, the use of multilingual responses,
and irregular temporal activity patterns, all indicative of shared
tactics aimed at avoiding detection. Moreover, many TB agents
are pre-configured with fake followers, strategically crafted to
enhance perceived credibility and further evade detection.

Dangerous to Dormant Account Longevity. We provide
a novel account creation timeline and a nearly year-long
longitudinal analysis of TB agents, revealing that 50% of
these accounts were created before 2024. Many of these
older accounts leveraged their longevity to evade detection
by disassociating from TB followers or entering periods of
dormancy. Conversely, TB agents created in early 2024 con-
tinue to dominate active campaign operations, highlighting the
ecosystem’s rapid adaptation to evolving platform defenses.

Behavioral Profiling of TB Agents. We identify the use of
contact-method-based operations, where agents embed email
addresses or URLs in replies to guide users to interactions
on external platforms. This tactic enables seamless pivoting
from X to other ecosystems, often where TB masters await
to continue deceptive engagements. These findings illustrate
the end-to-end profiling of TB agents and provide crucial
insights into how cross-platform deception is coordinated
and sustained.
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OSN Detection Gaps. Our results show that, despite the
platform’s efforts, only 57% to 67% of TB agents involved
in malicious campaigns were actioned by X, leaving 640
malicious TB agents still active. This highlights a signifi-
cant enforcement gap and the urgent need for earlier and
more effective detection strategies. TBTrackerX demonstrates
promising advancements, achieving detection accuracies of
~ 88% for malicious TB agents and ~ 92% for campaign
detection.

B. Recommendations

Based on our findings, we offer targeted recommendations
to support future mitigation efforts across these groups.

Online Social Network Platforms. We recommend that
OSN platforms enforce stricter multi-factor authentication to
deter the creation of autonomous accounts. This includes but is
not limited to (i) monitoring inconsistencies in browser agents,
headers, or IP locations often linked to Selenium use to detect
TB masters or farms, (ii) tightening checks on temporary mail
server use for email verification and CAPTCHA circumvention
during sign-up to suppress easy TB agent deployment, and (iii)
favoring shadowbanning over outright suspension to enable
ongoing tracking of fake follower networks. Platforms should
also implement robust detection systems to flag TB-prone
keywords and sanitize posts before publishing. Since users
can mute keywords without disengaging from related content,
proactive filtering is crucial. Finally, OSNs should run aware-
ness campaigns about these SMM and enhance information
sharing across platforms.

OSN End Users. Follower growth tactics among OSN users
often fall into a grey area. While platforms prohibit rapid,
inauthentic follower growth, practices like #follow4follow and
#like4like unintentionally support TB agent networks. Users
should also refrain from using known TB-prone keywords
in replies, as these can attract TB agents and increase the
risk of denial-of-OSN (DoSN) attacks against potential TB
victims. TBTrackerX shows that even test accounts using TB
keywords experience a surge of 145+ followers in 30 days.
To mitigate such risks, platforms should enforce penalties for
individuals or organizations engaging in inauthentic follower
growth or intentional misuse of TB keywords, especially when
such behavior facilitates manipulation or exploitation.

Security Community. We urge security researchers to
pursue key directions that advance detection, transparency, and
accountability in addressing increasingly sophisticated SMM.
Specifically: (i) During TB data collection, analysts should
identify TB-prone keywords used by TB agent accounts.
For example, a shrooms-related TB agent may engage with
multiple related terms such as shrooms and DMT, both from
the family of psychedelic drugs (refer to Appendix §VII-G for
systematic keyword exploration). Establishing a multilingual
TB keyword corpus (e.g., * ¥ ¥ A 7 —the keyword metamask
in Japanese) could also be helpful, as our preliminary research
suggests that TB agents flock to the keyword in both lan-
guages (see Appendix §VII-G). (ii) The community should
also prioritize reverse engineering of TB agent reply generator



modules. TB agents often use paraphrasing, multilingual, and
cross-lingual responses tailored according to the original TB
victim’s post, indicating the possible use of LLMs (please
see Appendix VII-C). Collaborative research with the broader
security community and LLM providers can help uncover the
underlying mechanisms used by TB masters or farms, enabling
campaign-agnostic detection strategies.

C. Limitations and Future Work

Limitations. We acknowledge that our dataset does not
capture all TBs on X. Our findings represent a conservative
estimate, establishing a lower bound on the scale and impact
of TB campaigns. Moreover, TBTrackerX may miss some
interactions with our test account due to platform rate limits.
Our crawler captures TB replies every 12 hours to maximize
coverage, which may overlook short-lived TB agents (n=19)
that were deleted shortly after activity. Nevertheless, our data
collection framework remains adaptable for future refinements.

Due to X platform’s lack of visible and reliable profile
attributes such as age, gender, or location, our test account
could not be customized to reflect diverse user characteristics.
As a result, we emulate TB victim behavior through a single
test account, and the role of demographic factors in TB
targeting remains out of scope for this study.

Future Work. Our experiments relied on a single test
account for TBTrackerX during data collection. To minimize
keyword selection bias and isolate the behavior of TB agents
responding to specific triggers, we intentionally avoided using
multiple trigger keywords in a single post. Exploring the
combined effects of trigger keywords remains a direction for
future study. We also limited our focus on optimizing the
text template-based serialization method. While our current
approach uses simple templates suitable for interaction with
LLMs [47], future work will explore more advanced seri-
alization strategies, such as feature ranking or emphasizing
key features with prefixed cues (e.g.,‘critically’) [48]. Finally,
while some work has examined the adversarial robustness of
TB detectors [4], evaluating TBTrackerX under such scenarios
and enhancing its resilience is a key avenue for future research.

VII. CONCLUDING REMARKS

This paper proposes TBTrackerX, a comprehensive frame-
work for detecting TB agents that autonomously operate on
OSNs such as X. We adopt a measurement-driven method-
ology to understand the tactics, techniques, and procedures
employed by both benign and malicious TB agents. To bench-
mark detection performance, we compared 15 diverse baseline
models across two key tasks: malicious TB agent detection and
campaign classification. Additionally, we conduct an ablation
study to evaluate feature importance and a generalizability
study to assess the model’s robustness to unseen TB agents.
Our findings demonstrated that a classical XGBoost model
achieved strong performance with F1-scores of 0.88 and 0.92
for malicious agent and campaign detection, respectively.
These findings show that well-engineered yet straightforward
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models can outperform more complex baselines when leverag-
ing rich multimodal features. Overall, TBTrackerX contributes
new insights into the evolving TB agent ecosystem, revealing a
growing presence of coordinated SMM activities and offering
a practical path forward for detection in real-world settings.
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APPENDIX

A. Ethical Considerations

Our research is strictly non-commercial, and complies with
X’s Terms and Conditions for research use. Data collection
was limited to tweets from public user profiles, and no data
is shared with third parties for commercial purposes. All
results are anonymized and do not allow for the identification
or tracking of individual users. We follow ethical guide-
lines as outlined in [49] and obtained ethics approval from
our institution for experiments involving potentially human-
generated content. While we propose a honeytrap framework
for identifying TB agents, our focus is on measurement,
detection, and improving the robustness of the detection sys-
tem. We do not endorse the utilization of this framework
for unethical purposes, including intentionally enticing TB
agents or facilitating DoSN attacks against OSN users. Our
role remained strictly observational, focused on passive data
collection for research purposes, with no actions taken to
manipulate platform dynamics or influence user experiences.



e Minimal involvement of human users: We ensured at multi-
ple stages that coverage only baited TB agents, not human
users.

1) First, during the preliminary keyword monitoring stage,
we (all authors) manually confirmed that each selected
keyword only attracted TB agents. We used quantitative
evidence of bot activity, such as high reply-to-tweet ratios
(close to 1, indicating only reply behavior), repeated
contact methods, and semantic consistency across TB
replies, all characteristic indicators of automated behavior.
Second, after data collection, external expert annotators
independently validated that the honeytrap setup primarily
engaged TB agents across campaigns.

2)

o Avoiding impact on legitimate users: We distinguish mali-
cious from benign agents to avoid harming legitimate use.
We used harmless honeytrap Tweets like “I need help with
<trigger keyword>". Finally, all account details in any
screenshots are obscured.

B. Addressing sampling bias

We acknowledge that sampling bias remains an inherent
challenge in this type of study.

1) Platform-bias: We selected X because it supports direct
user interactions through Tweets and follower relation-
ships. Our methodology and findings (e.g., keyword-based
honeytrap setup, evasion tactics, recommendations) are
generalizable and can inform defenses across other OSNs
vulnerable to reply-based attacks where users or bots can
directly engage with posts.

2) Account-bias: We initially attempted to create multiple pro-
files representing different demographic factors. However,
X platform settings were found unreliable for accurately
capturing actual demographic attributes, as age and gen-
der are concealed and the location field is self-declared,
often containing arbitrary or fictional text. To maintain
methodological validity and avoid misleading inferences,
we excluded TB-targeting by demographics. Furthermore,
we used a single test account to minimize interaction and
operational footprint on X.
Timing-bias: To mitigate time-of-day bias, we varied the
posting schedule every 10 days during data collection. Our
sampling methodology was carefully designed to balance
feasibility and coverage, ensuring that observed TB be-
haviors were representative and not tied to specific post-
ing times.

Keyword-bias: To our knowledge, this is the first study

to analyze the TB ecosystem. While the 10 manually

selected keywords serve as a starting point, our findings
reflect broader underlying campaigns, thereby minimizing
keyword-specific bias.

3)

4)

C. TB Reply generator module and role of LLMs in TB replies

In preliminary tests, we examined the TB agent reply gener-
ator module by posting cross-lingual Tweets (e.g., non-English
text with an English trigger keyword and vice versa). The
results indicate that replies consistently match the language
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of the tweet rather than the keyword. This suggests that the
generator likely operates in three stages: (i) identifying TB-
related tweets via trigger keyword search, (ii) detecting the
tweet’s language, and (iii) generating a contextually aligned
reply in that language, typically embedding a contact element
(e.g., email or mention).

We further evaluated TB agents using two OpenAl de-
tectors (fine-tuned RoBERTa-base and RoBERTa-large) to
identify Al-generated replies. As shown in Table IX, the
result indicates (i) at least 70% TB agents across campaigns
may be likely to use LLM to produce replies, except for
the misleading giveaway campaigns, as they produce short
text, typically inviting only DMs. (ii) As expected, a larger
model (RoBERTa-large) performs better than RoBERTa-base
in detecting Al-generated replies.

Campaign # TBs | # TB Agents # TB Agents
(RoBERTa-base-OpenAl) | (RoBERTa-large-OpenAl)

Mal. 1 1201 72.44 % (870) 84.43 % (1041)

Mal. 2 724 78.87 % (571) 82.04 % (594)

Mal. 3 504 19.44 % (98) 22.62 % (114)

Benign 247 70.85 % (175) 77.33 % (191)

TABLE IX: TB agents likely producing Al-generated replies
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Fig. 10: Word cloud of content of TB agents’ replies, see §III-C.

D. TB Agents Replies Word Cloud

Figure 10 presents word clouds generated from different
campaigns to highlight content diversity in TB agents’ hon-
eytrap replies. These visualizations provide qualitative insight
into the distinct content domain to target specific user cate-
gories (e.g., cryptocurrency users, psychedelic interest groups,
pseudo-romantic victims), as discussed in Section III-A.

E. Additional information on expert labeling process

Annotators were instructed to classify accounts as either bot
or human based on two main criteria:

1) Reply content: Each account’s responses to our honeytrap
tweets, along with up to 100 of its most recent replies
(including timestamps), were reviewed. All sensitive infor-
mation was redacted and anonymised.

2) Behavioural patterns: Annotators manually evaluated signs
of automation such as repetitive phrasing, shared reply
templates, and consistent posting times.

Before labeling, annotators were provided with a clear defini-

tion of bots. All annotators held a postgraduate qualification



Data Collected ‘ metamask  trustwallet  hacked ‘ IPTV  shrooms ‘ cashapp  sugar daddy ‘ logo graphic designer essay
TB Agent Count 606 284 401 625 109 61 456 93 78
TB HoneyTrap Replies 1,011 499 509 915 157 76 901 140 147 97
TB-Suspended 425 152 285 353 63 36 307 8 12
TB-Active 160 113 94 153 31 16 103 80 58
TB-Deleted 15 13 20 1 19 15 10 52 4 8
TB-Changed Screen Name 8 6 7 4 3 17 2 7
TB Victim Replies 51,004 22,025 32,387 50,624 9,565 5,345 42,657 6,608 5,449 6,178
TB Victim Unique Count 14,777 6,903 10,637 9,255 5,338 4,188 25,089 4,077 2,799 4,651
TB Followers 62,253 30,453 13,441 92,419 9,867 3,415 58,004 | 33,974 18,534 228,072
TB Friends 11,974 8,255 11,208 | 247,233 9,339 7,823 81,078 | 57,264 26,681 100,469
TABLE X: Overview of keyword-based TB agent data collection, (cf. §III-C).
def format-data-row-to-campaign-aware-prompt(row): You are a classification assistant.
return ( ### Instruction:
f”User has [[row['followers-count']] followers, Classify each user as either 'deceptive support
[[row['friends-count']] friends, and has posted campaigns', 'illicit product campaigns', 'misleading

”

[[row['statuses-count']] statuses.
f”"'The user can be direct messaged.' if
[[row['can-dm']] else 'The user cannot be direct
messaged.' "

f”The tweet was sent from [[row['source']l]. ”
f”'Description is filled.' if

[[row[ 'with-description']] else 'No description
provided.' ”

f”'Location is filled.' if
[[row['filled-location']] else
provided.' ”

f"Tweet frequency:
[[row['tweet-frequency']:.2f]] tweets/day.
f"User has replied: '[[row['reply-text']]"'
f"”'User prefers to include '
repr([[row['cue-type']]) + ' as communication
method in the reply.' if [[row['cue-type'l] and
[[row['cue-type']l]l.lower() !'= 'empty' else 'User
does not use any communication method.'”

'Location not

”

”

+

Fig. 11: Campaign-aware Serialization Method

(Master’s or PhD) and had prior experience or familiarity with
OSN or web security research. The average inter-annotator
agreement was calculated as the percentage of instances where
all three annotators agreed, based on each keyword. Disagree-
ments were resolved by a majority vote, with the final label
assigned as bot or human accordingly.

F. Baseline Implementation and LLM Prompt Details

As shown in Table XI, the chosen LLMs (Llama, Phi, and
Gemma-family LLMs) are released in 2024 (the same year
as our dataset collection), each employing a different model
parameter size. Notably, during the feature engineering phase
for LLMs, the prompt generator generates and serializes the
TB agent features (row-wise) into a campaign-aware! natural-
language representation. Inspired by the findings of Stefan et
al. [50], we adopt a text template-based serialization method
that serializes feature names and values into natural-language
sentences. Simple templates for sentences are preferable as
LLM effectively utilizes prior knowledge in the LLM and
uses feature names and their relationships to the values for

! Campaign-specific information is preserved as embeddings are extracted
using ROBERTa on the free-text (raw text) replies posted by TB agents.
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giveaway campaigns', 'benign campaigns'.

Definitions of labels:

'deceptive support campaigns': Accounts that
promote technical support staff deceptive scams.
'illicit product campaigns': Accounts that promote
fake or illicit product promotions.

'misleading giveaway campaigns': Accounts that
appear fake sugar daddy and conduct financial scams.
'benign campaigns': Accounts that promote genuine
graphic designing or assignment completion service.

Output must be one of these labels and do not change
spelling or miss words and do not add any
explanation, punctuation, quotes, brackets or extra
text.

[Provide either no sample (zero-shot), one sample, three
samples, or five samples of respective ~campaigns']

### Input: [[Zero-shot or Few-shot Samples (1, 3 or 5)]]
### Response: [[Label]]

### Input:
[[Queried Samplel]

### Response:
[[Answer]]

Fig. 12: Prompt Template for LLM (Zero-shot and Few-shot Setting)

classification [47], [50], [51]. These sentences are inputs that
the LLMs will subsequently utilize during the evaluation stage
for classification. Please find the serialization method in the
Figure 11. When setting the output generation parameters
for each LLM, we set temperature T=0.0) to generate a
deterministic response for a fixed prompt state.

Short Form Name and Version Size  Release Month
0Q Llama-3.1 Llama-3.1-8B-Instruct 8B July 2024

0Q Llama-3.2  Llama-3.2-3B-Instruct 3B September 2024
& Gemma gemma-7b-bnb-4bit 7B February 2024
{5 Gemma-2  gemma-2-9b 9B June 2024

BY Phi4 Phi-4 14B  December 2024

TABLE XI: Specific model versions used as part of our experiments.
For each model, we define the exact Version of the model accessed
and the Release Date to facilitate fair comparison with traditional
models (cf. §V-D).



Task | Method Number of Shots (K)
‘ ‘ Zero-shot 1-shot 3-shot 5-shot

ﬁ Llama-3.1 | 0.67+0.02 0.5240.02 0.73+10.02 0.78+0.02
] Llama-3.2 0.69+0.03 0449:{:0,02 0.4540.01 0.68+0.03
£ Gemma 0.1140.01  0.4140.01 0.7940.02 0.8440.03
= Gemma-2 | 0.4940.01 0.5240.02 0.73+0.02 0.90+0.02
= Phi-4 0.5940.02 0.6440.02 0.87+0.02 0.87+0.02
= Llama-3.1 0.66+0.02 0477:{:0,02 0.90+0.01 0.89+0.02
2 Llama-3.2 | 0.4440.02 0.6340.02 0.7240.02 0.8040.02
g Gemma 0.27+0.02  0.78+0.02 0.82+0.02 0.5210.02
3 Gemma-2 0.2840.01 0.7540.02 0.8940.02 0.5340.02

Phi-4 0.67+0.02  0.86+0.01 0.91t0.02 0.92+0.02

TABLE XII: F1 score performance of zero-shot and few-shot LLMs
in malicious TB agent and campaign detection task (cf. §V-E1).

Current LLMs may already have been trained on social-
engineering attacks and misinformation campaigns [52], [53],
incorporating valuable prior knowledge [46], sparing us the
need to run extensive operations such as model training or
fine-tuning. Therefore, we randomly select a few TB agent
data as held-out training samples for a few (K -shot) in-context
learning scenarios. Detailed zero-shot and K -shot (K = 1-shot,
3-shot, and 5-shot) performance is shown in Table XII, and
the corresponding zero-shot and few-shot prompts are listed
in Figure 12.

We find the following insights from the full results: (i)
prior knowledge (zero-shot setting) is better for some models
than for others (e.g., Llama models in the first task). (ii)) We
reported 3-shot results in Table VI in Section V-El in this
work, as it consistently performed better than 5-shot on many
models (such as the Gemma models in the second task). Even
for models where 5-shot worked better, we noticed that the
reason was primacy bias and recency bias, where the model
only outputs the last seen or initial memorized labels—rather
than learning context from the data. We even qualitatively test
our hypothesis by fine-tuning the instructions by changing the
order of the 5-shot samples. We find that the LLM outputs
the last seen label in the fine-tuned instruction, confirming
our hypothesis. Therefore, 5-shot results are unreliable, as
providing more samples increases the context window, hin-
dering the model’s capability. Thus, in Table VI, only 3-
shot results are provided for all LLM-based detectors, as we
found that three feature representations can generalize between
distributional drift of the campaign to capture structurally
dissimilar keywords within campaigns (refer to Table I in
Section §III-A).

G. TB-prone Keyword Discovery and Multilingual TB agents

This section introduces two additional aspects of TB agents.
First, incorporating a broader range of TB-prone keywords
is valuable. In post-hoc analyses, we identified and validated
new trigger keywords using NLP and regex matching. For
a systematic (qualitative) exploration, we leveraged original
Tweets (from the TB victim) to which TB agents replied
and removed those that contained the selected TB-prone
keywords and stopwords, and computed word—user frequency
counts from the remaining set, indicating how many users
(TB victims) used each common word. For example, in the
illicit product campaigns, we found new keywords such as
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Fig. 13: Example of a multilingual TB agent replying in multiple
different languages.

.

weed, adderall, DMT, and xanax, all enticing TB agents.
Similarly, in the deceptive support campaigns, we found new
keywords such as support, recover, and contact. Secondly,
we observed certain TB agents posting in multiple languages,
highlighting their diverse engagement strategies. The prelim-
inary investigation is illustrated in Fig. 13, highlighting the
variety of languages used by these accounts.

H. HoneyTrap Tweets Screenshots

This section provides screenshots showcasing TB agent’s
replies across campaigns. These figures highlight how re-
sponses vary across campaigns, offering insights into content
diversity and engagement patterns. Figures 14 show the corre-
sponding screenshots for each campaign, respectively. Please
see section III-C for further details.
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Fig. 14: Examples of malicious and benign TB agents. Interestingly,
a benign agent (bottom left) can be seen asking about the UNIX
timestamp in our honeytrap tweet.



