
AirSnitch: Demystifying and Breaking
Client Isolation in Wi-Fi Networks

Xin’an Zhou∗, Juefei Pu∗, Zhutian Liu∗, Zhiyun Qian∗, Zhaowei Tan∗, Srikanth V. Krishnamurthy∗, Mathy Vanhoef†
∗University of California, Riverside †DistriNet, KU Leuven

{xzhou114,jpu007,zliu272}@ucr.edu, {zhiyunq,ztan,krish}@cs.ucr.edu
mathy.vanhoef@kuleuven.be

To answer the above question, we conduct a structured
security analysis of client isolation across three relevant net-
work layers: Wi-Fi encryption, packet switching, and packet
routing. Moreover, we do so for small networks where a
single physical AP broadcasts only a single visible network
name, and for more complex Wi-Fi networks, where the victim
and the attacker could be connected to different APs, and
possibly even be connected to differently-named networks.
Surprisingly, every router and network that we tested was
affected by at least one of our attacks.

Our attacks affect both home and enterprise networks,
enabling traffic injection towards victim clients, interception of
traffic sent by the victim to the Internet, and a combination of
both to perform Machine-in-the-Middle (MitM) attacks. Once
a MitM is established, the attacker can intercept all link-layer
traffic, facilitating higher-layer attacks. For instance, recent
vulnerabilities in unpatched (D)TLS implementations can then
be abused to decrypt HTTPS connections and compromise
sensitive user information [10], [11], [12].

The attacks that we develop to bypass client isolation are
guided by several key observations. First, at the Wi-Fi layer,
we find that most Wi-Fi implementations use a shared Group
Temporal Key (GTK) to protect broadcast or multicast com-
munications. Often all clients have access to this key, even with
client isolation enabled, meaning that this key can be abused
by an insider to directly inject packets to victims, bypassing
client isolation at the AP. Even the Passpoint standard [13],
which has provisions similar to client isolation to mitigate
insider attacks in protected hotspots, is flawed by design in
this regard, as it also fails to securely manage group keys.
Importantly, we point out that Passpoint only addresses the
Wi-Fi encryption layer and does not extend protections to
switching or routing, which are internal to APs (see below).
The precise attack details depend on vendor implementations
and the complexity of the targeted network, and collectively
we refer to these as the Abusing GTK attack.

Second, we observe that many vendors only enforce client
isolation at Layer-2 (MAC and link), but do not carry it over
to Layer-3 (IP layer). Thus, we find that an attacker can inject
packets to a victim, by using the AP’s gateway MAC address
as the layer 2 destination, but the victim’s IP address as the
layer 3 destination. These packets are typically accepted by
the AP and forwarded to the gateway. If the gateway does

Abstract—To prevent malicious Wi-Fi clients from attacking
other clients on the same network, vendors have introduced
client isolation, a combination of mechanisms that block direct
communication between clients. However, client isolation is not
a standardized feature, making its security guarantees unclear.

In this paper, we undertake a structured security analysis of
Wi-Fi client isolation and uncover new classes of attacks that
bypass this protection. We identify several root causes behind
these weaknesses. First, Wi-Fi keys that protect broadcast frames
are improperly managed and can be abused to bypass client
isolation. Second, isolation is often only enforced at the MAC
or IP layer, but not both. Third, weak synchronization of a
client’s identity across the network stack allows one to bypass
Wi-Fi client isolation at the network layer instead, enabling
the interception of uplink and downlink traffic of other clients
as well as internal backend devices. Every tested router and
network was vulnerable to at least one attack. More broadly, the
lack of standardization leads to inconsistent, ad hoc, and often
incomplete implementations of isolation across vendors.

Building on these insights, we design and evaluate end-to-
end attacks that enable full machine-in-the-middle capabilities
in modern Wi-Fi networks. Although client isolation effectively
mitigates legacy attacks like ARP spoofing, which has l ong been
considered the only universal method for achieving machine-
in-the-middle positioning in local area networks, our attack
introduces a general and practical alternative that restores this
capability, even in the presence of client isolation.

I. INTRODUCTION

Client isolation [1], [2], [3], [4], [5] was introduced by
vendors to mitigate insider attacks in Wi-Fi networks, such as
ARP poisoning [6] and ICMP redirects [7] [8]. By disallowing
clients to communicate with each other, it limits the attack
surface and the risk of compromise. Although client isolation,
also known as Access Point (AP) isolation, seemingly offers
strong security benefits, i t i s n ot a p roperly s tandardized fea-
ture of the IEEE 802.11 standards [9]. Thus, the exact policy
and enforcement mechanisms in real-world Wi-Fi networks
are largely unexplored. In light of this, we ask: “Does client
isolation protect clients from attacking each other on Wi-Fi
networks as intended, across different implementations?”

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA
ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.241282
www.ndss-symposium.org

not enforce client isolation at the IP layer, it will forward the
datagram to its destination i.e., the victim client on the Wi-Fi
network, allowing the attacker to reach the “layer-2 isolated”
victim clients. We call this the gateway bouncing attack.

Third, we find that spoofing the victim’s MAC address while
connecting to the same network (but possibly a different AP)
as the victim, enables the attacker to intercept downlink frames
meant for the victim. Although it is known that Wi-Fi clients
can use any MAC address to connect, it is surprising that this
alone can be used to intercept another client’s traffic, even
with client isolation. We study under exactly which conditions
our attack is possible, i.e., we investigate the impact of Wi-Fi
features such as encryption, management frame protection, one
physical AP broadcasting different network names, etc. When
combined with the injection attacks to return intercepted traffic
back to the victim, this allows the attacker to be a MitM on
the downlink path.

Lastly, to obtain a full bi-directional MitM, we introduce
techniques to intercept uplink traffic sent by clients as well.
To achieve this, we found that it is possible to impersonate
internal backend devices (e.g., the gateway) in the Wi-Fi
network by spoofing their MAC addresses while connecting as
a legitimate Wi-Fi client. By using this approach, an attacker
can intercept uplink traffic sent by all other Wi-Fi clients.
Surprisingly, even though this results in client-to-client traffic,
it is often allowed by the network. Combined with our other
techniques, this results in a full bi-directional MitM.

One root cause of most of our attacks is that existing Wi-Fi
encryption protocols cannot securely synchronize the client’s
identity across network layers, devices, and network names,
i.e., SSIDs. For instance, an adversary can establish a valid
connection with an AP by spoofing a victim’s MAC address
on one SSID, while the victim is connected to a different AP
or SSID. A second cause is that a device’s Wi-Fi keys, MAC
address, and IP address, are not strongly tied to each other. To
overcome these limitations and improve Wi-Fi client isolation,
we propose mitigation techniques, such as setting up multiple
isolation domains, and discuss their feasibility.

We have tested 5 recent home routers (APs) from popular
vendors as well as two widely-used open-source router distri-
butions, and find that they were susceptible to at least some
form of our attacks. In addition, we configure a local testbed
to verify that a complete end-to-end MitM attack is viable
in a realistically crafted enterprise setting. Importantly, we
perform experiments in the wild, in two university networks,
wherein we were able to fully realize a downlink attack from
our attacker device on our own victim device (with no ethical
violations on other users).

In summary, we make the following contributions.
• We introduce novel MitM primitives that break client

isolation, which was commonly believed to protect Wi-Fi
clients from one another, enabling MitM attacks relating
to both uplink and downlink traffic.

• We show that Wi-Fi client isolation in single-BSSID
networks (e.g., home networks) is fundamentally broken
for all WPA versions.

Physical AP 1

5 GHz 6 GHz2.4 GHz

C C

Switch

Guest

DHCP Server DNS Server

Router

2.4GHz/5GHz NIC 6GHz NIC

Staff Guest

Physical
AP 2

B

Client

2.4 GHz

Staff

A

5 GHz

Guest

6 GHz

Staff

Client

A

Client

A

Fig. 1. Example Wi-Fi architecture where two SSIDs Guest and Staff are
broadcast by two different wireless NICs within the same physical AP. We
investigate client isolation at: (A) the Wi-Fi encryption layer; (B) the network
layer; and (C) the link layer.

• We extend our bypasses to multi-AP and multi-SSID net-
works, common in enterprises, analyze their root cause,
and sometimes even leak traffic in plaintext.

• We show that our attacks can also intercept traffic
of internal wired devices, allowing higher-layer attacks
previously thought impractical, which we illustrate by
breaking weak back-end RADIUS passwords.

• We evaluate our attacks on various devices and networks
including two real university networks, discuss defenses,
and open-source our code for reproducibility of our tests.1

II. WI-FI PRIMER

We describe the architecture of modern Wi-Fi networks and
the protection/encryption protocols used therein.

A. Wi-Fi Architecture

Figure 1 depicts the generalized architecture of Wi-Fi net-
works. At the core is a router or gateway. It connects physical
Access Points (APs), which support Wi-Fi communication, to
upstream networks (e.g., the Internet), and to services like
DNS and DHCP servers. Functionally, the AP serves as a
bridge, enabling translations between Ethernet frames and
Wi-Fi frames to extend the wired network to the wireless
domain. In enterprise networks, routers and physical APs are
often implemented as separate physical devices to ensure scale
and performance. Home environments typically use integrated
Wi-Fi routers that combine these components. Each physical
AP may host multiple wireless Network Interface Controllers
(NICs), which are interconnected via internal switch(es) to
bridge client traffic to the router and beyond.

A Wi-Fi network is identified by a user-friendly string called
the Service Set Identifier (SSID), e.g., “eduroam”, which
allows clients to discover and join the network [14]. A single

1Our code is available at https://github.com/zhouxinan/airsnitch and is also
mirrored at https://github.com/vanhoefm/airsnitch

2

https://github.com/zhouxinan/airsnitch
https://github.com/vanhoefm/airsnitch

physical AP can support SSIDs on different frequency chan-
nels, possibly using multiple NICs. Each SSID is broadcast by
one or more Basic Service Sets (BSS), where a BSS consists
of a central AP along with connected clients that all operate
on the same frequency band and with the same parameters. A
BSS is identified by a unique BSS Identifier (BSSID), which
is typically the MAC address of one of the AP’s NICs.

In addition, multiple Network Interface Controllers (NICs)
with different BSSIDs can represent networks with the same
SSID, enabling users to access a unified network referred to as
an Extended Service Set (ESS). ESSID refers to the SSID used
in an Extended Service Set (ESS). An ESS supports seamless
roaming, allowing a Wi-Fi client to maintain a consistent
logical identity while transitioning between APs within the
ESS. ESS deployments are common in environments requiring
mobility across large areas, such as hospitals or universities.
To ensure secure roaming, all APs in an ESS broadcasting
the same SSID are typically configured with a uniform au-
thentication and encryption scheme (e.g., WPA2-Enterprise)
with preset credentials. We also use the term “single-BSSID
network” to refer to configurations where only one BSSID
(typically from a single NIC) advertises the presence of a
Wi-Fi network, as opposed to the ESSID setup.

As shown in Figure 1, virtualization to create virtual
SSIDs [15] can further enable a single wireless NIC to broad-
cast multiple SSIDs/BSSIDs simultaneously, using adjacent
MAC addresses. These BSSIDs can be configured to meet
security or usability requirements for secure, isolated guest
Wi-Fi networks. In Figure 1, two physical wireless NICs are
configured to serve two separate ESSes: Guest and Staff,
on 2.4 GHz, 5 GHz, and 6 GHz channels.

B. Wi-Fi Security

Wi-Fi Authentication and Key Management. Wi-Fi net-
works are commonly secured by mechanisms that conform
to the WPA2 or WPA3 standards. For both, authentication
and key management are handled via handshake procedures.
To initiate the 4-way handshake, both the AP and the client
generate a 256-bit Pairwise Master Key (PMK). WPA2 has two
variants: WPA2-PSK (Pre-shared Key) and WPA2-Enterprise,
and both generate PMK from a pre-shared credential. With
respect to WPA2-PSK, the passphrase is identical for all
clients, while WPA2-Enterprise uses credentials unique to each
client (e.g., identified by username), and a distinct PMK is
securely generated and assigned [16].

WPA3 is a marked improvement over WPA2, notably by
introducing the Dragonfly handshake during the 802.11 au-
thentication phase to convert the preshared Wi-Fi passphrase to
a high-entropy PMK [17]. WPA3 is also available in two ver-
sions: WPA3-SAE (Simultaneous Authentication of Equals),
which uses the same passphrase across clients, and WPA3-
Enterprise, where each client must have its own credentials.

Once the PMK, as the top of the key hierarchy, is estab-
lished, the subsequent 4-way handshake derives a Pairwise
Transient Key (PTK) from PMK, MAC addresses, and nonces.
The PTK is a session key that is later used to encrypt

unicast communications. To protect broadcast and multicast
data frames, the AP randomly generates a Group Master Key
(GMK), and derives a Group Temporal Key (GTK) from the
GMK. Additionally, the AP randomly generates an Integrity
Group Temporal Key (IGTK) [9]. The GTK is used to encrypt
and authenticate broadcast/multicast data traffic, while the
IGTK is used to authenticate (but not encrypt) broadcast
management frames. Both keys are securely transmitted, i.e.,
encrypted with PTK, from the AP to the client during the
4-way handshake [18], [19], [20].

After successfully completing the 4-way handshake, the
AP converts incoming Ethernet frames from the Distribution
System (DS), i.e., the wired network, into Wi-Fi frames,
encrypting them with the PTK for unicast or the GTK for mul-
ticast/broadcast. This design choice is also motivated by the
hidden terminal problem [21]: the AP is centrally positioned
and can reliably reach all associated clients, making it the sole
authorized sender of encrypted group-addressed traffic.

Passpoint. Passpoint was introduced to secure public Wi-Fi
hotspots and includes provisions for client isolation at the
Wi-Fi (but not network and link) layer using group key
randomization [13]. Specifically, it recommends disabling
Downstream Group-Addressed Forwarding (DGAF) and set-
ting unique GTKs per client during the 4-way handshake to
prevent broadcast abuse.

Wi-Fi Frames. A layer-2 Wi-Fi frame typically contains three
MAC addresses. Address 1 and 2 always represent the receiver
and the transmitter, respectively. The interpretation of Address
3 depends on the flags in the Frame Control (FC) field. If the
ToDS flag is set and the FromDS flag is unset, Address 3
represents the logical destination of the frame. Conversely, if
the ToDS flag is unset and the FromDS flag is set, Address
3 represents the logical source. The Frame Control (FC) field
also includes the Power Management (PM) flag, which clients
use to indicate sleep transitions. Setting the PM flag in a data
frame signals the AP to buffer incoming traffic; clearing it
notifies the AP that the client is awake. Though intended for
energy efficiency, this mechanism introduces subtle security
risks. As shown by [20], sleep transitions can be spoofed using
management frames like WNM-Sleep Requests/Responses. A
WNM-Sleep Response can carry a GTK.

III. OVERVIEW

In this section, we first introduce the concept of client
isolation in Wi-Fi, followed by the threat model towards our
attack for circumventing it. We then present an overview of
our attack analysis methodology and summarize our results.

A. Client Isolation

While modern WPA2/WPA3 implementations secure Wi-Fi
from external threats by mitigating attacks like KRACK [19],
[20], Wi-Fi client isolation—usually the network’s last line of
defense against insider adversaries—remains a vendor-specific
and sparsely documented mechanism, leaving its actual robust-
ness and limitations largely unexplored in prior work.

3

We assume that the targeted Wi-Fi network enforces client
isolation, a feature many vendors added to prevent clients from
attacking each other on the same network [1], [2], [3], [4], [5],
[22], [23]. Client isolation aims to ensure that Wi-Fi clients
cannot intercept, transmit, or inject traffic from/to other clients
within the same wireless local area network. This protection is
crucial for mitigating client-to-client attacks in both personal
and enterprise environments. This defense is also known as AP
isolation, but we use client isolation throughout this paper. To
specifically refer to client isolation between clients connected
to the same network and to the same AP, i.e., client isolation
within a BSSID, we use the term Intra-BSSID isolation.

Security Expectations. Client isolation must remain effective
across all scenarios within a local area network, including
clients connected to the same BSSID (e.g. in order to pre-
vent compromised IoT devices from attacking other devices),
different BSSIDs under the same (E)SSID, clients connected
to different APs, or clients in other (E)SSIDs that are part of
the same distribution system, i.e., wired network. To prevent
all possible attacks, isolation should also be enforced between
the Wi-Fi clients and the wired distribution system, ensuring
that a Wi-Fi client cannot forge data frames to impersonate
another device within the distribution system.

Real-world Client Isolation Mechanisms. By means of a
careful manual analysis (of source code, documentation, and
with simple experiments), we find that current implementa-
tions of client isolation typically rely on a combination of
the following mechanisms: (1) Wi-Fi encryption protocols
(e.g., WEP, TKIP, CCMP and GCMP), which aim to pre-
vent clients from decrypting over-the-air frame payloads of
other clients; (2) Intra-BSSID isolation, where the AP blocks
direct communication between clients on the same BSSID
by dropping such frames. (3) Inter-BSSID isolation, which
blocks traffic between clients connected to different BSSIDs
(but within a distribution system). (4) the use of guest network
configurations, which isolate untrusted clients by assigning
them to separate and restricted SSIDs.

B. Threat Model

Attacker’s Goal. We consider an attacker that aims to bypass
client isolation. It seeks to intercept a victim user’s traffic and
inject traffic towards other users and/or APs. This allows the
attacker to thereby break the security expectations afforded by
client isolation and potentially become a MitM. The attacker
can then optionally use this ability to launch higher-layer
attacks such as exploiting unpatched TLS vulnerabilities to
intercept HTTPS traffic [10], [11], [12].

Attack Assumptions. In line with previous works [24],
[25], [7], [26], [27], [28], [29], we consider an in-network
attacker (a malicious insider) who has access to the Wi-Fi
infrastructure by connecting to an open SSID or by using
its own credentials to connect to an encrypted SSID, e.g.,
WPA2/3 Personal or Enterprise. The attacker is also capable
of simultaneously transmitting and receiving Wi-Fi signals
to and from both the victim and their associated AP. We

assume that the attacker can achieve this on multiple channels
simultaneously, by leveraging multiple wireless NICs that
work on different frequency channels. In addition, we assume
that the attacker can control a malicious server on the Internet,
enabling it to coordinate with local in-network attackers and
accept exfiltrated packets, among others.

C. Methodology

Our approach involves analyzing packet forwarding behav-
iors within typical wireless network setups in a structured
way. We perform black-box and gray-box analysis of wireless
routers, including reverse-engineering network configurations
after rooting/jailbreaking commercial off-the-shelf (COTS)
APs. This allows us to directly inspect how isolation mecha-
nisms are enforced (or bypassed) across different layers of the
network stack.

To structure our analysis, we focus on three critical bound-
aries where client isolation enforcement is expected: (A) the
Wi-Fi encryption layer, where we examine the implications of
shared key materials such as Group Temporal Keys (GTKs)
and pre-shared passphrases; (B) the IP forwarding boundary,
where we analyze how routing rules and gateway behavior
may introduce unintended connectivity; and (C) the internal
switching layer, focusing on how the AP’s virtual interfaces
and bridge configurations handle MAC-to-port mappings and
frame forwarding.

At each boundary, we develop and test injection and inter-
ception techniques to evaluate whether traffic from one client
can reach another, despite isolation policies being enabled. To
benefit the research and open-source communities, we release
our full measurement suite. This layered assessment allows us
to pinpoint where isolation breakdowns occur and under what
conditions, enabling the attacks described in later sections.

D. Summary of Results

Our evaluations show that Wi-Fi client isolation is flawed
across encryption, routing, and switching layers. First, attack-
ers can abuse shared GTKs to inject group-addressed frames,
exploiting the symmetric WPA2/3 keys. Second, we introduce
gateway bouncing, where traffic is routed between clients
via the default gateway, bypassing client isolation via the IP
layer. Third, we show that, surprisingly, APs can be tricked
into rebinding session keys through MAC address spoofing,
enabling attackers to intercept encrypted traffic. These attacks
succeed across diverse AP models, proving that client isolation
is neither cryptographically sound nor reliably enforced.

IV. BYPASSING CLIENT ISOLATION VIA SHARED KEYS

While Wi-Fi encryption is designed to prevent unauthorized
access and protect client traffic, it also plays a critical role
in enforcing client isolation—blocking direct communication
between wireless devices on the same network. In this section,
we demonstrate that this isolation is compromised when
networks depend on shared cryptographic material, such as
group keys or a common pre-shared passphrase, rather than
employing distinct keys for individual clients.

4

We analyze how client isolation, even when advertised by
vendors as a secure feature in WPA2/WPA3 networks, can be
bypassed due to shared keys. We demonstrate two practical
attack vectors: (1) traffic injection and interception using the
network’s shared passphrase; and (2) frame injection through
abuse of the GTK. These attacks highlight a core tension in
Wi-Fi security: while encryption thwarts outsiders, the use of
shared keys leaves room for insiders to subvert in-network
protections like client isolation.

A. Injection and MitM against Home WPA2/3

We found that many vendors advertise client isolation as
a security feature, even for home WPA2/3 networks that use
a shared password. For instance, the Omada documentation
states that client isolation is “used to protect the device against
attacks from other devices in the same network” [1]. Online
security guides for home routers provide similar advice [2],
[3], [4]. However, client isolation with a shared password is
fundamentally flawed: an attacker can not only straightfor-
wardly inject packets but also read a victim’s packets, or even
become a MitM:

Machine-on-the-Side Bypass. With respect to WPA2-PSK,
it is well-known that a Machine-on-the-Side attacker who
possesses the WPA2 passphrase (e.g., shared password in
home Wi-Fi networks) can intercept handshake messages,
calculate the victim’s session key, to subsequently decrypt
and inject WPA2 traffic over the air [30]. This trivially
bypasses client isolation. If the victim is already connected
to the network, they can be disconnected by spoofing de-
authentication frames, resulting in a new 4-way handshake
from which the adversary can derive the victim’s session keys.

Rogue AP Bypass. With WPA3-SAE (used in WPA3-
Personal), calculating the session key by monitoring a victim’s
traffic is not possible. However, an attacker can still clone
the AP and communicate with victims once they connect,
since WPA3 still uses a shared passphrase and client isolation
is only enforced on the real AP. Additionally, even though
WPA3 requires management frame protection, an attacker can
still induce clients into connecting to the rogue AP, e.g., by
spoofing (malformed) beacon frames with a channel switch
announcement [31], [14].

WPA2/3-Enterprise. These attacks generally do not work
against WPA2/3-Enterprise networks because common EAP
methods use unique per-client credentials and may also use
public-key cryptography to verify the identity of the net-
work [16]. Note that most home routers support WPA2/3-
Enterprise by configuring a (remote) RADIUS server. Alter-
natively, WPA3 Public Key can be used, where the shared
passphrase is derived from a public key, meaning an adversary
cannot create a rogue clone without knowing the correspond-
ing private key [32], [27].

Summary. While some of the above subversions seem
simple and trivial to accomplish, bypassing client isolation
in enterprises is more challenging, especially for complex

networks. However, as shown in the subsequent sections, the
novel approaches we discover are still effective options for an
attacker towards this objective.

B. Frame Injection Abusing GTK and IGTK

In the following subsections, we describe how the GTK and
IGTK can be abused to perform frame injection in different
settings.

1) Abusing GTK: We discover a new technique to bypass
client isolation by exploiting the shared GTK (Group Temporal
Key). Normally, a Wi-Fi client encrypts broadcast/multicast
frames with its PTK, sending them to the AP for the latter
to re-encrypt with the GTK (shared with all clients connected
to the same BSSID). While the GTK is meant for the AP
to control broadcast access, attackers can abuse it to wrap
unicast IP traffic in a broadcast frame encrypted with the GTK,
pretending that the frame comes from the AP by spoofing its
MAC address. The victim accepts this frame, bypassing client
isolation. The technique requires the attacker to temporarily
connect to the victim’s BSSID to obtain the per-BSSID GTK
(which is shared during the handshake).

Our attack offers several advantages. First, since frames
constructed using GTKs are delivered over the air (and are
not forwarded/routed by the AP), they cannot be stopped by
the AP-side restrictions. Second, this technique can be used to
inject any layer-2 packets (e.g., ARP frames), and can even be
used to inject unicast IP packets [18]. As will be shown later
in § VII, we find that this works against all modern operating
systems, i.e., they use the GTK to decrypt such frames with a
broadcast/multicast MAC address, and deliver the embedded
IP packet to the OS’s IP layer. Third, abusing the GTK can
allow an adversary to continue injecting frames even after their
access has been revoked. This is because most APs do not
update the GTK whenever a client leaves the network, but
instead periodically update the GTK, e.g., every hour or day,
or may even be configured to never update the GTK [19].

2) Escalating GTK Abuse using Passpoint Flaws: The
Passpoint specification, which is the basis of protected
hotspots, provides guidelines on how to isolate Wi-Fi clients
with layer-2 encryption. Specifically, they recommend us-
ing Downstream Group-Addressed Forwarding (DGAF) Dis-
able [13, §5.2], which among other things, tries to prevent
abuse of shared group keys by requiring the AP to send a
random group key to every client:

“Shall set to a unique random value the value of the
GTK employed in the 4-Way Handshake”

This effectively disables group key communication, where
essential group-based traffic, such as ARP, is converted to a
plurality of unicast frames by the AP. Note that the GTK might
also be transported in other handshakes.

Non-randomized GTK. By further analyzing the Passpoint
standard, we found that it does not specify a randomization
of the group key when transported in the group key hand-
shake, the Fast Initial Link Setup (FILS) handshake, the Fast
BSS Transition (FT) handshake, or in WNM-Sleep Response

5

frames [13]. This means that, although clients will receive a
randomized group key when connecting to the network for
the first time using the 4-way handshake, they will receive
the real group key when one of the above handshakes is
performed. For instance, since many networks periodically
refresh the GTK [19] and use the group key handshake to
send the new GTK to clients, an adversary can simply wait
until this happens, and then abuse this GTK to inject frames
and bypass client isolation. Alternatively, an adversary can
spoof BSS Transition Requests to make a victim perform an
FT handshake [19], avoiding the need to wait for the periodic
group key handshake.

Non-randomized IGTK. In security-aware implementations,
as mentioned, it is possible that GTK is randomized to
maximize isolation; however, one can still abuse IGTK to
inject frames to a victim. The IGTK is used to authenticate
broadcast and multicast management frames. A second design
flaw in Passpoint is that it does not require randomization of
the IGTK. Although the IGTK cannot be directly abused to
bypass client isolation, we found that the IGTK can be abused
to trick a victim into using an attacker-controlled GTK, which
subsequently can be abused to bypass client isolation.

To abuse the shared IGTK, an adversary can send a WNM-
Sleep Response frame that is protected using the shared IGTK.
Although these WNM-Sleep frames usually have a unicast
received address, the standard does not prohibit broadcast
addresses, meaning most clients will process this frame. Since
we send this frame with a broadcast receiver address, all clients
will receive this frame. However, only clients that are waiting
for a WNM-Sleep Response frame will typically process this
frame, other clients will ignore it. The adversary can now
include a GTK in this WNM frame, causing the victim to
install this GTK selected by the adversary. After this, the
adversary can send broadcast or multicast data traffic that
is protected using this GTK towards the victim(s), thereby
bypassing client isolation.

Other shared keys. Apart from the GTK and IGTK, modern
Wi-Fi networks also use a shared BIGTK and WIGTK to
protect beacons and wake-up frames, respectively. However,
we were unable to abuse them to bypass client isolation.

V. ATTACKING SWITCHING AND ROUTING

In today’s Wi-Fi networks, it is increasingly common to
have multiple BSSIDs. For instance, even in networks with
a single AP, one can set up 2.4 GHz and 5 GHz channels,
which correspond to two separate BSSIDs/SSIDs; a user can
choose to connect to either. If client isolation is present
in a single BSSID, one would expect that it would also
exist across BSSIDs in the LAN to ensure security. More
importantly, such a single-AP network can also be configured
to create guest networks, with dedicated (virtual) SSIDs as
covered in §II-A. From the security point of view, these guest
networks should be isolated from the main network (they often
require different Wi-Fi credentials). Complex networks with
multiple APs are even more likely to use multiple BSSIDs.

❌

✅

Attacker Gateway VictimAP

 IP(SRC: ,DST:)

✅

MAC Layer IP Layer

 IP(SRC: ,DST:)

MAC(SRC: ,DST:)

MAC(SRC: ,DST:)

 IP(SRC: ,DST:)

MAC(SRC: ,DST:)

Fig. 2. Exploiting the gateway to bypass client isolation. While the attacker’s
direct layer 2 communication with the victim may be blocked, the gateway
can be used to inject the packets at layer 3.

For example, enterprises, hotels, and university networks often
create a separate SSID (and correspondingly multiple BSSIDs)
for guests or visitors.

In this section, we first unearth the lack of IP layer isolation
that allows breaking the client isolation barrier (B) in both
basic and complex networks. Next, to break the barrier (C),
we showcase a subtle interplay between Wi-Fi encryption and
the internal layer-2 switching mechanism of APs, and thus
discover a fundamental limitation of Wi-Fi encryption. We
show that an attacker can not only inject packets but also
intercept packets to and from a victim, thereby enabling the
building blocks of MitM attacks.

A. Injection Attacks at the Routing Layer

Gateway Bouncing. A key observation we make is that even
if layer 2 has client isolation, it should also be carried over
to layer 3, i.e., the IP layer. In other words, clients within the
same Wi-Fi network should not be allowed to route layer 3
packets to each other. We find that, unfortunately, this is not
implemented in many Wi-Fi networks. Using the terminology
in Figure 1, this means that while the AP can block direct
Wi-Fi frame forwarding between two clients associated with
the same AP, it still forwards packets that are sent to a gateway
(a.k.a. router), which performs IP routing. Leveraging this
oversight, we devise a straightforward and effective technique
to bypass client isolation. Specifically, we find that an attacker
can send data packets with the destination IP address being
that of the victim and the destination MAC address being that
of the network’s gateway. Such a packet will be “bounced”,
i.e., routed, back to the victim via the gateway. As shown
in Figure 2, this packet will be “accepted” by the network’s
gateway because its destination MAC address matches the
gateway’s MAC address. Next, since the packet destination IP
address belongs to a different client, the routing infrastructure
on the gateway will direct the packet to the victim client. Such
a “bounced” packet will have its source MAC address being
that of the network’s gateway and the destination MAC address
being that of the victim. The victim ultimately receives the
packet, effectively allowing client-to-client injection despite
layer-2 isolation.

6

B. Interception Attacks at the Switching Layer

Every BSSID on the same AP can be viewed as a virtu-
alized hardware port. To understand our switching-based
attacks, we first describe the switching and port architecture
of modern Wi-Fi networks. Our explanation is based on
the 802.11 standard and empirically confirmed by analyzing
software from jailbroken APs spanning seven vendors (as will
be covered in §VII). Most notably, we observe that every
BSSID can be viewed as a virtualized hardware port. For
example, when clients are connected to the same BSSID (e.g.,
2.4 GHz frequency), it is conceptually analogous to the clients
being connected to the same Ethernet port in a wired setting.
Similarly, a guest BSSID has its own associated virtual port,
distinct from the port for a trusted/main BSSID, and concep-
tually it is equivalent to a separate hardware Ethernet port.
Indeed, each BSSID by design has a unique MAC address,
just like in the case of traditional hardware switch ports.
Upon receiving a Wi-Fi frame on a virtual port, the AP will
translate it to an Ethernet frame, which gets switched/routed
internally to other virtual ports, and potentially further through
the distribution system.

Port stealing attacks exploiting multiple BSSIDs. Based
on the above insight into the relationship between BSSIDs
and virtual ports in Wi-Fi networks, we find that the classic
port stealing attack [33], originally proposed for switches
with physical ports, can be repurposed to break inter-BSSID
isolation in the Wi-Fi setting.

Specifically, an attacker can send frames with the spoofed
MAC address of a victim client from the attacker’s own
associated virtual port. This then triggers the layer-2 learning
process on the AP with respect to its virtual ports, misleading
the AP to incorrectly update its forwarding table to associate
the victim’s MAC address with the attacker’s port. As a result,
traffic originally destined for the victim is redirected to the
attacker. This forms the basis of our MitM attacks described
in the next section.

In addition, an attacker can also spoof the router’s MAC
address to redirect a victim’s uplink traffic to the attacker’s
virtual port. This attack exploits the weak coupling between
access points (APs) and the wired distribution system: since
APs operate at layer 2 and are unaware of the router’s
actual location, whether on the wired or wireless side, they
may mistakenly forward the victim’s traffic to the attacker.
Interestingly, this results in client-to-client traffic, since the
victim’s traffic now arrives at the attacker, who’s also a
client. Surprisingly, we nevertheless found that this attack
often works, even when other client-to-client traffic is blocked.
This highlights the ad-hoc nature of client isolation policies
by vendors, the unpredictability of its security guarantees in
practice, and further confirms the need for a standardized and
agreed-upon definition of client isolation.

Overcoming Wi-Fi encryption to achieve port stealing.
Unlike traditional Ethernet switches, where port stealing can
be accomplished by simply injecting spoofed Ethernet frames,
modern Wi-Fi networks require attackers to first authenticate

with the network. Importantly, port stealing cannot be achieved
by simply connecting to the Wi-Fi network with the attacker’s
own MAC address, and then spoofing frames with the victim’s
MAC address as source while using the attacker’s Pairwise
Transition Key (PTK) to encrypt the frame. This is because the
AP uses the frame’s transmitter and receiver MAC addresses
to look up the corresponding PTK, i.e., the AP maps MAC
addresses to PTK keys. As a result, the AP will use the victim’s
PTK to decrypt the frame, which will fail, meaning the spoofed
frame is dropped and port stealing fails.

Our idea is to have the attacker authenticate using the
victim’s MAC address, but from a different virtual port, i.e.,
BSSID, than the victim. In other words, layer-2 learning for
Wi-Fi virtual ports becomes possible only after the attacker
completes an 802.11 association using the victim’s MAC ad-
dress. More specifically, our hypothesis is that the intercepted
traffic will now be forwarded to the attacker’s virtual port,
using the attacker’s negotiated PTK.

Indeed, we verified that the strategy works on most APs
we have tested. After investigating the root causes, we find
this behavior stems from how encryption credentials are man-
aged in AP software such as hostapd. For each BSSID,
i.e., virtual port, the AP maintains a mapping from a client
MAC address to its PTK. By default, this mapping is scoped
per-BSSID. Thus, if an attacker reuses the victim’s MAC
address to complete a handshake, the AP updates the security
association for that MAC to point to the attacker’s PTK. In
effect, after port stealing, the AP will consult the new <MAC,
PTK> mapping under the exploited BSSID instead of the
mapping on the victim’s associated BSSID. Thus, all packets
destined for the victim’s MAC address are encrypted using
the attacker’s keys, despite originally being associated with
the victim station.

This reveals a decoupling issue between layer-2 forwarding,
i.e., which virtual port the packet exits from, and the crypto-
graphic association, i.e., which PTK is used for encryption. We
illustrate this issue in Figure 3. According to IEEE 802.11i [34,
§5.9.2.1], after a successful 4-way handshake, the AP opens
the controlled port for general data traffic. However, what is
less obvious, and exploited in this attack, is that the PTK used
for encryption is not tightly bound to the original session or
physical port but to the latest <MAC, PTK> binding.

In the most severe scenario, we experimentally verified that
when the attacker connects to an open SSID without encryp-
tion, port stealing causes the victim’s traffic to be forwarded
in plaintext over the attacker-associated, unprotected BSSID.
As a result, traffic normally protected by WPA2/3 encryption
will be broadcast in plaintext, allowing trivial eavesdropping
by any nearby observer. Therefore, port stealing undermines
the efficacy of encryption regardless of the original security
configuration of the victim’s SSID.

C. Injection Attacks at the Switching Layer

We uncover a subtle injection method at the switching layer,
which we term Broadcast Reflection. By crafting a Wi-Fi
frame with ToDS = 1 and Address 3 set to the broadcast

7

MAC

S Internal Switch

Victim's Link

Switching

Wired Uplink

Wi-Fi Encryption

Attacker's Link

S

S

PTK

MAC Port

MAC Port

MAC PTK

MAC PTK

Mapping Tables Network Topology

(a) AP - Before Spoofing

(b) AP - After Spoofing

Fig. 3. The attacker spoofs the victim’s MAC address on a different NIC,
causing the internal switch to mistakenly associate the victim’s address with
the attacker’s port/BSSID. As a result, frames intended for the victim are
forwarded to the attacker and encrypted using the attacker’s PTK.

MAC address FF:FF:FF:FF:FF:FF, the attacker causes
the AP to treat the frame as group traffic and re-encrypt it
using the GTK of the victim’s BSSID. This results in the
frame being delivered to all clients on that BSSID, including
the victim.

Crucially, the embedded payload can contain unicast traffic
targeted at the victim. As shown in §VII-C, most OSes
accept such payloads when decrypted with the GTK. Unlike
direct GTK abuse (§IV-B), this technique does not require the
attacker to know or extract the GTK, making it effective from
separate BSSIDs or even open networks.

Broadcast Reflection thus enables stealthy, GTK-free in-
jection and can be chained with port stealing (§V-B) to
reflect intercepted packets back to the victim, supporting MitM
attacks even across BSSIDs.

VI. GAINING FULL MITM IN ENTERPRISE NETWORKS

In this section, we combine our previous interception and
injection attacks to obtain a full bidirectional MitM in enter-
prise networks, bypassing client isolation.

A. MitM Attack on Victims on the same AP

Although combining port stealing and gateway bouncing
appears to offer a straightforward path to a (bi-directional)
MitM attack, executing it reliably requires addressing several
key practical challenges, which we cover first:

Assumptions. For ease of exposition of such attacks, we
assume that an AP supports simultaneous SSID operations
across two frequency bands as is commonly the case: a 2.4
GHz channel and a 5 GHz channel. Each frequency channel
also hosts one main SSID and one guest SSID. These in turn
map onto four virtual ports to which a client might connect.
The four virtual ports corresponding to these four BSSIDs are
connected to the same software-enabled switch, which, in turn,
is connected to an uplink port. This uplink port is connected
to the gateway to reach the Internet.

We consider two attack scenarios: (1) an attacker has
the credentials to associate with only untrusted/guest SSIDs
and targets a client with a trusted SSID; (2) an attacker is
connected to the same SSID (e.g., trusted) as the victim. In
both cases we assume the network uses client isolation.

Intercepting the victim’s downlink and uplink traffic. As
discussed in §V-B, an attacker can intercept both uplink and
downlink traffic using port stealing as long as the attacker and
the victim are connected to different virtual ports, e.g., if the
attacker is on guest/2.4GHz and victim is on main/2.4GHz,
or if the attacker is on guest/2.4GHz and the victim is
on guest/5GHz. It is important to note that to maintain a
MitM attack and the stolen ports, the attacker has to send
spoofed MAC frames continuously. This prevents the victim’s
legitimate uplink or downlink traffic from reclaiming the port
via the learning process by which the switch updates its
forwarding tables.

Returning intercepted downlink traffic back to the victim.
To reliably maintain the MitM attack, it is necessary to return
the intercepted frames back to the victim; otherwise, it will
lead to a DoS attack that could be easily detected. We describe
how to achieve this, using the two injection attacks mentioned
earlier, and one assistive technique:

(1) Gateway bouncing. Gateway bouncing can be repur-
posed to inject intercepted packets back to the victim. How-
ever, it requires the AP to correctly forward the packet to a
port associated with the victim’s MAC address. This means
that the attacker must relinquish control and allow the victim
to reclaim the original port, e.g., by pausing port stealing and
waiting for the victim to send an uplink frame. This restores
the correct MAC-to-port mapping corresponding to the victim,
ensuring that the packet is delivered as intended. The attacker
can detect this uplink traffic by passively eavesdropping on
the frequency channel used by the victim’s MAC address and
time the injection accordingly. Note that the attacker needs to
periodically stop port stealing to keep the traffic flowing to the
victim. Inevitably, it means that periodically, some downlink
traffic would miss getting intercepted due to this pause. This
technique also relies on IP spoofing to make the injected
packet appear as if it is coming from the original server.

(2) Abusing GTK. An attacker can return the intercepted
traffic using the per-BSSID GTK, which does not require the
above port restoration, since GTK abuses do not depend on the
AP to forward packets. It is worth noting that this technique
enables IP spoofing that APs cannot stop: while an AP can

8

detect abuse by decrypting injected frames, it may not even
overhear them due to hidden terminals [21] or signal coverage
limitations. Furthermore, the Passpoint flaws (§IV-B2) make
GTK abuse more potent and persistent. However, the downside
of this approach is that the attacker must be able to connect to
the victim’s BSSID, and a direct link must be viable between
the attacker and the victim; this is also subject to hidden
terminal issues or signal strength limitations.

(3) Client-triggered port restoration. To eliminate the delay
inherent in gateway bouncing, where the attacker must wait for
the victim to send an uplink frame and reclaim its MAC-to-
port mapping, an attacker can instead trigger this restoration
proactively. By crafting GTK-encrypted unicast ICMP Echo
Requests, the attacker induces the victim to generate ICMP
Echo Replies, which cause the AP to rebind the victim’s MAC
address to its original port. This enables the timely reinjection
of intercepted packets via gateway bouncing, without relying
on natural uplink traffic.

Returning intercepted uplink traffic back to the gateway
with server-triggered port restoration. To relay the in-
tercepted uplink traffic to the benign server on the Internet
(thereby completing the MitM role on the uplink), we need the
gateway’s MAC address to be correctly mapped to AP’s uplink
port. However, the attacker has stolen the gateway’s MAC
address for uplink interception, which disrupts the mapping;
this requires the attacker to release it temporarily in order to
restore the correct forwarding path.

Unfortunately, this restoration relies on the AP passively
learning the correct port again, which only happens when it
sees traffic from the gateway. To address this, the attacker can
either wait passively for such traffic (e.g., from the Internet), or
proactively trigger the same. Toward accomplishing the latter,
we develop a novel proactive technique which we call “Server-
triggered Port Restoration”, which briefly restores the correct
forwarding path to ensure reliable delivery of outbound victim
traffic while minimizing loss of attacker control. The attacker
first establishes a connection (e.g., TCP, UDP, or ICMP) with
an external server and agrees on a fixed transmission schedule,
such as once every 100 ms; with this periodicity, the attacker
triggers the server to send a burst of packets back. This
preemptively restores the gateway’s MAC-to-port mapping by
triggering the AP’s Layer-2 learning mechanism, effectively
maintaining hardware port control. During this brief window,
the attacker forwards queued or intercepted packets upstream
via the real gateway to the proper server. Afterwards, the
attacker alternates between “Server-triggered Port Restoration”
and port stealing, to maintain control of the uplink path.

B. Cross-AP MitM Attacks are Practical

The previous attacks assumed that the attacker and the
victim share the same AP. We also discover and demonstrate
that cross-AP MitM attacks are not only possible but practical
in enterprise and campus networks where multiple APs share
a wired distribution system (Figure 1).

Although port stealing was originally devised for hosts
on the same switch [33], we show that attackers can hijack

TABLE I
FIRMWARE VERSIONS AND AP DAEMONS OF TESTED APS/ROUTERS

Device Model Firmware Version AP Daemon

Netgear Nighthawk X6 R8000 V1.0.4.84 10.1.84 nas
Tenda RX2 Pro V16.03.30.14 multi hostapd
D-Link DIR-3040 1.13 apsond
TP-Link Archer AXE75 1.1.8 Build 20230718 hostapd
ASUS RT-AX57 3.0.0.4.386 52332 hostapd
DD-WRT v3.0-r44715 v3.0-r44715 nas
OpenWrt 24.10 24.10.0 r28427 hostapd
Ubiquiti AmpliFi Alien Router v4.0.8, g0c028c5c hostapd†

Ubiquiti AmpliFi Router HD v4.0.3, g0bc740d76d hostapd
LANCOM LX-6500 6.00.0085 lancom daemon
Cisco Catalyst 9130 IOS XE 17.2.1.11 unknown
† This device also uses hap-wifirouter for device management.

MAC-to-port mappings at a higher layer, i.e., at the level
of the distribution switch [35]—to intercept traffic to victims
associated with different APs. This escalates the attack beyond
its traditional limits, breaking the assumption that separate APs
provide effective isolation.

This discovery exposes a blind spot in client isolation: even
physically separated APs, broadcasting different SSIDs, offer
ineffective isolation if connected to a common distribution
system. By redirecting traffic at the distribution switch, at-
tackers can intercept and manipulate victim traffic across AP
boundaries, expanding the threat model for modern Wi-Fi
networks. We further detail and demonstrate this attack in a
practical setting in §VII-G.

VII. EVALUATION AND MEASUREMENT

In this section, we conduct a comprehensive evaluation of
various techniques across home routers, a local enterprise
network testbed, and a university network.

A. Experiment Setups

We selected 5 recent home routers from different popular
vendors that advertised a form of guest or client isolation. In
addition, we test two widely-used open-source router distri-
butions DD-WRT and OpenWRT (see Table I for firmware
versions and AP daemons, and Table II for results). During
our initial inspection, we observed that secure configurations
were inconsistently applied and dispersed across devices. For
the purposes of testing, we enabled AP mode on each router
to simulate a typical home environment, given that an external
modem was already functioning as the network gateway.
Whenever a router supported a “guest network” feature, we
activated it so we could test its isolation properties. Addition-
ally, if a client isolation option was available in the wireless
settings, we selected it to further segregate client-to-client
communication.

B. Measuring Inter-BSSID Isolation Policies

Inconsistent and ad-hoc isolation policies. In addition
to intra-BSSID isolation mechanisms, we observed inconsis-
tencies in inter-BSSID isolation mechanisms across various
vendors and AP devices, enabling different attack variants
(see Table II). Inter-BSSID isolation mechanisms, a critical

9

component for segregating traffic between virtual BSSIDs, are
frequently missing or misconfigured.

Specifically, we find that many APs fail to enforce strict
separation between these virtual BSSIDs’ associated ports. We
forge layer-2 frames targeting other clients under the same AP,
and found that all tested APs allow some degree of unintended
switching that violates client isolation between these virtual
BSSIDs. As shown in Table II, different AP devices manifested
inconsistent behaviors with regard to whether a source client in
a guest/main BSSID can use layer-2 frames to directly reach a
client in another guest/main BSSID under the same AP device.
We emphasize that the use of hostapd is neither a sufficient
nor a necessary condition for an AP to be vulnerable to port
stealing, indicating only a partial correlation.

C. Measuring GTK Abuse Acceptance by OSes

Table IV shows whether OSes accept higher-layer unicast
traffic inside GTK-encrypted broadcast frames. Specifically,
we tested for the acceptance of unicast IPv4 ping requests
(group-ping), unicast IPv6 ping requests (group-ping6), and
unicast ARP requests (group-arp-unicast). These tests simulate
GTK-encrypted injections that bypass client isolation.

Most OSes, including macOS, iOS, and Android, reply to
all three tests, confirming acceptance of the GTK-encrypted
traffic. Windows 11 and Ubuntu 22.04 stand out: when
enabling drop_unicast_in_l2_multicast on Linux,
an option to drop unicast IP packets received in link-layer
multicast/broadcast frames [36], Linux drops the IPv4 ping
request but still replies to IPv6 and ARP-based probes. These
results confirm that most OSes accept unicast IP datagrams
inside GTK-encrypted broadcast frames.

D. Experiments Against Home Routers

Single-BSSID Attacks. We tested our abusing GTK,
machine-on-the-side, and rogue AP attacks against seven home
Wi-Fi routers, which represent single-BSSID networks, and
found that these techniques are effective in bypassing client
isolation in all cases. Furthermore, we verified that the “abus-
ing GTK attack” is general and independent of the encryption
methods, including WPA2 and WPA3. For WPA2-PSK, we
verified that machine-on-the-side bypass works for all seven
APs: the PTK can be successfully derived by the attacker
to launch decryption and injection of packets over the air,
bypassing client isolation. For the rogue AP attack against
both WPA2 and WPA3, we verified that the attack works with
all seven Wi-Fi routers, including dissociating victim clients
and forcing them to connect to our rogue AP.

Inter-BSSID Attacks. To understand the generality of
the inter-BSSID isolation bypass techniques, we carried out
experiments on all seven APs. Table II presents the re-
sults. Five tested single-AP routers were found to permit
the circumvention of isolation mechanisms between guest
and main networks, allowing frame/packet injection. Also, in
Table III, six devices allowed uplink/downlink port stealing,
and four of them allowed breaking barriers between guest
and main networks. Interestingly, Tenda RX2 Pro, DDWRT

v3.0-r44715, and OpenWrt 24.10 successfully blocked port
stealing attempts when configured with recommended guest
network settings [37], [38]. Through reverse engineering, we
discovered that isolating the guest and main networks using
separate internal switches, i.e., bridges, effectively blocked the
attacks for DDWRT and OpenWrt. Tenda RX2 Pro had some
mechanisms to prevent the same client MAC address from
being used on two BSSIDs concurrently, which also helped
block port stealing. Nevertheless, these results highlight
the prevalence of weak and chaotic inter-BSSID isolation
mechanisms (i.e., unintended switching and routing) across
diverse models and vendors.

End-to-End Attack against Netgear R8000. In this local
experiment, we configure guest and trusted SSIDs on both 2.4
GHz and 5 GHz bands, yielding four BSSIDs. To access the
Internet, the Netgear AP is connected to a gateway router via
a wired link. Restricted to the guest network, the attacker aims
to act as a MitM, intercepting all uplink and downlink traffic
from a victim on the trusted SSID. The attacker begins by
connecting to the guest SSID with the victim’s MAC address,
but on a different frequency to avoid disconnecting the victim.

After association, the attacker rapidly transmits a burst of
802.11 data frames with the ToDS flag set to 1 and the address
3 field set to the address of the bridge br0. In our experiments,
these frames are ICMP Echo Reply packets which are used to
intentionally avoid soliciting any responses that can trigger
unwanted layer-2 learning (other packets that do not solicit
responses can also be used). Since these packets are sent with
the victim’s MAC address and are correctly encrypted, they
trigger the layer-2 learning and cause the AP to redirect the
victim’s downlink traffic to the guest SSID. The attacker then
returns the intercepted traffic back to the victim using the
gateway bouncing technique. Similarly, an attacker performs
the uplink traffic interception by spoofing the MAC address
of the AP’s uplink node (i.e., gateway router) and returns this
intercepted traffic back to the victim’s server. The full attack
takes about 2 seconds to complete. Throughout the attack, the
victim is watching a streamed Youtube video and does not
experience significant lag.

E. Experiments Against Enterprise-Grade Devices
We also tested enterprise-grade devices. As these are more

expensive, we limited our tests to two Ubiquiti routers, a
Cisco Catalyst 9130, and a LANCOM LX-6500. Both Ubiquiti
devices support guest networks and client isolation, and were
vulnerable to gateway bouncing, abusing GTK, broadcast
reflection, and port stealing (see Table II and III).

To test the Cisco and LANCOM devices, we configured
them to advertise both a main and guest SSID. To enable client
isolation on the Cisco device we set “P2P Blocking Action”
to drop, and on LANCOM we disallowed “Communication
between end devices on this SSID”. In this setup, both Cisco
and LANCOM were affected by abusing GTK and downlink
port stealing. The Cisco device was also affected by broadcast
reflection, and the LANCOM device by uplink port stealing.
During the downlink port stealing attack, the victim’s uplink

10

TABLE II
MEASUREMENT OF THE FEASIBILITY OF INJECTING TRAFFIC FOR SELECTED SINGLE APS. ALL TESTED WITH CLIENT ISOLATION

ENABLED. TOP DEVICES ARE HOME ROUTERS, BOTTOM DEVICES ARE ALL-IN-ONE ENTERPRISE ROUTERS.

Device Model Direct L2 Forwarding Abusing GTK Gateway Bouncing

G→M M→M G→G M→G M→M G→G G→M M→M G→G M→G

Netgear Nighthawk X6 R8000 × ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓
Tenda RX2 Pro ✓ ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ×
D-Link DIR-3040 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
TP-Link Archer AXE75 × ✓ × × ✓ ✓ ✓ ✓ ✓ ✓
ASUS RT-AX57 ✓ × ✓ × ✓ ✓ × ✓ × ✓
DD-WRT v3.0-r44715 × ✓ × × ✓ ✓ × ✓ × ×
OpenWrt 24.10 × × ✓ × ✓ ✓ × ✓ × ×

Ubiquiti AmpliFi Alien Router × ✓ ✓ × ✓ ✓ × ✓ ✓ ✓
Ubiquiti AmpliFi Router HD × ✓ ✓ × ✓ ✓ × ✓ ✓ ✓
Cisco Catalyst 9130 × × × × ✓ ✓ ✓ ✓ ✓ ✓
LANCOM LX-6500 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

M: Main network, G: Guest network; X → Y : whether a client in network X can inject a packet towards another client in network Y .

TABLE III
MEASUREMENT OF THE FEASIBILITY OF INTERCEPTING TRAFFIC FOR SELECTED SINGLE APS. ALL

TESTED WITH CLIENT ISOLATION ENABLED.

Device Model Downlink Port Stealing Uplink Port Stealing

G←M M←M G←G M←G G←M M←M G←G M←G

Netgear Nighthawk X6 R8000 ✓ ✓ ✓ ✓ ✓ ✓ × ×
Tenda RX2 Pro × × × × N/A★ ✓ N/A★ N/A★

D-Link DIR-3040 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
TP-Link Archer AXE75 ✓ × ✓ ✓ ✓ ✓ × ✓
ASUS RT-AX57 × ✓ × × ✓ ✓ ✓ ✓
DD-WRT v3.0-r44715 × × × × × ✓ × ×
OpenWrt 24.10 × × × × × × × ×

Ubiquiti AmpliFi Alien Router × ✓ ✓ × × ✓ × ×
Ubiquiti AmpliFi Router HD × ✓ ✓ × × ✓ × ×
Cisco Catalyst 9130 ✓ ✓ ✓ ✓ × × × ×
LANCOM LX-6500 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

★ Tenda RX2 Pro does not support guest SSIDs under AP mode. M: Main network, G: Guest network.
X ← Y : whether a client in network X can intercept traffic of another client in network Y .

traffic was no longer forwarded by the AP. We believe this is
because these devices have difficulty handling two client with
the same MAC address over different BSSIDs. We consider it
interesting future work to test uplink port stealing attacks when
the targeted network is using different devices to broadcast
BSSIDs, where the adversary can then connect to a different
physical AP than the victim to perform the attack. More
generally, enterprise devices often require tedious manual
configuration, which may influence our tests, and we therefore
test network deployments in the wild next.

F. Experiments in Networks in the Wild

Testing University Networks. It is widely believed that
WPA2/3-Enterprise prevents traffic interception due to the
usage of per-client credentials. In these experiments, our aim
is to show how our attacks break this assumption.

We test two university networks (in different countries) and
find that our attacks are viable in the real world. Both uni-
versities follow a similar setup, and we describe one of them
here for space and brevity. The university network has three
SSIDs: one open SSID with captive portals that optimistically
collect guest information without deploying Wi-Fi encryption,
one staff/employee WPA2-Enterprise SSID accessible only
with valid 802.1X university credentials, and one eduroam

SSID [39] with WPA2-Enterprise encryption accessible with
valid university credentials registered with eduroam. Every
physical AP managed by this university can concurrently serve
these three SSIDs on multiple channels. In this tested network,
there is also intra-BSSID isolation for every BSSID.

In both our experiments, the attacker is connected to the
open guest network, and the goal is to intercept the downlink
traffic of another victim client (our own for ethical reasons)
associated with the trusted SSID. To intercept the victim’s
downlink WPA2-Enterprise traffic, the attacker first scans all
channels to identify the victim’s MAC address and associated
BSSID. Our attacker device uses the victim’s MAC address
to connect to the same AP’s open SSID and finishes captive
portal authentication. It then floods many frames to that
of the shared gateway/router and with ToDS set to 1. The
gateway/router then redirects the victim’s downlink packets to
the attacker-chosen AP (i.e., port stealing). These packets are
finally leaked in plaintext through the open SSID. To return
intercepted plaintext traffic back to the victim, the attacker
uses gateway bouncing or broadcast reflection.

We conducted all university tests during weekend nights, at
times when no other clients were observed on the network. To
further ensure that our experiments did not impact unintended

11

2
6 4

3
01

7 5

MAC(SRC: ,DST:)
AP 1

AP 2

Switch Router1

MAC(SRC: ,DST:)2

Virtual port Spoofed frame to steal port at switch Intercepted frame

Fig. 4. Illustration of port stealing. The adversary spoofs the router’s MAC
address and sends uplink frames with ToDS=1 (step 1⃝), causing the switch to
map the router’s MAC address to port 2 and redirect the victim’s uplink traffic
from AP2 to AP1 (step 2⃝). Blue arrows show the redirected traffic path.

parties, we restricted injected frames to use the victim’s IP
as the destination and applied Port Stealing and Gateway
Bouncing only to MAC/IP addresses under our control.

G. Attacks in Enterprise Settings on a Local Testbed

We first performed the multi-AP attacks (§VI-B) in a
local testbed (TP-Link EAP613), with the topology similar
to Figure 4. We verified that the attacker is able to intercept
both the downlink and uplink traffic of a victim associated
with a different AP, as well as returning the traffic back to
the victim. For simplicity, we will focus on how to intercept
the uplink traffic. Using the guest Wi-Fi credentials, the
attacker first uses two NICs to complete handshakes and
establishes two connections to the guest SSID on AP1, i.e.,
port 6 in Figure 4, with the MAC address of the gateway
(NIC1) and a random MAC address (NIC2) respectively.
Once associated, the attacker exploits the layer-2 learning
process of the Switch. Specifically, the attacker uses NIC1
to transmit a series of ICMP Echo Reply packets with
the layer-2 header being ToDS = 1 and address 3 =
attacker’s random MAC address. These data frames
cause the Switch to map the router’s MAC address to the
attacker’s port, i.e., port 2. To return intercepted uplink data
frames back to the real gateway, the attacker uses the random
MAC address to perform “Server-triggered Port Restoration”
as discussed in §VI-A. When the gateway MAC address is
mapped again to port 1, the attacker relays all intercepted
traffic internally through NIC2, and forwards such traffic to
the real gateway/router. For ease of exposition, we call this
technique “Inter-NIC Relaying”.

Case study on how our attacks can facilitate a higher-layer
compromise. We further investigate whether the impact of the
attack can be amplified to accomplish a higher-layer compro-
mise. In WPA2-Enterprise, a Wi-Fi client first finishes 802.11
authentication and association with an AP. Then, the client
negotiates a PMK with a remote authentication server (e.g.,
RADIUS). The authentication server then returns this PMK to
the AP, for it to start a four-way handshake with the Wi-Fi
client to negotiate a PTK and a GTK. Under the hood, enter-
prise APs facilitate PMK negotiation between clients and re-
mote authentication servers using the RADIUS protocol [40].
This protocol acts as an intermediary, securely wrapping au-
thentication/authorization requests to ensure proper validation
of client credentials (e.g., enterprise employee credentials).

For robust security, the communication channel between any
enterprise AP and its remote authentication server must be
encrypted to prevent interception or tampering. In practice,
RADIUS remains the industry-standard authentication method,
supported by nearly all enterprise APs, and serves as the
backbone for onboarding enterprise Wi-Fi clients.

Using the same local enterprise testbed, we discover that
by spoofing a gateway MAC address and connecting to an
AP, an attacker can steal uplink RADIUS packets. In the
RADIUS protocol, the client is the AP and the server is the
remote authentication server, and they pre-share a passphrase.
This passphrase is used to encrypt and authenticate RADIUS
packet fields, such as to encrypt PMK in transit and derive
the Message Authenticator, a hash for integrity-protection. We
verified that an attacker, having intercepted the first RADIUS
packet sent from the enterprise AP, can brute-force the Mes-
sage Authenticator and learn the AP passphrase. This allows
the attacker to set up a rogue RADIUS server and associated
rogue WPA2/3 access point, which allows any legitimate client
to connect, thereby intercepting their traffic and credentials.

H. Measuring Port Stealing and GTK Abuse Performance

Attack Setup. We showcase the downlink interception perfor-
mance of our MitM framework, built by combining port steal-
ing with GTK Abuse, with a realistic Wi-Fi setup (Table V).
The attacker’s program adopts a multi-process architecture:
a main controller process performs port stealing, while three
auxiliary subprocesses respectively handle frame capture, re-
encryption using the GTK, and frame injection. The target
AP under measurement is a Netgear R8000, connected to an
upstream router, which is further connected to a MacBook
running macOS 15.7.2 hosting the iPerf3 server used for
performance measurements. Both the victim and the attacker
are PCs equipped with an Intel Core 5 120U CPU, running
Ubuntu 22.04 with Linux kernel 6.8.0. The injection NIC
is Alfa AWUS036ACM. The attacker and the victim are on
separate BSSIDs and the attacker abuses the GTK of the
victim’s BSSID with the goal of measuring if the attack
degrades performance. Each test case instructs the iPerf3
server to send fixed 10 Mbps UDP traffic, runs for one minute,
and is repeated five times.

Results and Factors Affecting Attack Success. Our system
succeeds in all downlink MitM tests. We note a short initial
disruption when the attacker associates with a different BSSID,
using the victim’s MAC address: some downlink frames are
lost during this time since the attacker has yet to establish
access to the network. After this period, the attacker can
successfully intercept and inject packets, although with oc-
casional losses. Below, we highlight key factors that affect the
performance of the attack:

1) Environmental and Distance Factors: Increasing the
physical distance between the attacker and AP, or introducing
obstacles such as a closed door (test case barrier in Table V),
causes additional loss as expected, due to weaker channel con-

12

TABLE IV
MEASURING OPERATING SYSTEM ACCEPTANCE OF GTK-ENCRYPTED

WI-FI FRAMES

OS group-ping group-ping6 group-arp-unicast

Windows 11
Firewall On × ✓ ✓
Firewall Off ✓ ✓ ✓

Others
macOS 15.4 ✓ ✓ ✓
iOS 18.3.2 ✓ ✓ ✓
Android 14 ✓ ✓ ✓
Ubuntu 22.04 ×∗ ✓ ✓

✓: Test case passed (OS replied to the probe).
×: Test case failed (OS did not reply).
∗: When drop_unicast_in_l2_multicast is enabled,
the group-ping test case does not result in a reply.

TABLE V
MEASUREMENT OF PORT STEALING AND GTK ABUSE

PERFORMANCE UNDER REALISTIC CONDITIONS.†

Exp. Setup Performance

Attacker Loss Throughput Jitter Success

Base Near AP 1.7% 8.89 Mbps 1.23ms 5/5
Distance Far 3.1% 8.93 Mbps 0.61ms 5/5
Barrier Wall-sep. 7.0% 8.59 Mbps 2.08ms 5/5

† Loss = loss rate ignoring initial disruption; Success = end-
to-end success rate.

ditions. Importantly, the attack continues to function with high
success, demonstrating robustness under channel degradation.

2) Bit rate limitation: During the attack, our NIC conser-
vatively uses the lowest modulation and coding scheme to
inject traffic. This is because the injection uses the group
key and multicasts, which do not expect ACKs (most of the
experienced losses occur during the injection). To increase the
reliability of transmissions, it uses the lowest transmission rate
of 10 Mbps in our case, and thus is unable to realize a higher
injection speed. If the server sends at a higher rate, this can
lead to buffering and packet drops at the attacker. We note that
our experiments use iPerf3 which do not have rate control; in
practice however, we expect senders to control the sending
rate (e.g., with backoffs and retransmissions in TCP) which
will help recover from these losses, and the server’s sending
rate will adapt to the rate at which packets are returned to the
victim; except for a slow down of delivery the victim should
not perceive any losses in that case. Finally, this limitation can
be overcome by more capable radios, such as higher-power
transmitters or even software-defined radios (SDRs [41]),
which could potentially alleviate or bypass this limitation by
enabling more reliable, higher-rate frame injection.

VIII. DISCUSSION AND DEFENSE

In this section, we discuss the practical applications of our
attacks, how different attack techniques can be combined, and
propose defenses to improve Wi-Fi security.

A. Combining Multiple Attack Techniques

As summarized in Table VI, individual techniques are
capable of achieving potent attacks themselves, but one can

combine them to achieve even stronger attacks such as MitM.
For example, Inter-NIC Relaying and Abusing GTK can
act as enablers for more sophisticated attack chains to help
return intercepted packets to the victim, achieving stable MitM
attacks. Interesting future work is exploring additional attack
building blocks to enable more compositions.

Our attacks can also be combined with known flaws, e.g.,
the GTK is predictable on some routers [18], meaning it can
be abused to return intercepted traffic even if the adversary
cannot connect to the victim’s BSSID.

B. Facilitating Higher-Layer Attacks

As manipulating low-level port states can serve as building
blocks for powerful attacks targeting higher network layers, we
discuss possible consequences of intercepting both uplink and
downlink traffic of a victim. We showcased how our attacks
can facilitate spoofing a RADIUS server on our local testbed
in § VII-G. Here we discuss other possibilities.

Traffic Analysis. Our attacks give the attacker access to
the IP packets at the network layer. This facilitates various
attacks, e.g., even today 6% and 20% of pages loaded on
Windows and Linux, respectively, do not use HTTPS [42].
This allows an attacker to steal the victim’s cookies, despite
the growing adoption of HTTPS [43]. Our attacks also enable
the interception of local intranet websites or services, which
are more likely to use plaintext connections. Moreover, even
when the victim does use higher-layer encryption such as
HTTPS, the used IP addresses are still revealed, which is often
enough to know which website is being visited [44]. Finally,
traffic analysis techniques can even be used to learn the exact
webpage a victim is visiting [45], [46].

DNS and DHCP poisoning. An attacker can intercept and
attack any plaintext traffic of the victim. For example, the
attacker can intercept a victim’s DNS traffic and poison the
DNS cache in the victim OS [47], [48]. Alternatively, the
attacker can modify the DHCP record and change the gateway
address and DNS server that will be used by the victim. These
attacks can have a long-lasting impact on the victim, even after
the attacker stops being a MitM.

C. Defense

Improving Network Isolation. To improve isolation mecha-
nisms on single APs, untrusted BSSIDs (e.g., guest networks)
can be put in isolation groups, i.e., VLANs. VLANs logically
separate network segments, meaning an attacker on one VLAN
cannot send packets to or snoop on another VLAN. This
prevents a client in the untrusted BSSID from launching the
port stealing attack to redirect traffic destined to the victim
in a trusted BSSID. In addition, one could even put each
user within (the equivalent of) a unique VLAN, which would
securely synchronize the client’s authenticated identity across
the network stack; however, the implementation challenges
of such a method will need to be investigated. For example,
doing so will likely require software updates on most home
routers and access points since we find that only a few of the

13

TABLE VI
PROPERTIES OF TECHNIQUES: DETAILED EFFECT EVALUATION ACROSS ATTACKS.

Technique / Layer Decryption Modification Injection Section(s) Wi-Fi Standard Affected★

WPA2-P WPA2-E WPA3-P WPA3-E

Gateway Bouncing (3) No Yes Yes V-A ✓ ✓ ✓ ✓
Rogue AP (2) Yes Yes Yes IV-A ✓ × ✓ ×
Machine-on-the-side (2) Yes Yes Yes IV-A ✓ × × ×
Abusing GTK (2) MC/BC* Yes† Yes† IV-B, VI-A ✓ ✓ ✓ ✓
Port Stealing (2) Yes No No V-B ✓ ✓ ✓ ✓
Broadcast Reflection (2) No Yes Yes V-C ✓ ✓ ✓ ✓
Server-triggered Port Restoration (2) No No Yes (Enabling) VI-A ✓ ✓ ✓ ✓
Client-triggered Port Restoration (2) No No Yes (Enabling) VI-A ✓ ✓ ✓ ✓
Inter-NIC Relaying (2) No Yes Yes (Dependent) VII-G ✓ ✓ ✓ ✓

* MC/BC denotes multicast/broadcast.
† By delivering unicast IP packets encrypted with GTK directly to the victim.
★ P denotes Personal mode, and E denotes Enterprise mode.

AP devices we analyzed seem to support VLANs out of the
box. We have verified via experiments that TP-Link EAP613
can put guest SSIDs into separate VLANs, which effectively
nullifies the exploitation techniques listed in Table VI.

Spoofing Prevention. While Layer 2 spoofing defenses like
port security [35] exist in wired networks, they are rarely
applied in Wi-Fi due to virtual ports tied to BSSIDs. An absent
safeguard is rejecting spoofed gateway MACs on the wireless
side. Another effective policy would be disconnecting clients
whose MAC appears on multiple BSSIDs (as seen in Tenda
RX2 Pro), preventing cross-BSSID spoofing.

Similarly, IP spoofing prevention [49] can be an effective
defense. For example, it can stop the gateway bouncing from
returning an intercepted packet where the source IP address
may belong to an external server (for relaying intercepted
downlink traffic of the victim).

Group Key Security. APs can also stop the shared GTK
abuse by using per-client randomized GTKs, which is what
Passpoint attempts to do. That is, Passpoint contains a feature
called Downstream Group-Addressed Forwarding (DGAF)
Disable [13, §5.2]. Under this option, each client is given
a random group key, effectively disabling group-addressed
traffic, and essential traffic is instead translated into unicast
frames sent individually to each client.

Using Device-to-device Encryption to Protect Wi-Fi Traf-
fic. The attacks in this paper undermine the confidentiality,
integrity, and authenticity of Wi-Fi traffic. Encrypting layer-
2 frame payloads end-to-end with unique pairwise keys can
effectively thwart these exploits. One standardized solution
is MACsec (IEEE 802.1AE) [50], which establishes secure,
device-to-device encryption at the link layer. By combining
encryption, integrity verification, and device authentication,
MACsec can thwart our attacks. Via real-world experiments,
we verified that MACsec can be integrated with WPA2/3. By
installing cryptographic keys on wired and/or Wi-Fi interfaces,
two devices within the same Wi-Fi infrastructure can securely
communicate: attackers cannot read traffic encrypted by MAC-
sec and can at most cause DoS.

Standardizing client isolation. Lastly, we recommend to
standardize the security guarantees that client isolation should

deliver. Crucial future work is then to formally model client
isolation and to develop techniques to efficiently enforce and
verify its security guarantees.

D. Responsible Disclosure

Subsequent to completing our exploration of the Wi-Fi
client isolation attack surface, we promptly notified the ap-
propriate vendors and followed widely accepted responsible
disclosure practices. Each vendor was given more than 90 days
to develop fixes, and no vulnerability was publicly disclosed
prior to mitigation. Most vendors have responded and sought
cooperation, and several have already issued software updates.

Because our attacks exploit multiple protocols, standards,
and their cross-layer interactions, it is difficult for a single
vendor to recognize the full security impact in isolation. As a
result, effective long-term mitigation requires ecosystem-level
coordination across standards bodies, device manufacturers,
and network operators. The Wi-Fi Alliance has addressed
the missing randomization of the IGTK in version v3.4 of
Passpoint. LANCOM has confirmed our findings and has
meanwhile added an option to randomize group keys. Ubiq-
uiti is currently determining appropriate mitigations. D-Link
proactively provided us with two routers to help validate
attacks and defenses. At the time of writing, other vendors are
still evaluating their products, a process that is inherently time-
consuming given the cross-layer nature of the vulnerabilities.

IX. RELATED WORK

In this section, we briefly overview attacks and defenses
related to the 802.11 standard, revisit port stealing attack for
the Ethernet and distinguish our work.

Wi-Fi Security. There has been a notable history of attacking
and defending Wi-Fi. After researchers concluded that WEP
is insecure [51], [52], [53], TKIP and CCMP were devised,
featuring the four-way handshake and the group key handshake
that negotiate cryptographic keys to protect Wi-Fi traffic. The
four-way handshake was later formally analyzed and slightly
improved [54], [55]. However, TKIP as a short-term security
solution was quickly defeated [56], [57], [58], [59]. During
2016, even CCMP was found to allow downgrade attacks [18],
and in 2017 key reinstallation attacks were discovered against

14

WPA2 [19], [20], showing that an attacker could abuse these
handshakes to intrude into WPA2-protected Wi-Fi networks.

The WPA3 protocol introduces the Dragonfly handshake
to mitigate security issues in WPA2, preventing the offline
dictionary attack while bringing stronger security properties.
However, downgrade attacks, side-channel attacks, and denial-
of-service attacks were also discovered in WPA3 [25], [17],
[26]. These issues were addressed in an updated version of
WPA3 [60]. Beyond traditional Wi-Fi networks, modern home
wireless mesh networks were also found to introduce new
attack surfaces, allowing attackers to root them remotely [61].

The Hole 196 attack abuses the observation that group
keys are shared between different clients [62], similar to our
GTK Abuse attack, but does not study the abuse of group
keys under client isolation. Similarly, Vanhoef and Piessens
noted that broadcast Wi-Fi frames may contain unicast IP
packets [18], but did not study this in the context of client
isolation. Lastly, Knight demonstrated that client isolation in
open and WPA2 networks is insecure [63], since a malicious
insider can trivially inject packets directly to a client, but did
not consider WPA3 or Enterprise networks.

Although existing Wi-Fi encryption protocols can protect
traffic that is transmitted over the air, they do not protect
how traffic is routed by internal switches or access points.
Additionally, although enterprise authentication can verify a
client’s 802.1X identity such as its username, the identities
at other layers of the stack, such as the MAC addresses, are
not protected. It is precisely these two aspects that our attacks
abuse, thereby bypassing all existing Wi-Fi cryptography.

Port Stealing Attack for Ethernet. Port stealing is a layer-2
attack against Ethernet switches [33], where the attacker sends
frames with the victim’s source MAC address and their own
destination MAC address to exploit the switch’s learning and
filtering behavior. Once packets are intercepted, the attacker
sends a broadcast ARP request to trigger the victim’s ARP
reply, restoring the victim’s MAC-to-port binding. This allows
the attacker to forward intercepted packets back to the victim.
We demonstrated how novel variants of port stealing can be
used to break client isolation in protected Wi-Fi networks,
how our adaptations even work cross-BSSID and cross-AP
in more complex networks, and how in some cases can even
cause secret traffic to be broadcast in plaintext.

One of the attacks in [24] intercepted other clients’ traffic
in Enterprise Wi-Fi networks, but did not further study client
isolation. Instead, its focus was on security context overriding
attacks. Additionally, although they intercepted uplink traffic
of clients, they did not consider attacks across BSSIDs or
SSIDs, and could not return traffic back to the victim.

The original port stealing technique’s use of ARP has led to
its misclassification as ARP spoofing [64], prompting flawed
defenses like Dynamic ARP Inspection (DAI) [65]. While DAI
can block ARP-based port stealing, we exploit other network
protocols and manipulate Wi-Fi port states to bypass client
isolation. This is possible because manipulating Wi-Fi port
states works at a lower layer than DAI and is more general.

X. CONCLUSIONS

In this paper, we developed attacks that bypass Wi-Fi client
isolation. Via comprehensive experiments, including against
two real-world Enterprise networks, we have shown that every
tested network was vulnerable to at least one attack. We
believe that a root cause of these vulnerabilities is the missing
standardization of client isolation: this defense was added
by vendors without proper public review. However, we have
shown that client isolation is surprisingly tedious to get right
in modern Wi-Fi networks due to their complexity. Moreover,
we have shown that client isolation in home networks, which
is often a configuration option in routers, is fundamentally
flawed. We hope our work motivates standardization groups
to more rigorously specify the requirements of client isolation
and that Wi-Fi vendors will implement the same more securely.

ACKNOWLEDGMENTS

This work is partially funded by the Research Fund KU Leu-
ven, and by the Flemish Research Programme Cybersecurity.
This research is also sponsored by the OUSD(R&E)/RT&L
and was accomplished under Cooperative Agreement Number
W911NF-20-2-0267. The views and conclusions contained
in this document are those of the authors and should not
be interpreted as representing the official policies, either
expressed or implied, of the ARL and OUSD(R&E)/RT&L
or the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for government purposes,
notwithstanding any copyright notation herein.

ETHICS CONSIDERATIONS

For ethical reasons, all experiments were conducted ex-
clusively using our own client devices. We did not target
any real users, and the victim in each scenario was our
own device. Moreover, we refrained from intercepting uplink
traffic in university networks, as doing so could impact all
clients associated with the targeted AP; we explicitly avoided
capturing any data from other users. When testing the real-
world university networks, we first obtained authorization
to do so. We have disclosed the vulnerabilities to affected
vendors, as well as the Wi-Fi Alliance. The Wi-Fi Alliance has
acknowledged our findings, and we are awaiting their further
action.

REFERENCES

[1] TP-Link, “Brief introduction of ap isolation,” https://www.tp-link.com/
ch/support/faq/2089/, 2025, accessed 14 April 2025.

[2] M. Horowitz, “Router security checklist,” https://www.routersecurity.
org/checklist.php, 2025, accessed 14 April 2025.

[3] Micro Center, “Understanding AP isolation: A compre-
hensive guide to enhancing your Wi-Fi network secu-
rity,” https://www.microcenter.com/tech center/article/6778/
what-does-the-ap-isolation-setting-on-routers-do, 2025, accessed
14 April 2025.

[4] dd-wrt, “Advanced wireless settings - DD-WRT wiki,” https://wiki.
dd-wrt.com/wiki/index.php/Advanced wireless settings, 2025, accessed
14 April 2025.

[5] Cisco Meraki, “Wireless client isolation,” https://documentation.meraki.
com/MR/Firewall and Traffic Shaping/Wireless Client Isolation,
2025, accessed 3 June 2025.

15

https://www.tp-link.com/ch/support/faq/2089/
https://www.tp-link.com/ch/support/faq/2089/
https://www.routersecurity.org/checklist.php
https://www.routersecurity.org/checklist.php
https://www.microcenter.com/tech_center/article/6778/what-does-the-ap-isolation-setting-on-routers-do
https://www.microcenter.com/tech_center/article/6778/what-does-the-ap-isolation-setting-on-routers-do
https://wiki.dd-wrt.com/wiki/index.php/Advanced_wireless_settings
https://wiki.dd-wrt.com/wiki/index.php/Advanced_wireless_settings
https://documentation.meraki.com/MR/Firewall_and_Traffic_Shaping/Wireless_Client_Isolation
https://documentation.meraki.com/MR/Firewall_and_Traffic_Shaping/Wireless_Client_Isolation

[6] B. Fleck and J. Dimov, “Wireless access points and ARP poisoning,”
Online document, 2001.

[7] X. Feng, Q. Li, K. Sun, Y. Yang, and K. Xu, “Man-in-the-middle attacks
without rogue AP: when WPAs meet ICMP redirects,” in 2023 IEEE
Symposium on Security and Privacy (SP). IEEE, 2023, pp. 3162–3177.

[8] F. Fietkau, “Re: [PATCH 1/2] cfg80211: add ap isolation sup-
port - Felix Fietkau,” https://lore.kernel.org/linux-wireless/4BD621FA.
1000405@openwrt.org/.

[9] IEEE Std 802.11, Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications, 2024.

[10] S. Hebrok, S. Nachtigall, M. Maehren, N. Erinola, R. Merget, J. So-
morovsky, and J. Schwenk, “We really need to talk about session tickets:
A Large-Scale analysis of cryptographic dangers with TLS session
tickets,” in USENIX Security. USENIX Association, Aug. 2023.

[11] N. Erinola, M. Maehren, R. Merget, J. Somorovsky, and J. Schwenk,
“Exploring the unknown DTLS universe: Analysis of the DTLS server
ecosystem on the internet,” in USENIX Security, 2023.

[12] P. Fiterau-Brostean, B. Jonsson, K. Sagonas, and F. Tåquist, “Automata-
based automated detection of state machine bugs in protocol implemen-
tations.” in NDSS, 2023.

[13] W.-F. Alliance, Passpoint Specification Ver. 3.3, 2020.
[14] M. Vanhoef, P. Adhikari, and C. Pöpper, “Protecting Wi-Fi beacons

from outsider forgeries,” in Proceedings of the 13th ACM Conference
on Security and Privacy in Wireless and Mobile Networks, 2020, pp.
155–160.

[15] B. Aboba, “Virtual access points,” IEEE 802.11-03/154r1, 2003.
[16] M. H. Hue, J. Debnath, K. M. Leung, L. Li, M. Minaei, M. H.

Mazhar, K. Xian, E. Hoque, O. Chowdhury, and S. Y. Chau,
“All your credentials are belong to us: On insecure wpa2-enterprise
configurations,” in Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 1100–1117.
[Online]. Available: https://doi.org/10.1145/3460120.3484569

[17] M. Vanhoef and E. Ronen, “Dragonblood: Analyzing the dragonfly
handshake of WPA3 and EAP-pwd,” in 2020 IEEE Symposium on
Security and Privacy (SP). IEEE, 2020, pp. 517–533.

[18] M. Vanhoef and F. Piessens, “Predicting, decrypting, and abusing
WPA2/802.11 group keys,” in USENIX security, 2016.

[19] ——, “Key reinstallation attacks: Forcing nonce reuse in WPA2,” in
Proceedings of the 2017 ACM SIGSAC conference on computer and
communications security, 2017, pp. 1313–1328.

[20] ——, “Release the Kraken: new KRACKs in the 802.11 standard,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, 2018, pp. 299–314.

[21] F. Tobagi and L. Kleinrock, “Packet switching in radio channels: Part ii
- the hidden terminal problem in carrier sense multiple-access and the
busy-tone solution,” IEEE Transactions on Communications, vol. 23,
no. 12, pp. 1417–1433, 1975.

[22] TP-Link, “How to set up Device Isolation on a TP-Link Archer
Router or Deco Mesh System,” 2025. [Online]. Available: https:
//www.tp-link.com/us/support/faq/3968/

[23] ASUS, “[Wireless Router] How to Set up AP Isolated feature?” 2025.
[Online]. Available: https://www.asus.com/us/support/faq/1044821/

[24] D. Schepers, A. Ranganathan, and M. Vanhoef, “Framing frames: By-
passing Wi-Fi encryption by manipulating transmit queues,” in USENIX
Security, 2023.

[25] M. Vanhoef, “Fragment and forge: breaking Wi-Fi through frame
aggregation and fragmentation,” in USENIX security, 2021.

[26] Z. Wang, X. Feng, Q. Li, K. Sun, Y. Yang, M. Li, G. Du,
K. Xu, and J. Wu, “Off-path TCP hijacking in wi-fi networks:
A packet-size side channel attack,” in 32nd Annual Network and
Distributed System Security Symposium, NDSS 2025, San Diego,
California, USA, February 24-28, 2025. The Internet Society,
2025. [Online]. Available: https://www.ndss-symposium.org/ndss-paper/
off-path-tcp-hijacking-in-wi-fi-networks-a-packet-size-side-channel-attack/

[27] M. Vanhoef and J. Robben, “A security analysis of WPA3-PK: Imple-
mentation and precomputation attacks,” in International Conference on
Applied Cryptography and Network Security, 2024.

[28] Y. Yang, X. Feng, Q. Li, K. Sun, Z. Wang, and K. Xu, “Exploiting
sequence number leakage: Tcp hijacking in nat-enabled wi-fi networks,”
arXiv preprint arXiv:2404.04601, 2024.

[29] S. D. Nguyen, M. Mimura, and H. Tanaka, “Slow-port-exhaustion dos
attack on virtual network using port address translation,” in 2018 Sixth

International Symposium on Computing and Networking (CANDAR).
IEEE, 2018, pp. 126–132.

[30] R. Moskowitz, “Weakness in Passphrase Choice in
WPA Interface - Wi-Fi Networking News,” 2003. [On-
line]. Available: https://wifinetnews.com/archives/2003/11/weakness
in passphrase choice in wpa interface.html

[31] D. Schepers, A. Ranganathan, and M. Vanhoef, “On the robustness
of Wi-Fi deauthentication countermeasures,” in Proceedings of the
15th ACM conference on security and privacy in wireless and mobile
networks, 2022, pp. 245–256.

[32] Wi-Fi Alliance, “WPA3 specification version 3.5,” https://www.wi-fi.
org/file/wpa3-specification, Dec. 2025, accessed 14 April 2025.

[33] A. Ornaghi and M. Valleri, “Man in the middle attacks,” in Blackhat
Conference Europe, vol. 1045, 2003.

[34] “Ieee standard for information technology-telecommunications and
information exchange between systems-local and metropolitan area
networks-specific requirements-part 11: Wireless lan medium access
control (mac) and physical layer (phy) specifications: Amendment 6:
Medium access control (mac) security enhancements,” IEEE Std 802.11i-
2004, pp. 1–190, 2004.

[35] A. Buhr, D. Lindskog, P. Zavarsky, and R. Ruhl, “Media access control
address spoofing attacks against port security,” in 5th USENIX Workshop
on Offensive Technologies (WOOT 11), 2011.

[36] S. Explorer, “drop unicast in l2 multicast | sysctl-explorer.net.”
[Online]. Available: https://sysctl-explorer.net/net/ipv4/drop unicast
in l2 multicast/

[37] O. Wiki, “[OpenWrt Wiki] Guest Wi-Fi using LuCI,” 2025.
[Online]. Available: https://openwrt.org/docs/guide-user/network/wifi/
guestwifi/configuration webinterface

[38] D.-W. Wiki, “Guest Network - DD-WRT Wiki,” 2025. [Online].
Available: https://wiki.dd-wrt.com/wiki/index.php/Guest Network

[39] L. Florio and K. Wierenga, “Eduroam, providing mobility for roaming
users,” in Proceedings of the EUNIS 2005 Conference, Manchester,
2005.

[40] S. Goldberg, M. Haller, N. Heninger, M. Milano, D. Shumow,
M. Stevens, and A. Suhl, “RADIUS/UDP considered harmful,” in
USENIX Security, 2024.

[41] X. Jiao, W. Liu, M. Mehari, M. Aslam, and I. Moerman, “openwifi: a
free and open-source ieee802.11 sdr implementation on soc,” in 2020
IEEE 91st Vehicular Technology Conference (VTC2020-Spring), 2020.

[42] Google, “Google transparency report: HTTPS encryption on the web,”
https://transparencyreport.google.com/https/overview, accessed on Au-
gust 5, 2025.

[43] A. P. Felt, R. Barnes, A. King, C. Palmer, C. Bentzel,
and P. Tabriz, “Measuring HTTPS adoption on the web,”
in USENIX Security. Vancouver, BC: USENIX Association,
Aug. 2017. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/felt

[44] S. Patil and N. Borisov, “What can you learn from an ip?” in Proceedings
of the 2019 Applied Networking Research Workshop, ser. ANRW ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
45–51. [Online]. Available: https://doi.org/10.1145/3340301.3341133

[45] B. Miller, L. Huang, A. D. Joseph, and J. D. Tygar, “I know why you
went to the clinic: Risks and realization of HTTPS traffic analysis,” in
Privacy Enhancing Technologies: 14th International Symposium, PETS
2014, Amsterdam, The Netherlands, July 16-18, 2014. Proceedings 14.
Springer, 2014, pp. 143–163.

[46] E. Papadogiannaki and S. Ioannidis, “A survey on encrypted network
traffic analysis applications, techniques, and countermeasures,” ACM
Comput. Surv., vol. 54, no. 6, Jul. 2021. [Online]. Available:
https://doi.org/10.1145/3457904

[47] F. Alharbi, J. Chang, Y. Zhou, F. Qian, Z. Qian, and N. Abu-Ghazaleh,
“Collaborative client-side DNS cache poisoning attack,” in IEEE INFO-
COM 2019 - IEEE Conference on Computer Communications, 2019.

[48] F. Alharbi, Y. Zhou, F. Qian, Z. Qian, and N. Abu-Ghazaleh, “DNS
poisoning of operating system caches: Attacks and mitigations,” IEEE
Transactions on Dependable and Secure Computing, 2022.

[49] Aruba Networks, “What does prohibit IP spoofing do
and how do i enable it?” 2025, accessed on June 6,
2025. [Online]. Available: https://community.arubanetworks.com/
community-home/librarydocuments/viewdocument?DocumentKey=
a0d2aa96-24e8-400a-888d-6fa73a5feac0

16

https://lore.kernel.org/linux-wireless/4BD621FA.1000405@openwrt.org/
https://lore.kernel.org/linux-wireless/4BD621FA.1000405@openwrt.org/
https://doi.org/10.1145/3460120.3484569
https://www.tp-link.com/us/support/faq/3968/
https://www.tp-link.com/us/support/faq/3968/
https://www.asus.com/us/support/faq/1044821/
https://www.ndss-symposium.org/ndss-paper/off-path-tcp-hijacking-in-wi-fi-networks-a-packet-size-side-channel-attack/
https://www.ndss-symposium.org/ndss-paper/off-path-tcp-hijacking-in-wi-fi-networks-a-packet-size-side-channel-attack/
https://wifinetnews.com/archives/2003/11/weakness_in_passphrase_choice_in_wpa_interface.html
https://wifinetnews.com/archives/2003/11/weakness_in_passphrase_choice_in_wpa_interface.html
https://www.wi-fi.org/file/wpa3-specification
https://www.wi-fi.org/file/wpa3-specification
https://sysctl-explorer.net/net/ipv4/drop_unicast_in_l2_multicast/
https://sysctl-explorer.net/net/ipv4/drop_unicast_in_l2_multicast/
https://openwrt.org/docs/guide-user/network/wifi/guestwifi/configuration_webinterface
https://openwrt.org/docs/guide-user/network/wifi/guestwifi/configuration_webinterface
https://wiki.dd-wrt.com/wiki/index.php/Guest_Network
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/felt
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/felt
https://doi.org/10.1145/3340301.3341133
https://doi.org/10.1145/3457904
https://community.arubanetworks.com/community-home/librarydocuments/viewdocument?DocumentKey=a0d2aa96-24e8-400a-888d-6fa73a5feac0
https://community.arubanetworks.com/community-home/librarydocuments/viewdocument?DocumentKey=a0d2aa96-24e8-400a-888d-6fa73a5feac0
https://community.arubanetworks.com/community-home/librarydocuments/viewdocument?DocumentKey=a0d2aa96-24e8-400a-888d-6fa73a5feac0

[50] “IEEE standard for local and metropolitan area networks-media access
control (MAC) security,” IEEE Std 802.1AE-2018 (Revision of IEEE Std
802.1AE-2006), pp. 1–239, 2018.

[51] N. Borisov, I. Goldberg, and D. Wagner, “Intercepting mobile commu-
nications: The insecurity of 802.11,” in Proceedings of the 7th annual
international conference on Mobile computing and networking, 2001,
pp. 180–189.

[52] S. Fluhrer, I. Mantin, and A. Shamir, “Weaknesses in the key scheduling
algorithm of RC4,” in Selected Areas in Cryptography: 8th Annual
International Workshop, SAC 2001 Toronto, Ontario, Canada, August
16–17, 2001 Revised Papers 8. Springer, 2001, pp. 1–24.

[53] A. Stubblefield, J. Ioannidis, A. D. Rubin et al., “Using the fluhrer,
mantin, and shamir attack to break WEP.” in NDSS, 2002.

[54] C. He and J. C. Mitchell, “Analysis of the 802.11 i 4-way handshake,”
in Proceedings of the 3rd ACM Workshop on Wireless Security, 2004.

[55] C. He, M. Sundararajan, A. Datta, A. Derek, and J. C. Mitchell, “A
modular correctness proof of IEEE 802.11i and TLS,” in Proceedings
of the 12th ACM conference on Computer and communications security,
2005, pp. 2–15.

[56] K. G. Paterson, B. Poettering, and J. C. Schuldt, “Plaintext recovery
attacks against WPA/TKIP,” in Fast Software Encryption: 21st Inter-
national Workshop, FSE 2014, London, UK, March 3-5, 2014. Revised
Selected Papers 21. Springer, 2015, pp. 325–349.

[57] E. Tews and M. Beck, “Practical attacks against WEP and WPA,”
in Proceedings of the second ACM conference on Wireless network
security, 2009, pp. 79–86.

[58] M. Vanhoef and F. Piessens, “All your biases belong to us: Breaking
RC4 in WPA-TKIP and TLS,” in USENIX Security, 2015, pp. 97–112.

[59] ——, “Practical verification of WPA-TKIP vulnerabilities,” in Proceed-
ings of the 8th ACM SIGSAC symposium on Information, computer and
communications security, 2013, pp. 427–436.

[60] Wi-Fi Alliance, “WPA3 specification version 3.4,” https://www.wi-fi.
org/file/wpa3-specification, 2024, accessed on January 10, 2025.

[61] X. Zhou, Q. Deng, J. Pu, K. Man, Z. Qian, and S. V. Krishnamurthy,
“Untangling the knot: Breaking access control in home wireless mesh
networks,” in Proceedings of the 2024 on ACM SIGSAC Conference on
Computer and Communications Security, 2024, pp. 2072–2086.

[62] M. S. Ahmad, “Wpa too!” in DEF CON, 2010.
[63] B. Knight, “Bypassing wifi client isolation,” Retrieved

15 December 2025 from https://pulsesecurity.co.nz/articles/
bypassing-wifi-client-isolation, 2025.

[64] M. Conti, N. Dragoni, and V. Lesyk, “A survey of man in the middle
attacks,” IEEE communications surveys & tutorials, vol. 18, no. 3, pp.
2027–2051, 2016.

[65] A. Vázquez-Ingelmo, Á. Moreno-Montero, and F. J. Garcı́a-Peñalvo,
“Threats behind default configurations of network devices: wired local
network attacks and their countermeasures,” Handbook of Computer
Networks and Cyber Security: Principles and Paradigms, 2020.

APPENDIX A
ARTIFACT APPENDIX

This appendix describes how to evaluate the functionality
of our scripts that were used to test devices for the following
three vulnerabilities: (1) Gateway bouncing; (2) Port stealing
and its attack variants; (3) Abusing GTK. We include scripts
that set up a virtualised Wi-Fi environment, making it easier
to verify the functionality of our code.

A. Description & Requirements

1) How to access: The code tested during artifact evalua-
tion is available at https://doi.org/10.5281/zenodo.17905486 It
contains scripts and explanations helpful to reproducing some
Wi-Fi exploitation techniques in the paper. We recommend
following the README.md in this linked archive, and also
repeat all essential commands in this appendix.

2) Hardware dependencies: For evaluation, an x86-64 pro-
cessor is recommended and we recommend at least 2 CPU
cores and 4GB of RAM. No physical wireless NIC is required,
as we use linux mac80211_hwsim to simulate wireless
NICs. Our code was tested on Ubuntu 22.04.5 LTS.

3) Software dependencies: Please use a clean/new Ubuntu
22.04.5 installation for evaluation. sudo access is required.
Software dependencies will be automatically installed.

4) Benchmarks: No data is needed to run the tests.

B. Artifact Installation & Configuration

1) Do only once: After a clean/new Ubuntu 22.04.5 instal-
lation, please run the following two commands with Internet
on to install software dependencies.

$ sudo apt update
$ sudo apt install libnl-3-dev \

libnl-genl-3-dev libnl-route-3-dev \
libssl-dev libdbus-1-dev pkg-config \
build-essential git python3-venv \
aircrack-ng rfkill net-tools dnsmasq \
tcpreplay macchanger

Select “No” for the question “Change MAC automatically?”
during macchanger installation. After these, launch a termi-
nal window A and clone the repository. Then enter the project’s
directory, and with an Internet on, run:
./setup.sh
With Internet on, launch another terminal window B, and

also cd into the project folder, and run:
$ cd macstealer/research
$./build.sh && ./pysetup.sh
2) Repeatable: Do these for every claim in the paper.
In terminal window B, confirm you are always in the folder

macstealer/research, and run:
$ sudo su
$ source venv/bin/activate

Go back to terminal window A and execute:
$ cd setup
$ sudo su
$ source venv/bin/activate

C. Experiment Workflow

For three major claims below, we respectively: (1) create a
simulated networking environment; and (2) run the test case
and inspect the screen output to prove the effectiveness of
exploitation techniques.

D. Major Claims

The main claims of our paper are:
• (C1): Gateway Bouncing can inject Wi-Fi traffic in vul-

nerable setups regardless of encryption protocols used,
including WEP, TKIP, CCMP and GCMP.

• (C2): Port Stealing can intercept Wi-Fi traffic in vul-
nerable setups regardless of encryption protocols used,
including WEP, TKIP, CCMP and GCMP.

17

https://www.wi-fi.org/file/wpa3-specification
https://www.wi-fi.org/file/wpa3-specification
https://pulsesecurity.co.nz/articles/bypassing-wifi-client-isolation
https://pulsesecurity.co.nz/articles/bypassing-wifi-client-isolation
https://doi.org/10.5281/zenodo.17905486

• (C3): Abusing GTK can inject Wi-Fi traffic in vulnerable
setups regardless of encryption protocols used. As GTK is
a WPA feature, TKIP, CCMP and GCMP are vulnerable
to Abusing GTK.

E. Evaluation

1) Experiment (E1): [Gateway Bouncing] [30 human-
minutes + 0 compute-hour]: This experiment simulates 2
Wi-Fi APs wlan0 (using WPA3-Personal), wlan1 (using
WPA2-Personal), and lets a victim client connect to wlan0
AP, and lets the attacker connect to wlan1 AP. Both APs
have ap_isolate=1 on. An attacker then uses Gateway
Bouncing technique in macstealer.py to inject a UDP
packet to the victim, bypassing client isolation.

[How to] We will use window A to launch vulnerable
networking setups and use window B to connect victim and
attacker to wlan0 and wlan1 respectively and perform
Gateway Bouncing.

[Preparation] In terminal A, perform “Repeatable” actions
in Section C, and run:
$./setup-br0-gwbounce.sh
In terminal B, perform “Repeatable” actions in Section C.
[Execution] In terminal B, run a one-liner:

$ python3 macstealer.py wlan2 --c2c-ip \
wlan3 --other-bss --no-ssid-check \
--config \
client-simulated-AE-gatewaybouncing.conf

[Results] If you see at least one line of the following log,
this test case passes:

>>> Client to client traffic at IP layer
is allowed (PSK{passphrase_atkr}
to SAE{passphrase_victim}).

Press Ctrl-C in terminal B to end this test case.
2) Experiment (E2): [Port Stealing] [30 human-minutes

+ 0 compute-hour]: This experiment simulates 2 Wi-Fi
APs wlan0 (using WPA3-Personal), wlan1 (using WPA2-
Personal), and lets a victim client connect to wlan0 AP,
and lets the attacker connect to wlan1 AP. Both APs have
ap_isolate=1 on. An attacker then uses Port Stealing tech-
nique in macstealer.py to intercept downstream packets
sent from the gateway/router to the victim, bypassing client
isolation.

[How to] We will use window A to launch vulnerable
networking setups and use window B to connect victim and
attacker to wlan0 and wlan1 respectively and perform Port
Stealing.

[Preparation] In terminal A, press Ctrl-C to exit any experi-
ment that is possibly still running. Only perform “Repeatable”
actions in Section C again if you accidentally shut terminal A
off, and then run:
$./setup-br0-portsteal.sh
In terminal B, remember to perform “Repeatable” actions

in Section C if you have not done so.
[Execution] In terminal B, run a one-liner:

$ python3 macstealer.py wlan2 \
--c2c-port-steal wlan3 \
--other-bss --no-ssid-check --config \
client-simulated-AE-portsteal.conf \
--server 192.168.100.1

[Results] If you see at least one line of the following log,
this test case passes:

>>> Downlink port stealing is successful.

Press Ctrl-C in terminal B to end this test case.
3) Experiment (E3): [Abusing GTK] [30 human-minutes

+ 0 compute-hour]: This experiment simulates 2 Wi-Fi
APs wlan0 (using WPA3-Personal), wlan1 (using WPA2-
Personal), and lets a victim client connect to wlan0 AP, and
lets the attacker connect to the same wlan0 AP. Both APs
wlan0 and wlan1 have ap_isolate=1 on. An attacker
then uses Abusing GTK technique in macstealer.py to
inject frames directly to the victim, bypassing client isolation.
After that, we let a victim client connect to wlan1 AP, and
lets the attacker connect to the same wlan1 AP and perform
Abusing GTK again, to prove the claim C3.

[How to] We use window A to launch vulnerable networking
setups and use window B to connect victim and attacker to
wlan0 and wlan1 in turn and perform Abusing GTK.

[Preparation] In terminal A, perform “Repeatable” actions
in Section C, and run:
$ press./setup-br0-gtkabuse.sh
In terminal B, perform “Repeatable” actions in Section C.
[Execution] In terminal B, run:

$ python3 macstealer.py wlan2 \
--c2c-gtk-inject wlan3 --other-bss \
--no-ssid-check --config \
client-simulated-AE-gtkabuse.conf \
--no-id-check --c2m-mon-channel 6

[Results] If you see at least one line of the following log,
this sub-test-case passes:

>>> GTK wrapping ICMP ping is allowed
(SAE{passphrase_victim} to
SAE{passphrase_victim}).

Press Ctrl-C in terminal B to end this sub-test-case.
[Execution] In terminal B, run:

$ python3 macstealer.py wlan2 \
--c2c-gtk-inject wlan3 --other-bss \
--no-ssid-check --config \
client-simulated-AE-gtkabuse2.conf \
--no-id-check --c2m-mon-channel 1

[Results] If you see at least one line of the following log,
this sub-test-case passes:

>>> GTK wrapping ICMP ping is allowed
(PSK{passphrase_atkr} to
PSK{passphrase_atkr}).

Press Ctrl-C in terminal B to end this test case.

18

	Introduction
	Wi-Fi Primer
	Wi-Fi Architecture
	Wi-Fi Security

	Overview
	Client Isolation
	Threat Model
	Methodology
	Summary of Results

	Bypassing Client Isolation via Shared Keys
	Injection and MitM against Home WPA2/3
	Frame Injection Abusing GTK and IGTK
	Abusing GTK
	Escalating GTK Abuse using Passpoint Flaws

	Attacking Switching and Routing
	Injection Attacks at the Routing Layer
	Interception Attacks at the Switching Layer
	Injection Attacks at the Switching Layer

	Gaining Full MitM in Enterprise Networks
	MitM Attack on Victims on the same AP
	Cross-AP MitM Attacks are Practical

	Evaluation and Measurement
	Experiment Setups
	Measuring Inter-BSSID Isolation Policies
	Measuring GTK Abuse Acceptance by OSes
	Experiments Against Home Routers
	Experiments Against Enterprise-Grade Devices
	Experiments in Networks in the Wild
	Attacks in Enterprise Settings on a Local Testbed
	Measuring Port Stealing and GTK Abuse Performance
	Environmental and Distance Factors
	Bit rate limitation

	Discussion and Defense
	Combining Multiple Attack Techniques
	Facilitating Higher-Layer Attacks
	Defense
	Responsible Disclosure

	Related Work
	Conclusions
	References
	Appendix A: Artifact Appendix
	Description & Requirements
	How to access
	Hardware dependencies
	Software dependencies
	Benchmarks

	Artifact Installation & Configuration
	Do only once
	Repeatable

	Experiment Workflow
	Major Claims
	Evaluation
	Experiment (E1)
	Experiment (E2)
	Experiment (E3)

