Strategic Games and Zero Shot Attacks
on Heavy-Hitter Network Flow Monitoring

Francesco Da Dalt
ETH Ziirich
francesco.dadalt@inf.ethz.ch

Abstract—Heavy-hitter detection underpins line-rate DDoS
mitigation and rate-limiting, yet its resilience against adap-
tive adversaries is largely unexplored. We build an end-to-
end evaluation framework that embeds heavy-hitter detection
logic in a switch-level simulator, and auto-tunes its parameters
using reinforcement learning to rate-limit elephant flows in the
network. We subsequently confront the protection system with
an adaptive adversary that learns to maximize throughput while
evading detection and show that it manages to breach the
configured bandwidth cap by up to 299%, exposing systematic
blind spots. To harden the monitoring system we apply a form of
joint adversarial training: detector and adversary co-evolve and
reach an attack-defense Nash equilibrium in which the attacker’s
ability to exploit network bandwidth has been reduced by a factor
2.2x. Lastly, we show that it is possible to use machine learning
to create smart packet-synthesizers which are able to perform
bandwidth exploits on 8 out of 9 tested systems, without any prior
knowledge on the targeted detection system. We refer to this as
a zero-shot attack as it does not require knowledge about the
targeted heavy-hitter detection system to perform its function.
Our open-source framework helps quantify underilluminated
attack surfaces and provides a constructive approach towards
adversarially robust data-plane flow monitoring.

I. INTRODUCTION

The resources of any real computer network are limited and
therefore managing the sharing of resources among network
entities is essential for the system’s operation [1], [2], [3], [4].
The particular security aspect considered in this paper is the
problem of ensuring that packet streams emitted by entities
comply with bandwidth limitations [5]. This problem arises in
the context of protecting network infrastructure against Denial-
of-Service (DoS) attacks, but also when ensuring fair resource
sharing and improving network QoS [6], [7], [8]. In general,
to enforce compliant behavior of network flows requires to
observe and monitor flows [9], [10], [11], where a flow is
a sequence of packets which all share some common flow-
identifier (e.g., source and destination addresses and ports).

In large-scale network systems, flow monitoring cannot
simultaneously achieve low cost, high accuracy, and low
latency [5], [12]. The volume of flows is too large compared to

Network and Distributed System Security (NDSS) Symposium 2026
23-27 February 2026, San Diego, CA, USA

ISBN 979-8-9919276-8-0
https://dx.doi.org/10.14722/ndss.2026.241301
www.ndss-symposium.org

Adrian Perrig
ETH Ziirich
aperrig@inf.ethz.ch

the resources available to the average network device, thereby
forcing monitoring systems to make trade-offs [13]. A modern
solution approach for this problem is to ignore the small flows
and focus on the heavy-hitters [14], [15], [16], [17], [18].
Heavy-hitters are flows which consume a significantly larger
amount of bandwidth compared to the average. The concrete
specification of the flow-identifier defines the semantics of
what a heavy hitter is: For example, grouping all packets with
the same destination under one common identifier /D means
that a heavy hitter will indicate a potential Distributed Denial-
of-Service (DDoS) attack. In contrast, grouping packets by
source allows locating potentially unfair or malicious traffic
emitters that consume a larger amount of bandwidth than what
would be fair, thereby identifying potential DoS attacks.

State of the art DDoS-protection methods [16], [17], [18]
make use of specialized Heavy-Hitter-Detector (HHD) algo-
rithms which have the ability to identify large flows in the
network traffic using only a fraction of the memory and
compute resources required by a naive approach. The tradeoff
is that HHDs may report false-positives or false-negatives and
their theoretic accuracy guarantees are often probabilistic [19],
[10], [20], [21]. In particular since both HHD algorithms as
well as DDoS protection systems are typically benchmarked
and evaluated on static packet-traces that have either been
collected or synthesized, not much focus has been put on
whether traffic-patterns generated by an adapting adversary
have the ability to avoid detection by the HHD algorithm and
thus circumvent defensive rate-limiting systems.

This paper explores the extent to which smart adversaries
are able to circumvent HHD-based protective rate-limiting sys-
tems by means of training smart agents using Reinforcement
Learning (RL). The focus lies in particular on the heavy-hitter
detection part of the defense structure.

Contributions: This work demonstrates that while HHD
algorithms provide theoretic guarantees on their accuracy,
evasive packet-patterns can be generated when considering
more practical implementations. By means of joint training of
adversary and defender we are able to improve the robustness
of HHDs to evasive strategies, as well as generate artificial
traffic patterns that are able to exceed the allowed bandwidth
cap without any prior knowledge on the rate-limiting system.

We first describe the problem and environment setup in
Section II and apply RL in order to automatically tune HHD
hyperparameters (e.g., thresholds, refresh periods, decay-rates)

to maximize the rate-limiting performance.

In Section III we introduce Neural Traffic Agents (NTAs)
which are trained to generate traffic patterns which (partially)
circumvent the rate-limiting systems in order to consume a
larger amount of bandwidth than what would be allowed.
Evaluations show that for all HHD algorithms it is possible
to design evasive traffic patterns, ranging from 10% to 299%
overuse using synthetic background traffic or from 78% to
671% when evaluated using captured background traffic.

Section IV-B demonstrates how combined adversarial train-
ing of attacker and defender can be used to improve the
resilience of a HHD algorithm, e.g., ELASTICSKETCH [15],
to evasive traffic patterns, reducing the exploitability from
299% to 139% by a factor of 2.2 and improving rate-limiting
performance form 60.8 to 102.4 by a factor of 1.7.

Lastly, we show in Section V that it is possible for an
NTA to develop sophisticated evasive traffic pattern strategies,
without ever having seen any of the HHD algorithms we
consider in this paper. We achieve this by creating a highly
flexible surrogate HHD algorithm called Neural Monitor Agent
(NMA) which serves as a training partner for the NTA. NTA
and NMA train against each other in an attack-defense setup
and learn increasingly better counter-strategies by interacting
with the respective opponent. The final trained NTA performs
successful zero-shot attacks on 8 out of 9 HHD algorithms,
where zero-shot means that the attacking NTA does not know
which HHD algorithm it is trying to evade, and it also cannot
adjust its strategy once the attack has started.

All code associated with this paper is open-source [22].

Related Work: Defensive systems such as POSEIDON
[16], JAQEN [17], and INDDOS [18] approach DoS from
multiple angles. POSEIDON performs traffic monitoring and
rate-limiting entirely in a P4 data plane and uses sketch-
based compressive data-structures to measure flows. JAQEN
uses special universal-sketches [23] to aggregate network-
wide measurements for improved HHD detection, while
INDDOS uses a special data-plane algorithm BACON to
quickly detect and subsequently protect DDoS victims. All of
these works however only evaluate against staticly generated
attack-patterns. Methods such as NIDSGAN [24] and DEEP-
PACKGEN [25] have shown that specially-designed traffic
patterns can severely reduce the accuracy of traffic- and flow-
classifiers, thereby posing a security risk. NIDSGAN uses
a Generative Adversarial Network (GAN) [26] to perturb
malicious traffic such that it gets misclassified by a Net-
work Intrusion Detection System (NIDS). DEEP-PACKGEN
employs a RL-based framework for finding adversarial traffic
patterns that fool a target NIDS. Other approaches such as
PAC-GAN [27] use GANs to generate realistic packet-level
traffic, but do not consider the goal of generating antagonistic
behavior.

II. RATE LIMITING HEAVY HITTERS IN THE DATA PLANE

In this work we regard the task of using HHD in order to
rate-limit flows that exceed some set amount of bandwidth.
HHDs are useful in this context as they allow reducing the

Algorithm 1 Packet Processing Pipeline
1: requires hhd > A HHD algorithm
2: requires 7' Bs > Token-buckets for rate-limiting
3: procedure PROCESSPACKET(p, timenow)
4 hhd.update(p.ID, p.size, timenoy)
5: isHeavyHitter < hhd.query(p.ID)
6: if isHeavyHitter then
7
8
9

T Bs.insert(p.ID)
> If full, token buckets are freed in LRU order
: isAllowed < T Bs.withdrawTokens(p.ID, p.size)
10: if isAllowed then

11: p.forward()
12: else
13: p.drop()

number of flows that need to be monitored by a token-bucket
system by focusing the attention on the heavy-hitters, thereby
not requiring a token bucket for every flow in the packet
stream.

A. Problem Environment

We consider a network system consisting of up to n concur-
rent flows whose packets pass through a simulated data-plane
with an ingress-queue, a HHD algorithm, and a token-bucket
based rate-limiter. Packets that are successfully forwarded by
the data-plane arrive at a receiver which explicitly acknowl-
edges received packets to the source.

1) Traffic Generation: We generate traffic pseudo-randomly
such that the duration of individual flows follows an exponen-
tial distribution with mean 1 second, and the throughput per
flow follows a Weibull distribution with mean p = 20 MTU/s
where MTU is the maximum transmission unit. Since we
simulate the environment, the MTU does not have to be
concretely instantiated but it lies typically between 1.5 kB and
65 kB in real network systems. The number of active flows at
any point in time is randomly distributed between 0 and n with
mean n/2. Flows have an average rate of p and a 10% chance
to exceed the rate-limit threshold 2y = 40 MTU/s. This limit
is chosen to not be too low to the point where it cannot be
considered an excess anymore, and not too high which would
allow too much unfair behavior to not be considered as bad by
the monitor. The top 10% of flows have an expected rate of
2.87u, while the bottom 90% have an expected rate of 0.65u.
Packet sizes are uniformly distributed between 0.01 MTU
and 1 MTU. Figure 1 visualizes statistics collected from
a simulation trace. Except for experiments in Section V,
we use n = 1000 as the maximum number of concurrent
flows. We use freshly generated synthetic traffic in favor
of captured traces in order to avoid overfitting of machine-
learning methods to specific packet captures, thereby skewing
results. For evaluation purposes we also use packet-captures to
replay more realistic traffic. In particular we use data provided
by MAWTI [28], [29] (see Appendix F). Throughout this work
we exclusively use synthetic data for training purposes.

3

£

£500 1

()
_—2
L8 0

o <

H
N W’W
o ‘

<

—

55*100 ' '

S R Y/
RS

=Ty ‘W"‘t‘
8

X

o0
§E 0
2

S 25 II

JIJ]

[}

¥/

Q

ch O-I‘ T T T T T T

0 10 20 30 40 50 60
Time [s]

Fig. 1: Synthetic data trace: Color and brightness indicate the
strength of the smoothening filter applied to the time-series.

2) Data Plane: The precise data-plane logic we simulate
is as follows: An incoming packet lands in the ingress queue.
The queue has a processing rate of p - n and will therefore
become congested under high load. Packets that make it into
the queue get processed by the HHD algorithm which decides
whether to perform token-bucket based rate limiting on the
flow or not. The number of available token-buckets is limited
and we perform Least-Recently-Used (LRU) based eviction
when necessary. The token buckets are configured to have a
refill rate of 2 and a capacity of 4;.. When a packet belonging
to a flow that is in a token bucket does not have enough tokens,
the packet is dropped. Otherwise the packet is forwarded.
Algorithm 1 describes the high-level logic in pseudocode.
The rate-limiter is constrained to 10 token-buckets, and the
memory of the HHD algorithm is limited to n/10 memory
cells, where a “memory cell” can hold either a number, a
timestamp, or a flow-ID.

In summary, the HHD acts as a filter for which flows should
be rate-limited using a token bucket. By construction, packets
can only be lost due to congestion or rate-limiting (which has
no false negatives). The data-plane logic is designed based on
the common high-level characteristics of different state of the
art rate-limiting systems [16], [17], [15], [14].

B. Tuning Heavy Hitter Detectors

In this work we perform experiments on nine different HHD
algorithms: ELASTIC-SKETCH (ES) [15], HEAVY-KEEPER
(HK) [14], MISRA-GRIES (MGQG) [30], SPACE-SAVING (SS)
[31], COUNTMIN-HEAP (CM) [19], COUNTBAYES-HEAP
(CB) [21], ALBUS (AL) [20], CouNT-HEAP (CH) [32], and
HASHPIPE (HP) [33]. These nine methods cover a range of

different approaches to HHD: CH, CM, and CB are sketch-
based and estimate the size of all flows in the packet stream,
and use a min-heap to track heavy hitters. SS, HP, and MG
use a counter-based approach which focuses on measuring the
size of a few large flows with higher accuracy. AL and HK
extend on the counter-based approach and implement special
approaches for decaying the counters in order to remove the
need to manually refresh the counters over time. ES combines
sketch-based and counter-based approaches to strike a better
balance between measuring small and large flows.

These algorithms all have some hyperparameters that need
to be tuned in a realistic deployment. Some hyperparameters
are common across multiple methods:

o Sketch- and heap-based methods (e.g. CM and SS) re-
quire periodic refreshes in order to expel stale information
from memory. The Refresh-Time (RT) is tuneable and has
significant performance implications: A short RT reduces
the time the HHD requires to identify new heavy hitters,
while a longer RT increases the accuracy of the HHD as it
aggregates more information into its decisions.

o Decay-based approaches (AL and HK) need to tune their
decay-rates and related parameters in order to balance
responsiveness and accuracy.

« All HHDs require a tuneable threshold parameter in order to
decide whether some detected heavy-hitter is large enough
to be subject to token-based rate limiting.

We use Reinforcement Learning (RL) in order to optimally
set these parameters. RL is a type of machine learning in
which an agent, in this case the HHD algorithm, improves
itself by interacting with a training-environment and learning
which hyperparameter configurations are best by observing the
rewards it receives.

C. Optimizing HHD Hyperparameters using RL

Considering the scope of this paper, the two most relevant
aspects of RL for the purpose of HHD tuning are: The policy 7
which decides which actions to take, and the reward function
p which assigns rewards to the entity being trained.

7 is a function that outputs a choice of hyperparameters
for the HHD algorithm # (e.g. refresh-period, threshold,
decay-rate, etc.). We implement this function as a 1-layer
feedforward neural network with input dimension 0, i.e. a
constant function that has no arguments, but which can still
be trained and optimized using deep-learning based backprop-
agation. The output of a policy-function like 77 is referred to
as an action and is fed into a running HHD simulation.

pTHD is a function that gives rewards to the HHD de-
pending on the execution trace of the simulation. Concretely,
we define p’HP to do the following: Every time that the
HHD processes a packet of size s and with id I D, and marks
the flow ID for token-bucket based rate-limiting, the HHD
receives a reward of —s. Whenever the token-bucket drops
a packet of size s’ due to rate-limiting, the HHD receives a
reward of 2 x s’. To summarize, the HHD receives a penalty
for inserting flows into the rate-limiter, but it receives rewards
whenever the rate-limiter drops a packet.

o 100 A

(%
g

o
1

4000

] — Queue avail.

T

—

[\]

S

S

S
1

10000 +

8000

6000

4000

2000 +

Cumulative Rewards [MTU

Time 3]

Fig. 2: Cumulative rewards of tuned HHDs: Shown are 10
evaluations for each HHD method over the same packet-trace.
Each run randomizes the used hash-functions which is why
sketch-based methods (e.g., CB) exhibit random fluctuations,
while hash-less methods (e.g., MG and SS) are deterministic.

This reward-scheme serves the purpose to penalize the HHD
for marking too many flows as heavy-hitters, while rewarding
it whenever a reported heavy-hitter exceeds its allowed rate.
The choice of this reward function is motivated in Section V.
The reward function p P is the same for all HHDs we tune.

1) Training Procedure: We use Proximal Policy Optimiza-
tion (PPO) [34] in order to learn the best choice of ©* for
each HHD H. We simulate the training environment natively
as a MDP. Each training step begins by gathering execution
traces of 32 independent (randomized) simulations, where each
simulation spans 6 seconds. We then perform 100 steps of PPO
based on the gathered data. Each step of PPO optimizes 77t
such that it maximizes the cumulative received rewards. Every
10 training steps (i.e. 1000 PPO steps) we evaluate 7’ on
longer simulations of 60 seconds (again over 32 independent
random runs). The evaluation-performance of 77 is measured
by the average Reward per Second (RpS) it receives, higher
being better. We use the RpS measurements to checkpoint the
best trained policy 77, If the best RpS has not been surpassed
in the last 100 training steps, we reduce the learning-rate to
allow for better fine-tuning. Training stops if the learning-rate
reduction brought no improvement. For more details we refer
to Appendices D and E.

2) Tuned HHD Performance: The training procedure de-
scribed in the preceding section yields optimal policies 7,
7AL ... for each HHD algorithm. We evaluate the methods by
measuring the cumulative rewards earned over 60 seconds time

71,14L ﬂ.C'B 71.C]M 7.‘.ES 71.HK' 71,IMG ﬂ.SS 7z.C'H 71.HP
RpS (&) 1774 |64.5 |30.0 [22.2 |39.5 |15.0 |189.5|63.3 [227.4
RpS (R) | 1116.2]941.71140.3 [122.1|33.1 |699.8 [950.21946.2|943.1

TABLE I: Average Reward per Second (RpS) achieved by dif-
ferent HHD algorithms after RL-based hyperparameter tuning
on synthetic (&) and real ($R) traffic.

and display the results for a single packet-trace in Figure. 2.
Table I provides statistically more significant measurements
collected over 320 independent runs. Rewards are significantly
higher on the real compared to the synthetic traces because in
real data streams there are fewer but more extreme outliers.
A first surprising observation is that the different methods,
despite all having a common goal of identifying heavy-hitters,
exhibit vastly different performance when measured based on
the gathered rewards. The reason why this is possible is that
the HHD algorithm must cooperate with the rate-limiter in
order to gather rewards which requires three characteristics:

« Responsiveness: The HHD must quickly identify heavy-
hitters while they are still hitting. Detecting a heavy hitter
that has already elapsed 90% of its lifetime is of little value.

o Magnitude: To correctly prioritize which flows to rate-limit,
the magnitude of flows must be inferrable from the HHD.
It is not sufficient to know whether a flow is a top-k heavy-
hitter; we require to know which of the heavy hitters are
the biggest and which we can expect to exceed the allowed
rate in order to maximize the impact of the rate-limiter.

o Selectivity: In order for a token-bucket to perform its task
and generate value, it requires a minimum amount of time
assigned to a single flow in order to deplete the heavy-
hitter’s token capacity and start dropping its packets. The
HHD therefore needs to be selective with which flows it
marks as heavy-hitters as it will be unable to receive positive
rewards if it switches too quickly.

These qualities determine the ability of HHDs to succeed in
the experimental setup we consider in this paper. From the
measurements we see that for example AL and HP perform
considerably better than the other methods and we attribute
this to a combination of good selectivity and magnitude
estimation: AL can be highly selective by tuning its rate-
parameter and only allowing the highest-rate flows to be
marked for rate-limiting. HP on the other hand provides very
stable magnitude estimates by counting the aggregate volume
of a few flows. According to the collected data, what appears to
set these methods apart from conceptually similar approaches
such as MG, ES, and HK is the ability to estimate the
magnitude under different traffic conditions: AL and HP have
the ability to estimate the absolute rate of individual flows
independent of how much other traffic is passing through.
On the other hand, MG for example decrements the counters
at a rate proportional to the amount of traffic. This helps
it expel stale information quicker, but it comes at the cost
of coupling the estimated magnitude of heavy-hitters to the
overall link-rate, making it more difficult to decide whether a

4000

3000 +
=
~

= 2000
&=
=3

2 1000
ey
3
~

e 0+
fart
3
B
Q

~ —1000 +

—2000 A

T T T T T T T
0 10 20 30 40 50 60
Time]

Fig. 3: Reward rates of tuned HHDs: The positive and negative
axes indicate the (smoothed) rate at which HHDs earn rewards
(positive axis) and pay penalties (negative axis) respectively.

flow is exceeding its allowed rate. This behavior can be seen
in Figure 3 which plots the rate of reward gain and loss over
time. At 32 seconds we see a sudden increase in penalties paid
by MG which is due to the low amount of traffic at that point
in time leading to almost no counter-decay and thus inflating
the magnitude estimates of flows.

CM suffers from the same issue as decay-based methods
except in this case the flow estimates generally increase with
higher traffic. The related sketch-methods CH and CB par-
tially counteract this problem by de-biasing the flow estimates,
thereby reducing the influence of the current traffic-rate on the
scale of the flow magnitude estimates.

III. CIRCUMVENTING RATE LIMITING
WITH LEARNED ATTACKS

The previous section has described how we tune HHD
hyperparameters in order to maximize the effectiveness of a
limited number of token-bucket rate limiters in a simulated
setting. In this section we will now show how an adaptive
attacker can learn to circumvent flow monitoring systems
and in particular HHDs through smart packet synthesis, and
achieve in some cases a disproportionally high bandwidth
consumption by partially evading detection.

To that end we create a Neural Traffic Agent (NTA) with
the ability to generate and emit packets based on decisions
taken by a Neural Network (NN). The NTA itself is modeled
as a RL agent that can learn based on the actions it takes.
In particular, we set up its reward function p such that for
every packet with size s € [0.0lMTU; 1MTU] that the
NTA emits, it pays a penalty of —s. If the packet makes it
through the HHD and rate-limiter without being dropped or
lost, the NTA receives an ACK and a reward of 2 x s. Thus
for every packet it emits it will end up either receiving in

Algorithm 2 Neural Traffic Agent

1: requires M/ € R20%6
2: requires NN

3: timeggst < timenow
4: procedure PERFORMACTION(t¢m€y,01)
5: a < getAcksSince(timeqst)
6: timejgst < tiMmeynow

7: M[O, 2] —a
8
9

> History matrix
> Time-series transformer

(t,n,s) < NN(M)
: M[:,0] «+ M[;,0] + 1
10: M < shiftRowsDown(M)

> ¢: wait, n: count, s: size

11: MI0] < [0, timenow, _, t,n, s]
12: sendPackets(t,n, s)
13: > Send n packets of size s within the next ¢ seconds

14: sleep(t)

total +s or —s based on whether the packet arrives at its
destination or not. For a brief look into the effects of reward
see Appendix C. Informally, this reward function incentivizes
the NTA to send as much traffic as possible over the link,
while avoiding packet-loss (in particular due to token bucket
rate-limiting) as much as possible. Analogously to the HHD
methods we measure performance in terms of average RpS. In
particular, the RpS of the NTA captures the rate of successfully
transmitted data minus the rate of lost data (in MTU/s). If
the NTA achieves an RpS higher than 40 it is exceeding its
allowed rate set by the token-buckets, see Section II-Al.

A. Threat Model

In the context of this work the NTA acts as an “attacker”
while the HHD is the “defender”. The capabilities and threat
model of the NTA are identical to those of other flows in
the network and it can therefore not spoof its address. It has
the ability to receive ACKs for the successfully transmitted
packets and can emit packets with sizes in the range between
0.01MTU and 1MTU with arbitrary frequency. The latency
from NTA to the switch is 100ms, from the switch to the
receiver 200ms and from the receiver back to the NTA 100ms.

B. Enabling Smart Packet Synthesis

The premise of the NTA is for it to control the timing and
size of packets such that it is able to at least partially evade
detection by the HHD and thus consume a larger amount of
bandwidth than allowed. To enable this, we require the NTA to
have the ability of generating non-trivial traffic patterns based
on past observed events such as received ACKs.

To that end we employ a transformer-based NN architecture
as the NTA’s policy function 7¥74 [35]. The policy 7/V74
outputs a vector [t,n, s] of 3 elements : 1) how much time ¢
should elapse before 7/V74 is evaluated again, 2) the number
of packets n we want to emit in the next ¢ seconds, and 3)
the size s of the next n packets we emit.

The function 77V74 takes as input a 20 x 6 dimensional
matrix M where the i-th row of M contains information about
the i-th last action taken. More precisely, the i-th row of M

Training ACKs I ACKs
Evaluating ACKs ACKs
©) NTA | HHD [NTA | HHD | NTA | HHD
RpS RpS RpS RpS RpS RpS
aNTAXAL 1 738 | 1819 | 52.5 | 186.7 | 64.1 | 1902
aNTAXCE 1712 | 1015 | 62.0 | 65.1 63.1 | 1183
aNTAXCM ¥ 957 | 56.1 514 | 302 [856 | 575
aNTAxES ¥ 1504 | 60.8 | 454 | 229 | 676 | 1267
alNTAXHE 1440 | 484 | 424 | 446 | 424 | 56.1
aNTAXMG ¥ 549 [272 | 231 | 153 | 482 | 295
aNTAxSS Y670 | 189.7 | 473 | 1872 | 821 | 191.7
aNTAXCH Y666 | 1023 | 67.9 | 1004 | 61.4 | 112.7
alNTAXHP 1 617 | 2332 | 68.7 | 2250 | 734 | 2276

TABLE II: Reward rates of NTA and HHD algorithms: Values
in row 7VTAXH give the score of the trained NTA policy
aNTAXH and of the HHD algorithm # running policy 77t
ACKs and AC€Ks indicate whether or net the NTA receives
ACK-packets during training and/or evaluation.

(&) |NTAx HHD,.|NTA x HHDpost|NTA x HHD, .,
Lin. Corr. | 0.21 (p=0.29) 0.44 (p=0.022) | 0.41 (p=0.033)
Rank Corr.| 0.27 (p=0.16) 0.47 (p=0.014) 0.18 (p=0.34)

Training ACKs I ACKs
Evaluating ACKs ACKs

) NTA | HHD | NTA | HHD [NTA | HHD

RpS RpS RpS RpS RpS RpS

aNTAXAL ¥ 759 | 11007 | 51.6 | 11059 | 71.1 1100
aNTAXCE ¥ 1141 | 962.8 [65.0 | 959.1 107.8 | 974.0
aNTAXCM ¥ 1705 | 155.1 473 | 1328 116.8 | 167.2
aNTAXES 1 3082 | 125.1 46.0 | 239.1 106.6 | 257.3
aNTAXHEK ¥ 316 | 2807 | 450 | 308 303 | 3234
aNTAXMG ¥ 711 | 659.1 232 | 7455 | 613 | 6935
aNTAxSS L 750 | 954.1 478 19553 | 864 | 953.0
aNTAXCH 11045 | 979.5 107.6 | 968.6 110.2 | 981.0
aNTAXHP ¥ 709 | 9480 [706 | 9440 | 76.0 | 946.8

TABLE III: Evaluation of NTAs and HHDs on real traffic.

contains the following data: 1) ¢ itself indicating the order of
this data-point, 2) the time ¢ elapsed between the ¢-th past ac-
tion and now, 3) how many ACKs have been received between
the i-th and 7 — 1-th past actions, and 4) the output of 7V74
at the i-th past action. In simpler terms, M can be understood
as a time-series of length 20 with information about the past
performed actions and received ACKs. Algorithm 2 described
the NTA’s procedure in pseudocode.

We apply a time-series transformer to our input M by
performing positional encoding of the the temporal data-
features of M, embedding the remaining features of M using
a fully connected neural network, adding the two and giving
it as input to a transformer with 2 layers, 4 heads, and 16-
dimensional input.

C. Training and Evaluating the Neural Sender Agent

As we have seen in Section II-C2, the characteristics of
HHDs vary greatly which is why we train a custom attack-
policy #NTA*H for each mentioned HHD method H, where
NTA x H generally means “NT A trained versus H”.

Tables II and III present the evaluation of the trained
NTA policies 7VT4%H on synthetic (&) and real (9R) traffic

TABLE IV: Correlation between NTA and HHD performance:
The first column measures correlation between NTA RpS from
Table IT and HHD RpS from Table I (i.e. pre-attack). The
second column measures correlation only from Table II (i.e.
post-attack). The third column measures correlation between
NTA RpS and the HHD’s relative RpS gain between pre- and
post-attack. Statistical significance is indicated by p.

28 7 Tivy
— C
< NTAXAL @
E 97 NTAxCB
s) ,") NTA x CH
2 / ,
;& NTAXHKQ ,/ vtaxs @
8 21 d
= @®
= ’D NTAxMG
4]
2@ /
. T u T L— T i La—
0.8 1 o
- NTAXES
g |
5 0.6 NTAXMG -7
2
= 0.4 4 NTA xCH g
. NTAXCB_ ="
> =
e 0.2 1 NTAxHK _,—’
= _ .
= ——— NTA X AL
= - 0
& 0040 P e
v T T T T T T T
25 2° 2

NTA RpS [MTU/s]

Fig. 4: Table II visualized. A filled left/right side of the marker
indicates the NTA received ACKs during training/evaluation.
The dashed lines indicate the principal linear correlation axes.
The relative HHD gain is measured between Table I and II.

respectively. The first two rows indicate whether the NTA was
trained/evaluated with the ability to receive ACKs or not. The
other rows are structured such that for example 7NTAXMG
indicates that we evaluate the learned NTA policy 7NTAxMG
against the MG heavy-hitter detector with previously learned
policy 7%, The NTA’s and HHD’s performances are indi-
cated in terms of RpS in their respective columns. The first
thing we would like to point out is that the NTA achieves
an RpS greater than 40 against all HHDs when the ACK-
configuration matches between training and evaluation which
means that in all cases it has found a way to exceed its
allowed rate of 40 MTU/s, even when it cannot receive
feedback information through ACKs. Secondly, by comparing
with Table I we see that all HHDs gain significantly higher
rewards when pressured by the NTA compared to when no
smart flow emitter is present in the system. This makes
intuitive sense as the NTA’s behavior of aggressively grabbing
bandwidth makes for an additional opportunity for the HHDs
to collect rewards by imposing a rate-limit on it. Furthermore,
the attacks learned by the NTA on synthetic data also transfer

Rate [MTU/s]

v v
L
“‘
=

A\
T
o

10 15 20 25 30
Time [s]
NTAXES

ES

(a) Visualizing m evaluated against 7

10 15 20 25 30
Time [s]

- 4000 =

—— Rate H
== Rate (smoothed) L 23000 =
= = = Cumulative Rewards =
g - cse

- =

-~ 2000 &

" - o

- e o

22 L 1000 %

=<

=

g

=

o

o
ot

(b) Visualizing 7NT4*AL evaluated against 74%

Fig. 5: Traffic patterns generated by the NTA evaluated against the respective targeted HHD (ES and AL). The rate is computed
as the quotient of packet-size and inter-packet interval. The cumulative rewards indicate the aggregate sum of payload volume
that bypassed the HHD minus the volume that was dropped by the HHD.

to the experiments with real background traffic, and in fact
perform even better than in the synthetic case since it can mask
its behavior behind other extreme heavy-hitters that appear
more prominently in the real traffic than the synthetic one.
A phenomenon which surprised us at first is that there seems
to be no significant negative correlation between the HHD
performance before the NTA’s attacks (Table I) and the NTA’s
attack scores (Table II). This is at first glance unintuitive in so
far as that one would expect the NTA to achieve better results
when matched against HHDs that have low performance in
terms of RpS. Table IV presents quantitative numbers on this
and we see that the correlation between pre-attack HHD and
NTA is insignificant and if anything weakly positive. As a
followup we also measure that there is significant positive
correlation between NTA and HHD score post-attack. This
is visualized in Figure 4.

Our understanding of this phenomenon is that if a HHD
such as AL achieves higher performance than MG it suggests
that it has managed to tune its policy 74% to fit very well to the
general traffic distribution, whereas 7€ is unable to adjust
perfectly to the packet stream statistics. It appears however
that the high degree of specialization of 74% leads to more
vulnerabilities in terms of allowing an adaptive adversary such
as NTA to find exploitative traffic patterns since 7% relies
more on the traffic characteristics than 7€, and therefore is
not prepared to handle traffic patterns outside of its narrow
comfort zone.

The possibility of this phenomenon arising should serve as
a word of caution when deciding on which HHD algorithm
to deploy as high performance and accuracy achieved when
benchmarked on static network traces does not necessarily
translate into protecting well against adaptive adversaries.

D. Analyzing Smart Traffic Patterns

To give some more concrete insight and context into the
adversarial traffic-patterns generated by the NTA we analyze
two synthesized packet-traces in this section. Figure 5 shows

NTAXES NTAXAL

the strategies developed by 7 and 7 against
ES and AL respectively. We see that there are high-level
similarities between the two shown strategies. Both attack
patterns boil down to alternating between a high sending
rate (360 MTU/s and 91 MTU/s respectively) and a low
sending rate (53 MTU/s for both). In essence, the NTA has
learned to use a very aggressive sending rate when it is not
monitored by the HHD, and to use a low sending rate when
it is being rate-limited. Interestingly, the NTA has learned
in two independent training sessions against different HHD
algorithms, that 53 MTU/s seems to be an optimal choice as
low sending rate. At first glance this seems odd since the rate
limit is 40 MTU/s, meaning that even when holding back,
the NTA attempts to use 13 MTU/s more bandwidth than
allowed, meaning that it chooses to receive 40 — 13 = 27
RpS opposed to the 40 that it could get by following the
rate-limit. Since this is a clearly suboptimal strategy in the
short-term, the NTA must see a long-term benefit in this. Our
understanding is that the NTA uses the packet-loss incurred
by the rate-limiting to sense the earliest opportunity when it
can switch to the high sending rate again. If the NTA were
to send at the allowed rate of 40 MTU/s, it would never be
subject to rate-limiting but it would also never learn whether
it is being monitored by a token bucket or not. On the other
hand if the rate is too high, the penalties paid may outweigh
the benefit of acquiring the knowledge of when to strike with
the high rate. Ultimately the tradeoff depends on how long
the NTA thinks that it may take to be evicted from the rate
limiter. Intuitively, if the time is expected to be long, say 10
seconds, it is not worth performing aggressive probing since
the gains do not outweigh the expected costs one incurs for
the duration of the probing. On the other hand if we expect to
be evicted from the rate limiter within 0.1 seconds, probing
can be done more aggressively since we do not expect it to
last for long. A further similarity between the two distinct
NTA strategies is the occurrence of steps in the rates. This
can be seen more clearly in Figure 6 which plots the traces

.ﬂ,NTAxAL .TrNTAXCI\I 7,I,NTA><HP

.,R_NTAXCB .ﬂ_NTAxES ,n_NT‘AxI\rlG

7_‘_NTA><CH .ﬂ_NTAXHK .ﬂ_NTAXSb

ST
0.008 |
0.007 {.. .~
0.006 -

0.005 1
0.0041{

Inter-Packet Interval [s]

0.003 1

0.5 0.6 0.7 0.8 0.9
Packet Size [MTU]

Fig. 6: Phase-space diagram of NTA policies. Every dot
represents an action taken by the NTA in a collected trace.
The dashed lines are isolines indicating equal sending-rate.

in phase-space where the time dimension has been removed.
For mNTAXAL one observes four clusters: two strong ones
at sending rates 53 and 91 as already discussed, but also a
minor cluster at 69 as well as a fourth cluster at 82 which is
connected to the cluster at 91 and therefore hard to distinguish.
For 7NTAXES it is more clear and it is possible to clearly
separate at least four clusters at the following levels: 53, 120,
310, and 360. These jumps can also be seen in Figure 5a as
whenever the NTA goes from the low to the high sending rate,
it does not ramp up its rate instantly, but rather does so in what
seems to be 4 steps. These steps are not involuntary but serve
the purpose of checking whether the NTA has for sure been
evicted from the rate limiter or not. Evidence for this is that
each step takes around 400m.s which corresponds precisely to
the NTA’s roundtrip-time which suggests that the NTA waits
for ACKs confirming that the step-up in sending rate was
successful before considering a further increase. Figure 6 tells
us that these steps are a common pattern among the many

learned strategies as can be seen based on the clear clusters
of 7.(.NTA><C]M and 7TNTAXSS.

IV. ROBUSTIFYING HEAVY HITTER DETECTION
USING MULTI-AGENT REINFORCEMENT LEARNING

The preceding section has shown that generating adversarial
traffic patterns that circumvent HHDs and rate-limiters is
possible. The extent to which an NTA can avoid the effects
of being rate-limited depend on the concrete HHD algorithm
used. An odd observation was that highly performant HHD
systems like AL can provide a larger attack surface for adap-
tive attackers despite its robust appearance, compared to for
example HK which achieves consistently lower scores. In this
section we show that it is possible to increase the robustness
of HHD algorithms like AL to adversarial attacks, as well
as greatly enhance the effectiveness of low-performers like
ES at rate-limiting flows echibiting antagonistic behavior. We
achieve this by means of applying multi-agent reinforcement
learning and allowing attacker (i.e. NTA) and defender (i.e.

Algorithm 3 PSRO applied to NTA xXES
NTAxES
ES

1: requires m
2: requires T

3: procedure TRAIN(env, n)
PNTAXES . {WNTAXES}

5 PES {rE5}

6 for i in range(n) do

7: G <+ evaluatePairwise(
3:

9

> Initial NTA policy
> Initial ES policy

e

NTAXES ES
P ,PES)

> G is the game between NTA and ES
, <+ NashEquilibrium
NNTA NES NashEquilibri G

10: > NNT4 js the distribution over PNTAXES
11: > NS analogously over PF<
12: env.set(HH D) < random(PFS NES)

13: aNTAXES ¢ env.train(NTA)

14: env.set(NTA) < random(PNTAXES NNTA)
15: 7ES « env.itrain(HHD)

16 PNTAXBES (pNTAXES | NTAxES

17: PES « PES 4 pB5

new

18: return PNTAXES pES

HHD) to learn from each other in an iterative manner, thus
creating increasingly more robust attack and defense policies.
We demonstrate this approach in applied to ES and AL.

A. Population-based Multi-Agent Reinforcement Learning

The key idea we describe in this section is based on the
observation that while 7V74*FS may be very successful
at finding exploits in 7%, there may also exist a new ES
policy 759 which is very successful at detecting and limiting
aNTAXES n general, for both NTA as well as ES, there is
always the possibility of the opponent finding a new strategy
that counters your own strategy. By iteratively finding more
and more counter-strategies for both NTA as well as ES we
are able to train better and better policies that leave less room
for counter-policies.

The training method called Policy-Space Response Oracles
(PSRO) [37] formalizes this idea into a concrete method. We
have reformulated the core of the training procedure within the
context of of this paper and noted in Algorithm 3. On a high
level, the training procedure works by iteratively growing a
population of NTA policies PNTAXES and ES policies PF5.
The populations are expanded by training new policies (e.g.
aNTAXES) against a mixture of different opponent policies
(e.g. a mix over PF9) in order to allow the policy being trained
to learn how to counter multiple strategies. The mix of the
opponents policies is not chosen arbitrarily but rather based
on the opponent’s game-theory optimal strategy, i.e. the Nash
equilibrium [38]. The output of PSRO are the two populations
PNTAXES and PFS. By probabilistically combining all poli-
cies within P according to the optimal Nash equilibrium,
we obtain a more robust HHD that provides a well-rounded
defense due to having experienced all possible adversarial
attacks by an adaptive packet emitter during the PSRO training
procedure. We use mixed-integer linear programming [39] to
compute Nash equilibria.

NTA RpS | HHD RpS

O kel Kl Kl K

T

NTAXES
cot

,n_NTA><ES

95.6
100.7

124.21102.4|58.5

159.41115.8]60.8

) TAL | fAL | AL AL

cot cot

NTAXAL
cot

aNTAXAL

65.5
66.0

70.8
73.8

183.6
191.7

178.8
181.9

(a) NTA and ES policies evaluated and ordered (b) Policies from Figure 7a ordered (c) Policies produced by the NTA co-training with
based on the PSRO iteration (0 to 9) in which using nearest-point hierarchical (row- ES and AL evaluated against each other as well as

they were trained.

and column-) clustering [36].

against strategies from Sections II and III.

Fig. 7: The matrix-plots show the evaluation of NTA and ES policies trained by PSRO. Each column represents one policy
from PF%, while each row is one of the attack-patterns in PV74, The lower-left triangles measure NTA’s RpS while the
upper-right measure ES’s RpS. For example consider the cell in row 6 and column 7 of Figure 7a. The dark red triangle
indicates the NTA receiving ~ 92 RpS, while the green triangle means that ES achieves ~ 100 RpS. These two scores capture
the performance of the 6th NTA and 7th ES policies generated by PSRO when evaluated against each other.

1) Intuition on Merging Policies for Robustness: Consider
a hypothetical scenario in which PNTAXES and PFES each
contain 3 policies (call them “rock™, “paper”, and “scissors”).
The NTA picks to play a policy (i.e. and adversarial traffic
pattern) from PNTAXES ‘while the HHD picks a configuration
for ES from PF°. Assuming the usual rules of rock-paper-
scissors (i.e. for example if NTA picks ﬂiVOZ,?XE S and the
HHD picks wﬁier, then the NTA achieves —1 RpS while the
HHD gets +1 RpS) the optimal strategy for the HHD is to pick
uniformly at random between the three available policies for
ES as this is the best choice which minimizes the ability for
the NTA to cause damage. This way we have combined three
HHD strategies (rock, paper, and scissors) which individually
can each be exploited with a targeted attack, into a single
(probabilistic) policy that perfectly defends against any attacks
from the NTA. While such simple and clear-cut examples
usually do not occur in practice, the core idea remains very
much applicable.

B. Evaluation of Adversarially Robust Policies

We have performed 9 iterations of PSRO applied to the
adversarial setting between NTA and ES, resulting in two
policy populations PNTAXES and PES of size 10 each; 1
initial policy plus 9 new policies each. The resulting strategic
game between the attacker-entity NTA and defender-entity ES
is shown in Figure 7. The first Subfigure 7a displays the game
with policies ordered based on which iteration of PSRO they
were trained, and looks therefore quite unstructured. In the
second Subfigure 7b we order the policies based on their
similarity instead and we discover significant structure and
similarity amongst both attack- as well as defense-strategies.
For example, the first 3 columns (ES strategies) in Subfig-
ure 7b all exhibit very similar behavior. Likewise, the rows
7 and 8 form a group of similar NTA policies. To link
this observation back to the rock-paper-scissors analogy from

Section IV-Al, it would be like having two instead of one
“rock” options: The rocks may be different but they essentially
perform the same task.

We have furthermore performed an analogous PSRO-based
training run between NTA and AL, yielding strategy popula-
tions PNTAXAL DAL f gize 10 each. In both runs, the Nash
equilibria NNTAXES - NNTAXAL - NES and NAL appearing
in the training procedure (see Algorithm 3) can happen to
both pure as well as mixed. The final output however has
a pure equilibrium, meaning a single strategy from each of
PNTAxXES pES DNTAXAL and PAL g chosen as the best
one. These strategies are indicated with subscript cot and
evaluated in Table 7c.

1) Quantifying Robustness Increase: Section III-C has pre-
viously shown that an adaptive adversary such as NTA can
achieve an average RpS of 159.4 when matched against a
rate-limiter using ES for heavy-hitter detection. 159.4 RpS
corresponds to an overuse of 299% compared to the allowed
rate of 40 MTU/s. From Table 7c we see that after improving
ES through PSRO-based adversarial training, the highest score
achievable by the NTA is 95.6 RpS, which corresponds to an
overuse of 139%. The adversarial training has thus allowed to
reduce the exploitability of bandwidth by adaptive adversaries
by a factor of 2.2 = 299% + 139%. At the same time, we
have improved the performance of ES from 60.8 to 102.4
RpS by a factor of 1.7. Both old (mNT4*F9) as well as new
(wé\gAXES) attacks perform significantly worse on ES after
co-training (7Z%) compared to before (7£). Regarding the
co-training between NTA and AL we observe qualitatively
the same results except that the exploitability is reduced by
a smaller amount from 85% to 64% by a factor of 1.3. The
reason for this is that AL has a stronger baseline performance,
therefore leaving less room for improvement by means of
adversarial co-training.

- =)
- +—— Rate [
_. 300 A = =« Cumulative Rewards - 3000 2
n 0
5 <
= 14 5
i | 4 =23 | 2000
=, 20 -T |0 P e E
; 100 ""‘:"";;“ 1000 £
ot § * e o i 3
T i E
"‘— - E
0 a 1 1 1 B O 5
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time [s] Time [s]
(a) Traces with ES as HHD (b) Traces with AL as HHD

Fig. 8: The left and right plots are attack traces resulting from PSRO-based adversarial co-training between NTA and ES
/ AL respectively. In blue we have the attacks from Section IIT (mNTAXES and xNTAXALY pitched against 727 and 7L
respectively. Red and green indicate the co-trained NTA attacks wi\[,tTAXE S and wé\étTAXAL , but in the green case it is against

the old HHD policies (7#° and 74%), while in red it is against the co-trained HHD policies 727 and w4k .

2) Visualizing the Effects of Multi-Agent Adversarial Train- Algorithm 4 Neural Monitor Agent
ing: In Figure 8 we visualize the final attack-traces generated 1: requires C's > Array of numbers of length n

by the adversarial co-training. The blue indicates the old attack : requires I Ds > Array of flow IDs of length n
while green and red are the new one evaluated against the : requires 7'Ss > Array of timestamps of length n
old HHD defender policy from Section II as well as the : requires NN > Transformer-based neural network

procedure PROCESSPACKET(size, I D, timenow)
IDs « [ID,IDs]
Cs' + [size,Cs]

newly co-trained one. Generally we see that the red and green
traces also jumpy between high and low sending rates as we
have discussed in Section III. The difference to the old blue
strategies is that the blue ones have larger high sending rates TSs' [timenow, T'Ss] — timenou

than the red and green ones. We see from Subfigure 8a that isID' < IDs == ID

blue reaches peaks of 360 MTU/s while red and green anly 10 isEmpty’ < IDs == 0

go as high as 220 MTU/s. Subfigure 8b indicates the same (isHH, prio) < NN(Cs',TSs',isID',isEmpty’)

R A A A ol

—_—
—_

qualitative observations with blue reaching 91 MTU/s while 12 > isHH is a 1-d boolean value
red and green staying lower at 80 MTU/s. Red and green 13: > prio is a (n + 1)-d vector
surpass blue in terms of RpS, which suggests that the old 14 i < findInsertIndex(isID', isEmpty’, prio)
blue attacks were overconfident in their ability to overuse large 15: if ¢ > 0 then
amounts of bandwidth due to the HHD’s inability to defend 16 if IDs[i — 1] == ID then
against these unseen traffic patterns. Thanks to the adversarial ~ 17: Csli — 1] + Cs[i — 1] + size
co-training however, ES and AL are both prepared for such 18 else
overconfident strategies and are therefore able to intercept the — 19: Csli — 1] « size
attacks more regularly and quickly. 20: IDs[i— 1]« 1D
21: TSs[i — 1] + timenow
V. GENERATING ZERO-SHOT ATTACKS 2 return isHH

ON DATA-PLANE HEAVY-HITTER DETECTION

The preceding section has shown how applying adversarial

multi-agent reinforcement learning can help find more robust is trained on data of type A but evaluated on data of type B
configurations for HHD. The success of the method hinges that differs significantly from A [40].

in particular on the ability for the NTA to generate a rich
population of traffic patterns that cover possible exploits in a
thorough way. In this section we show that the NTA policies The idea is to apply the PSRO adversarial training procedure
generated by PSRO not only make good “training-partners” for to NTA and some HHD algorithm G. The NTA will learn
improving the robustness of HHD algorithms like ES, but that ~ evasive traffic patterns PN74 by interacting with G and when
they also are effective adversarial traffic patterns that work on training is done, P74 is evaluated against a HHD algorithm
HHD algorithms not encountered during training. We refer to H # G. To ensure PNT4 contains good strategies, it is
this as a “zero-shot attack” based on the concept of “zero-shot essential for the training-partner G to provide resistance and
learning” in the context of machine learning, where a model flexibility in order to act as a useful proxy for unseen HHD

A. Requirements for Successfully Learning Zero-Shot Attacks

10

0 6 12 18 24 @\ @9
0 N
oY »
P IR
6
A N
5 R
w O
12 . N
2l
N K
18 > Q
e N
< N
o)
24 1 N BN

Fig. 9: Strategic game displaying the matchups between
NTA and NMA after finishing adversarial training based on
PSRO. Lower-left and upper-right triangles measure NTA’s
and NMA’s RpS respectively.

algorithms H # G. If G is too rigid and unable to capture
a wide range of behavior (e.g. G can not perform similar
heavy-hitter detection as an algorithm 7’ no matter how it
is configured), it is likely that the NTA will exploit this
characteristic. But by doing so, it will not learn strategies that
work against H’ and thus the zero-shot attack will fail.

B. The Neural Monitor Agent

Since all HHD algorithms we have discussed until now
are fairly rigid, with at most 3-4 tuneable parameters, they
are not suitable training-partners H for the NTA. For this
reason we design a new HHD algorithm from the ground up
with increased flexibility in mind. We call this new algorithm
Neural Monitor Agent (NMA) and it combines concepts from
HHD algorithms like AL and SS with deep neural networks in
order to provide a lot of tuneable parameters that can aid it in
covering a wide range of behaviors. The pseudocode for the
NMA is given in Algorithm 4. It works by keeping an array of
flow-IDs I Ds, counters C's, and timestamps 7'S's and letting
a neural network NN process these arrays to produce two
outputs: Firstly, a prediction on whether a flow is a heavy-
hitter or not. And secondly, a priority-value for each flow ID
in IDs. The priorities are then used to decide which is the
lowest priority flow that will be evicted from the data-structure.
This method therefore borrows a priority-heap-like approach
from SS and MG, in addition to time-stamp functionality from
AL. The neural network NN has to perform the priority
management and decide at what point a flow should be
reported as heavy-hitter. We would like to emphasize that the
NMA is not designed to be a compute-efficient algorithm to
be deployed in in favor of other HHD algorithms. Instead,
it is designed to purely act as an adversarial training partner
for the NTA in a simulated training environment. We refer to
Appendix B for a discussion on the network model design.

1) Challenges in Training the Neural Monitor Agent: Since
the NMA has the same interface as any other HHD algorithm
mentioned in this work, the procedure we use to train its neural

11

(6) 7.l.AL 71.CB ﬂ.C‘M 7.l.ES 7.‘.HK 71.MG ﬂ.SS 71.CH 71.HP
aNTA 59.9 |73.1 (852 [86.8 [31.8 [50.9 |63.4 742 [55.2
iV TA 67.0 |78.1 [104.5]116.2[32.9 [61.5 |72.8[80.6 [71.1
aNTAXH 738 |71.2 1952 |159.4]|44.0 [54.9 [67.066.6 |61.7

TABLE V: Evaluation of the NTA’s zero-shot attacks 7N 14

zsa
on HHD configurations learned in Section II. The values in the

table indicate the NTA’s RpS score. m)Y L4 is the best attack

the NTA has learned among the 25 from Figure 9.

(9{{) 71_AL 7TC’B ﬂ,C’]V[ﬂ_ES 7THK ﬂ_IVIG ﬂ_SS 7rC’H ﬂ_HP
aNTA 81.3 192.1 |90.1 |113.9]104.8[92.1 [99.4 [91.1 |87.9
aNTA 100.0|117.3[212.3 | 175.8 [191.5 [144.1 | 107.6| 116.9 [166.2
aNTAXHN759 |114.1[170.5]308.2(72.9 |71.1 [75.0 |104.5]72.9

TABLE VI: Evaluation of ZSA’s on real traffic.

network is the same we use for all other HHD algorithms
whose hyperparameters we tune. In particular, we refer to
a configuration of the NMA’s neural network as its policy
7NMA We have encountered two challenges when training
the NMA: scaling and reward engineering.

o The scaling-related problem is that simulating the NMA
requires evaluating a neural network for every packet that
arrives at the NMA. With 32 training environments and each
environment simulating 6 seconds and 1000 flows sending
20 packets per second, we arrive at 3.8 million data-points
for one learning step, which is too expensive. We therefore
reduce the training scale for the NMA by lowering the
maximum number of concurrent flows to 100 and only
running 4 training environments in parallel.

The other problem regards the rewards we give the NMA
in order to learn to perform heavy-hitter detection. The
initial idea was to give positive rewards only, namely when
the rate-limiter drops packets from overusing flows as a
consequence of the NMA’s detection. We found however
that the NMA would resort to marking almost every flow a
heavy-hitter because it incurs no risk in doing so, therefore
providing little incentive towards more accurate detection.
For this reason we introduced a penalty to be paid for every
packet that is marked as belonging to a heavy-hitter, and
offset this initial penalty by providing twice the amount of
rewards when the rate-limiter drops a packet. This is the
reward scheme presented at the beginning in Section II-C.

C. Zero-Shot Attack Analysis

Figure 9 shows the evaluation of the strategic game between
NTA and NMA after completing the adversarial training
procedure. This section analyzes how well the attack patterns
learned by the NTA work against HHD algorithms it has never
encountered before. As is the case with the adversarial training
between NTA and AL in Section IV-B, several of the learned
policies PNVT4 are redundant and can thus be pruned.

200
100 1

200
100 +

200 A
100 +

200
100 +

200
100 +

200

Rate [MTU/s]

100 1

200 A
100 +

200
100 +

200 A
100

10 15 20 25 30
Time 3]

Fig. 10: Zero-shot attack 774 trace when confronted with
different HHD-based rate limiters. Red indicates the smoothed
curves. Each plot contains a mix of two attack traces; the
darker one with weight 0.66, while the paler one with weight

0.34 according to the Nash equilibrium computed for 774

To evaluate the ability of the NTA to perform a zero-shot
attack, it must decide on what mix of attack strategies from
PNTA to perform before we decide which HHD algorithm to
match it against. Assuming a rational HHD configuration, the
HHD maximizes its own rewards to the best of its ability. We
use the NMA as a proxy and select the Nash-optimal strategy
for the final zero-shot attack. Concretely, this results in a zero-
shot attack consisting of two strategies from P74 mixed in a
ratio of 0.34 to 0.66. We denote the final rationality-assuming
zero-shot attack as 7¥,14

1) Evaluation: Based on its training against the NMA,
7lNT'A expects to be able to achieve a score of 45.7 RpS
against a rational opponent. This value is calculated based on
the expected rewards from the Nash equilibrium. We evaluate

12

0.04 1) 7l_NTA><AL Y 7TNTA><ES
NTAXCB NTAXHK

&= 003{ @7 " ® pVTAX
‘:‘ TFNTAXCH 7T_NTA><HP
3 i
c% 0.02 Y 7,I_NTA><C’M ——————— . -#_N_’ILAXMG
< | TN e @ NTAxSS
= b P ”
bl e S T
g - sk
% 001 4000~
A~ 00094 7 -
L0008 1.~ e T N T -
& 0.007 -t o ¥alE
S 00061 69.28. 7 e

00051 7 T TS |

0.004 120-_0,0""‘ ___________

T T T T
0.4 0.5 0.6 0.7 0.8 0.9
Packet Size [MTU]

Fig. 11: Phase-space plot of Wﬁﬁ“‘ evaluated against various

HHD methods. The dashed lines are isolines indicating equal
sending-rate.

7NTA against each of the 9 HHD algorithms from Section II

and show the results in Table V. We see that 714 is able
to generate traffic patterns that overuse the allowed rate of
40 MTU/s in 8 out of 9 cases. Furthermore, 774 surpasses
its expected score of 45.7 RpS in 8 out of 9 cases. Figure 10
shows traces of 774 evaluated against each of the 9 HHD
algorithms and we see that 774 behaves differently from
scenario to scenario based on how well the rate-limiter is able
to restrict its overuse.

We additionally evaluated the 7.4 in an environment with
replayed real packet captures and the results are in Table VI.
Here we see that the ZSAs exceed the allowed rate in 9 out
of 9 cases and achieve significantly higher scores than on
the synthetic data. The explanation for this is as with the
experiments in Section III that the synthetic background traffic
is less favorable for the NTA due to the reduced occurrence
of extreme background traffic that may overshadow the NTA.

So the zero-shot attacks developed by the adversarial train-
ing between NTA and NMA have shown to work in almost
all cases except when matched up against the HK algorithm.
The approach therefore works in principle but some challenges
limit the capability of zero-shot attacks. In particular, two
aspects contribute to the low score against HK:

« HK is a decay-based HHD algorithm which has the ability to
decrease the counters in its data-structure based on incoming
packets. The designed NMA does not have such capability
and thus struggles to replicate the behavior of an algorithm
like HK, which is why the NTA’s zero-shot attack is not
prepared to confront the HK-based rate-limiting system.
Due to computational cost, the adversarial training between
NTA and NMA has been performed in a smaller training
environment than the simulation environment in which we
evaluate the NTA’s attack strategies. Therefore there is a
small mismatch between the environment in which the
attacks were designed, and evaluated in.

Lastly, we consider allowing the attacker to pick the best
policy from PNT4 for each HHD defender individually, we

denote these with 774 and results are in Tables V and VI.

Surprisingly, the attack strategies learned by the NTA through
training with the NMA exceed even the scores of the targeted
attacks 7VT4A*H from Section III in 8 out of 9 cases. The
reason is that the flexibility of the NTA’s training partner
NMA helps it explore more diverse attack strategies compared
to the case in which the NTA trains against a single HHD
algorithm and therefore has less incentive to explore. Figure 11
shows the phase-space plot of ﬂ'é\g{“ and while we do observe
recurring patterns such as prominent clustering as in Figure 6,
one notable difference is that the co-training between NMA
and NTA has for example taught 7Y 4 the value of sending

Thest
less than 40 MTU/s, which did not happen in Section III.

D. Generalization Limits

Quantifying generalizability of RL models such as the NTA
is difficult due to the many variables present in the environ-
ment. This work has for example shown that despite being
trained exclusively on synthetic data, the learned strategies
also work when deployed in an environment with real packet
captures acting as background traffic. A contributing factor is
that the real traffic makes for a more noisy environment from
the point of view of the HHD, therefore reducing its ability to
detect the NTA. In other words, the NTA has been trained in
a more challenging environment and thus when deployed in
an easier one, performs very well. However if for example the
NTA were to be the only flow in the system, it would perform
worse since the difficulty of evading detection by a HHD that
is solely focused on the NTA, is beyond what the NTA is used
to from its training.

VI. CONCLUSION

This work has shown that while Heavy-Hitter Detection
(HHD) algorithms may provide provable guarantees, deploy-
ing these methods as part of a more sophisticated traffic
processing system such as a DDoS defense system makes
it difficult to carry over the theoretic guarantees due to
the reliance on other components such as token-buckets to
translate the HHD’s predictions into concrete actions.

Section III has shown that it is possible to synthesize
traffic patterns that exploit some of the innate limitations
of typical HHD deployments, namely limited memory and
processing time, in order to systematically overuse the allowed
bandwidth. Furthermore, our experiments show that strong
empirical performance of HHD algorithms on static packet
traces does not translate into robustness against adversarial
attacks by smart traffic synthesizers. On the contrary, our
evaluation in a simulated setting suggests that high-scoring
HHD algorithms tend to be more susceptible to exploits
compared to lower-scoring methods due to a higher degree
of specialization. In Section IV-B we develop and evaluate a
machine-learning and game-theory-based training framework
which allows hardening a HHD algorithm with an initial
exploitability of 299% down to 139%, a reduction by a factor
of 2.2, as well as increasing its rate-limiting performance by a
factor of 1.7. The framework is generic and can be repurposed

13

for different scenarios and tasks, and is available as open-
source [22]. Lastly, Section V demonstrates that the training
procedure that can make HHDs more robust, can also be used
to produce more sophisticated adversarial attack strategies that
are able to evade 8 out of 9 HHD algorithms without ever
having been exposed to them. We refer to this as a zero-shot
attack due to the similarity with “zero-shot learning” from the
domain of artificial intelligence.

A. Takeaways

We summarize the insights of this work into three points.

1) System Evaluation: Evaluating HHD algorithms in ex-
periments with no adaptive adversary generally only reveals
whether the proposed method works on generic traffic, but
reveals little about what an adaptive adversary may achieve.
Where applicable, techniques such as those presented in this
paper can be used to complement existing frameworks such as
fuzzing and formal verification to provide an additional tool
for analyzing network system security.

2) Adversarial Co-Learning: Many aspects of network
security have two characteristics; Firstly, multiple entities with
selfish or antagonistic goals, and secondly a very large space
of possible entity behaviors and events. These are prime
application-areas for multi-agent RL as it can be used to
explore the huge space of behaviors, and in addition exploit
the antagonistic relationships in the system to generate increas-
ingly more sophisticated and valuable training data.

3) Code: The developed code-base aims to reduce the
entry-barrier for research on the intersection between multi-
agent RL and networked systems. It is designed to be more
natural to use for network systems researchers than for exam-
ple libraries like TorchRL [41], but more light-weight and with
more ML utility and features than for example ns3-ai [42].

B. Limitations and Future Work

The co-training approach between attacker and defender that
we propose in this paper is computationally expensive. The
compute requirements are both CPU- as well as GPU-heavy:
CPU for simulation, and GPU for deep learning. Scaling up
the training scope thus requires an increase in both resources.
Therefore, while the smart attack patterns learned by the NTA
in this paper perform as expected in our simulations, orders
of magnitude more resources are required to generate NTAs
that can generalize to arbitrary real-world systems.

Further opportunities for research lie in exploring how
different reward policies shape the dynamics between rate-
limiting systems and traffic-emitting adversaries, such as, for
example, if the adversaries’ goal switches from maximizing
its own throughput to maximizing other network-participants’
latency and jitter. Additionally, an interesting way of scaling
up the complexity of the problem setting is to allow for
communication between multiple adversaries and defenders
and to make them develop cooperative strategies through
machine learning.

VII. ETHICAL CONSIDERATIONS

As part of this paper we disclose the code used to generate
the results, as well as the results themselves which consist of
both trained neural networks for all RL agents discussed in
this paper, in addition to all the execution traces from which
we extract the data presented in this paper. We elaborate on
the responsible disclosure of these three aspects.

A. Measurements

The execution traces contain no sensitive information and
pose no security or privacy risk of any kind.

B. Trained Models

We disclose all trained policies and neural networks pre-
sented in this paper for the sake of reproducibility. They are de-
signed to perform their function in our simulated environment
but require additional engineering to be deployed as part of a
live system in general due to the sim-to-real gap which may
be very large depending on how the models are intended to
be mis-used. Therefore, without significant further engineering
these models cannot be mis-used to perform effective attacks
on arbitrary real-world systems.

C. Program Code

The program code enables training smart attacker and
defender agents in a multi-agent reinforcement learning frame-
work. The code can be altered to train more advanced models
with greater capabilities than those described in Section VII-B.
This however requires advanced understanding of deep rein-
forcement learning and network security, as well as additional
compute resources and engineering work.

REFERENCES

[1] M. Nawrocki, R. Hiesgen, T. C. Schmidt, and M. Wihlisch,
“Quicsand: quantifying quic reconnaissance scans and dos flooding
events,” in Proceedings of the 21st ACM Internet Measurement
Conference, ser. IMC ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 283-291. [Online]. Available:
https://doi.org/10.1145/3487552.3487840

S. Ha, I. Rhee, and L. Xu, “Cubic: a new tcp-friendly high-speed tcp
variant,” SIGOPS Oper. Syst. Rev., vol. 42, no. 5, p. 64-74, Jul. 2008.
[Online]. Available: https://doi.org/10.1145/1400097.1400105

M. S. Kang, S. B. Lee, and V. D. Gligor, “The crossfire attack,” in 2013
IEEE Symposium on Security and Privacy, 2013, pp. 127-141.

B. Hao and C. Michini, “Inefficiency of pure nash equilibria in network
congestion games: the impact of symmetry and network structure,”
ACM Trans. Econ. Comput., vol. 12, no. 3, Sep. 2024. [Online].
Available: https://doi.org/10.1145/3665590

C. Estan and G. Varghese, “New Directions in Traffic Measurement
and Accounting: Focusing on the Elephants, Ignoring the Mice,” ACM
Trans. Comput. Syst., vol. 21, no. 3, pp. 270—-313, Aug. 2003.
[Online]. Available: https://doi.org/10.1145/859716.859719

I. Mahmud, G. Papadimitriou, C. Wang, M. Kiran, A. Mandal, and
E. Deelman, “Elephants sharing the highway: Studying tcp fairness in
large transfers over high throughput links,” in Proceedings of the SC
23 Workshops of the International Conference on High Performance
Computing, Network, Storage, and Analysis, ser. SC-W ’23. New
York, NY, USA: Association for Computing Machinery, 2023, p.
806-818. [Online]. Available: https://doi.org/10.1145/3624062.3624594
S. Islam, K. Hiorth, C. Griwodz, and M. Welzl, “Is it really
necessary to go beyond a fairness metric for next-generation
congestion control?” in Proceedings of the 2022 Applied Networking
Research Workshop, ser. ANRW °22. New York, NY, USA:
Association for Computing Machinery, 2022. [Online]. Available:
https://doi.org/10.1145/3547115.3547192

[5]

[6]

[7]

14

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

(23]

K. Khandeparkar, K. Ramamritham, and R. Gupta, “Qos-driven
data processing algorithms for smart electric grids,” ACM Trans.
Cyber-Phys. Syst., vol. 1, no. 3, Mar. 2017. [Online]. Available:
https://doi.org/10.1145/3047410

R. Wojcik and A. Jajszczyk, “Flow oriented approaches to qos
assurance,” ACM Comput. Surv., vol. 44, no. 1, Jan. 2012. [Online].
Available: https://doi.org/10.1145/2071389.2071394

V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-hitter detection entirely in the data plane,” in
Proceedings of the Symposium on SDN Research, ser. SOSR ’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
164—-176. [Online]. Available: https://doi.org/10.1145/3050220.3063772
R. Ben Basat, X. Chen, G. Einziger, and O. Rottenstreich,
“Designing heavy-hitter detection algorithms for programmable
switches,” IEEE/ACM Trans. Netw., vol. 28, no. 3, p. 1172-1185, Jun.
2020. [Online]. Available: https://doi.org/10.1109/TNET.2020.2982739
M. Chiesa and F. L. Verdi, “Network monitoring on multi-pipe
switches,” Proc. ACM Meas. Anal. Comput. Syst., vol. 7, no. 1, Mar.
2023. [Online]. Available: https://doi.org/10.1145/3579321

M. Moshref, M. Yu, and R. Govindan, “Resource/accuracy tradeoffs
in software-defined measurement,” in Proceedings of the Second
ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking, ser. HotSDN ’13. New York, NY, USA: Association
for Computing Machinery, 2013, p. 73-78. [Online]. Available:
https://doi.org/10.1145/2491185.2491196

J. Gong, T. Yang, H. Zhang, H. Li, S. Uhlig, S. Chen, L. Uden, and X. Li,
“HeavyKeeper: An accurate algorithm for finding top-k elephant flows,”
in 2018 USENIX Annual Technical Conference (USENIX ATC 18).
Boston, MA: USENIX Association, Jul. 2018, pp. 909-921. [Online].
Available: https://www.usenix.org/conference/atc18/presentation/gong

T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic sketch: adaptive and fast network-wide
measurements,” in Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, ser. SIGCOMM ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
561-575. [Online]. Available: https://doi.org/10.1145/3230543.3230544
M. Zhang, G. Li, S. Wang, C. Liu, A. Chen, H. Hu, G. Gu,
Q. Li, M. Xu, and J. Wu, “Poseidon: Mitigating volumetric
ddos attacks with programmable switches,” the 27th Network and
Distributed System Security Symposium (NDSS 2020). [Online].
Available: https://par.nsf.gov/biblio/10176415

Z. Liu, H. Namkung, G. Nikolaidis, J. Lee, C. Kim, X. lJin,
V. Braverman, M. Yu, and V. Sekar, “Jagen: A High-
Performance Switch-Native approach for detecting and mitigating
volumetric DDoS attacks with programmable switches,” in 30th
USENIX Security Symposium (USENIX Security 21). USENIX
Association, Aug. 2021, pp. 3829-3846. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity2 1/presentation/liu-
zaoxing

D. Ding, M. Savi, F. Pederzolli, M. Campanella, and D. Siracusa,
“In-network volumetric ddos victim identification using programmable
commodity switches,” IEEE Transactions on Network and Service
Management, vol. 18, no. 2, pp. 1191-1202, 2021.

G. Cormode and S. Muthukrishnan, “An improved data stream
summary: the count-min sketch and its applications,” Journal of
Algorithms, vol. 55, no. 1, pp. 58-75, 2005. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0196677403001913
S. Scherrer, J. Vliegen, A. Sateesan, H.-C. Hsiao, N. Mentens, and
A. Perrig, “Albus: a probabilistic monitoring algorithm to counter burst-
flood attacks,” in 2023 42nd International Symposium on Reliable
Distributed Systems (SRDS), 2023, pp. 162-172.
F. D. Dalt, S. Scherrer, and A. Perrig,
for volume estimation in data streams,” Proc.
vol. 16, no. 4, p. 657-669, Dec. 2022.
https://doi.org/10.14778/3574245.3574252

F. D. Dalt, “Paper code,” 2025.
https://github.com/FrancescoDaDalt/HHNFM. git
Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman,
“One sketch to rule them all: Rethinking network flow monitoring
with univmon,” in Proceedings of the 2016 ACM SIGCOMM
Conference, ser. SIGCOMM °’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 101-114. [Online]. Available:
https://doi.org/10.1145/2934872.2934906

“Bayesian sketches
VLDB Endow.,
[Online]. Available:

[Online]. Available:

[24]

[25]

[26]

(27

[28]

[29]

[30]

[31]

[32]

[33]

B.-E. Zolbayar, R. Sheatsley, P. McDaniel, M. J. Weisman, S. Zhu,
S. Zhu, and S. Krishnamurthy, “Generating practical adversarial
network traffic flows using nidsgan,” 2022. [Online]. Available:
https://arxiv.org/abs/2203.06694

S. Hore, J. Ghadermazi, D. Paudel, A. Shah, T. Das, and N. Bastian,
“Deep packgen: A deep reinforcement learning framework for
adversarial network packet generation,” ACM Trans. Priv. Secur., vol. 28,
no. 2, Feb. 2025. [Online]. Available: https://doi.org/10.1145/3712307
I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial
networks,” 2014. [Online]. Available: https://arxiv.org/abs/1406.2661
A. Cheng, “Pac-gan: Packet generation of network traffic using gen-
erative adversarial networks,” in 2019 IEEE 10th Annual Information
Technology, Electronics and Mobile Communication Conference (IEM-
CON), 2019, pp. 0728-0734.

K. Cho, K. Mitsuya, and A. Kato, “Traffic data repository at the wide
project,” in Proceedings of the USENIX 2000 FREENIX Track, San
Diego, CA, Jun. 2000.

“Mawi samplepoint G traffic data (2020-03-18 14:00),”
https://mawi.wide.ad.jp/mawi/samplepoint-G/2020/202003181400.html,
accessed: 2025-11-25.

J. Misra and D. Gries, “Finding repeated elements,” Science of Computer
Programming, vol. 2, no. 2, pp. 143-152, 1982. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0167642382900120
A. Metwally, D. Agrawal, and A. E. Abbadi, “Efficient computation of
frequent and top-k elements in data streams,” in Proceedings of the 10th
International Conference on Database Theory (ICDT 2005), ser. Lecture
Notes in Computer Science, vol. 3363. Springer, 2005, pp. 398—412.
M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items
in data streams,” Theoretical Computer Science, vol. 312, no. 1, pp. 3—
15, 2004, automata, Languages and Programming. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0304397503004006
V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-hitter detection entirely in the data plane,” in
Proceedings of the Symposium on SDN Research, ser. SOSR ’17.
New York, NY, USA: Associatio n for Computing Machinery, 2017, p.
164—-176. [Online]. Available: https://doi.org/10.1145/3050220.3063772
J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimoyv,
“Proximal policy optimization algorithms,” 2017. [Online]. Available:
https://arxiv.org/abs/1707.06347

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2023.
[Online]. Available: https://arxiv.org/abs/1706.03762

15

(36]

[37]

(38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

G. N. Lance and W. T. Williams, “A general theory of classificatory
sorting strategies: 1. hierarchical systems,” The Computer Journal,
vol. 9, no. 4, pp. 373-380, 02 1967. [Online]. Available:
https://doi.org/10.1093/comjnl/9.4.373

M. Lanctot, V. Zambaldi, A. Gruslys, A. Lazaridou, K. Tuyls,
J. Perolat, D. Silver, and T. Graepel, “A unified game-theoretic
approach to multiagent reinforcement learning,” 2017. [Online].
Available: https://arxiv.org/abs/1711.00832

J. F. Nash, “Equilibrium points in ji;nj/ij-person games,” Proceedings
of the National Academy of Sciences, vol. 36, no. 1, pp. 48—49, 1950.
[Online]. Available: https://www.pnas.org/doi/abs/10.1073/pnas.36.1.48
T. Sandholm, A. Gilpin, and V. Conitzer, “Mixed-integer programming
methods for finding nash equilibria,” in Proceedings of the 20th National
Conference on Artificial Intelligence - Volume 2, ser. AAAT'05. AAAI
Press, 2005, p. 495-501.

Y. Xian, C. H. Lampert, B. Schiele, and Z. Akata, “ Zero-Shot
Learning—A Comprehensive Evaluation of the Good, the Bad and the
Ugly ,” IEEE Transactions on Pattern Analysis & Machine Intelligence,
vol. 41, no. 09, pp. 2251-2265, Sep. 2019. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/TPAMI.2018.2857768

A. Bou, M. Bettini, S. Dittert, V. Kumar, S. Sodhani, X. Yang, G. D.
Fabritiis, and V. Moens, “Torchrl: A data-driven decision-making library
for pytorch,” 2023.

H. Yin, P. Liu, K. Liu, L. Cao, L. Zhang, Y. Gao, and X. Hei, “ns3-ai:
Fostering artificial intelligence algorithms for networking research,” in
Proceedings of the 2020 Workshop on Ns-3, ser. WNS3 °20. New
York, NY, USA: Association for Computing Machinery, 2020, p.
57-64. [Online]. Available: https://doi.org/10.1145/3389400.3389404
S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, p. 1735-1780, Nov. 1997. [Online]. Available:

https://doi.org/10.1162/neco0.1997.9.8.1735
K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” 2014. [Online].
Available: https://arxiv.org/abs/1406.1078

I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
2019. [Online]. Available: https://arxiv.org/abs/1711.05101

——, “Sgdr: Stochastic gradient descent with warm restarts,” 2017.
[Online]. Available: https://arxiv.org/abs/1608.03983

B. Jang, M. Kim, G. Harerimana, and J. W. Kim, “Q-learning algorithms:
A comprehensive classification and applications,” IEEE Access, vol. 7,
pp- 133653-133 667, 2019.

10[] .
] NMA (CPU)

NTA (CPU)
NMA (GPU)
NTA (GPU)

107" A

1072 4

Latency per Inference [s]

Batch Size
Fig. 12: The curves measure latency of batch inference as a
function of batch size on both CPU as well as GPU.

10° 7
1 —— NMA (CPU)

] —— NTA (CPU)
1 =&+ NMA (GPU)

107!

=
j}
g
g
& 1 ==+ NTA (GPU ’
= 10724 () 5
5 Y /f
&] £y
2 1077 A ,
g 1 ,
=
2 107

21 23 25 27 29 211 213

Input Length

Fig. 13: The curves measure single-data inference latency as
a function of input length on both CPU as well as GPU.

APPENDIX
A. NTA and NMA Inference Latency

We measure inference latency of NMA and NTA in our
system with respect to two variables: input length and batch
size. Input length has different meanings for the NMA and
NTA respectively: The input size to the NTA is the length of
the time-series of past actions which it takes into account to
decide on what the next action should be. For the NMA on the
other hand, the input length is proportional to the size of the
data-structure which it must manage. The batch size refers in
both cases to the standard definition present in the literature in
which data which in theory is to be processed independently,
gets batched together to allow SIMD/SIMT parallelism.

The measurements with respect to batch size are shown in
Figure 12. The values of NMA (CPU) and NTA (CPU) at
batch size 1 are important as they indicate the inference time
during evaluation when the model is deployed. The data of
NMA (GPU) and NTA (GPU) is more relevant for the training
procedure where collected data can be batched and moved to
the GPU in which cases we use batch-sizes of up to 32k and
40k for NTA and NMA respectively.

The measurements with respect to input length are shown in
Figure 13. The primary observation here is that in contrast to
Figure 12, the asymptotic inference cost grows quadratically
with the input size as we can see that when going from an input
length of 2! to 2!3 we incur a ~ 10x increase in latency,

despite only a 2x increase in size. The initial plateaus in
Figures 12 and 13 occur due to SIMD/SIMT parallelism where

16

more data can be processed at little to no additional cost due
to the SIMD/SIMT pipelines not being under maximum load.

B. NMA Deep Neural Network Design

Designing the NMA required balancing flexibility, computa-
tional efficiency, and fixed memory constraints. We evaluated
three architectural approaches before selecting a hybrid trans-
former model.

1) Recursive Neural Network (RNN): RNNs (e.g., LSTM
[43], GRU [44]) were the initial choice due to their flexible
memory. However, they were rejected for two reasons:

Flow ID Recognition: RNNs struggle to embed and compare
flow IDs while simultaneously tracking bandwidth usage.
Training Difficulties: The RL environment is noisy. Optimiz-
ing RNNSs to retain long-term dependencies and memorize
IDs under these conditions proved infeasible. Modified
architectures attempting to address this did not scale.

2) Time-Series Transformer: We considered using a trans-
former taking the last k packets as input. However, as the
number of flows increases, packets space out, requiring k to
grow linearly. Since transformer complexity scales quadrati-
cally with k, this approach was deemed unscalable.

3) Hybrid Models: We settled on a hybrid architecture:
a manually defined counter-based data structure managed
by a neural network. More precisely, a transformer. Unlike
Fully Connected (FC) networks or convolutional networks
(which would find no local structure in the data to exploit),
transformers provide the necessary equivariance, ensuring that
swapping memory entries swaps outputs equivalently.

The final design is a single-layer, single-head transformer-
encoder combined with FC layers. The transformer ensures
equivariance, while the FC layers handle feature transforma-
tion, memory update rules, and heavy-hitter predictions.

C. Qualitative Effects of Reward Shaping on NTA

In this paper we train all NTA policies using a reward
scheme which rewards the agent with s for every packet of
size s that passes the rate-limiter, and —s if it gets dropped or
lost instead. The choice was primarily based on the idea that
packet loss should cause some cost or penalty at the sender,
but also based on observations on the qualitative behavior of
the NTA when we do not attribute negative rewards whenever
packet loss occurs. We observed namely that generally NTA
policies with packet-loss penalty exhibit more sophisticated
behavior than their non-penalized counterpart. Figure 14 shows
the phase-space plots of the NTA strategies where green is
with loss-penalty and red is without. We see that the strategy
without penalty has a consistently higher average sending rate
than the one with penalty, which makes sense since it does
not have to fear being explicitly punished for sending a lot of
traffic. However what we also observe is that qualitatively the
red strategies without loss-penalty have generally a simpler
structure with fewer clusters, whereas we observe much more
variability and the generation of multiple clusters for the green
strategies with loss-penalty. NTA policies having more distinct
clusters in the phase-space plot suggests a more sophisticated

0.01 1

0.007 {
0.004 -

0.01 +
0.007 A

0.004 |

Inter-Packet Interval [s]

0.01 +
0.007 A

0.004

Packet Size [MTU]

Fig. 14: Phase-space plot of 774

evaluated against various HHD methods. The dashed lines are isolines indicating equal

sending-rate. In green we have the policies from Section III whereas in red we have NTA policies that have been trained
without packet-loss penalty. The red and green lines pinpoint the average packet size, inter packet interval, and sending rate

of each policy.

Metric HHD NTA NMA
Total Time [s] 5288.629 19680.220 14481.064
Optimization 16.05% 41.92% 69.56%
Eval 43.73% 52.77% 17.29%
Test 40.22% 5.31% 13.15%
Max Score Time [s] | 3508.226 | 10620.357 | 6665.188

50% of max 94.129 2222.602 1060.886

90% of max 278.461 3780.261 1708.581

99% of max 2422.100 10620.357 | 2359.489
Epochs (Major) 111 78 68

Minor epochs 1109 769 669

PPO steps 110900 76900 66900

TABLE VII: Training metrics for HHD, NTA, and NMA.

strategy and a more advanced understanding of the system, its
dynamics, and how to act in it.

D. Training Resource Consumption

Minimizing the training time is not the main technical focus
of this paper. We optimized the whole pipeline at a system-
level considerably compared to existing frameworks but we did
not go into too many details about customizing ML methods
such as learning-rate adaptation to our use-case. In particular,
in our experiments we typically prefer to let the training take
additional steps just to be sure that it cannot improve anymore
before we terminate it. In this section we provide data on the
resource consumption of the training process.

We divide the training time into three parts: test-time which

measures how much walltime is spent evaluating the agent in
the 60 second simulation, eval-time which measures how much

17

walltime is spent on the shorter 6 second simulations which
are used to collect training data, and finally optimization-
time which measures how much walltime was spent actually
adjusting the agent policy. Test- and eval-time measure the
CPU load while optimization-time consists of GPU load.

Generally the type of workload depends on which agent is
being trained and we observed three categories: HHD agent
training (such as AL), NTA training, and NMA training.
Measurmeents are shown in Table VII.

E. Reducing Training Time

Training involves CPU-bound data generation and GPU-
bound data consumption. The goal is to increase throughput
for both types of workloads.

1) Increasing Data Generation Throughput: Throughput
scales inversely with environment complexity. We increased
it via two methods:

o System-Level: Using multiple parallel simulations, which
provides a linear increase in throughput with available CPU
resources.

Model-Level: Reducing wasted work by minimizing non-
essential system complexity. For example, packets are han-
dled as simple objects holding minimal information (source,
size) instead of fully serialized structures, as the training
algorithm does not use the serialized data.

2) Increasing Data Consumption Throughput: The idea is
to have the model absorb information from the data at the
highest rate possible.

o System-Level: The primary objective is to reach 100%

GPU utilization for inference, backpropagation, and weight

updates, which was achieved in our framework.

o Model-Level: We selected robust and generic optimization
algorithms: AdamW [45] for gradient descent and PPO [34]
for reinforcement learning, with cosine-annealing [46] used
to adjust the learning rate. For multi-agent learning, we used
PSRO [37] because it is robust, has no hyperparameters,
and enables combining smaller neural networks. It avoids
the need for increased neural network capacity and the
resulting slowdown that alternatives like Q-Learning [47]
would require.

F. Packet Capture Data

To incorporate real data within our experiments we start
off from a MAWI [29] packet capture. We extract 10000
(TCP or UDP) flows with at least 2 packets and compute
the MTU over the packets to make it compatible with our
framework. The longest extracted trace has 23150 packets,
the average traffic rate is 90.5 MTU/s, while the average rate
per flow is 27.1 MTU/s. Out of the extracted flows, 3.43%
exceed the rate limit of 40 MTU/s. In order to avoid constant
congestion of our simulated network link we downscale the
packet sizes by the factor 0.22 in order to match an average

18

rate of 20 MTU /s which the link can handle. After scaling,
only 0.73% of extracted flows exceed 40 MTU/s.

G. Hardware and Software Configuration

This section details the hardware and software used to
perform all work in this paper.

1) Hardware: We use a single machine to do all our work.
The machine has the following specifications:
o Motherboard: ROG STRIX X670E-F
« CPU: AMD Ryzen 9 7950X

(16 physical / 32 virtual cores)
« GPU: NVIDIA AD104 [GeForce RTX 4070 SUPER]

(12 GB GDDR6X)
e Memory: 2 x 16 GB DDRS5 Kingston

In summary, we used high-end consumer-grade components.
2) Software: We use the following software:

OS: Xubuntu 24.04.2 LTS

C++: gee 13.3.0

libtorch: 2.7.0 for cuda 11.8

MOSEK: 10.2

openMP: 4.5

