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Abstract—In this work, we present a new lightweight two-
party Private Set Intersection (PSI) paradigm in both the semi-
honest and malicious models. It requires only a small number
of base Oblivious Transfers (OTs), along with a single Oblivious
Key-Value Store (OKVS) encoding and a number of decodings
equal to the sender input size. All computations (except for the
base OTs) can be implemented using efficient hash and bitwise
operations. Furthermore, we extend the proposed PSI protocol
to circuit PSI and, subsequently, to several PSI variants, includ-
ing PSI-cardinality, PSI-sum, and Private Join and Compute
(PJC). All proposed protocols are evaluated under both LAN
and WAN settings, with performance compared against existing
works. Experimental results demonstrate that the proposed PSI
achieves about 1.5x faster runtime than the most efficient
Vector Oblivious Linear Evaluation (VOLE)-based PSI, while
maintaining consistently lower communication overhead under
identical settings. For circuit PSI, it is up to 3.6x faster and
reduces communication by a factor of 1.5 compared to VOLE-
based circuit PSI constructions. In the cases of PSI-cardinality
and PSI-sum, they achieve speedups of up to 12.2x and
10x, respectively, while incurring only moderate communication
overhead. For PJC, the proposed protocol outperforms prior
work by 731x in runtime and achieves a 3.2x reduction in
communication, maintaining high efficiency even under a low-
bandwidth condition. The performance under the unbalanced
setting is also evaluated, showing that our PSI achieves at
most two orders of magnitude improvement in the LAN setting
compared with existing unbalanced PSI protocols, and gradually
gains superiority under the WAN setting as the receiver set size
increases.

I. INTRODUCTION

In recent years, there has been a growing interest in enabling
independent parties to compute insights over their combined
data collaboratively. In many scenarios, the data held by
each party is sensitive and should remain confidential. As a
result, the objective is to ensure that each party learns only
the intended outputs and nothing beyond. This challenge has
garnered attention from several major organizations, including
Google [[1]], Meta [2]], Signal [3]], and Apple [4], all of which
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have actively contributed to research and development in this
area. In the context of privacy-preserving collaborative com-
putation among multiple parties, one particularly important
task is Private Set Intersection (PSI), which has garnered
considerable attention in recent years due to its wide range of
practical applications [S[]-[9]]. In a PSI protocol, two parties,
the sender and the receiver, each hold private sets X and Y,
respectively. The goal is to securely compute the intersection
X N'Y without revealing any additional information beyond
the sizes of the input sets.

Modern PSI protocols are primarily constructed using two
mainstream approaches: Oblivious Transfer Extension (OTE)-
based PSI [10]—[14]] and Vector Oblivious Linear Evaluation
(VOLE)-based PSI [15]-[19]. Over the years, VOLE-based
PSI has generally come to be regarded as more efficient
in terms of performance. Its main construction, originating
from [15]], typically relies on a data structure known as
Oblivious Key-Value Stores (OKVS) [20]]. This type of PSI
protocol is highly efficient, typically completing the intersec-
tion computation for inputs of size 22° within approximately
one second and requiring only tens of megabytes of communi-
cation. As a result, PSI protocol development has increasingly
converged on the VOLE-based paradigm, with progress slow-
ing in the past few years. In fact, since the introduction of
this framework by Rindal and Schoppmann [15]], subsequent
works [[16]—[|19] have largely followed the same paradigm,
differing only in the choice of underlying VOLE protocols or
the specific OKVS constructions employed. For example, the
protocol presented in [16], which is widely regarded as the
state-of-the-art PSI protocol, is built upon [[15]] with improved
constructions of VOLE and OKVS. Proposing a new PSI
paradigm, rather than continuing along the VOLE-based PSI
direction, appears particularly challenging, given that existing
VOLE-based PSI protocols are already highly efficient and
exhibit low communication overhead. In this work, we take
on the challenge of departing from the VOLE-based paradigm
of [15]], and present a novel PSI construction that achieves im-
proved performance. We demonstrate that, under comparable
settings, our PSI protocol consistently outperforms the state-
of-the-art OTE-based [12]] and VOLE-based [15]-[17] PSI
protocols in both LAN and WAN environments. Moreover, our
paradigm incurs strictly less communication than the VOLE-



based PSI paradigm.

In some specific scenarios, the objective of the sender and
the receiver may not be to learn the intersection itself, but
rather to compute specific functions over the intersection. For
example, in the context of evaluating advertising effectiveness
by correlating online ad impressions with offline credit card
transactions [5], the advertiser is primarily interested in the
total sales linked to a particular set of credit cards used at
designated vendors, rather than in the details of individual
transactions. A general approach is circuit PSI [22[]—[25],
where the output consists of secret shares of the inputs and
their corresponding payloads from both parties, rather than
the intersection itself. In theory, these secret shares enable the
execution of arbitrary downstream computations via secure
Multi-Party Computation (MPC). To address these practical
scenarios, we extend our PSI protocol to a circuit PSI protocol,
which is then used to implement several important PSI vari-
ants, including PSI-cardinality, PSI-sum, and Private Join and
Compute (PJC). Furthermore, a comparative evaluation of the
proposed circuit PSI protocol and these PSI variants against
existing works is conducted to demonstrate the advantages of
the construction.

A. Our Contributions

We summarize the contributions of this work as follows:

¢ It proposes a new two-party PSI paradigm that utilizes
Oblivious Transfer (OT) and OKVS, and supports both
the semi-honest and malicious models. Any improve-
ments to OT or OKVS would directly benefit the perfor-
mance of our protocol. Interestingly, unlike prior works
[10]-[19], [26], our protocol does not require expanding
 instances of OT into a large number of pseudorandom
correlations, such as OTE, VOLE, or Beaver triples.
Although this extension is already highly communication-
efficient due to the use of silent techniques [27]—[30], our
protocol still achieves strictly lower communication than
VOLE-based protocols [15]—[17] under identical settings,
while naturally avoiding their associated computational
overhead. For example, according to our evaluation, com-
pleting a silent VOLE protocol [29] with an input size of
224 takes approximately 6 seconds, whereas our protocol
avoids this cost entirely.

« The proposed PSI can be extended to circuit PSI, enabling
the realization of various PSI variants. A comprehensive
comparison with existing works is conducted in terms of
runtime under both LAN and WAN settings, as well as
communication. The results are summarized in Table [I

— PSI. The proposed protocol achieves approximately
1.5 faster performance compared to the VOLE-based
PSI [[15]-[17]. The advantage diminishes as bandwidth
decreases, since our communication, while smaller
than that of VOLE-based PSI, is not significantly so.
Nevertheless, our PSI incurs strictly less communica-
tion under identical settings. Moreover, compared to
the state-of-the-art OTE-based PSI protocol [12], our

protocol achieves more than 3x faster runtime and
reduces communication by a factor of 4.

— Circuit PSI. The circuit PSI proposed protocol is 3.6 x
faster than the VOLE-based circuit PSI [15]-[17] and
reduces the communication cost by a factor of 1.5.
Similar to the standard PSI setting, as the bandwidth
decreases, the performance of the protocol becomes
increasingly constrained by the network. Nevertheless,
our protocol maintains strong performance even in
low-bandwidth environments. Even at 10 Mbps, the
proposed protocol remains 1.7x faster. We further
compare our circuit PST with several recent circuit PSI
constructions [22]]-[24] to demonstrate its competitive
performance. For example, compared to PSTY [22],
our protocol achieves more than an 8x speedup and
reduces computational overhead by over 30x.

— PSI-cardinality and PSI-sum. The proposed protocols
outperform the state-of-the-art protocol [21]] by 12.2x
and 10x in PSI-cardinality and PSI-sum, respectively.
A drawback is that the protocols incur approximately
50% more communication overhead than [21]]. Never-
theless, due to its significant computational efficiency
advantage, our protocol is slower than [21]] only un-
der very low-bandwidth conditions. Specifically, at
10 Mbps, its performance becomes slightly inferior
to [21]], but it remains faster under bandwidth settings
of 100 Mbps or higher. Furthermore, our protocol
incurs lower computation and communication overhead
than other advanced baselines [22], [24], [31]].

— PJC. The proposed PJC protocol is 731x faster and
achieves a 3.2x reduction in communication compared
to the existing PJC protocol [5]. Even under a 10
Mbps setting, it still achieves an 18x performance
improvement due to its computational efficiency.

o In addition to the functional variants, we also evaluate our
PST under the unbalanced setting and compare it with the
state-of-the-art unbalanced PSI protocols [32], [33]]. Our
PSI demonstrates a clear advantage in the LAN setting,
achieving up to one or two orders of magnitude speedup
over [32], [33]. As the receiver set size increases, it also
gains superiority under WAN conditions. For example,
when the receiver input exceeds 2'4, our PSI outper-
forms [32], [33]] in the 100 Mbps setting. In addition,
we observe that when the size of the sender set is less
than about 2° (i.e., 64) times that of the receiver, our PSI
remains the fastest even under the 10 Mbps setting.

o All implementations developed in this work are pub-
licly available for reproducibility at https://github.com/
ShallMate/OurPSI.

B. Notation

All notations used throughout this paper adhere to the defini-
tions provided below, unless otherwise stated. Let « denote the
computational security parameter and ) the statistical security
parameter. The sender is denoted by S and the receiver by
R. The input set of S is denoted by X, and that of R by
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TABLE I: Comparison between our work and state-of-the-art (SOTA) works across various aspects. If the existing work is

optimal, it is highlighted in ; if the proposed work is optimal, it is highlighted in

Functionality SOTA Baseline I AENxecutlonl’g:)nls/lebgsomparli(())llt/[bps Communication Comparison | Detailed Results
PSI VOLE-based PST [15]-[17] ~ 1.5x 1 ~1.2x 1 ~ 1.03x 1 ~ 1.02x 1 Table |I1]]
Circuit PSI VOLE-based CPSI [15]-[17] ~3.6x 1 ~ 2.4x 1 ~1.7x 1 ~ 1.5x 1 Table [IV]
PSI-cardinality czzt 1) ~122x 1T | ~36x T | ~0.12x | ~ 0.49x | Table [V]
PSI-sum CZzZ7 [21] ~ 10x 1 ~ 3% 1 ~0.1x | ~ 0.48x | Table [VI]
PIC IKNT [5] ~ T31x 1 ~ 121x 1 ~ 18x 1 ~ 3.2x 1 Table [VI|

Y. The corresponding payloads are denoted by X and Y,
respectively. Let the input sizes of S and R be denoted by
ns and n,., respectively. For simplicity of presentation, we set
n = ns = n, throughout this paper, except when evaluating
the PSI performance under the unbalanced setting. ¢ denotes
the redundancy rate of the OKVS. The notation [a] denotes the
set {1,2,...,a}. The symbol := is used to denote assignment,
while = indicates equality. || denotes bitwise concatenation.
Let out denote the output length (i.e., the mask length) of
the PSI protocol, and let ¢ denote the redundancy rate of the
OKVS. If a capital letter such as A denotes a set, then the
corresponding lowercase a; refers to its ¢-th element. Similarly,
if s is a binary string, then s[i] denotes the value of its i-th
bit. For a hash table T', we use T'[¢] to denote the set of all
elements stored at position 1.

II. TECHNICAL OVERVIEW

We begin by separately reviewing the most efficient OTE-
based and VOLE-based PSI protocols, which collectively
motivate the design of our PSI. The protocols reviewed in
this section, as well as our PSI construction, are presented in
a simplified and abstracted form for exposition, rather than in
their formal descriptions.

OTE-based PSI. To the best of our knowledge, KKRT [12]
remains the most efficient OTE-based PSI protocol and was
long regarded as the state-of-the-art prior to the advent of
VOLE-based PSI [15]-[17]]. The overall workflow of the
protocol is abstracted and presented in Figure [T}

Sender (X) Receiver (V)

Ty = CuckooHash(Y), b; := PRF(Ty[i])
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Fig. 1: High-level illustration of OTE-based PSI [|12].

First, R inserts its set Y into a cuckoo hash table
Ty of length m using hash functions {hj}§:1~ For each
Ty [i], R computes a pseudorandom function value b; :=
PRF(Ty[i]). Next, the parties perform OTE with swapped
roles: S samples s € {0,1}™, R inputs {a;,a; ® b;}1",,
and S receives {c;}™,. Finally, S computes and sends

X' = {HO((PRF(x) - slh;(2)]) & cn, (. llj)}. while R
sets Y/ := {H*(ap, (), yl[j) }, where H°"* denotes a random
oracle. Note that R computes each mask only once by
recording the hash index j used during the insertion into
the cuckoo hash table. R computes X’ NY’ to reveal the
intersection result. For each x € X NY, let y = x be the
element inserted into the cuckoo hash table using h;. Then,
we have (PRF(z) - s[hj(x)]) © ¢, (2) = an,(y)- This equality
holds for both s[h;(z)] = 0 and s[h;(z)] = 1. This is because
when s[h;(z)] = 0, the left-hand side reduces to Ch, (a)» Which
equals ay, ) due to the correctness of OT. When s[h;(x)] = 1,
the left-hand side becomes PRF(z) @ (ay;(,) © PRF(x)) =
A, (2) = Qh;(y)> SO the equality still holds.

VOLE-based PSI. We now turn to reviewing the VOLE-
based PSI paradigm [15], [[16]. An overview of the protocol
workflow is depicted in Figure
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Fig. 2: High-level illustration of VOLE-based PSI [[15], [16].

First, S and R execute a VOLE protocol [29]], [34] and
obtain A, B and A, C, respectively, where C = AA + B.
Then, R executes the OKVS encoding algorithm to encode
the key-value pairs {y,H(y)} into P, computes A’ := P +
A, and sends A’ to S. Subsequently, S computes X' :=
{H°"*(Decode(B’, ) — AH(z))} for each € X and sends
X' to R, where B’ = B+ AA’. Finally, R computes Y’ :=
{H°"*(Decode(C, y)) | y € Y} and determines the intersection
by computing X’ NY’. When z = y € X NY, we have
Decode(B’, 2)—AH(x) = Decode(B+A(P+A), x)—AH(z)

=Decode(C + AP, z) — AH(z)
=Decode(C, x) = Decode(C, y)

Interestingly, VOLE-based and OTE-based PSI protocols
share fundamentally similar cores, despite exhibiting entirely



different presentations. At a high level, OKVS plays the role
of cuckoo hashing as in the OTE-based PSI protocol [12],
while VOLE replaces the role of OTE. The term P + A serves
a role analogous to {a;,a; ® b;}, ensuring that any common
element between the two parties deterministically leads to the
same masked value. Therefore, after analyzing the essential
similarity between the two protocols, we can further integrate
the strengths of each to design an improved protocol.

Our PSI. We retain OKVS from the VOLE-based PSI to
align elements, avoiding the k-fold communication overhead
in KKRT caused by using k£ hash functions. Furthermore, we
partially incorporate the masking strategy of KKRT, which
allows the majority of our protocol’s computations to be
efficiently executed using highly optimized hash functions,
such as SHA256 via Intel SHA2-NI intrinsics. The high-level
workflow of our PSI is illustrated in Figure [3]

Sender (X)
s€e{01}

{eidi=a

Receiver (Y)
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Fig. 3: A simplified version of our PSI protocol.

As a first step, the parties perform x base random OTs
with swapped roles: R obtains {(a;,b;)}f,, and S, with
randomly chosen choice bits s € {0,1}", receives the cor-
responding messages {c;}f ;. Then, for each y € Y, R
computes D(y) := |[%_,H"(a;,y) ® HP(b;,y), where HP
denotes a random oracle mapping to {0,1}. S computes
C(z) := ||%_;HP(¢c;, ) for each z € X. Since S obtains
only one of a; or b; for each i, every bit of D(y) appears
uniformly random from S. This is straightforward to under-
stand: HP is modeled as an oracle, while in practice it is
instantiated using SHA-256 by taking the least significant bit
of the output. Consequently, each bit of D(y) is computed
as the XOR of a deterministic bit and a pseudorandom bit
for S, rendering it indistinguishable from uniform over Fs.
Therefore, R can directly encode the set {(y, D(y))} into
the OKVS P. Given that D(y) is indistinguishable from
random for &, it cannot reverse-engineer the encoding, owing
to the properties of the OKVS. Finally, & computes and
sends X' := {H°"*(C'(z) @ (s A Decode(P, z)))}, and R sets
Y’ := {H°(||%_,H"(a;,y))}. R can obtain the intersection
by computing X’ NY’. For z = y € X NY, it is necessary
to verify that C(z) @ (s A Decode(P, x)) = ||*_H"(a;, ).

For simplicity of analysis, we consider a single bit position.

We have:
HP(¢c;, ) @ (s[i] A (Hb(ai,x) D Hb(bi,iﬂ))) = H"(a;, y).

It is easy to verify that this equality holds regardless of whether
sli] = 0 or s[i] = 1. The protocol involves only base OTs, a
single OKVS encoding and a number of decodings equal to
the sender input size, with all other computations efficiently
realized via highly optimized hash instruction set extensions,
resulting in high overall efficiency.

Differences from previous PSI paradigms. Our PSI rep-
resents a new two-party PSI paradigm. It no longer requires
OTE or VOLE, but instead relies only on at most x base
random OTs. Previous efficient PSI protocols typically relied
on a large number of pseudorandom correlations, such as OTE,
VOLE, OLEs, and Beaver triples. In contrast, our construction
eliminates the need, fundamentally distinguishing it from all
existing efficient PSI designs. As mentioned earlier, while
silent techniques [27]]-[30] can greatly reduce communication,
their computational cost remains non-negligible. Its underlying
components are reduced to base random OTs and the OKVS,
rather than following the VOLE-based PSI paradigm adopted
in previous works [15]-[19]. To the best of our knowledge, our
PSI paradigm is the first to avoid all of these pseudorandom
correlations, requiring only base random OTs (at most 128
random OTs), while still achieving performance that surpasses
prior works.

PSI-cardinality

Fig. 4: Our modular technical roadmap for PSI and its variants.

Our circuit PSI. We demonstrate how our PSI can be
extended to a circuit PSI, and subsequently to various PSI
variants. The technical roadmap is illustrated in Figure 4] To
extend the PSI to circuit PSI, we additionally employ OKVS
in combination with cuckoo hashing, along with a generic
two-party computation functionality, as illustrated in Figure [3
This extension was also employed in [[15]—[17]. Although this
transformation is not our original contribution, we demonstrate
that our PSI also supports this extensibility property, even
though it departs from the VOLE-based PSI paradigm.

Parameters: The input size and output size of S are denoted
by ins and outs, respectively, and those of R are denoted by
in, and out,. The functionality is defined by a circuit C' that
takes inputs from both parties and produces outputs for each, i.e.,
C - {07 1}in3+in7w — {07 1}out3+outr.

Inputs: S provides a private input X € {0,1}", and R provides
a private input Y € {0,1}"".

Output: Compute (Z1, Z2) := C(X,Y), return Z; to S and Z»
to R.

Fig. 5: Ideal functionality for F,pc for two party computation.



Before describing our circuit PSI, we present a concept
related to PSI: the PSI mask. In simple terms, S holds a set
X and R holds aset Y. Let F : {0,1}" x{0,1}* — {0, 1}°".
Their intersection process can be described as follows: S
computes X’ = {F(k,xz) | + € X} and sends it to R,
while R evaluates Y' = {F(k,y) | y € Y} without knowing
k + {0,1}*. We refer to X’ and Y’ as the masks of X
and Y, respectively. A high-level overview of our circuit PSI
is illustrated in Figure [6] In circuit PSI, in addition to their
respective input sets X and Y, both parties also provide
the corresponding payload sets X and Y as input. First,
R constructs a cuckoo hash table 7Ty of size m by setting
H(y|l7,7) = Ty[h;(y)]. S constructs a simple hash table
Tx such that H(x||j,7) € Tx[h;(z)]. Next, both parties run
our PSI over T'x and Ty, and respectively obtain the masked
sets T% and T3.. However, S does not send the masks T’
to R. Then, S randomly samples {r;}", and {7;}/,. For
all t, € Tx, S encodes the pair {(t,,t. ||tz ® 73)} into the
OKVS P and sends it to R, where t/ and t; denote the
PSI mask and the corresponding payload associated with ¢,
respectively. Subsequently, for each ¢, € Ty, R can compute
ri|[t; := Decode(P,t,) @ t;. Finally, for each i € [m], both
parties invoke Jopc to obtain secret shares (¢?,q}) of g;,
where ¢; := 1 if ; = r}, and ¢; := 0 otherwise. They also
compute shares (29, z}) of z; := ¢;- (7} ®7;)||t5). The shares

of ¢; and z; constitute the output of the circuit PSI.

Sender (X, X) Receiver (Y, V)

Tx = SimpleHash(X) Ty = CuckooHash(Y)
Tx PSI Ty

ty €Ty

{te t2 @ (illtz 1)}
p OKVS. Encode

P

Pty Ty
-OKVS. Decode t)
millti ‘),;@t;/'ty
ql'ZI qOIZD

Fig. 6: A simplified version of our circuit PSI protocol.

In contrast to [15]-[17], which did not further develop
support for various PSI variants, our work presents dedicated
circuits for multiple PSI variants, including PSI-cardinality,
PSI-sum, and PJC, and provides implementations and thor-
ough performance evaluations for each.

III. RELATED WORK

This section provides a review of the evolution of the PSI
protocol and its variants.

PSI. The term PSI was coined by Freedman et al. [|35]]. How-
ever, PSI protocols predate this terminology and can be traced
back to earlier constructions based on Diffie-Hellman (DH)
key agreement [36]], [37]]. This class of protocols was initially
considered inefficient due to their exclusive reliance on public-
key operations. However, with continuous optimizations in

elliptic curves [38]], [39], the efficiency of DH-based PSI has
been significantly improved. Modern DH-based PSI protocols
[21]), [40] can complete the intersection of 220 elements within
tens of seconds. Pinkas et al. [10] constructed an efficient
PSI protocol based on OTE [41]], which is considered the
origin of the highly efficient class of OTE-based PSI protocols.
Since then, a series of efficient PSI protocols [11]-[14] have
been proposed, with [12] being the most efficient among
these. However, compared with DH-based PSI, these proto-
cols trade communication overhead for significantly higher
computational efficiency. This situation has been substantially
improved with the introduction of OKVS [20], which offers a
convenient representation of private sets to facilitate efficient
set intersection. Notably, OKVS was initially introduced to
address the challenge that cuckoo hashing [42]] posed for
achieving malicious security. For further details, see [20]. As a
result, early OKVS-based PSI protocols incurred considerable
communication overhead. This issue was quickly addressed by
Garimella et al. [43]], who optimized the underlying design.
Building on this improvement, Rindal et al. [15] combined
OKYVS with a VOLE protocol [44] to construct a PSI protocol
that supports both the semi-honest and malicious security
models. This architecture has established the standard VOLE-
based PSI paradigm, with follow-up works [16], [[17] primarily
enhancing the underlying VOLE or OKVS components while
preserving the overall design framework. In general, VOLE-
based PSI protocols [[15]-[[17] are collectively regarded as the
state-of-the-art in the context of PSI.

Circuit PSI. Circuit PSI is a variant of PSI where the goal
is to compute a function of the intersection. The circuit PSI
proposed by Huang et al. [45] performs several comparisons
proportional to the input size times its logarithm, and its
overall circuit size scales accordingly. In contrast, the circuit
PSI by Pinkas et al. [11] employs a different strategy: one
party applies cuckoo hashing to distribute its elements across
a linear number of bins, while the other party uses simple
hashing that maps only a logarithmic number of elements
into each bin. This design yields a circuit whose size scales
with the input size times the logarithm of the input size,
divided by the double logarithm of the input size. Ciampi et
al. [46] follow a different paradigm by leveraging OTE to
privately test membership in each bin. The results of these
tests are then fed into a comparison circuit that performs
a linear number of comparisons. While the circuit itself is
compact, the total communication complexity remains in the
same asymptotic order as that of [I1]. Soon after, Pinkas
et al. [22] were the first to demonstrate how to construct a
circuit PSI with linear communication complexity. However,
this protocol suffers from super-linear computational com-
plexity. Chandran et al. [23|] quickly addressed this issue and
proposed a circuit PSI that achieves both linear communication
and linear computational complexity. Subsequently, Rindal
et al. [15] extended the VOLE-based PSI to the setting of
circuit PSI, which remains the state-of-the-art construction for
circuit PSI. Mahdavi et al. [24] introduced a homomorphic-
encryption-based circuit PSI that is particularly efficient in



highly unbalanced input scenarios. Recently, Yang et al. [25]]
proposed the first maliciously secure circuit-based PSI, but its
performance remains far behind semi-honest protocols.

PSI-cardinality. PSI-cardinality reveals only the size of the
intersection rather than the intersection itself. Several early
constructions [47]-[49] achieve this functionality using public-
key operations while ensuring linear complexity. Alternatively,
this functionality can also be realized through the use of circuit
PSI protocols such as [22], [24], [31]]. Recently, Chen et al.
[21] introduced a suite of private set operations, including
PSI-cardinality. Their construction achieves the lowest known
communication overhead among existing PSI-cardinality pro-
tocols, making it particularly well-suited for deployment in
environments with very low bandwidth.

PSI-sum. PSI-sum computes the aggregate sum of the pay-
load values corresponding to all elements held by the sender
that appear in the intersection with the receiver’s set. A rep-
resentative example is the protocol proposed by Ion et al. [5]],
which aims to compute the total amount of purchases made by
users who were exposed to specific advertisements. However,
the performance of the protocol is limited, as it heavily relies
on computationally expensive public-key operations. Similar
to PSI-cardinality, this functionality can also be realized using
circuit PSI protocols, such as [22], [24]. In addition, [21]] also
achieves this functionality with low communication overhead
and demonstrates advantages in low-bandwidth environments.

PIC. PJC is a more general form of PSI-sum, which
computes the sum of the products of the payloads associated
with the elements in the intersection held by both parties. This
idea was first introduced in [3]], [50]. Subsequently, Lepoint
et al. [51] formally defined this class of protocols under the
term PJC. Naturally, PJC can also be realized using circuit PSI
protocols, as demonstrated in [24]], [52].

Unbalanced PSI. Unbalanced PSI is a special case of PSI
where the set held by one party is significantly smaller than the
set held by the other. The current unbalanced PSI protocols are
primarily constructed based on fully homomorphic encryption.
Chen et al. [53] introduced optimizations to reduce the mul-
tiplicative depth of the function evaluated homomorphically,
thereby enhancing efficiency. Furthermore, Chen et al. [54],
and Cong et al. [32] employ a combination of OPRF and
fully homomorphic encryption, building upon [53]]. Mahdavi
et al. [24] adopted a constant-weight encoding method, which
significantly improves performance in the offline phase, but
communication and computation in the online phase are slower
than those of [32]. Recently, Chielle et al. [33] proposed an
unbalanced PSI protocol specifically optimized for repeated
executions, which achieves notably high efficiency when the
receiver input set is very small. Overall, [32], [33] represent
the state-of-the-art unbalanced PSI protocols.

IV. PRELIMINARIES
A. Oblivious Transfer (OT)

Originally introduced by Rabin [55]], OT is a foundational
primitive in the field of MPC. In the standard 1-out-of-2 OT
setting, the sender S holds two input messages (mq,m1),

while the receiver R possesses a selection bit b € {0,1}. At
the conclusion of the protocol, R obtains m,; without learning
any information about m;_;, and S remains unaware of the
R’s choice bit b.

Parameters: Message length L.

Input: A random choice bit b € {0,1} for R.

Output: The functionality samples two random messages
mo, m1 € {0,1}~. R obtains ms, and S obtains (mo, m1).

Fig. 7: Ideal functionality Frot for random 1-out-of-2 OT.

Ishai et al. [41]] proposed the OTE technique, which enables
the execution of a large number of OT instances using only
k base OTs, with the remaining operations relying solely on
efficient symmetric-key primitives. In this work, we show that
OT extension is no longer necessary, and that our PSI can be
efficiently realized using only the base random OT instances.
The ideal functionality FroTt for random OT is specified in
Figure [7| We denote by Fiqr the functionality that makes ¢
independent invocations of Frot.

B. Private Set Intersection (PSI)

The PSI functionality considered in this work follows the
definition used in VOLE-based PSI [15], as illustrated in
Figure |8| This is a widely adopted definition of PSI, although
it allows R to evaluate on n!. elements, which may be slightly
larger than n,. A detailed discussion on this aspect can be
found in the recent work by Han et al. [18].

Parameters: The input set size of S is ns, and that of R is n,.
Let n]. > n,. be a public parameter.

Inputs: S provides a set X. R provides a set Y. If | X| > ns,
abort. If R is malicious and |Y'| > n., then abort. If R is honest
and |Y'| > n., then abort.

Output: R receives the set intersection [ := X NY.

Fig. 8: Ideal functionality for Fps for two-party PSI.

In many scenarios, the two parties are not interested in
computing the intersection itself, but rather in using it to
perform some downstream task. A general approach is to

Parameters: The input set size of S is n, and that of R is n,.
A function R : {{0,1}*}"" — (7 : [n,] — [m]) that outputs an
injective function 7. _ _

Inputs: S provides (X, X). R provides (Y,Y).

Outputs: The functionality computes 7 < R(Y") and uniformly
samples Q°, Q' € {0,1}™ and Z°, Z* € {{0,1}/ZF17}™ such
that for each i’ = 7(4), it holds that ¢y @ ¢}, = 1 and 20 Gz}, =
(Z4]|gs) if there exists y; € Y and x; € X such that y; = x;;
otherwise, ¢ @ ¢ = 0 and 2% @® 2z}, = 0. The functionality
outputs (Q°, Z% ) to R and (Q',Z") to S.

Fig. 9: Ideal functionality for Fcps for circuit PSL

employ a circuit PSI protocol, allowing both parties to obtain,
for each element, secret shares of both its intersection status
and its associated payload. The ideal functionality of the
circuit PSI is depicted in Figure [0] Beyond circuit PSI, there



are also several concrete PSI variants designed for particular
use cases. For example, PSI-cardinality is a specific PSI variant
that reveals only the size of the intersection, as shown in

Figure [I0]

Parameters: The input set size of S is ns, and that of R is n,.
Inputs: S provides a set X. R provides a set Y.
Output: R receives the set intersection I := | X NY|.

Fig. 10: Ideal functionality for Fpsica for PSI-cardinality.

In addition, we also realize PSI-sum and PJC, which
compute the sum of S’s payloads over the intersection and
the inner product of the payloads from both parties over
the intersection, respectively. The ideal functionality of PSI-

Parameters: The input set size of S is ng, and that of R is n,.
Inputs: S provides (X, X). R provides Y.

Outputs: R receives the result sum := 3" . 7.

Fig. 11: Ideal functionality for Fpsisym for PSI-sum.

sum is defined in Figure [I1] while that of PJC is presented
in Figure In PSI-sum, only R’s input set is associated
with payloads, whereas in PJC, both parties have associated
payloads.

Parameters: The input set size of S is ns, and that of R is 7.
Inputs: S provides (X, X). R provides (Y,Y).
Outputs: R receives the result sum := Eri:yj TiVj-

Fig. 12: Ideal functionality for Fp,c for PJC.

PSI-cardinality, PSI-sum, and PJC can be realized either
through circuit PSI or dedicated protocol designs. This work
adopts the circuit PSI approach to implement these function-
alities.

C. Oblivious Key-Value Stores (OKVS)

We review the definition of OKVS as introduced in previous
work [[15]-[18]], [20], [43]. In simple terms, an OKVS allows
one to encode n key-value pairs in a way that prevents an
adversary from recovering the input keys, provided that the
values appear random to the adversary. An OKVS is composed
of the following two algorithms, defined over a key universe
K and a value universe V.

o Encode({k;,v;}1¢,7): The encoding algorithm takes as
input n key-value pairs {(k;,v;)}"_; and randomness r,
and returns an OKVS P € K™ U {L}, where L denotes
an encoding failure.

o Decode(P, k,r): The decoding algorithm takes as input
an OKVS P € V™ and a key k € K, and outputs the
corresponding value v € V.

Encoding success probability. The encoding algorithm fails
with negligible probability in the security parameter A, that is,
Pr[Encode({(ks, vi)}1q,7) :=1] < 277

Decoding correctness. We say that an OKVS satisfies cor-
rectness if, for all valid inputs {(k;,v;)}",, all random-
ness r, and all ¢ € [n], the following holds: if P :=
Encode({(k;, vi)}1,r), then Decode(P, k;,r) = v;. Further-
more, the correctness property does not guarantee the output
of Decode for any key k ¢ {kq,...,kn}.

Redundancy rate. We define the redundancy rate of an
OKVS as ¢ = %, where m is the length of the encoded
vector and n is the number of input key-value pairs.

Linearity. An OKVS is linear if there exists a function row :
K — {0,1}™ such that for all k € K and P € V™,

Decode(P, k,r) = (row(k), P).

Computational indistinguishability. An OKVS is said to
be computationally oblivious if, for all pairs of sets of n
distinct keys {k1,...,k,} € K and {k},...,k,} C K, and
for all n values vy, ...,v, drawn uniformly at random from
V), no probabilistic polynomial-time adversary can distinguish
between the following two distributions:

o P :=Encode({(ki,v1), -, (kn,vn)},7),

o Pi= EnCOde({(kllvvl)a HR) (k;mvn)}vr)'

Statistical indistinguishability. An OKVS satisfies sta-
tistical indistinguishability if, for all sets of n dis-
tinct keys {ki,...,k,} C K and uniformly ran-
dom values {v1,...,v,} C V, the distribution of
Encode({(k1,v1),..., (kn,vs)},r) is statistically indistin-
guishable from the uniform distribution over V.

Random decodings. An OKVS satisfies random decodings
if, for all sets of n distinct keys K = {k1,...,kn} C K, and
for all n values v, ..., v, drawn uniformly at random from V,
the output of Decode(P, k, r') for any key k ¢ K is statistically
indistinguishable from a uniformly random element in V),
where P := Encode({(k1,v1),..., (kn,vn)}, 7).

D. Cuckoo Hashing

Cuckoo hashing [42] is a data structure that employs &k hash
functions h; : {0,1}* — [m] for determining the positions of
n elements. This hashing strategy is widely used for element
alignment in PSI. To insert a new element e, cuckoo hashing
places it at one of the candidate positions h;(e) for some
j € [k]. If the target location is already occupied by another
element €', the existing element ¢’ is evicted and relocated
to one of its alternative positions h;(e’), where ¢ € [k] and
i # j. This process continues recursively until all elements
are successfully placed or a pre-defined relocation threshold
is reached. If insertion still fails after exhausting the allowed
number of evictions, the final element is stored in a stash.

m=38

X4 X, X1 Xg X3 X5

13 T Y x x x

N S/

N T <
/ \ N / N

hj,j € [k]

X X, X3 X4 X5 Xe n=6

Fig. 13: A simple illustration of Cuckoo hashing with n = 6,
m =238, and k = 3.



Figure [13] illustrates a simple example of cuckoo hashing.
The use of cuckoo hashing in PSI aims to avoid the O(n?)
pairwise comparison of masked elements between the two
parties. Instead, it reduces the computation and communication
overhead to O(m) = O(n) by aligning elements through a set
of hash functions {%;}. In this work, we also primarily rely on
this technique to construct a circuit PSI protocol with linear
overhead. The receiver inserts its elements into a cuckoo hash
table of length m. Meanwhile, the sender inserts its elements
into a simple hashing structure using the same set of hash
functions {h;}. Specifically, each element is hashed k times
and inserted into k positions, where each position can hold
an arbitrary number of elements. Both parties perform further
evaluation over the two hash tables.

V. OUR PSI PrROTOCOL

This section presents the construction of the proposed PSI.
Note that there exist multiple implementation choices for
the underlying OKVS and base random OTs (i.e., public-
key operations). Therefore, any improvements to these two
components can directly benefit our PSI.

A. Semi-Honest Protocol

Our protocol in the semi-honest model is formally described
in Figure[T4] The protocol is highly lightweight, requiring only
log,, (nsn, )+ base random OTs and a single encoding and 74
decodings of the OKVS. All remaining operations, including
the instantiation of the random oracle, can be efficiently
implemented using SHA2-NI intrinsics and bitwise operations.
In fact, the OKVS encoding and decoding themselves are also
realized through highly efficient bitwise computations, making
the entire protocol inherently efficient.

Input of S: X := {z1,...,zn,}
Input of R: Y :={y1,...,Yn,.}
Common: out := £,¢ := log, (nsn,) + A\, H> : {0,1}" x

{0,1}* = {0,1},H%:
m:= en,
Protocol:
1) S chooses s + {0,1}*,w < {0,1}* uniformly at random.
2) S and R invoke £ instances of For. In the i-th instance:
o S acts as receiver with input s[i].
e R acts as the sender and receives a;, b; € {0,1}".
« S receives output c;.
3) For y € Y, R computes D(y) :=

{0, 13° {0, 1} x {0, 1}" — {0, 1},

A(ly)® B
A(y) = |[izH(ai, y), B(y) = [li=1H®(bi, y)

4) R chooses r < {0,1}" uniformly at random, encodes an
OKVS P € Fj; using Encode({y, D(y)},r) for y € Y,
and sends {r, P} to S.

_1H (cl,m) and sends w, X’ :=

5) S defines C(z) = ||}
,7)),z,w)} forz € X (ran-

(y), where:

¢
{H°(C(x) @ (s A Decode(P,
domly permuted) to R.

6) R computes Y’ := {H°(A(y), v,
Z=XNY basedon X'NY".

w)} for y € Y and outputs

Fig. 14: Our semi-honest PSI protocol.

Since the output length of H° is set to log, (nsn,) + A,
the probability of a collision is O(27*). Assuming no col-
lisions occur in H°, we briefly outline the correctness of
the protocol. It is necessary to verify whether C(x) & (s A
Decode(P, z,r)) = A(y) when = = y. If y = x, we have:

C(y) & (s A Decode(P,y,1))
= [[iziHo (e, y) @ (s[i](H®(ai, y) © HO(bs, 1))
= [liz1H®(ai, y) = A(y).

A straightforward verification shows that the equality holds
for both cases of s[i] € {0,1}, thereby establishing the
correctness of the protocol.

Theorem 1. Our PSI protocol, as illustrated in Figure
realizes the Fpsi functionality in Figure [§ against a semi-
honest adversary.

Proof. Corrupted S. The view of S in the protocol described in
Figure[14|consists of {s,w, {c;},r, P}. The simulator interacts
with § as follows:
o S samples s + {0,1}Y,w < {0,1}" uniformly at
random.
o The simulator emulates Fgor, waits for S to send s and
the corresponding response {c;}.
o S chooses r < {0,1}" uniformly at random.
e On behalf of R, the simulator samples P <+ ]F;’}, uni-
formly at random and sends it to S.

This simulation is indistinguishable from the real world by the
following hybrids:

e Ho. The same as the real protocol with an honest receiver
R and Ffor is executed honestly.

o ;. The same as Hg except the simulator emulates f£10T-

e Ho. The same as in H;, since r is also chosen uniformly
at random in the real protocol.

e Hsz. The simulator aborts if H® has been previously
queried on a; when s[¢{] = 1 or on b; when s[i] = 0.
The probability of this occurring is O(27%).

e H,4. The simulator in this hybrid does not call Encode,
and so does not abort if Encode fails. Same as in H3, ex-
cept that a randomly sampled PP < 77 is used in place of
the honestly generated OKVS in the real protocol. In the
real protocol, P is generated as Encode({y, D(y)},r). To
argue that an honestly generated OKVS is indistinguish-
able from a uniformly random P, it is crucial to show
that D(y) is uniformly random from the view of S. Since
D(y) = Aly) © B(y). where A(y) = [, H"(a.y) and

B(y) = ||_{H"(b;, ), it can be observed that each bit of
D(y) is indistinguishable to S. Specifically, S only learns
¢i = a; or b; depending on s, so each bit of D(y) appears
uniformly random over Fy, as either A(y) or B(y)
is uniformly random. Therefore, by the computational
obliviousness and double obliviousness of the OKVS, this
hybrid is computationally indistinguishable.

Corrupted R. The view of R in the protocol described
in Figure [14] consists of {{a;}, {b;},w, X'}. Unlike the case
with a corrupted S, it is necessary to ensure the correctness



here. The simulator takes as input the receiver’s set Y, the
intersection Z = X NY, and plays the role of .Féo-r. The
simulator interacts with R as follows:

o The simulator samples {a;} and {b;} uniformly at ran-
dom from {0, 1}*.

« The simulator emulates Fiqy, sends {a;}, {b;} to R.

o On behalf of S, the simulator chooses s <« {0,1}*
uniformly at random and sets ¢; := a; if s[i] = 0;
otherwise, ¢; := b;.

« The simulator chooses w <— {0, 1}* uniformly at random.

o The simulator computes Y’ and generates a uniformly
random X' such that X' NY’" = {H°(A(2),z,w) | z €
Z}.

To demonstrate the correctness of this simulation and its
indistinguishability from the real protocol, consider the fol-
lowing hybrids:

e Ho. The same as the real protocol with an honest sender

S and Fiqy is executed honestly.

o ;. The same as H except the simulator emulates }"éo-r,
receives {a;}, {b;} from R.

e Ho. The simulator aborts if Encode fails, which occurs
with probability 27

e Hs. For the items in the intersection z € Z = X NY,
we have

C(z) @ (s A Decode(P, z,1))
= |liz1H® (i 2) @ (s[)(H® (ai, 2) @ HO(by, 2)))
= |li=1H"(as, 2)

regardless of whether s[i] is 0 or 1. Therefore, for all
y € Z, R can indeed find a matching element in X’. Now
consider the items of X not in the intersection, X™* =
X\Y. For 2* € X* y € Y, correctness of the protocol
requires

C(z") @ (s A\ Decode(P, z*, 7)) # A(y)
11 HP (ei, 2*)@(s[i](H*(ai, ) © HO(b;, )
# [liz1HP (i, ).

The probability of this case causing an abort is 27, since
¢ =logy(nsn,) + A

e 4. This hybrid aborts if any (z*,y) € X* x Y results
in a collision in the corresponding H°® queries. The
probability of this event occurring is also 272,

e 5. This hybrid aborts if R ever queries H°(-, 2*,w) at
C(z*)® (sADecode( P, z*,r)) for any * € X*. Since w
is uniformly distributed with respect to R prior to being
sent, the probability of this event occurring is 277.

This completes the proof of the protocol in the semi-honest
model. [

B. Maliciously Secure Protocol

Our PSI can be extended from the semi-honest to the
malicious model using a standard transformation, which has
been employed in several prior works [15]-[18]], [56]. Our

Input of S: X := {z1,...,%n.}
Input of R: Y :={y1,...,yn,.}
Common: out = x,H° : {0,1}* x {0,1}* x {0,1}* —
{0,1},H" : {0,1}* — {0,1}",H° : {0,1}°*" x {0,1}* —
{0,1}°%, m := en,
Protocol:
1) S chooses s,w1,7 + {0,1}" uniformly at random and
sends 71 := H"(w1), 7 to R.
2) S and R invoke x instances of Fgigr. In the 4-th instance:
o S acts as receiver with input s[i].
o R acts as the sender and receives a;, b; € {0,1}".
« S receives output c;.

3) For y € Y, R computes D(y) := A(y) & B(y), where:
Aly) = [[iH (@i, y,7), B(y) = |7 H (bi g, 7)

4) R chooses 7,ws < {0,1}" uniformly at random, encodes
an OKVS P € F3% using Encode({y, D(y)},r) fory € Y,
and sends {r, P,wz} to S.

5) S sends w1 to R who aborts if 71 # H"(w1). Both parties
define w = w1 @ wo.

6) S defines C(z) := ||%=1H(ci,z,7) and sends X' :=
{H°(C(x) @ (s A Decode(P,z,7)) ®w,z)} for z € X
(randomly permuted) to R.

7) R computes Y’ := {H°(A(y) ® w,y)} for y € Y and
outputs Z = X NY based on X' NY".

Fig. 15: Our maliciously secure PSI protocol.

malicious-secure PSI protocol is formally described in Fig-
ure For a detailed discussion on certain parameter choices,
such as the rationale for setting out := &, see [[15]], [[18].

The correctness of the protocol has already been discussed
in the semi-honest setting. Moreover, correctness is implic-
itly guaranteed in the malicious model, as it is necessary
for achieving indistinguishability between the real and ideal
worlds. Therefore, we proceed directly to the security analysis.

Theorem 2. Our PSI protocol, as illustrated in Figure
realizes the Fps functionality in Figure [8against a malicious
adversary.

Proof. Corrupted S. Consider a malicious S. The simulator
interacts with S as follows:

o The simulator emulates the functionality 7551 and waits
for party S to send s € {0,1}". It then samples random
strings {(a;,b;)}¥_,, and returns a; if s[i] = 0, or b;
otherwise.

e On behalf of R, the simulator sends uniform {r, P,ws}
to S.

o Let X* denote the set of all elements x that are queried to
H°. When S sends X, the simulator computes X := {z |
r€X* AP € X*st.x# 2 AH(-z) = H (-, 2')},
extracts X := {x | z € X AH°(-,z) € X'}, and sends
X to Fps.

To prove that this simulation is indistinguishable and con-
sider the following hybrids:

e Hp. The same as the real protocol except the simulator
in this hybrid plays the role of F{qyr.



e Hi. The simulator aborts if HP has been previously
queried on a; when s[i] = 1 or on b; when s[i] = 0.
The probability of this occurring is O(27%).
Ho. In this hybrid, the simulator aborts when sampling
r if there exists a prior query to row(-,r). Since r is
sampled uniformly at random, the probability of this case
is O(27"), and therefore this hybrid is indistinguishable
from H;.
Hs. In this hybrid, the simulator samples P <« 3.
uniformly as opposed to P := Encode({y, D(y)},r).
Therefore, it does not abort due to encoding failure. Since
no prior query to row(-,r) has been made and the H°
query does not result in an abort, the indistinguishability
of the OKVS holds: because the values are random from
the perspective of S, the resulting OKVS P appears
uniformly random to S. Hence, this hybrid is indistin-
guishable from Hs.
H4. Whenever S, after receiving P, queries H°(q, ),
where ¢ = C(x) @ (s A Decode(P,z,7)) ® w, and
H°(g,x) has already been queried before, the hybrid
aborts. Otherwise, the simulator responds using uniformly
sampled elements. Note that in this hybrid, » and w are
uniformly distributed before  and wy are sent. Therefore,
any given ¢ C(z) ® (s A Decode(P,z,r)) & w is
uniformly distributed, and the probability that S has
previously queried H°(q, x) is negligible. Therefore, this
hybrid is indistinguishable from the previous one.
Hs. Assuming no collisions of the form H°(-,z) =
He(-,2"), the correctness and indistinguishability of the
simulation follow directly. The main case that requires
discussion is when collisions do occur. Note that the
simulator only needs to extract x and ' if at least one
of them appears in Y with non-negligible probability.
Without loss of generality, assume x € Y. Consider some
y € Y and the probability that H°(-, ") = H°(-,y). Since
Y| = O(k), the probability that S finds such a target
collision is O(277).

Corrupted R. Consider a malicious R. The simulator is as
follows:

o The simulator plays the role of F5q.

The simulator generates the maskings of Y, denoted Y,
uniformly at random.

The simulator forwards Y to Fpg) and receives Z = X N
Y in response.

The simulator generates X’ by randomly selecting |Z]
elements from Y’ and ns—|Z| elements from {0, 1}*\Y".

The simulator sends X’ to R.

To prove that the simulation is indistinguishable, we con-
sider the following hybrids:

e Hp. This hybrid is identical to the real protocol, except
that the simulator plays the role of F§,t and samples
{ai} and {bl}

o Hi. If a query to H® involving 7 is made before 7 has
been sent, the simulator aborts. The probability of this
case occurring is O(27"%).
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o Ho. After R sends r and P, the hybrid checks, for
all prior H® queries made by R, whether the condition
Decode(P,y,7) = ||%_,H®(ai,y, 7) ® HP(b;, y,7) holds.
If the condition holds, then y is added to the set Y. In
this hybrid, the simulator generates the maskings of Y,
denoted Y’, uniformly at random.

Hs. In this hybrid, the simulator does not sample w; at
the beginning of the protocol. Instead, it sends a random
value as 7 in place of H*(w;). When the point in the
protocol is reached where w; should be sent, the simulator
samples wy and sets H"(w;) := 71, under the condition
that w; has not been queried before. In this case, the
distribution of the hybrid remains identical to the previous
one and is thus indistinguishable, since w; is uniformly
distributed.

Hy. After wy < {0, 1}" is sampled, if R has previously
issued a query of the form H°(A(y) ®w,y) forally € Y
after receiving P, then the simulator aborts. Since w; is
freshly sampled, each value of A(y) @ w is uniformly
random, and thus the probability of aborting is O(27%).
In this hybrid, the simulator programs H° for all y € Y
such that {H°(A(y) ® w,y) € Y'}, and sends wy to R.
Since Y is uniformly distributed, programming H° in
this way does not alter the distribution.

Hs. If R has previously made a query of the form
H®(q, y) where (g, y) € {(C(y) ® (s A\Decode(P,y,r))®
w,y) |y € {0,1}*\ Y}, then the simulator aborts. From
the view of R, the s is uniformly distributed. Therefore,
the probability that this causes an abort is O(27%).

He. In this hybrid, the only difference between the
simulated X’ and that in the real protocol is that, in the
real protocol, the dummy elements are sampled uniformly
from the entire set {0, 1}°"*, whereas in the simulation,
they are sampled from {0, 1}°"*\ Y’. However, {0, 1}°
is extremely large (of size 2*), while | X| is negligible in
comparison. Therefore, [{0,1}°""\ Y'| = 2°t — | X| =
O(2"%), making the hybrid indistinguishable.

This completes the proof of the protocol in the malicious
model. O

C. Resistance to OKVS overfitting attack

Since the receiver can encode more than n,. key-value pairs
into the OKVS, potentially even exceeding the upper bound n,
allowed by the ideal functionality, this phenomenon is known
as the overfitting problem of OKVS. Han et al. [[18] formal-
ized this attack, demonstrated that the VOLE+OKVS-based
PSI [15] is vulnerable to this issue, and proposed an effective
countermeasure. Following their approach, we show that our
PSI protocol is also resistant to this attack. In the semi-honest
setting, [[18|]] recommended setting the mask output length out
to k, rather than the typical value of A\ + logy(ngsn,.). The
reason is that the receiver may issue g queries to the random
oracle after the protocol execution, potentially resulting in
approximately 5% additional evaluations. Although the insight
is novel and well-founded, A + log,(nsn,) is retained for
out. Since in the semi-honest model the receiver is assumed




to follow the protocol faithfully and encode exactly n, key-
value pairs into the OKVS during execution, any additional
encoding or evaluation would constitute malicious behavior,
which falls outside the assumptions of the semi-honest setting.
Furthermore, since an output length of A\ + logy(ngn,.) is
adopted by nearly all mainstream semi-honest PSI proto-
cols [10]-[14], [26]], it is reasonable to adhere to the same
setting in our design. In the malicious setting, an adversary
may precompute random oracle queries, thereby enabling the
execution of the overfitting attack. Following the approach
in [18]], a salt value 7, sampled by the sender, is incorporated
into H® to prevent such scenarios. In addition, [18] proposed
a timeout mechanism to prevent a malicious receiver from
issuing excessive H° queries after learning 7 in an attempt to
carry out the overfitting attack. However, this mechanism can-
not be effectively implemented in practice, as it is infeasible
to specify a fixed timeout value. Meanwhile, any reasonable
estimate for the timeout would likely exceed the expected
execution time of PSI protocols in real-world deployments
and would also be significantly longer than typical channel
latency in practical systems. In fact, [18]] does not explicitly
specify this timeout in their protocol, merely suggesting that
such a mechanism could mitigate random oracle queries issued
during the interval between the sender’s transmission of 7 and
the receiver’s generation of the OKVS. This consideration is
equally applicable to our PSL

D. Theoretical Analysis

As noted in [15], it is generally challenging to compare
the computational overhead of modern efficient PSI protocols
through theoretical analysis, since most operations rely on
highly optimized symmetric-key operations. Consequently, the
practical performance of PSI protocols can only be assessed
through empirical evaluation, which is presented in the ex-
perimental section (Section [VII). Here, we focus primarily on
analyzing the communication overhead.

TABLE II: Theoretical communication cost comparison under
comparable settings between our PSI protocol and the state-
of-the-art OTE-based and VOLE-based PSI protocols in both
semi-honest and malicious models. We set k = 128, A = 40,
and the OKVS redundancy rate ¢ = 1.03 [17]], which is the
lowest known value for efficient OKVS construction.

n=ns=n,

Communication 5

Protocol

2 2

Semi-Honest
6rnr + 3(A + log(nsny))ns
(log(nsnr) + A (enr + ns) + 2525
(log(nsny) + A)(en,r +ns) + 2%k

KKRT [12]
VOLE-based PSI [15]-[17
Ours

984n
220n
147n

1008n
167n
163n

1032n
179n
179n

Malicious
erny + kns + 2192k
exny + kns + 2°k

VOLE-based PSI [15[17] |
Ours

265n
260n

261n
260n

‘ 334n
‘ 261n

We compare the theoretical communication costs of our PSI
protocol with those of the most efficient OTE-based PSI [[12]
and VOLE-based PSI protocols [[15]-[|17] in Table The
communication costs of silent VOLE [29] and base OTs [57]
are measured to be 4,715,288 bits and 33,024 bits, respec-
tively, in our practical evaluation. Simplifying these results,
the communication costs of VOLE and « base OTs can be
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approximated as 2'5-?x and 2%k bits, respectively. Compared
to KKRT [[12f], our PST achieves a significant reduction in com-
munication cost. While our protocol also outperforms VOLE-
based PSI protocols [15]-[17] in terms of communication,
the improvement is relatively modest. However, we can show
that under the same OKVS redundancy and within the same
security model, the communication of our protocol is always
smaller than that of VOLE-based PSI.

Theorem 3. When the OKVS redundancy parameter € is the
same and the protocols operate under the same security model,
the communication cost of our PSI protocol is strictly smaller
than that of the VOLE-based PSI.

Proof. For the OKVS part, both our PSI and the VOLE-
based PSI require e/n, bits of communication, where in the
semi-honest model ¢ = log(nsn,) + A, and in the malicious
model ¢ = k. For the masks sent from the sender to the
receiver, the communication cost amounts to /n, bits. Let the
communication costs of our PSI and the VOLE-based PSI be
denoted as Coyur and Ciolepsi> respectively. Therefore, we have

Cour =efny + €ng + Chaseot,
Ovolepsi :ngr + gns + C1vo|e7

where Chaseor denotes the communication of x base OTs and
Cyole that of the VOLE protocol. Since VOLE inherently
requires base random OTs, we have Chaseort < Chole. Therefore,
under identical settings, we conclude that Coyr < Clglepsi- [

VI. EXTENSION TO CIRCUIT PSI

This section extends the PSI protocol to circuit PSI and
subsequently to various PSI variants. This requires the use of
cuckoo hashing, which makes it difficult to achieve malicious
security. For details, refer to the work of Pinkas et al. [20].
Therefore, all protocols in this section are considered under the
semi-honest model only. Note that most mainstream circuit-
based PSI protocols [15]-[17], [22]-[24]] achieve also only
semi-honest security. The only known maliciously secure
construction [25] remains impractical, running nearly 20x
slower than [23]].

Our circuit PSI protocol is formally described in Figure
Using cuckoo hashing on one side and simple hashing on
the other enables bin-to-bin comparison, reducing the match-
ing complexity from O(n?) to O(n) [15], [22]-[24]. We
employ stash-free cuckoo hashing since when £ = 3 and
m = 1.27n,, the probability of insertion failure is < 2740
and thus negligible [22]. If there is an intersection at position

i € [m], the receiver obtains r, = r; and 7/ = tz D T;.
This is because when an intersection occurs (¢, = t),
we have t;, @ (ril[tz © =) © t, = (rilltz ® 1) = 77}

Therefore, S holds (r;||7;), and R sends (r}||7/,t5), after
which they invoke JFopc to compute whether r; ri. If
equality holds, it indicates an intersection, i.e., ¢; = 1, and
in this case z; = (tz|/ty). The shares of ¢, and z; are
then used for the subsequent circuit evaluation. Note that the
length of r; must be at least logym 4 A bits to ensure a
collision probability of O(27*) over m comparisons [22].



Input of S: X :={x1,..., 2, } and X :={Z1,...,%n,}
Imput of R: Y :={y1,...,yn,. } and Y := {31, ..., Tn, }
Common: Cuckoo hash table size m := 1.27n,., and k := 3 hash
functions h; : {0,1}" — [m], H: {0,1}" x {0,1}" — {0,1}".
Protocol:

1) S samples 7 < {0,1}" uniformly at random and sends it
to R.
‘R constructs a cuckoo hash table Ty of Y such that for
each y € Y, there exists j € [k] such that H(y||j,)
Ty [h;(y)]. The empty entries of Ty are filled with random
elements.
S constructs a simple hash table Tx of X such that for each
z € X and j € [k], it holds that H(z||j,r) € Tx [h;(x)].
For each ¢, € T, its corresponding associated value Z is
denoted as tz € T';.
Both parties run our PSI with T'x and Ty as inputs, except
that S omits sending the resulting masked set T% to R. S
and R obtain the masked sets T% and T3 corresponding to
Tx and Ty, respectively. In other words, the execution of
Figure [T4] terminates at Step 5, and the sender does not send
the corresponding masked set T'.
For all i € [m], S samples r; « {0,1}/°82™%* 7 «
{0,1}/#! uniformly at random.
S encodes an OKVS P using Encode({(ts, t, & (ri||tz ®
7:))},7) for each t, € Tx, where t,, € Tx and t; €
Tz are the PSI-generated mask and the associated value
corresponding to t;, respectively, and sends P to R.
For each i € [m], R computes r;||7; := Decode(P, t,,r)®
t,,, where t, is the value at position ¢ in Ty, and tj, is the
corresponding PSI-generated mask.
For each ¢ € [m], S sends r;||7;, and R sends (ri||7{,t5)
to Fopc, where tj is the associated value corresponding to
the ¢-th position in 7y (or zero if this is a dummy entry).
Fopc computes a circuit that, for each i € [m], sets ¢; := 1
if r; = 7}, and q; := 0 otherwise, and outputs secret shares

(47,47) of qi, and (27, 2;) of 2z := qi - (] & 7:)|t3)-

2)

3)

4)

5)

6)

7)

8)

Fig. 16: Our circuit PSI protocol.

Moreover, this implies that /R obtains a secret share of the
payload corresponding to each intersection, as tz; = 7; ® 7.
Consequently, regardless of how many elements are inserted
into each position of T'x, only one evaluation per position
is needed during circuit computation. This strictly guarantees
that both the computational and communication complexities

remain O(m) = O(n).

Theorem 4. Our circuit PSI protocol, as illustrated in Fig-
ure [I6] realizes the Fcps) functionality in Figure [9 against a
semi-honest adversary.

Proof. Corrupted S. In the circuit PSI protocol, the view of S
is {r,{r;}, {7}, Q", Z'}, excluding the interaction messages
of the PSI protocol. Simulating this view is trivial: Q! and Z*
can be obtained by invoking F,pc, while all other components
are random values. Moreover, the interaction messages of the
PSI protocol have already been proven to be simulatable.
Corrupted R. The view of R is {r, P,Q", Z°}, excluding
the interaction messages of the PSI protocol. The primary
consideration is whether P can be correctly simulated. Ac-
cording to the indistinguishability property of OKVS, for P to
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be indistinguishable to R, the value t, @ (r;||tz & ;) should
appear random to R. We can observe that ¢/ is uniformly
random from the perspective of R, since it is in fact the
mask of T'x generated by the PSI protocol. Therefore, P is
indistinguishable from the perspective of R. The proofs for
the remaining interaction messages are straightforward. [

A. Extending Circuit PSI to Additional Functionalities

Circuit PSI serves as a general framework for realizing
various PSI variants. By adapting the evaluation circuit in the
final step, different functionalities can be naturally supported.
In our work, we have extended it to support PSI-cardinality,
PSI-sum, and PJC.

PSI-cardinality. The PSI-cardinality protocol is described
formally in Figure [T7} As no payloads are involved in PSI-
cardinality, the operations on X and Y are removed accord-
ingly. The final circuit computes ca := Y .- ¢;, where g; de-
notes the presence of an intersection at position ¢. By directly
outputting the intersection cardinality ca without leaking any
intermediate information, the functionality of PSI-cardinality
is realized.

Input of S: X := {z1,...,2n,}

Input of R: Y :={y1,...,yn,.}

Common: m := 1.27n,, and k£ := 3 hash functions h;
{0,1}* = [m], H: {0,1}* x {0,1}" — {0,1}".

Protocol:

1) Steps 1 through 4 are consistent with those of the circuit
PSI protocol (Figure [I6).

For all i € [m], S samples r; « {0, 1}'°82™+* yniformly
at random.

S encodes an OKVS P using Encode({(ts, t, ®r;)}, r) for
te € Tx and sends P to R.

For each ¢ € [m], R computes 7; := Decode(P, ty,r) ®ty,.
For each i € [m], S sends r; and R sends 7} to Fopc, which
evaluates a circuit that sets ¢; := 1 if r; = 7}, and ¢; := 0
otherwise, and then computes ca := Y ", ¢;, outputting the
result to R.

2)
3)

4)
5)

Fig. 17: Our PSI-cardinality protocol.

Theorem S. Our PSI-cardinality protocol, as illustrated in
Figure [[7) realizes the Fpsica functionality in Figure [10]
against a semi-honest adversary.

Proof. The proof is trivial and follows similarly to the proof
of Theorem [4] O

PSI-sum. In PSI-sum, only the sender S is associated with
payloads corresponding to its input elements, whereas the
receiver R has no associated payloads. The PSI-sum protocol
is described formally in Figure The circuit for PSI-sum
computes sum := »_.*, q;(7/ ® 7;). It can be verified that
when ¢; = 1, the value 7/ @ 7; equals the associated payload
. From this, sum =} _ -, Z, which realizes PSI-sum.

Theorem 6. Our PSI-sum protocol, as illustrated in Figure|I8)
realizes the Fpsisum functionality in Figure against a semi-
honest adversary.



Input of S: X := {z1,...,2,,} and X := {Z1,..., &, }

Input of R: Y :={y1,...,Yn,. }
Common: m := 1.27n,, and k := 3 hash functions h; :
{0,1}* — [m], H: {0,1}* x {0,1}" — {0, 1}".

Protocol:

1) Steps 1 through 7 are consistent with those of the circuit
PSI protocol (Figure [16).

2) For each i € [m], S sends 7;||7;, and R sends ri||7] to
Fopc. Fopc computes a circuit that, for each i € [m], sets
qi:=1ifr; = ré, and ¢; := 0 otherwise, and then computes
sum := > " qi(7{ ® 7:), outputting the result to R.

Fig. 18: Our PSI-sum protocol.

Proof. The proof is trivial and follows similarly to the proof

of Theorem [ O
Input of S: X := {x1,...,%n,} and ):( ={Z1,...,%Tn,}
Input of R: Y :={y1,...,yn,. } and Y := {31, ..., Tn, }

Common: m := 1.27n,, and k := 3 hash functions h; :
{0,1}* — [m], H: {0,1}" x {0,1}" — {0, 1}".
Protocol:

1) Steps 1 through 7 are consistent with those of the circuit
PSI protocol (Figure [I6).

2) For each i € [m], S sends 7;||7;, and R sends (7||7{,t5) to
Fopc. Fopc computes a circuit that, for each ¢ € [m], sets
qi == 1if r; = r}, and ¢; := 0 otherwise, and then computes
sum:= > " qi(7{ ® 7) - ty, outputting the result to R.

Fig. 19: Our PJC protocol.

PJC. PJC generalizes PSI-sum by allowing both parties to
associate payloads with their inputs. When all payloads on the
receiver’s side are fixed to 1, the functionality reduces to that
of PSI-sum. The PJC protocol is described formally in Fig-
ure Therefore, PJIC can be realized by slightly modifying
the PSI-sum circuit to compute sum := >_."  ¢;(7/ ® 7;) - t5.

Theorem 7. Our PJC protocol, as illustrated in Figure
realizes the Fpjc functionality in Figure against a semi-
honest adversary.

Proof. The proof is trivial and follows similarly to the proof
of Theorem H] O

VII. IMPLEMENTATION AND EVALUATION

In this section, our work is evaluated and comprehensively
compared with existing works.

A. Experimental Setup

All experiments were conducted on a personal laptop run-
ning Ubuntu 20.04, equipped with 16GB of RAM and an
11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz CPU.
Our implementation is written in C++, where all random
oracles are instantiated through batched SHA-256 evaluations
accelerated by SHA2-NI intrinsics. The protocol performance
can be further improved by leveraging AES-NI, and the
corresponding results are presented in Appendix In the
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WAN setting, the protocols are evaluated under 100 Mbps and
10 Mbps bandwidth constraints, with throttling implemented
using the Linux tc command. We select two state-of-the-
art OKVS constructions for our experiments: RR [16]], which
offers better encoding and decoding efficiency, and BPSY [17]],
which features lower redundancy. To ensure a fair comparison,
protocols that also rely on OKVS are evaluated using the
same OKVS. The base random OTs are instantiated using
SimplestOT [57]. For existing protocols that require OTE, we
adopt [28]], while for those that require VOLE, we use [29].
For our circuit PSI and other PSI variants, circuit evaluation
is performed using the SPU library [58].

Baseline. The baselines and implementation sources for PSI
and its variants used in our experiments are presented below.

PSI. KKRT [12] and the VOLE-based PSI [15]-[17]
are selected as baselines for evaluating our work in the
standard PSI setting, as they represent the most effi-
cient existing approaches in the OTE-based and VOLE-
based PSI categories, respectively. The implementations
of KKRT and the VOLE-based PSI are obtained from [S9]
and [|60], respectively. When a comparison using BPSY is
required, the OKVS component in [60] is replaced with
the implementation from [|61].

Circuit PSI. For circuit PSI, four recent and repre-
sentative existing works are selected: PSTY [22], CGS
[23]], PEPSI [24], and the VOLE-based circuit PSI [15]-
[17]. The implementations of PSTY, CGS, and PEPSI
can be found in [62], [63]], and [64], respectively. The
implementation of the VOLE-based circuit PSI protocol is
available in [60]]. Similar to the PSI case, when comparing
with BPSY as the OKVS, the OKVS component in the
circuit PSI implementation of [60] is replaced with that
from [61]].

PSI-cardinality. For PSI-cardinality, comparisons are
made with PSTY [22], GMR* [31], PEPSI [24], and
CZZ* [21]. There is no official implementation of
GMR™ [31]], but an implementation can be derived by
modifying that of PSTY [62]. The implementations of
PSTY and PEPSI are as noted in the circuit PSI part,
and the source code for CZZ* is available at [65]].
PSI-sum. For PSI-sum, we compare against PSTY [22],
PEPSI [24]], and CZZ* [21]], all of which have official
implementations that have been provided above.

PJC. For PJC, we compare against IKN™ [5]], using its
official implementation [66]. We were unable to compare
with [S1], [52] due to the lack of publicly available
implementations, and unlike GMR™ [31]], they cannot be
reproduced by simple code modifications.

Unbalanced setting. Beyond these functionalities of PSI,
we further evaluate the performance of our proposed
PSI in the unbalanced setting. We use the state-of-the-
art APSI [32] and the recently proposed CM [33] as
baselines for comparison. Their official implementations
are available at [67]] and [68], respectively.

It is worth noting that, similar to our work, a circuit PSI



TABLE III: Runtime and communication comparison between our work and existing PSI protocols under various network
settings. If the existing work is optimal, it is highlighted in ; if the proposed work is optimal, it is highlighted in

A “-” in the runtime column denotes that the implementation of the protocol encountered runtime errors under the given
parameter setting.

Running Time (s) L

PSI Security OKVS TAN WAN (200 Mbps) WAN (10 Mbps) Communication (MB)

21b 2ZU 214 21() 21[) 214 2lh 2ZU 214 21() 220 224
KKRT (12 Semi-Fonest 7 014 | 26 | 48 | 07 | 115 [ 1974 | 55 | 9.1 | 15116 | 6.89 | 1142 | 18934
VOLE-based PSI [15], [16] | Semi-Honest | RRi6] | 0.04 | 1.03 | 221 | 02 | 37 | 665 | 1.8 | 26 | 4645 | 2.25 | 32.44 | 490.9
VOLE-based PSI [15], [T6] | Malicious | RR[16] | 0.05 | 1.09 | 232 | 03 | 4.1 | 75.6 | 2.8 | 315 | 5014 | 3.34 | 37.1 | 5719
VOLE-based PST {15, [16] | Semi-Honest | BPSY [17] | 0.05 | 1.3 | 240 | 03 | 3.3 | 603 | 2.2 | 224 | 3948 | 2.60 | 27.56 | 440.78
VOLE-based PST [15], [16] | Malicious | BPSY [[7] | 0.06 | 1.164 | 252 | 03 | 3.8 | 675 | 2.4 | 268 | 454 | 3.03 | 33.56 | 520.78
Ours Semi-Honest | RR[16] | 0.02 | 074 | 144 | 02| 33 | 561 | 1.6 | 258 | 4477 | 1.9 | 30.02 | 4908
Ours Malicious | RR [16 003 | 076 | 146 | 02 [ 38 | 628 | 1.9 | 290 | 4837 | 2.34 | 36.02 | 5708
Ours Semi-Flonest | BPSY [17] | 0.03 | 088 | 1561 | 0.2 | 31 490 | 1.4 | 20.0 | 3814 | 1.59 | 26.48 | 439.68
Ours Malicious | BPSY [17] | 0.04 | 0.90 | 15.0 | 0.2 | 3.6 567 | 1.7 | 262 | 4494 | 2.03 | 32.48 | 510.68

TABLE IV: Runtime and communication comparison between our

network settings. If the existing work is optimal, it is highlighted in
in

work and existing circuit PSI protocols under various

; if the proposed work is optimal, it is highlighted
. A “-” is shown in the OKVS column to indicate that the corresponding protocols do not utilize OKVS. A “-” in the
runtime column denotes that the implementation of the protocol encountered runtime errors under the given parameter setting.

Running Time (s) L
Circuit PSI OKVS LAN WAN (10% Mbps) WAN (10 Mbps) Communication (MB)
21() QZU 214 21() 22U 214 21() 220 214 21() 21(} 214
PSTY [22] 7 32 | 504 | 796.3 | 15.1 | 247.3 | 3702.2 | 120.9 | 2006.1 n 1485 | 2376 | 38016
CGS 23] 7 23 - - 184 . - 172.7 B . 208.6 - -
PEPSI [241 7 7 [ 1253 - 13.1 | 1905 - 705 | 7413 . 757 | 7877 .
VOLE-based CPSI (151, [16 RR [16] 12 | 168 - 18 | 256 - 71 106.7 . 727 | 1151 B
VOLE-based CPSI [15), [16] | BPSY [17] | 1.5 | 18.0 - 2 272 - 6.7 103.9 . 6.66 | 105.53 B
Ours RR [16] | 0.30 | 4.62 | 941 | 0.95 | 13.1 | 249.8 5.9 884 | 1603.7 | 6.84 | 104.6 | 1884.2
Ours BPSY [17] | 0.42 | 5.9 | 121.2 | 0.7 | 115 | 211.2 | 39 62.2 | 10249 | 4.4 70.37 | 1126

TABLE V: Runtime and communication comparison between our work and existing PSI-cardinality protocols under various
network settings. If the existing work is optimal, it is highlighted in ; if the proposed work is optimal, it is highlighted
in red. A “~” is shown in the OKVS column to indicate that the corresponding protocols do not utilize OKVS. A “~” in the
runtime column denotes that the implementation of the protocol encountered runtime errors under the given parameter setting.

Lo Running Time (s) Communication (MB)
PSI-cardinality OKVS LAN WAN (100 Mbps) WAN (10 Mbps)
21() 220 214 210 220 224 21() 220 224 21() 22(} 214
PSTY [22] / 3.6 54.7 821.6 15.7 | 254.9 | 3498.6 | 125.9 | 2103.4 - 151 2416 38656
GMRT [31] / 10.4 | 154.2 - 15.1 | 237.1 - 55.7 1010.3 - 55.49 1030 -
CZZT [21] / 5.4 67.4 1159.4 5.7 73.2 1247.3 8.9 127.1 2076.9 4.46 71.3 1140
PEPSI [24] / 6.6 125.6 - 12.5 | 188.7 - 65.4 727.7 - 74.6 769.9 -
Ours RR [16] 0.27 3.4 95.1 1.4 20.1 379.1 11.0 173.4 2989.7 | 13.34 208.6 3548.2
Ours BPSY [17] | 0.31 5.8 125.3 1.3 20.1 349.5 9.1 145.3 2358.3 10.9 174.37 2790

can be adapted to support other PSI variants such as PSI- PSI. As shown in Table the proposed PSI protocol

cardinality, PSI-sum, and PJC by replacing the corresponding
downstream circuit. However, we do not include all circuit PSI
baselines in the evaluations of these variants. This is because
existing implementations do not support such functionalities,
and modifying their downstream circuits, especially in general-
purpose two-party computation, would require significant en-
gineering effort. Therefore, only the functionalities that are
already available in the original implementations are consid-
ered for comparison.

B. Evaluation and Experimental Results

We now compare our work with existing protocols across
different functionalities. Evaluations are performed under LAN
and WAN settings with bandwidths of 100 Mbps and 10 Mbps,
respectively, to demonstrate the practical performance under
high, typical, and low bandwidth conditions.
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ougerforms both KKRT [12] and the VOLE-based PSI [15]-
[17] in terms of runtime and communication cost. In the
LAN setting, the proposed protocol is approximately 1.5x
faster than the VOLE-based PSI under the same OKVS and
security level, and more than 3x faster than KKRT. For
example, when the input size is 22* and RR [16] is used
as the OKVS, our PSI protocol completes in 14.4 seconds
under the semi-honest model, while VOLE-based PSI with RR
takes 22.1 seconds, and KKRT takes 48 seconds. In the WAN
setting, as the bandwidth decreases, the performance advantage
of our protocol over KKRT remains relatively stable, while
the advantage over the VOLE-based PSI protocol diminishes.
This is because, in extremely low-bandwidth environments,
the performance of even highly optimized protocols becomes
primarily determined by communication. Due to Theorem



TABLE VI: Runtime and communication comparison between our work and existing PSI-sum protocols under various network

settings. If the existing work is optimal, it is highlighted in

; if the proposed work is optimal, it is highlighted in

A “-” is shown in the OKVS column to indicate that the corresponding protocols do not utilize OKVS. A “-” in the runtime
column denotes that the implementation of the protocol encountered runtime errors under the given parameter setting.

Running Time (s) .
PSI-sum OKVS LAN WAN (1§0 Mbps) WAN (10 Mbps) Communication (MB)
216 220 224 21() 220 224 21() 220 224 21() 220 224

PSTY [22] 7 3.4 52.6 | 8134 | 154 | 255 | 3780.1 | 130.2 | 1995 N 151 2416 38656
Cczz* 21 / 5.1 590.5 | 986.3 | 5.6 66.8 | 1121.8 9.8 1349 | 23145 | 5.75 95.3 1642

PEPSI (24| 7 6.4 | 122.6 - 12.6 | 182.9 - 648 | 7156 N 74.6 769.9 -
Ours RR [16] 0.31 35 99.3 15 22.2 116.8 122 | 180.6 | 32473 | 1484 | 232.6 | 3932.2
Ours BPSY [17] | 0.34 5.8 1289 | 14 21.7 383.9 104 | 1655 | 25701 | 124 | 198.37 | 3ir4

TABLE VII: Runtime and communication comparison between our work and existing PJIC protocols under various network

settings. If the existing work is optimal, it is highlighted in

; if the proposed work is optimal, it is highlighted in

A “-” is shown in the OKVS column to indicate that the corresponding protocols do not utilize OKVS. A “-” in the runtime
column denotes that the implementation of the protocol encountered runtime errors under the given parameter setting.

Running Time (s) .
PIC OKVS LAN WAN (100 Mbps) WAN (10 Mbps) Communication (MB)
21() 24() 244 210 210 214 210 22() 224 210 220 244
IKNT [51 / 221.9 | 2697.4 - 225.3 | 2752.9 N 255.4 | 3231.8 N 43.2 690.8 -
Ours RR [16] 0.31 3.60 94.5 1.6 236 | 4296 | 13.1 203.1 | 3445.9 | 15.84 | 248.6 | 41882
Ours BPSY [17] | 0.33 6.4 131.3 T4 22.8 | 405.7 | 111 180.2 | 28754 | 13.4 | 214.37 | 3430

the proposed PSI protocol will not be slower than the VOLE-
based PSI even as the bandwidth continues to decrease.
Furthermore, regarding the choice of OKVS, RR [16] shows
clear advantages in high-bandwidth environments. However, in
WAN settings, BPSY [17] becomes preferable due to its sig-
nificantly lower redundancy rate of approximately € := 1.03,
compared to around 1.3 for RR.

Circuit PSI. Table shows that the proposed protocol
outperforms existing circuit PSI protocols in both runtime
and communication efficiency. Under the LAN setting, the
proposed protocol is 3.6x faster than the VOLE-based circuit
PSI [[15], [[16] and approximately 27x faster than PEPSI [24].
For example, when the input size is 220 our circuit PSI
requires only 4.62 seconds when the OKVS is instantiated with
RR [16], whereas the VOLE-based circuit PSI and PEPSI re-
quire 16.8 seconds and 125.3 seconds, respectively. In terms of
communication, it reduces the cost by a factor of 1.5 compared
to the former, and by more than 10x compared to the latter.
Compared to the classical PSTY [22], the proposed circuit
PSI demonstrates remarkable improvements, achieving more
than an 8x reduction in runtime and over a 30x reduction
in communication. As expected, and similar to the standard
PSI setting, our circuit PSI shows better performance in high-
bandwidth environments (e.g., LAN) when using RR [16]
as the OKVS, while BPSY [17] yields better performance
in WAN settings. Note an issue with BPSY that should be
taken into account in practice. That is, the encoding parameters
remain unclear when the input size is small (i.e., n, < 2!0),
as also noted in [21]]. Therefore, BPSY may be unsuitable for
small input size scenarios. The same applies to the other PSI
variants and will be omitted from further discussion.

PSI-cardinality. In Table E, the proposed PSI-cardinality
protocol is compared with existing protocols [21]], [22], [24],
[31]. Compared to previous protocols, the proposed PSI-
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sum protocol achieves lower computational cost, but incurs
higher communication overhead than CZZ%t [21]. This is
because our protocol requires cuckoo hashing for element
alignment and incurs additional communication due to the
redundancy of the OKVS. In contrast, CZZ" primarily relies
on public-key operations, resulting in lower communication
cost by trading computation for communication. Therefore,
our protocol exhibits a significant advantage in computational
efficiency, achieving a 12.4x speedup over CZZ™ under the
LAN setting. As a result, it is only about 12% slower than
CZZ™ even at a bandwidth of 10 Mbps. Specifically, when
n = 224, our protocol completes in 95.1 seconds under the
LAN setting, while CZZ" requires 1159.4 seconds. Under a
10 Mbps bandwidth, our protocol takes approximately 2358.3
seconds, compared to 2076.9 seconds for CZZ+, showing
that the performance gap is not significant in such low-
bandwidth conditions. As for the other three baselines, PSTY
[22], GMR* [31]], and PEPSI [24], the proposed protocol
demonstrates substantial advantages in both computational and
communication costs.

PSI-sum. The conclusions for PSI-sum are similar to those
for PSI-cardinality, as shown in Table While the proposed
PSI-sum does not outperform CZZ* [21] in terms of commu-
nication, it achieves a significant advantage in computational
cost. As in the previous case, when the bandwidth becomes
very limited, the runtime of our protocol may become slower
than that of CZZ%. However, because it is approximately
10x faster under the LAN setting in terms of computation,
the performance gap remains small even at 10 Mbps. When
n = 224, under the LAN setting, our protocol completes in
99.3 seconds, while CZZ* takes 986.3 seconds. Under the 10
Mbps setting, our protocol takes approximately 2570.1 sec-
onds, compared to around 2314.5 seconds for CZZ ™, resulting
in only a 10% performance difference. For the other two



TABLE VIII: Runtime and communication comparison between our malicious PSI using RR [[16] as the OKVS and existing
unbalanced PSI protocols [32]], [[33]] under various network settings. If the existing work is optimal, it is highlighted in ;

if the proposed work is optimal, it is highlighted in

. A “-” denotes that the implementation of the protocol encountered

runtime errors under the given parameter setting. Note that for [32], [33]], we omit their offline time since it is executed only
once, whereas our PSI does not involve an offline—online phase and thus reports the total end-to-end runtime.

APSI 32 CM |33 Ours
ny ns Running Time (s) Running Time (s) Running Time (s)
AN WAN (100 Mbps) | WAN (0 Wb CO™ MB) AR T WAN (100 Mbps) | WAN (0SB | CO™ MB) AN T WA (100 Mps) | WAN (10 Mbpsy | Co™ (MB)

2 1.67 1.86 3.57 2.38 1.06 1.74 7.91 8.56 0.29 5.41 51.50 64.01
210 1.63 1.82 3.64 2.43 4.17 6.91 31.57 34.25 0.33 5.45 51.56 64.04
212 | 222 | 266 3.13 7.37 5.89 16.91 27.86 126.43 136.9 0.34 5.47 51.97 64.15
214 9.64 10.97 22.95 16.64 71.04 114.87 509.36 547.9 0.36 5.51 52.89 64.37
216 17.66 23.94 71.73 63.32 - - - - 0.49 5.98 55.44 65.35
2 5.81 6.12 8.95 3.92 1.07 175 7.92 8.56 1.27 21.75 206.09 256.02
210 5.80 6.15 8.97 3.96 4.21 6.95 31.61 34.25 1.32 21.80 207.15 256.04
212 7.41 8.02 13.48 7.59 16.91 27.87 126.51 137.0 1.37 21.86 209.37 256.12
2t | 224 | 1236 30.78 43.56 17.75 72.21 116.04 510.53 547.9 1.42 21.93 211.52 256.37
216 38.73 43.85 90.17 63.02 - - - - 1.50 23.28 217.76 257.35
218 111.6 138.3 328.8 251.9 - - - - 1.66 24.15 221.1 261.13
2 - - - - 1.07 1.75 7.92 8.56 4.95 86.87 825.17 1024.02
210 - - - - 4.32 7.06 31.72 34.25 5.42 88.34 827.65 1024.04
212 | 226 - - - - 17.32 28.28 126.92 137.0 5.51 89.44 829.80 1024.11
214 - - - - 76.09 119.92 514.41 547.9 5.62 90.57 831.12 1024.37
216 - - - - - - | - - 5.79 92.25 837.41 1025.35

baselines [22], [[24]], the proposed protocol shows substantial
improvements in both computation and communication.

PJC. For PJC, as shown in Table the proposed protocol
achieves comprehensive improvements over IKN™ [5] in both
computation and communication costs. For example, when the
input size is n = 229, our protocol completes in just 3.69
seconds, while IKN™ [5] requires 2697.4 seconds, resulting
in an approximate 731X speedup. Moreover, the communi-
cation cost of IKN™ is more than 3x that of our protocol.
As the bandwidth decreases, the performance gap narrows.
However, even at 10 Mbps, our protocol still achieves an
18x performance improvement due to the substantial gap in
computational cost.

Unbalanced setting. The performance evaluation and com-
parison results for the unbalanced PSI are summarized in
Table where the sender set is significantly larger than
that of the receiver (ns > n,). We choose RR [16] as the
OKYVS since the parameter settings of BPSY [17]] remain
unclear when n,. < 2'°. Our comparison method fixes a large
ns and gradually increases m, to observe the performance
of our PSI and that of [32], [33] under different network
environments. It can be observed that our PSI achieves a
significant advantage over existing state-of-the-art unbalanced
PSI protocols [32]], [33] in the LAN environment, achieving
improvements of up to one or two orders of magnitude.
When n, = 222 and n, = 2'4, our PSI requires only 0.36
seconds, whereas APSI and CM take 9.64 seconds and 71.04
seconds, respectively. APSI [32] and CM [33]] outperform our
PSI mainly in communication. Specifically, APSI achieves the
lowest overall communication cost, while CM [33]] performs
better when n, is very small (e.g., n, < 28), under which
it generally attains the highest efficiency across most perfor-
mance metrics. However, as n, increases, our PSI gradually
gains an advantage under the WAN setting. This is because
when ns; > n,, the communication cost of our PSI grows
very slowly with n,, whereas that of APSI and CM increases
linearly. For example, once n, reaches a moderately large
value (e.g., n, = 2'4), our PSI remains the most efficient
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in the 100 Mbps setting. We observe that when n, = 222
and n, > 216 our PSI becomes the most efficient under the
10 Mbps setting, and when n, = 224, the threshold shifts to
n, = 218, Hence, we conclude that when the ratio between 74
and n,. is less than 64, our PSI is likely to be the most efficient

even under low-bandwidth conditions such as 10 Mbps.

VIII. CONCLUSION

This work proposes a new PSI paradigm that supports
both the semi-honest and malicious security models. It
achieves strictly lower communication than the state-of-the-
art paradigm. The proposed PSI protocol is further extended
to circuit PSI, and various PSI variants are derived by adapting
the downstream circuits. Comprehensive evaluations under
different network conditions demonstrate that the proposed
protocol offers significant advantages over existing works. Our
PSI protocol enables secure data circulation while preserving
privacy, allowing all parties to realize the value of their data.
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APPENDIX A
FURTHER ACCELERATION VIA AES-NI

In several prior works on MPC [69]]-[74]], the hash functions
modeled as random oracles have been instantiated based on
fixed-key AES to achieve higher efficiency. In the early stages,
this approach was mostly heuristic and lacked formal security
analysis. Guo et al. [74] proposed a systematic approach that
uses fixed-key AES to implement OTE and formally proved
its security. In simple terms, in [74]], a hash function H
is implemented as H(x) m(x) @ x, where () can be
instantiated using highly optimized AES-NI. This method is
also applicable to our PSI. Recall Step 3 in Figures|14|and
where this method is well-suited for computing A(y) and
B(y), with a; and b; as the keys and y as the ciphertext. It is
sufficient to take the least significant bit of the output as the
output of the oracle H®. Other random oracle implementations
can also be directly replaced with AES-NI. In the semi-
honest setting of our PSI, the output length of other oracles
is typically log,(nsn,.) + A, which rarely exceeds k = 128.
In our experiments, it is at most 24 + 24 4+ 40 = 88 bits.
In the malicious model, the oracle output length in PSI is
fixed to &. In circuit PSI, the PSI mask length is logy m + A,
where m = 1.27n,, which clearly almost never exceeds x.
Therefore, directly adopting the implementation of [74f] can
replace these oracle instantiations. To handle cases where the
desired output length exceeds 128 bits (which is not required
in our current paper), one can follow the standard approach
of deriving multiple independent 128-bit blocks from fixed-
key AES under domain separation (e.g., using a counter as an
additional input), concatenating them, and truncating the result
to the required length. In fact, the official implementation [60]]
of VOLE-based PSI [15], [[16] has already employed AES-
NI for acceleration. Our PSI protocol can further achieve
performance gains from this technique. Since replacing the
hash function instantiation does not affect communication, we
report only the runtime of our PSI in the LAN setting when
instantiated with SHA2-NI and AES-NI under the semi-honest
and malicious models, respectively.

TABLE IX: Running time comparison of our PSI when
instantiating the random oracle with SHA2-NI and AES-NI.

Security OKVS Izlilgnmg ;l;l[rJne (s) (SI—Q{{;‘Z-NI) RQulnGnmg T;gg (s) (AEQ%;NI)
Semi-Honest RR [T6] 0.02 0.74 14.4 0.019  0.603 13.04

Malicious E 0.03 0.76 14.6 0.029  0.655 13.37
Semi-Honest BPSY (17 0.03  0.88 15.1 0.025 0.76 13.65

Malicious 0.04  0.90 15.9 0.037  0.792 14.06

As shown in Table using AES-NI can further improve
the performance of our PSI by approximately 10%—20%. For
example, when the OKVS is RR [[16] and the input size is 224,
our PSI originally takes 14.4 and 14.6 seconds under the semi-
honest and malicious models, respectively, while using AES-
NI reduces the runtime to 13.04 and 13.37 seconds. Although
the improvement is not substantial, given that our PSI is
already highly efficient, achieving further optimization is not
easy. Therefore, it can also serve as an optional optimization
to further accelerate the performance of PSI.
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APPENDIX A
ARTIFACT APPENDIX

A. Abstract

This artifact appendix accompanies the paper “Faster Than
Ever: A New Lightweight Private Set Intersection and Its
Variants.” It provides the implementation details of the pro-
posed protocol and its extensions. We present a highly efficient
Private Set Intersection (PSI) protocol that can be further
extended to support circuit PSI, PSI-cardinality, PSI-sum,
and Private Join and Compute (PJC). The implementation is
written entirely in C++, following the C++17 standard, and
can be compiled on any modern Linux environment. This
implementation serves as concrete evidence of the efficiency
claimed in the paper. In particular, our PSI protocol achieves
approximately 50% faster runtime than the most efficient
existing PSI schemes. Specifically, when both parties hold sets
of size 220, the protocol completes the intersection in about
0.7 seconds with a total communication cost of around 30 MB.

B. Description & Requirements

1) How to access:  |https://doi.org/10.5281/zenodo.
17699084, or https://github.com/ShallMate/OurPSI

2) Hardware dependencies: Any modern x86-64 CPU
with SHA2 instruction extensions (e.g., Intel SHA-NI)
and AVX-512 support should be able to reproduce our
results. Our local environment uses an 11th Gen Intel(R)
Core(TM) i7-1165G7 @ 2.80 GHz processor. Any CPU
with equivalent or higher performance should be able
to reproduce the reported results. We recommend using
a machine with at least 16 GB of RAM, as reproducing
experiments with set sizes greater than or equal to 224 requires
sufficient memory to complete the computation.

3) Software dependencies: Since our implementation is
provided via Docker, you only need to have Docker and
git installed. Note that the versions listed below correspond
to our local environment and are not strict requirements for
running the artifact.

o Docker: version 27.3.1 (on our local environment)
o Git: version 2.25.1 (on our local environment)

C. Artifact Installation & Configuration

We have containerized our PSI implementation using
Docker. Two installation options are available:

1. Build the image
Dockerfile; or
2. Pull the pre-built image directly from Docker Hub.

locally wusing the provided

We emphasize that both installation methods require an
active Internet connection. Note that the second approach
downloads the full pre-built image, which is approximately
4.28 GB in size. Therefore, if your network bandwidth is
limited, we recommend using the first method (building locally
from the Dockerfile). However, if you encounter issues
while building the image with the provided Dockerfile,
you may resort to the second method as a last resort.
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1. Build using the Dockerfile. First, download our
prepared GitHub repository to your local machine.

git clone https://github.com/ShallMate/OurPSI.git

Then, navigate to the project directory and run the following
command to build the Docker image:

cd OurPSI
docker build -t shallmate/ourpsi:latest .

2. Pulling the Pre-built Image from Docker Hub. You
can directly obtain our pre-built image from Docker Hub using
the docker pull command.

docker pull shallmate/ourpsi:latest

D. Experiment Workflow

This implementation corresponds to our PSI, which can
be further extended to a Circuit PSI. Other ideal function-
alities such as PSI-sum, PSI-cardinality, and Private Join and
Compute (PJC) are directly realized based on the Circuit PSI.
Therefore, the experimental workflow consists of two parts:

1. Evaluation of our PSI implementation.
2. Evaluation of our Circuit PSI implementation.

E. Major Claims

From the above experimental workflow, it can also be
observed that our major claims primarily focus on the PSI
and Circuit PSI.

e (Cl1): Our PSI implementation completes the intersection
computation for input sets of size 224 in approximately
15 seconds, achieving a 1.4x to 1.5x speedup over the
most efficient existing VOLE-based PSI protocols. This
performance is empirically validated by experiments (E1)
and (E2), and the reported runtime corresponds to the
LAN running time in Table III of our paper.

(C2): Our proposed Circuit PSI protocol is more than 3x
faster than existing circuit PSI schemes and reduces the
communication cost by a factor of 1.5. This corresponds
to experiments (E3) and (E4), which are reflected in the
last two rows of Table IV in this paper.

F. Evaluation

All experiments should be executed within the directory
containing the compiled binaries inside the Docker container.
Therefore, before running any experiments, you should start
the container and navigate to the directory where the executa-
bles are located:
docker run --rm -it --platform linux/amd64 \

shallmate/ourpsi:latest /bin/bash
cd /opt/yacl/bazel-bin/examples/otokvspsi/

1) Experiment (El): [Our PSI uses RR as the OKVS]
[within one minute]: RR is an OKVS with a redundancy rate of
1.3, which serves as a key component of our PSI protocol. By
executing the corresponding binary, you can obtain the running
time and communication cost under both the malicious and
semi-honest models. Given that different CPUs may lead
to varying performance, we consider any running time


https://doi.org/10.5281/zenodo.17699084
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https://github.com/ShallMate/OurPSI

below 25 seconds under both the semi-honest and malicious
models to be reasonable. However, the communication
costs of 570.802 MB and 490.802 MB are fixed and should
remain exact without deviation.

[How to]: You can directly run our executable, but make
sure to choose the correct parameters.

[Preparation]: Make sure that you are currently in the
/opt/yvacl/bazel-bin/examples/otokvspsi
directory, where the ourpsi executable is located.

[Execution]: Directly execute the following command:

./ourpsi 0 0 24 24

[Results]: Check the output Execution time and

Total communication to obtain the results.

Fig. 20: An example for reproducing PSI using RR as the
OKVS.

2) Experiment (E2): [Our PSI uses BPSY as the OKVS]
[within one minute]: BPSY is an OKVS with a redundancy
rate of 1.03, which is lower than that of RR. However, its
computational overhead is slightly higher. By executing the
corresponding binary, you can obtain the running time and
communication cost under both the malicious and semi-honest
models. Given that different CPUs may lead to varying
performance, we consider any running time below 30
seconds under both the semi-honest and malicious models
to be reasonable. However, the communication costs of
519.685 MB and 439.685 MB are fixed and should remain
exact without deviation.

[How to]: The same as E(1).

[Preparation]: The same as E(1).

[Execution]: Directly execute the following command:

./ourpsi 0 1 24 24

[Results]: Check the output Execution time and
Total communication to obtain the results.

3) Experiment (E3): [Our Circuit PSI uses RR as the
OKYVS] [within one minute]: By executing the corresponding
binary, you can obtain the running time and communication
cost under both the malicious and semi-honest models. Since
the execution for input size 224 takes relatively longer, we use
an input size of 22° for this experiment. Given that different
CPUs may lead to varying performance, we consider any
running time below 10 seconds to be reasonable. However,
the communication cost of 104.606 MB is fixed and should
remain exact without deviation.

Fig. 21: An example for reproducing PSI using BPSY as the
OKVS.

[How to]: The same as E(1). [Preparation]: The same as
E(1).

[Execution]: Directly execute the following command:
./ourpsi 1 0 20 20

[Results]: Check the output Execution time and
Total communication to obtain the results.
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Fig. 22: An example for reproducing circuit PSI using RR as
the OKVS.

4) Experiment (E4): [Our Circuit PSI uses BPSY as the
OKVS] [within one minute]: By executing the corresponding
binary, you can obtain the running time and communication
cost under both the malicious and semi-honest models. Since
the execution for input size 224 takes relatively longer, we use
an input size of 22° for this experiment. Given that different
CPUs may lead to varying performance, we consider any
running time below 30 seconds to be reasonable. However,
the communication cost of 70.3736 MB is fixed and should
remain exact without deviation.

[How to]: The same as E(1). [Preparation]: The same as
E(D).

[Execution]: Directly execute the following command:

./ourpsi 1 1 20 20

[Results]: Check the output Execution time and
Total communication to obtain the results.

/yacl/bazel-bin/examples/otokvspsis ./ourpsi 1 1 26 26

ed thread pool with|

Fig. 23: An example for reproducing circuit PSI using BPSY
as the OKVS.
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