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Abstract—Causal inference plays a crucial role in scientific
research across multiple disciplines. Estimating causal effects,
particularly the average treatment effect (ATE), from observa-
tional data has garnered significant attention. However, comput-
ing the ATE from real-world observational data poses substantial
privacy risks to users. Differential privacy, which offers strict
theoretical guarantees, has emerged as a standard approach for
privacy-preserving data analysis. However, existing differentially
private ATE estimation works rely on specific assumptions,
provide limited privacy protection, or fail to offer comprehensive
information protection.

To this end, we introduce PrivATE, a practical ATE estimation
framework that ensures differential privacy. In fact, various
scenarios require varying levels of privacy protection. For ex-
ample, only test scores are generally sensitive information in
education evaluation, while all types of medical record data are
usually private. To accommodate different privacy requirements,
we design two levels (i.e., label-level and sample-level) of privacy
protection in PrivATE. By deriving an adaptive matching limit,
PrivATE effectively balances noise-induced error and matching
error, leading to a more accurate estimate of ATE. Our evaluation
validates the effectiveness of PrivATE. PrivATE outperforms the
baselines on all datasets and privacy budgets.

I. INTRODUCTION

Causal inference, the process of determining a causal re-
lationship by analyzing the conditions under which an effect
occurs, has been a fundamental research focus for decades
in various fields [1], including healthcare [2], economics [3],
statistics [4], public policy [5], education [6], etc. A common
example of causal inference is evaluating the impact of taking
a drug by analyzing patient data, which can assist doctors
in making informed decisions. There are two typical settings
for causal inference: randomized controlled trials (RCTs) and
observational studies. In RCTs, the treatment assignment is
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controlled by random assignment, e.g., all patients are ran-
domly assigned to two groups: One group takes the drug,
while the other does not. However, randomized trials are
frequently impractical due to ethical, technical, or economic
limitations in contexts like studying smoking behavior or
assessing economic policies. In contrast, observational studies
(i.e., not intervening in individual grouping, only observing
and analyzing naturally occurring data) are more practical [7],
e.g., we can only analyze existing patient data but have
no control over whether a patient takes the medicine. The
setting of observational studies has gained increasing attention
due to the abundance of available data and the low budget
requirement [8].

A key task in observational studies is to estimate the average
treatment effect (ATE), which quantifies the overall impact
of treatment across all samples. Here, ATE is calculated as
the mean of individual treatment effects, where an individual
treatment effect is defined as the difference between a sample’s
potential outcome under treatment and its potential outcome
without treatment. ATE estimation in observational studies
often suffers from selection bias and missing information [9].
There may be significant differences in the characteristics of
the treated and control groups. In addition, for people who take
the drug, the effect of not taking it is unknown. To mitigate the
impact of bias and missing information, a common solution is
to estimate the counterfactual results of each sample and then
calculate the causal effect, e.g., sample matching [10].

However, directly computing ATE from real data using the
above approach in observational studies poses significant risks
of privacy leakage. Data utilized in causal inference often
contain sensitive personal information [11]. Direct manipu-
lation and analysis of true data are increasingly challenged
by growing concerns over privacy and the emergence of
regulations for safeguarding individual data. For example,
releasing any statistical information derived from real medical
data poses a risk of compromising patient privacy. For a strong
threat model, the attacker could perform a differential attack
to infer whether the specific sample’s data is included in the
dataset (i.e., comparing query results that include and exclude
the sample).

Differential privacy (DP) [12], a golden standard in the
privacy community, has been widely applied for privacy-
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preserving data analysis [13–16]. By injecting carefully de-
signed noise into the aggregated statistical value, DP can
ensure that a single user record has a limited impact on the
final output. Due to the advantages of quantifiable privacy
guarantees, high flexibility, and low cost, DP has been de-
ployed by many companies and government agencies [13].
For instance, LinkedIn builds Pinot [14], a DP platform that
enables analysts to gain insight from its members’ content
engagements. Although DP serves as an effective privacy
protection strategy, within the context of ATE estimation in
observational studies, only a small amount of literature has
explored privacy-preserving solutions using DP [17–21].
Existing Solutions. Existing studies exhibit several limita-
tions in terms of the assumptions of the problem, the scope
of protection, and the methodological implementation. First,
some approaches assume binary outcomes (e.g., a patient’s
medication outcome is categorized as success or failure rather
than represented by a continuous numerical indicator), which
constrains their applicability. Second, many solutions offer
protection only for partial data attributes (e.g., safeguarding
covariates such as patient age and height while leaving medica-
tion outcome unprotected). Third, most existing works address
selection bias through sample reweighting [22], which aims to
eliminate the distribution differences between the treated and
control groups. To ensure a bounded sensitivity, these methods
typically employ a fixed, pre-defined truncation threshold
to limit individual sample weights. However, such a fixed
configuration inherently lacks flexibility and interpretability.
Therefore, it is challenging to design a more practical and
highly flexible privacy-preserving ATE estimation framework
in observational studies.
Our Proposal. To overcome the limitations of the existing
literature and eliminate data bias while effectively protect-
ing user privacy, we propose a matching-based framework
PrivATE to estimate the ATE for observational data in a private
manner. Compared to existing works, PrivATE provides a
more practical and general solution. In particular, PrivATE
does not rely on idealized assumptions such as binary out-
comes, which expands its application scenarios. Furthermore,
considering the different trade-offs between utility and privacy
in various scenarios, PrivATE includes two levels of privacy
protection: label-level and sample-level. Label-level protection
only perturbs the outcome, which offers higher utility. Sample-
level protection perturbs all attributes, including treatment,
covariates, and outcome, which provides the strongest privacy
protection. The two levels of protection provide solutions for
different application scenarios: Label-level protection is suited
for outcome-sensitive settings (e.g., education evaluation),
where other information is publicly available. Sample-level
protection is for cases involving fully sensitive data (e.g.,
medical study), where all attributes (including medical records,
administered treatments, and outcomes) require protection.

In the causal effect estimation, it is crucial to restrict the
maximum number of matches for each sample, otherwise high
sensitivity will occur. In this way, there will be two types of
error in the final ATE estimation: noise error and matching

error. However, it is challenging to choose a suitable matching
limit for vairous datasets and privacy budgets. Taking into
account the combined influence of noise error and matching
error, we propose an adaptive matching limit determination
mechanism to strike a balance between reducing global sen-
sitivity and improving matching accuracy. On this basis, we
can calculate the counterfactual outcome for each sample in a
more accurate manner. Furthermore, we choose to perturb the
sum of aggregated outcomes rather than individual outcomes
to reduce the error in the ATE estimation.
Evaluation. We compare PrivATE with the baseline methods
on multiple typical datasets, including real, semi-real, and
synthetic datasets. The experimental results show the supe-
riority of PrivATE. For instance, for the sample-level privacy,
PrivATE consistently outperforms other baseline methods
across all datasets and budgets. In addition, for the label-level
privacy, PrivATE can achieve a low relative error (i.e., less than
0.2) on multiple datasets even when the privacy budget is 0.5.
We further verify the effectiveness of our proposed adaptive
matching limit determination mechanism with a comparison
to the fixed matching limit methods. We also explore the
impact of the hyperparameter for matching limit calculation.
Moreover, we illustrate the influence of various privacy budget
allocations on the ATE estimation.
Contributions. In summary, the main contributions of this
paper are four-fold:
• We propose PrivATE, a more practical and effective privacy-

preserving ATE estimation framework under differential
privacy, outperforming existing works.

• In PrivATE, we provide two levels of privacy protection
(i.e., label-level and sample-level) to satisfy different trade-
offs between utility and privacy in various scenarios.

• We further design an adaptive matching limit determination
mechanism to strike a balance between reducing global
sensitivity and improving matching accuracy.

• We conduct extensive empirical experiments on multiple
datasets to illustrate the effectiveness of PrivATE. Under
the same privacy settings, PrivATE achieves superior per-
formance compared to the baseline methods. PrivATE is
open-sourced at https://github.com/sec-priv/PrivATE.

II. PRELIMINARIES

A. Causal Inference

In general, a causal inference task estimates how the out-
come would change if another treatment had been applied. Due
to the widespread availability of observational data, estimating
treatment effects from such naturally occurring datasets has
garnered increasing attention. Observational data typically
includes a group of individuals who have received different
treatments, their corresponding outcomes, and possibly addi-
tional information, but without direct access to the mechanism
or reasons for taking the specific treatment [18].

Definition 1 (Treatment). Treatment T represents the action
that applies to a sample. The group of samples with treatment
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T = 1 is called the treated group, and the group of samples
with T = 0 is called the control group.

Definition 2 (Potential Outcome). For each unit-treatment
pair, the outcome of that treatment when applied on that
sample is the potential outcome. The potential outcome of
treatment with value t is denoted as Y (T = t).

Definition 3 (Observed Outcome). The observed outcome is
also called factual outcome (denoted as Y F ), which represents
the outcome of the treatment that is actually applied. Y F =
Y (T = t) where t is the treatment actually applied.

Definition 4 (Counterfactual Outcome). The counterfactual
outcome Y CF is the outcome if the sample took another
treatment. Y CF = Y (T = 1 → t) where t is the treatment
actually applied.

Definition 5 (Covariate). Covariate X is the variable that is
not affected by the treatment but still affects the experimental
results.

Average Treatment Effect. Average treatment effect (ATE)
is defined as follows:

ω = E[Y (T = 1)→ Y (T = 0)], (1)

where Y (T = 1) and Y (T = 0) are the potential treated and
control outcomes of the whole population, respectively.
Mainstream Solutions for ATE Estimation. Currently, there
are two main methods that can conduct the ATE estimation
while mitigating the impacts of bias and missing information.
One way is to eliminate the distribution differences between
the treated and control groups, e.g., sample reweighting [22].
By adjusting the weight of each sample, sample reweighting
ensures a similar distribution between the treated and control
groups. However, applying DP to this approach often requires
predefined thresholds to limit global sensitivity, which lacks
flexibility and interpretability.

The other is to estimate the counterfactual results of each
sample and then calculate the causal effect, e.g., sample
matching [10]. This method pairs treated and control samples
with similar characteristics. This approach can reduce selection
bias by identifying individuals with similar characteristics in
the treated and control groups, ensuring that the matched
samples are as balanced as possible on the covariates. Given its
intuitiveness and practicality, we choose to achieve a privacy-
preserving framework based on matching in this work.
Propensity Score Matching. As a typical matching method,
propensity score matching (PSM) is widely used in observa-
tional experiments due to its strong interpretability and low
matching complexity [8].

Therefore, we utilize the PSM approach as a basis to
estimate counterfactual results and eliminate the bias of causal
effects caused by systematic differences between the treatment
and control groups. The propensity score is defined as the
conditional probability of treatment given related variables:

e(x) = Pr [T = 1|X = x] . (2)

The propensity score reflects the probability of a sample
being assigned to the treatment given a series of observed vari-
ables. However, in most observational studies, the treatment
assignment mechanism is unknown. A common approach is
to fit a propensity score function using a standard statistical
model on the dataset D. In this paper, logistic regression is
adopted since it is the most frequently used model in existing
works. As a result, on the basis of the absolute value of the
difference between various propensity scores, the similarity
between any two samples can be calculated and utilized to
match. The distance between the sample u1 in the treated
group and the sample u2 in the control group is as follows:

dis(u1, u2) = |e(x1)→ e(x2)|, (3)

where e(x1) represents the propensity score of sample u1, and
e(x2) represents the propensity score of sample u2.

The goal of matching is to identify several most similar
samples from the opposite treatment group for each sample in
the current treatment group. Then, the counterfactual outcome
can be obtained based on the matched samples. In general, the
counterfactual outcome of the i-th sample is as follows:

Y CF
i =

1

|P(i)|

∑

l→P(i)

Y F
l , (4)

where P(i) is the matched neighbors of sample i in the oppo-
site treatment group. Based on the observed and counterfactual
outcomes of each sample, ATE can be obtained by Equation 1.

B. Differential Privacy

Differential Privacy (DP) [12] was designed for the data
privacy-protection scenarios, where a trusted data curator
collects data from individual users, applies perturbation to the
aggregated results, and then publishes them. Intuitively, DP
guarantees that any single sample from the dataset has only a
limited impact on the output.

Definition 6 ((ε, ϑ)-Differential Privacy). An algorithm A

satisfies (ε, ϑ)-differential privacy ((ε, ϑ)-DP), where ε > 0,
if and only if for any two neighboring datasets D and D↑, we
have

↑O ↓ Range(A) : Pr [A(D) ↔ O] ↗ eωPr [A(D↑) ↔ O] + ϑ,

where Range (A) denotes the set of all possible outputs
of the algorithm A, and ϑ indicates the probability of A

failing to satisfy DP. When ϑ = 0, which is the case we
consider in this work (i.e., pure DP), we write ε-DP for
convenience. Pure DP can provide strict theoretical guarantees,
while approximate DP (i.e., ϑ > 0) has a certain probability
of violating theoretical constraints. Approximate DP relaxes
the privacy constraint to enable the use of a wider range
of composition properties, which may be helpful to improve
the utility. At the same time, according to the experimental
results of Section IV, our method (satisfying pure DP) still
shows significant advantages over the baselines (satisfying
approximate DP).
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In addition, the definition of ε-sample differential privacy
(ε-Sample DP) in the paper is consistent with ε-DP. Here, we
consider two datasets D and D↑ to be neighbors, denoted as
D ↘ D↑, if and only if D = D↑ + r or D↑ = D + r, where
D + r is the dataset resulted from adding the record r to D.

Definition 7 ((ε, ϑ)-label Differential Privacy). An algorithm
A satisfies (ε, ϑ)-label differential privacy ((ε, ϑ)-Label DP),
where ε > 0, if and only if for any two datasets H and H ↑

that differ in the label (observed outcome) of a single sample,
we have

↑O ↓ Range(A) : Pr [A(H) ↔ O] ↗ eωPr [A(H ↑) ↔ O] + ϑ.

Similar to Definition 6, we consider ϑ = 0 in this paper,
and we write ε-Label DP instead of (ε, ϑ)-Label DP.
Laplace Mechanism. Laplace mechanism (LM) satisfies the
DP requirements by adding a random Laplace noise to the
aggregated results [23]. The magnitude of the noise depends
on GSf , i.e., global sensitivity,

GSf = max
D↓D→

≃ f(D)→ f(D↑) ≃1,

where f represents the aggregation function and D (or D↑)
is the users’ data. When f outputs a scalar, the Laplace
mechanism A is given below:

Af (D) = f(D) + L

(
GSf

ε

)
,

where L(ϖ) stands for a random variable sampled from the
Laplace distribution Pr [L(ϖ) = x] = 1

2ε e
↔|x|/ε . When f

outputs a vector, A adds independent samples of L(ϖ) to each
element of the vector. The global sensitivity of all elements is
the same value.
Random Response Mechanism. The random response (RR)
mechanism can be applied to protect the privacy of binary
variables [24–26]. Given a specific privacy budget ε, the
probability of outputting a true binary variable p is as follows:

p =
eω

eω + 1
.

Composition Properties of DP. The following composition
properties of DP are commonly utilized to construct complex
differentially private algorithms from simpler subroutines [12].
• Sequential Composition. Combining multiple subroutines

that satisfy differential privacy for {ε1, · · · , εk} results in
a mechanism which satisfies ε-differential privacy for ε =∑

i εi.
• Parallel Composition. Given k algorithms working on

disjoint subsets of the dataset, each satisfying DP for
{ε1, · · · , εk}, the result satisfies ε-differential privacy for
ε = max{εi}.

• Post-processing. Given an ε-DP algorithm A, releasing
z(A(D)) for any z still satisfies ε-DP, i.e., post-processing
the output of a differentially private algorithm does not incur
any additional loss of privacy.

TABLE I: Summary of mathematical notations.

Notation Description

D Dataset
T The treatment
X The covariates
Y The observed outcome
Y1 The potential treated outcome of the whole population
Y0 The potential control outcome of the whole population
ω Privacy budget
n The number of all samples
nt The number of samples in the treated group
nc The number of samples in the control group
d The dimensions of covariates
k The value of matching limit
N The number of neighbors for each sample in the matching
B The maximum variation range of outcome
w The weights of the regression model
e The propensity score
ε The average treatment effect estimate

III. METHODOLOGY

A. Problem Definition

In this paper, we consider a dataset D = (T,X, Y ) that
contains multiple dimensions, where T stands for the treat-
ment, X stands for the related covariates, and Y stands for
the observed outcome. Note that both T and Y contain only
one column, while X can contain multiple columns. Without
loss of generality, we assume that T = 0/1, X ↔ [0, 1]d (d is
the dimension of covariates), and the maximum variation range
of outcome is B. Our goal is to estimate an average treatment
effect that closely aligns with the result obtained through
propensity score matching while ensuring strict differential
privacy. Specifically, we aim to achieve two levels of privacy
protection, i.e., label-level and sample-level. For label-level
privacy, only the observed outcome Y is private. For sample-
level privacy, all types of data are private. For ease of reading,
we summarize the frequently used notations in Table I.

B. Motivation

When implementing propensity score matching under DP, a
common idea is to directly add noise to the ATE estimate
to achieve DP. However, the impact of adding or deleting
any sample on the propensity score matching is difficult to
evaluate. Therefore, we choose to apply DP to each phase
of propensity score matching, thus ensuring the privacy of
the entire process. If ATE is estimated completely according
to the matching results, it could introduce excessive noise.
This will make some samples match too many times, making
the sensitivity too high. If the number of matches is too
low, the estimation of ATE will be inaccurate. Thus, we
determine the maximum number of matches for each sample
by estimating the combined impact of noise injection and
matching accuracy, thereby achieving a great trade-off between
these two aspects. Considering the privacy requirements in
various scenarios in practice, we designed two different levels
of privacy protection approaches to estimate ATE, i.e., label-
level privacy and sample-level privacy.

4



① Regression Model Training ② Similar Sample Matching

Laplace Noise

Ƹ𝜏 = 𝐴𝑣𝑔 መ𝑆1 − 𝐴𝑣𝑔( መ𝑆0)

Distance Matrix

Counterfactual Estimation

Sorted Matrix

ATE Estimation Aggregation Matching Limit: (𝑘1, 𝑘2)

③ Causal Effect Estimation

𝑒(𝑋) = 𝑇

Dataset Regression Model Records Perturbed Scores Perturbed Treatments

User 𝑿𝟏 … 𝑿𝒅 𝑻
1 0.3 … 0.4 1
2 0.5 … 0.3 1
… … … … …

𝑖 0.2 … 0.5 0
𝑖 + 1 0.6 … 0.3 1
… … … … …

𝑆1 = 𝑆𝑢𝑚 𝑌1

𝑆0 = 𝑆𝑢𝑚 𝑌0

መ𝑆1 = 𝑆1 + 𝐿𝑎𝑝(𝜀3, 𝑘1 + 1 𝐵)
መ𝑆0 = 𝑆0 + 𝐿𝑎𝑝(𝜀3, 𝑘2 + 1 𝐵)

Sample-level 𝑤 + Lap(𝜀11) → 𝑤′

𝑤 → 𝑤′Label-level
𝑒(𝑋) + Lap(𝜀12) → 𝑒′(𝑋)

𝑒(𝑋) → 𝑒′(𝑋) 𝑇 → 𝑇′

𝑇 + RR(𝜀2) → 𝑇′ 𝑇′, 𝑒′(𝑋) → 𝑑𝑖𝑠(𝑢𝑎, 𝑢𝑏) 𝑇′, 𝑑𝑖𝑠 𝑢𝑎, 𝑢𝑏 → 𝐻0, 𝐻1𝐷 → 𝑋, 𝑇

𝐷

𝑘1, 𝑘2

𝑘1, 𝑘2

𝐻0 (𝑇′ = 0) 𝐻1 (𝑇′ = 1)User 𝑿𝟏 … 𝑿𝒅 𝒆′(𝑿)
1 0.3 … 0.4 0.2

2 0.5 … 0.3 0.8

… … … … …

𝑖 0.2 … 0.5 0.1

𝑖 + 1 0.6 … 0.3 0.6

… … … … …

User 𝑻′
1 0

2 1

… …

𝑖 0

𝑖 + 1 1

… …

User 2 … 𝑖+1 …

1 0.6 … 0.4 …

… … … … …

𝑖 0.7 … 0.5 …

… … … … …

… … … … …

User 𝑠1 𝑠2 …

1 5 7 …

… … … …

𝑖 9 6 …

… … … …

User 𝑠1 𝑠2 …

2 3 8 …

… … … …

𝑖 + 1 4 1 …

… … … …

User 𝑻′ 𝒀
1 0 2
2 1 5
… … …

𝑖 0 4
𝑖 + 1 1 8

… … …

User 𝑻′ 𝒀𝟏 𝒀𝟎

1 0 10 2

2 1 5 3

… … … …

𝑖 0 5 4
𝑖 + 1 1 8 6

… … … …

Fig. 1: PrivATE overview. PrivATE consists of three phases: Regression model training, similar sample matching, and causal
effect estimation. First, a regression model for calculating propensity scores can be obtained in the regression model training
phase. Then, PrivATE finds the closest neighbors in the opposite group for each sample in the similar sample matching phase. In
the causal effect estimation phase, PrivATE calculates each sample’s counterfactual outcome based on the matching results and
the matching limit, i.e., the maximum number of matched of each sample. After that, the potential outcomes for the control and
treated groups are aggregated and perturbed. Finally, the average treatment effect can be estimated by the perturbed outcomes.

Here, we summarize the key challenges of ATE estimation
under the two privacy settings as follows: For label-level
privacy, directly applying a standard DP mechanism to existing
ATE estimation methods often introduces excessive noise.
Furthermore, using a fixed matching upper limit is unsuitable
across different privacy budgets and data distributions, making
it difficult to adaptively determine a limit that balances match-
ing accuracy and privacy protection. For sample-level privacy,
which protects the entire dataset rather than just labels, similar
issues arise. Under stricter privacy requirements, additional
challenges include allocating the overall privacy budget and
determining an appropriate matching limit while ensuring DP
guarantees at each step.

C. Overview
As shown in Figure 1, the framework of PrivATE contains

three phases, i.e., regression model training, similar sample
matching, and causal effect estimation.
Phase 1: Regression Model Training (RMT). We train a
logistic regression model to estimate the propensity scores
of all samples. In the label-level setting, the model training
and the propensity score calculation do not need to consume
the privacy budget. The reason is that this process does not
require access to the observed outcomes of the samples. In the
sample-level setting, the training of the regression model and
the estimation of the propensity score need to be perturbed to
meet DP.
Phase 2: Similar Sample Matching (SSM). In this phase,
the distance between the propensity score of any sample and
the propensity scores of all samples in the opposite treatment
group can be calculated. By sorting these scores, we can obtain
the most similar neighbors of each sample in the opposite
group. Note that two sorted matrices are calculated here, one
for the control group and the other for the treated group.
In the label-level setting, this procedure still does not visit

the observed outcome, thus consuming no privacy budget. In
the sample-level setting, the true treatment T is perturbed to
satisfy DP in this phase.
Phase 3: Causal Effect Estimation (CEE). Based on the
sorted matrices in the last phase, we can find the closest
neighbors in the opposite group for each sample. Then, the
counterfactual outcomes of all samples can be estimated. Here,
we limit the maximum number of times each sample can
be used for matching. The matching limit can be adaptively
adjusted based on the privacy budget and the characteristics
of the dataset. After calculating the counterfactual outcomes,
we aggregate and perturb the sum of potential outcomes of all
samples. Then, the ATE can be obtained by Equation 1.

D. Regression Model Training
In the first phase, we train a logistic regression model based

on the original dataset. The covariates X is the independent
variable of the regression model, while the treatment T is the
dependent variable. Algorithm 1 illustrates the basic process
of the first phase.
Label-level Privacy. In the label-level privacy, only the
outcomes need to be protected. The regression model training
phase does not require access to the true outcomes. Therefore,
we can utilize the true parameters of the trained model w to
predict the propensity scores of all samples without consuming
the privacy budget. The predicted propensity scores e(X) also
do not require to be perturbed in the label-level privacy setting.
Sample-level Privacy. In contrast, sample-level privacy re-
quires to protect the privacy of all types of variables. If we
directly adopt the weight w of the unprotected regression
model, there will be a risk of privacy leakage [27]. Therefore,
we choose to perturb the training of the regression model to
satisfy DP. The training of the logistic regression model can
be regarded as a specific case for regularized empirical risk
minimization. For the logistic regression with ϱ2 regularization
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Algorithm 1: Regression Model Training (Phase 1)
Input: Original dataset D, privacy level l, privacy

budget ε11, ε12 (if l is sample-level)
Output: Propensity Score e↑(X)

1 Train a logistic regression model based on the
covariates X and treatment T .

2 if l is label-level then
3 w↑

⇐ w
4 else

// Private model training

(sample-level)

5 w↑
⇐ w + Lap(ε11,!fw)

6 Calculate the propensity score of each sample e(X)
based on the model parameter w↑.

7 if l is label-level then
8 e↑(X) ⇐ e(X)
9 else

// Private score calculation

(sample-level)

10 e↑(X) ⇐ e(X) + Lap(ε12,!fe)

penalty, the regularized empirical loss can be written as
follows:

J(w) =
1

n

n∑

i=1

log(1 + e↔XT
i wti) +

ς

2
||w||22, (5)

where X is the training feature (covariates) containing d-dim
and ti is the i-th sample’s treatment. The weight w can be
perturbed to satisfy DP. The L1-sensitivity of w is 2d

nϑ , and
the detailed derivation is given in Proof 1 of Appendix C. By
injecting Laplace noise into the true weight w with the privacy
budget of ε11, we can generate a privacy-preserving regression
model.

After finishing the private model training, we can utilize the
model to calculate the propensity score of each sample. Since
this step requires accessing the true covariate again, we need
to add Laplace noise to the relevant query results to meet
differential privacy. The output range of logistic regression
model is [0, 1], thus the sensitivity of propensity score is
!fe = 1.

In this phase, we inject noise into w and e(X), respectively.
Note that both parts of noise are indispensable. The purpose
of adding noise to w is to protect the privacy of training data
(i.e., X and T ). If the DP regression model is queried using
public or non-sensitive data, no additional privacy budget is
consumed due to the post-processing property. However, e(X)
is computed using the actual data X , which constitutes addi-
tional access to private information. To preserve the privacy
of X , we still need to inject noise into e(X). In addition, if w
is not perturbed and only e(X) is perturbed, we cannot apply
the parallel composition to perturb each sample in X because
w contains sensitive information. Therefore, it is necessary to
inject noise into w and e(X).

Algorithm 2: Similar Sample Matching (Phase 2)
Input: Original dataset D, propensity score e↑(X),

privacy level l, privacy budget ε2 (if l is
sample-level)

Output: Treatment T ↑, Sorted Matrices H
1 if l is label-level then
2 T ↑

⇐ T
3 else

// Treatment perturbation

(sample-level)

4 T ↑
⇐ RR(T ; ε2)

5 Obtain the division of treated and control groups by T ↑

// Distance sorting

6 for each sample j in the control group do
7 Calculate the distance vector disj,st between j and

the samples st in the treated group based
on Equation 3

8 Hj
0 ⇐ argsort(disj,st)

9 for each sample j in the treated group do
10 Calculate the distance vector disj,sc between j and

the samples sc in the control group based
on Equation 3

11 Hj
1 ⇐ argsort(disj,sc)

E. Similar Sample Matching

In the second phase, we try to calculate the similarity of
each sample with all samples in the other group and rank them.
Algorithm 2 provides the specific procedures of the similar
sample matching.
Label-level Privacy. In this setting, the treatment T is
accessible, which does not need to be perturbed. Then, we can
calculate the distance between each sample and all samples in
the opposite treatment group based on the propensity score
e↑(X) obtained from the first phase. The specific calculation
formula is shown in Equation 3. Then, we traverse each sample
and sort all candidate samples in the opposite treatment group
in ascending order based on the distance vectors. From this,
we can obtain two sorted index matrices, one for the control
group (i.e., H0) and the other one for the treated group (i.e.,
H1). The sorted matrices can be utilized for counterfactual
estimation in the next phase.
Sample-level Privacy. Unlike label-level privacy, the treat-
ment T is sensitive information in the sample-level setting.
Considering that T is a binary variable, it is not appropriate
to inject Laplace noise, which is used for continuous variables.
Here, based on the privacy budget of ε2, we adopt the random
response mechanism to perturb T , which effectively protects
privacy and improves data utility. The next steps are similar
to the label-level settings. Using the perturbed treatment T ↑

and perturbed propensity scores e↑(X), we can calculate
the distance between each sample and other samples in the
opposite perturbed treatment group. Then, we traverse each
sample and sort other samples according to the corresponding
distance values. After that, we obtain two sorted matching
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Algorithm 3: Causal Effect Estimation (Phase 3)
Input: Original dataset D, sorted matrices H , the

number of neighbors in matching N ,
treatments T ↑, privacy level l, the range of
outcome B, privacy budget ε3, the error
coefficient c (label-level) or h (sample-level)

Output: Average treatment effect estimate ω̂
1 Count the maximum number of times that all samples

appear in the first N neighbors of the sorted index
matrices M (label-level) or M ↑ (sample-level).
// Obtain the number of samples in

the treated and control groups,

and the average maximum number of

matches.

2 if l is label-level then
3 nt, nc ⇐ T,M1 = M

N
4 else
5 n↑

t, n
↑
c ⇐ T ↑,M ↑

1 = M →

N // Sample-level
6 r1 = nt

nc
(or r1 = n→

t
n→
c
)

// Matching limit calculation

7 if r1 ↗ 1 then
8 Calculate the matching limit of treated group k1

based on Equations 9-10 (or Equations 11-12)
9 k2 = max(1, round(k1 · r1))

10 else
11 Calculate the matching limit of control group k2

based on Equations 9-10 (or Equations 11-12)
12 k1 = max(1, round(k2/r1))
// Counterfactual estimation

13 for i-th sample in D do
14 Remove candidate samples that have reached the

upper matching limit from the original sorted list.
15 Select the nearest N neighbors from the remaining

sorted list, and add 1 to their matching counts.
16 Calculate the counterfactual outcome based

on Equation 4.
// Outcome aggregation

17 S1 = Sum(Y1), S0 = Sum(Y0)
// Noise perturbtion

18 Ŝ1 = S1 + Lap(ε3, (k1 + 1)B),
Ŝ0 = S0 + Lap(ε3, (k2 + 1)B)
// ATE estimation

19 ω̂ = 1
n · Ŝ1 →

1
n · Ŝ0

matrices.

F. Causal Effect Estimation
In the third phase, we need to calculate each sample’s

counterfactual estimate and obtain the final ATE estimate.
Label-level Privacy. If we apply the original non-private
approach to select N neighbors for computing counterfactual
results, the number of matches for some samples may be
extremely high, which will make the global sensitivity large.
On the other hand, if we set the upper limit of the number

of times each sample is matched very small, the disturbance
intensity of the noise will be reduced, but the error of the
counterfactual estimate will tend to increase. In addition, the
noise intensity under various privacy budgets is different,
making matching selection more challenging.

To address the above difficulties, we design an adaptive
matching upper limit determination mechanism by considering
the combined impact of noise injection and matching error,
which can provide different matching upper limits for various
privacy budgets.

We first consider the expected squared error of estimating an
aggregated potential outcome S = Sum(Y ). Assuming that
Ŝ is the estimation of S, then the expected squared error can
be written as the summation of variance and the squared bias
of Ŝ:

E[(Ŝ → S)2] = Var[Ŝ] + Bias[Ŝ]2 (6)

Given the maximum variation range of the outcome B, the
matching upper limit for each sample k and privacy budget ε,
we can obtain Var[Ŝ] ⇒ 2k2B2

ω2 .
For Ŝ, its value is related to the number of samples, the

true maximum number of matches, and the set matching
upper limit. We can count the maximum number of times
that all samples appear in the first N neighbors of the sorted
index matrices, denoted as M . Here, we let M1 = M

N ,
which represents the average maximum number of matches.
Intuitively, the smaller the matching upper bound, the greater
the bias. The larger the number of samples and the average
maximum number of matches, the larger the bias. Therefore,
we estimate Ŝ as follows:

Bias[Ŝ] ⇒ c ·B · n1 ·
M1

k
, (7)

where n1 = max (nt, nc) is the number of samples in the
treated group or control group and c is the error coefficient,
which is a hyperparameter. Therefore, the combined error of
noise perturbation and matching limit can be approximately
estimated as follows:

E[(Ŝ → S)2] ⇒
2k2B2

ε2
+ c2 ·B2

· n2
1 ·

M1
2

k2
. (8)

By calculating the minimum value of Equation 8, we can
obtain the optimal value k↗ as follows:

k↗ =

√
ε · c · n1 ·M1

2
. (9)

Since the matching limit is a positive integer and does
not require to exceed the true average maximum number of
matches M1, we can obtain the final optimal matching limit
kf as follows:

kf = min(max(round(k↗), 1),M1). (10)

Here, kf represents the upper bound of the number of
matches for the larger number of treatment groups. The
matching upper bound for the other group can be calculated
using kf and the number of the two treatment groups. For
instance, if the number of control group nc is larger than the

7



number of treated group nt (i.e., r1 = nt
nc

↗ 1), the number
of matches for the treated group will usually be higher than
the number of matches for the control group. In this case, we
obtain k1 = kf and k2 = max(1, round(k1 · r1)). On the
contrary, if the number of control group nc is smaller, we let
k2 = kf and k1 = max(1, round(k2/r1)). Since the upper
limit is calculated based on the average maximum number of
matches, the final matching limit needs to be multiplied by the
preset number of neighbors N . The matching limit for treated
group is k1 · N , and the matching limit for control group is
k2 ·N .

After determining the upper limit of the matching, we
traverse all samples and find the closest N neighbors for
each sample. At the beginning, the records of the number of
matches for all samples are initialized to 0. When N neighbors
are selected in each traversal, these N samples’ matching
counts are increased by 1. Samples that reach the upper limit
will not be selected in subsequent matches. For each sample,
the counterfactual outcome can be computed by the matched
neighbors’ observed outcome, as shown in Equation 4.

After calculating the counterfactual outcomes of all samples,
we can estimate the treatment effect of each sample. However,
calculating and perturbing the treatment effect of each individ-
ual will introduce a lot of noise, making the average treatment
effect estimate inaccurate. Therefore, we choose to aggregate
the potential outcomes of all samples and add Laplace noise,
which can effectively reduce the impact of noise.

As shown in Figure 1, Y1 is composed of the outcomes of
the treated group, while Y0 is composed of the outcomes of
the control group. Laplace mechanism is applied to protect
the samples’ privacy. Note that the samples of the treated
group and the control group are non-overlapping, thus these
two parts can share the same privacy budget. Regarding the
global sensitivity, the sensitivity of treated group is (k1+1)B,
which is determined by two factors: the matching upper limit
of the counterfactual estimation and its own observed outcome.
Similarly, we can obtain the sensitivity of control group is
(k2 + 1)B. Based on the perturbed aggregated outcomes, we
can obtain the final ATE estimate ω̂ .
Sample-level Privacy. Considering the impact of noise injec-
tion and matching error, sample-level also needs to determine
a suitable maximum number of matches for each sample to
achieve a promising estimation result, which is similar to label-
level privacy. However, since the treatment of each sample and
the matching results are perturbed, it is difficult to accurately
estimate the errors caused by noise and matching. According
to the source of the error, the setting of an ideal match upper
limit is related to the privacy budget and the true maximum
number of matches, as well as the characteristics of the dataset.
Unfortunately, most of this information cannot be obtained in
the sample-level setting. Inspired by Equation 9 in the label-
level privacy, we set the value of matching limit in the sample-
level privacy as follows:

k↗ =

√
ε3 · h · n↑

1 ·M
↑
1

2
, (11)

where ε3 is the privacy budget used for perturbing the
aggregated outcomes, h is the error coefficient, and n↑

1 =
max (n↑

t, n
↑
c) is the number of samples in the perturbed treated

group or control group. M ↑
1 is the average maximum number

of matches. The calculation of M ↑
1 is similar to M1 in

the label-level privacy. The only difference is that M ↑
1 is

calculated based on the perturbation information rather than
true information. When the privacy budget is high, the noise
intensity is low, and increasing k↗ helps reduce the matching
error. If n is high, the true matching upper limit is usually
higher, which requires a higher k↗. Since the calculation result
of Equation 11 may not be an integer, we further process k↗

as follows:
kf = max(round(k↗), 1) (12)

After calculating the matching limit of one group, the
maximum matching upper bound of the other group can be
obtained based on the number of samples in the perturbed
groups. Next, we can calculate the counterfactual estimate
for each sample. We then aggregate the potential outcomes
of T ↑ = 1 and T ↑ = 0 for all samples. To satisfy DP,
we utilize Laplace noise to perturb the aggregated outcomes,
with the privacy budget of ε3. Finally, we can compute the
ATE estimate according to the perturbed aggregated outcomes,
which is similar to the calculation at label-level.

G. Putting Things Together
The above three phases constitute the overall process

of PrivATE. Due to space limitations, we defer the pseudo-
code to Appendix A.

H. Algorithm Analysis
Privacy Analysis. Recalling Figure 2, PrivATE mainly
consists of three phases: regression model training, similar
sample sampling, and causal effect estimation. For the label-
level privacy, the outcome is visited and perturbed in the causal
effect estimation phase, with the privacy budget of ε.

For the sample-level privacy of PrivATE, the total privacy
budget is divided into all phases. In the phase of regression
model training, PrivATE needs to protect the true regression
model weights and the true propensity score, which consume
privacy budget of ε11 and ε12 respectively. In the second phase,
the treatment is perturbed based on the privacy budget ε2.
In the causal effect estimation phase, the aggregated outcome
consumes the privacy budget ε3. Therefore, the total privacy
budget is ε = ε11 + ε12 + ε2 + ε3. We obtain the following
theorems, and the detailed proofs are deferred to Appendix C.

Theorem 1. If l is label-level, Algorithm 4 satisfies ε-
Label DP.

Proof. (Sketch) In the “regression model training” and “sim-
ilar sample matching” phases, no privacy budget needs to be
consumed since the true observed outcome is not visited. In
the “causal effect estimation” phase, the aggregated outcome
is perturbed by Laplace mechanism with the privacy budget
ε. Therefore, Algorithm 4 satisfies ε-Label DP.
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Theorem 2. If l is sample-level, Algorithm 4 satisfies ε-
Sample DP, where ε = ε11 + ε12 + ε2 + ε3.

Proof. (Sketch) In the sample-level setting, all types of data
are sensitive. In the first phase, both the model training and
propensity score calculation use real information. Therefore,
the model weights (consuming the privacy budget ε11) and the
propensity scores (consuming ε12) are injected with Laplace
noise to achieve DP. In the second phase, the true treatment
is utilized to guide the sample matching. To ensure DP, the
treatment is perturbed with the privacy budget ε2. The distance
matrix calculation and sorting are finished based on the
perturbed information, which is regarded as post-processing.
In the third phase, the outcome is perturbed based on the
privacy budget ε3, which is similar to the label-level setting.
According to the sequential composition, Algorithm 4 satisfies
ε-Sample DP, where ε = ε11 + ε12 + ε2 + ε3.

Error Analysis. For label-level privacy, we theoretically
analyze the error bound of the aggregated potential outcome
in Theorem 3. The detailed proof is in Appendix D.

Theorem 3. For the label-level privacy, the expected squared
error of aggregated potential outcome S is bounded by
2( (k+1)B

ω )2 + (RNB)2, where R is the total number of times
that neighbor samples are replaced when matching without
matching upper limit and matching with matching upper limit.

Proof. (Sketch) Let Ŝ denotes the estimation of S, the ex-
pected squared error can be written as the summation of
variance and the squared bias of Ŝ according to Equation 6.
The variance part comes from Laplace noise, and the expected
value is 2( (k+1)B

ω )2. The bias part comes from the matching
difference caused by whether the matching upper limit is
applied, and the upper bound is (RNB)2. Combining the above
results, we can obtain the final error bound.

For sample-level privacy, the treatment of each sample is
perturbed to satisfy DP, making the sample grouping of the
original and privacy-preserving data inconsistent. Furthermore,
the regression model is also perturbed, resulting in different
matching results for original and privacy-preserving settings.
Therefore, it is difficult to directly derive the error bound.
Complexity Analysis. We compare the time complexity and
the space complexity of various methods [17, 21, 28–30]. The
running time of PrivATE is significantly lower than AIM and
PrivSyn. The space consumption of PrivATE is the lowest,
and the space consumption of AIM is higher than that of other
methods. The detailed analysis can be found in Appendix E.

IV. EVALUATION

In this section, we first conduct an end-to-end experiment
to illustrate the effectiveness of PrivATE in Section IV-B.
Then, we conduct a hyperparameter study for label-level
privacy in Section IV-C. Furthermore, we explore the impact
of hyperparameter for sample-level privacy in Section IV-D.

TABLE II: Dataset Statistics.
Datasets Treated Control Total Type

IHDP [31] 139 608 747 Semi-real
Lalonde [32] 185 260 445 Real
ACIC [33] 858 3944 4802 Semi-real
Synth [18] 489 511 1000 Synthetic

A. Experimental Setup

Datasets. We run experiments on the four typical datasets,
including real, semi-real, and synthetic datasets. These datasets
are classic benchmarks in causal inference and are widely
adopted in existing studies [17, 21]. The basic information
of these four datasets are shown in Table II, and the details of
these datasets are deferred to Appendix F.
Metric. To evaluate the quality of various methods [17, 21,
28, 29], we utilize the metric of relative error (RE) to show
their performance. The related formula is as follows:

REATE =
|ω̂ → ω |

ω
,

where ω is the true ATE estimate based on the non-private
PSM method and ω̂ is the perturbed ATE estimate based on
the privacy-preserving mechanism. The RE of the non-private
ATE estimate is 0. A value of RE closer to 0 indicates a more
accurate ATE estimate.
Competitors. In this work, we compare PrivATE with two
representative approaches. The first is the existing differ-
ential private ATE estimation methods (i.e., IPW-PP [17],
SmoothDPM [21], and DPCI [30]), which are most com-
parable to our work in terms of problem assumptions and
privacy protection scope. IPW-PP first uses a subset of the
original dataset to learn a perturbed propensity score func-
tion, and then estimates causal effect on the remaining sam-
ples using privacy-preserving inverse probability weighting.
SmoothDPM employs a smooth sensitivity-based mechanism
combined with an exact matching estimator, where the match-
ing variables are required to be discrete, to achieve privacy-
preserving ATE estimation. DPCI estimates the ATE through
doubly robust estimation, and guarantee DP by output pertur-
bation. This method further estimates the differentially private
variance and constructs the confidence intervals (CIs), which
is beyond the focus of this paper. To ensure a fair comparison,
we allocate all privacy budgets to the ATE estimation.

The second is the advanced differentially private data syn-
thesis methods (i.e., PrivSyn [29] and AIM [28]), which are
another potential solution to the ATE estimation problem.
Including this type of comparison helps better understand
the performance of general DP synthesis schemes on this
problem. By effectively capturing the correlation between
various attributes of the original dataset and restoring the orig-
inal distribution as much as possible, PrivSyn achieves great
data synthesis performance. By following the select-measure-
generate paradigm, combined with an iterative and greedy
approach to select the most useful queries, AIM can achieve
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Fig. 2: End-to-end comparison of different methods when the number of matched neighbors N is 5. In each plot, the x-axis
denotes the privacy budget ε, and the y-axis denotes the relative error.

low errors across a range of experimental settings compared
to existing privacy-preserving data synthesis mechanisms.

Note that the above baselines guarantee (ε, ϑ)-Sample DP,
while our proposed PrivATE can provide stricter ε-DP.
Experimental Settings. For the label-level setting of
PrivATE, we set the error coefficient c = 0.01 in the matching
limit calculation. Moreover, we have a further discussion
about the choice of c in Section IV-C. For the sample-level
setting of PrivATE, we set the coefficient h = 0.001 in
the matching limit calculation. We also provide the impact
of various h in Section IV-D. For the allocation of privacy
budget in sample-level setting, we set ε11 = ε12 = 0.5ε1, and
ε1 : ε2 : ε3 = 0.1 : 0.7 : 0.2. We also explore the impact of
different privacy budget allocation in Appendix I of [34].
Implementation. We set the total privacy budget ε ranges
from 0.5 to 4.0. Regarding the number of neighbors N in the
counterfactual estimation, we set N = 5 in the experiments.
In addition, we also provide the results of N = {1, 3, 7} in
Appendix G of [34]. We implement PrivATE with Python 3.8,
and all experiments are conducted on a server with Intel(R)
Core(TM) i7-11700K @ 3.60GHz and 128GB memory. We
repeat experiment 10 times for each settings, and provide the
mean and the standard variance.

B. End-to-End Evaluation

In this section, we perform an end-to-end evaluation of
the two levels of PrivATE and the two types of competitors.
Figure 2 illustrates the experimental results on four datasets.

In Figure 2, different columns represent various datasets. We
have the following observations. First, as the privacy budget
ε increases, the REs of all approaches show a downward
trend. The reason is that the increase in the privacy budget
reduces the noise intensity, allowing these methods to capture
the feature of the original dataset in a more accurate manner.
On this basis, a lower RE of ATE estimate can be obtained.

Second, the two levels of privacy protection schemes of
PrivATE significantly outperform baselines on all datasets.
Label-level privacy of PrivATE performs the best, followed
by sample-level privacy of PrivATE. For the real Lalonde
dataset, the REs of most baselines are larger than 1 even
when the privacy budget is 3, while PrivATE achieves a
low RE of less than 0.2. This emphasizes the superiority
of PrivATE in ATE estimation. By carefully selecting the

matching limit, PrivATE effectively strikes a balance between
the noise perturbation and estimation error, thus obtaining a
low ATE estimate error. For label-level setting of PrivATE, the
privacy requirements are lower than those of sample-level, thus
the regression model training and similar sample matching
in this setting are better, making the REs small even when
the privacy budget is small. Sample-level privacy of PrivATE
needs to protect all types of variables, thus the REs are higher
than label-level when ε is low. As the privacy budget increases
to a certain extent (i.e., ε = 4), the performance of the two
levels is similar. Moreover, in Appendix G of [34], we find
that when the number of matched neighbors N takes different
values, PrivATE shows consistent and similar performance,
which illustrates that PrivATE is robust to the variation of N .
IPW-PP demonstrates the poorest performance across most

datasets, particularly under small privacy budgets. On the one
hand, IPW-PP requires a fixed threshold to constrain the sam-
ple weights in order to achieve bounded sensitivity. However,
this approach lacks flexibility and interpretability. When the
privacy budget is small, the injected noise becomes excessively
large, leading to highly inaccurate ATE estimates. On the
other hand, to ensure privacy protection, IPW-PP splits the
original dataset, using one subset to learn the propensity score
function and the other to estimate the ATE. This partitioning
further compromises estimation accuracy. According to the
results in Figure 2, IPW-PP fails to effectively handle varying
datasets and realistic privacy constraints.
SmoothDPM and DPCI fail to deliver satisfactory perfor-

mance under small privacy budgets. Although these meth-
ods generally outperform IPW-PP, the estimation accuracy
remains limited when strict privacy guarantees are required.
When ε ↗ 1.5, the REs of SmoothDPM and DPCI are larger
than or close to 1 on most datasets, which indicates poor
performance. This is primarily because they directly inject
noise to the final ATE estimate, and smaller privacy budgets
lead to higher noise intensity, thereby degrading accuracy. As
ε increases, the estimation errors of DPCI and SmoothDPM
gradually decrease. Overall, these two method struggle to
achieve low error under strong privacy requirements, which
highlights the necessity of PrivATE.

The relative error of PrivSyn is high, especially when the
privacy budget ε is small. For instance, when the privacy
budget is 1, the REs of PrivSyn exceed 1 on the four datasets,
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and the RE on the Lalonde dataset even reaches 4. In contrast,
the RE of PrivATE is less than 1 in all cases. This is because
PrivSyn is designed to generate a new dataset that closes to
the original dataset, rather than specially designed for ATE
estimation. Due to the small number of samples in the Lalonde
dataset and a large income gap between various individuals,
PrivSyn performs poorly in capturing the true data distribution
when the privacy budget is low, resulting in a high RE. We also
notice that for the ACIC dataset, the REs of PrivSyn are around
1 at various privacy budgets, rather than decreasing as the
budget increases. The main reason is that the dimensionality
of ACIC is high, which makes it challenging for PrivSyn to
capture data characteristics. In addition, the error variance
of PrivSyn under various datasets and privacy settings is
significantly higher than that of PrivATE, which shows that
PrivSyn is not as stable as PrivATE in this task.

The performance of AIM is worse than PrivATE, but better
than PrivSyn. On the one hand, AIM selects the key queries
through adaptive and iterative mechanisms, improving the
quality of synthetic data. On the other hand, the goal of
PrivSyn and AIM is to generate a dataset similar to the original
dataset. This type of method aims to achieve promising results
on a variety of tasks, but not to achieve SOTA results on
a specific task, such as ATE estimation. According to the
experimental results, AIM and PrivSyn cannot achieve promis-
ing performance under low privacy budgets. They experience
some fluctuation in RE with increasing ε, but overall show a
downward trend. In contrast, PrivATE is carefully designed
to balance noise-induced error and matching error in ATE
estimation under DP protection. Therefore, the performance
of PrivATE is better, and the trend in RE becomes more
pronounced as ε increases.

C. Parameter Variation for Label-level Privacy
Choice of Matching Limit. Recalling Equation 9 and Equa-
tion 10 in Section III-F, we approximately estimate the total
error caused by noise and matching, and further calculate
an optimized matching limit for each sample, which can
adaptively vary with the privacy budget and the dataset.

In this section, we verify the rationality of our framework
by comparing this adaptive calculation with the fixed value
method. In particular, we only modify the calculation of
matching limit k↗ in the label-level setting of PrivATE to fixed
values (i.e., 1, 10 and 50), and keep the other parts unchanged.
Figure 3 illustrates the performance of various matching limit
determination mechanisms.

From Figure 3, we observe that the fixed value method is
difficult to achieve great performance across all datasets. Since
the data characteristics and matching situations of different
datasets are various, it is not suitable to set the same matching
limit on all datasets and privacy budgets. When the matching
limit is set to a small value, a low RE usually be achieved when
the privacy budget ε is small. As ε increases, the impact of
noise decreases, and a small matching limit cannot achieve a
great result. On the other hand, larger k can perform better
in high privacy budgets, but this approach will introduce

significant errors when the noise intensity is high. Moreover,
for different datasets, the optimal matching limits under the
same privacy budget are various, making the determination of
the matching upper limit more challenging.

According to the results in Figure 3, PrivATE almost
achieves great performance under various settings. We find
that the RE of the method with fixed small values k does
not decrease significantly with the growth of the privacy
budget. The reason is that a small matching limit makes the
variation of noise intensity small, and the matching error
does not change under a fixed k. Unlike the above, as the
privacy budget ε increases, the matching limit calculated by
PrivATE gradually increases, making the RE decreases. Even
with a small privacy budget, PrivATE still shows promising
performance on these datasets, reflecting the superiority of
adaptive calculation. For the ACIC dataset, the sample size
and dimensionality are both high, which makes the calculated
matching limit large. When ε is small, the noise error plays
a dominant role, making the RE of PrivATE high. With the
increase of ε, PrivATE still shows competitive performance.
Impact of Error Coefficient in Matching Limit Calculation.
In Equation 7, we utilize an error coefficient c to assist the
bias estimate caused by matching in the label-level setting
of PrivATE. In this section, we explore the impact of various
c on final ATE estimation. A suitable c is crucial to reduce
the estimation error. If the value of c is reasonable, the bias
caused by matching can be estimated accurately, which helps
to select an ideal matching limit. However, if c is too large or
too small, the estimation of matching error will be severely
distorted, resulting in an inappropriate setting of the matching
limit and inaccurate estimation of ATE.

Figure 4 illustrates the RE of ATE estimate when the
number of matched neighbors N is 5. We obtain the following
observations. First, the impact of various c on the final RE
is significant. If c is too small, it means that the bias from
matching is overestimated, which will make the matching limit
too low. If the value of c is too high, the influence of matching
will be underestimated, making the matching limit too large.
Second, for the same dataset, the optimal value c under various
privacy budgets may be different. The reason is that the noise
perturbation and matching error under various privacy budgets
are changing. In addition, the optimal c for various datasets is
also different.

In general, we find that PrivATE achieves a great perfor-
mance under various privacy budgets and datasets when c =
0.01. We believe that this setting can accurately characterize
the matching error, thus we adopt c = 0.01 in our experiments.

D. Parameter Variation for Sample-level Privacy
Choice of Matching Limit. Recalling Equation 11 and Equa-
tion 12 in Section III-F, we calculate the matching limit for
sample-level privacy similar to the computation of label-level
privacy. In this section, we evaluate the performance of the
adaptive calculation of PrivATE and fixed matching limit (i.e.,
1, 10, and 50) methods, which is similar to the comparison in
label-level privacy. Figure 5 illustrates the related results.
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Fig. 3: Impact of different matching limit determination mechanisms in the label-level privacy of PrivATE when the number
of matched neighbors N is 5. The columns represent the used datasets. In each plot, the x-axis denotes the privacy budget ε,
and the y-axis denotes relative error.
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Fig. 4: Impact of different error coefficients c in the label-level privacy when the number of matched neighbors N is 5. The
columns denote the used datasets. In each plot, the x-axis denotes the error coefficient c, and the y-axis denotes relative error.
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Fig. 5: Impact of different matching limit determination mechanisms in the sample-level privacy of PrivATE when the number
of matched neighbors N is 5. The columns represent the used datasets. In each plot, the x-axis denotes the privacy budget ε,
and the y-axis denotes relative error.

We observe that the relative error for a large fixed matching
limit is significantly higher than that for a small fixed matching
limit. The reason is that sample-level privacy allocates the
total privacy budget across multiple phases to satisfy DP. As a
result, the privacy budget available in the final phase is smaller.
In addition, due to noise perturbation in both the regression
model and the propensity score, the matching results are not
entirely accurate. Consequently, increasing the matching limit
has less impact compared to label-level privacy.

At the same time, setting the matching limit to a very small
fixed value is not optimal. When noise has low interference
in matching or the privacy budget is large enough, moderately
increasing the matching limit can help reduce estimation error.
According to the results in Figure 5, our method achieves
promising performance in various settings.
Impact of Error Coefficient in Matching Limit Calculation.
Recalling Equation 11 in Section III-F, an error coefficient h
is utilized to help determine the value of matching limit in the
sample-level privacy of PrivATE. In the section, we explore
the influence of different h on the ATE estimate. Figure 6

illustrates the relative errors of various h.
We observe that a larger h tends to produce higher relative

errors. The reason is that the noise is injected into each phase
in the sample-level setting, thus the fidelity of regression
model and matching results is significantly lower than that
of the label-level. In this case, increasing h cannot effectively
reduce the matching error. On the other hand, the sensitivity
will increase as h grows, making the noise error higher. At
the same time, a relatively small value of h may not be
a great choice since this cannot reduce the matching error.
Furthermore, it is impossible to find an h that achieves the
lowest RE for various privacy budgets. Taking into account
the impact of different budgets and datasets, we choose to set
h = 0.001 in the experiments.

V. DISCUSSION

Generalization. In this paper, our proposed PrivATE mainly
focuses on the binary treatments. For more complex causal
inference setups (e.g., multi-valued treatments), the potential
schemes are as follows: A multinomial logit regression model

12



���
 ���� ���	 ���� ����

�

���

���

���

���

�
�

��
�


�

��������

���
 ���� ���	 ���� ����

�

�

�

��
�������! ��

���
 ���� ���	 ���� ����

�

�

	

�




��������

���
 ���� ���	 ���� ����

�

�

�

	

�����# "�

����� ��	�� ��
��
Fig. 6: Impact of different error coefficients h in the sample-level privacy when the number of matched neighbors N is 5. The
columns denote the used datasets. In each plot, the x-axis denotes the error coefficient h, and the y-axis denotes relative error.

can be applied for fitting. Then, the noise can be injected
into the true probability vector. The multi-dimensional treat-
ments can be perturbed by Generalized Randomized Response
(GRR). Moreover, a distance metric function can be utilized to
calculate the distance between different categories and achieve
pairwise privacy-preserving ATE estimation.
Scalability. For PrivATE, propensity score matching and
adaptive matching algorithms involve non-trivial computation,
which may be computationally slow on large-scale datasets.
Here, we clarify that PrivATE achieves a low computa-
tional complexity compared to existing solutions according
to the complexity analysis in Appendix E. This suggests that
PrivATE has the potential to run on larger datasets. Fur-
thermore, to address the scalability bottlenecks that matching
algorithms may encounter on large datasets, the efficiency of
PrivATE can be further improved by employing approaches
such as approximate nearest neighbor (ANN) matching, hier-
archical reduction matching, and GPU acceleration.

VI. RELATED WORK

There are several literatures explore differentially private
ATE estimation in observational studies [17–21, 30, 35].
Specifically, Guha et al. [19] design a differentially pri-
vate weighted average treatment effect estimator for binary
outcomes by splitting the data into several disjoint groups.
Similarly, Lebeda et al. [35] also propose a data splitting-based
framework to estimate the average treatment effect. Ohnishi et
al. [20] present a differentially private covariate balancing
weighting estimator to infer causal effects while protecting
the privacy of covariates. Schröder et al. [30] further propose
a framework to estimate the ATE by doubly robust estimation
and construct the confidence intervals. In this setting, it is
challenging to achieve promising performance under small
privacy budgets, since the noise is directly injected to the
ATE estimate. In addition, Lee et al. [17] propose a privacy-
preserving inverse probability weighting (IPW) method [18] to
estimate the causal effect. However, this approach relies on a
pre-defined truncation threshold to bound the sample weights,
which lacks flexibility and interpretability. Koga et al. [21]
introduce a smooth-sensitivity-based DP algorithm to perturb
the true average treatment effect. Nevertheless, it requires that
the matching variables are discrete, and performs poorly under
strong privacy constraints.

Moreover, some research incorporates differential privacy
to protect real data in randomized experiments [11, 36–
40]. Kancharla et al. [36] investigate the problem of ATE
estimation in randomized controlled trials. They assume a
binary outcome space and propose two consistent estimators
for estimating the ATE. Betlei et al. [37] focus on privacy-
preserving individual treatment effect (ITE) estimation and
introduce a differentially private method, ADUM, which learns
uplift models from data aggregated according to a given
partition of the feature space. Javanmard et al. [41] propose
a differential privacy mechanism, CLUSTER-DP, which lever-
ages the inherent cluster structure of the data to estimate causal
effects, while perturbing the outcomes to preserve individual
privacy. Furthermore, Ohnishi et al. [38] develop a method
for inferring causal effects from locally privatized data in
randomized experiments. In addition, Niu et al. [42] introduce
a meta-algorithm for estimating conditional average treatment
effects using DP-EBMs [43] as the base learner. Schröder et
al. [44] further propose a framework for conditional average
treatment effects estimation that is Neyman-orthogonal.

In addition, differentially private data synthesis can also be
used for differentially private ATE estimation [28, 29, 45–48].
In this way, the ATE estimate can be calculated based on a syn-
thetic dataset that satisfies DP. Zhang et al. [29] design a new
method to automatically and privately identify correlations in
the data, and then generate sample data from a dense graphic
model. McKenna et al. [28] propose a workload-adaptive
algorithm that first selects a set of queries, then privately
measures those queries, and finally generates synthetic data
from the noisy measurements. However, these approaches are
essentially different from our work: Their goal is to generate a
synthetic dataset that closely resembles the original one under
DP [49–53], while our focus is on accurately estimating ATE
while satisfying DP. The experimental results also demonstrate
the superiority of our method.

Moreover, there are also some other privacy-preserving
solutions (e.g., k-anonymity, secure multi-party computation)
that can be used for data protection. For instance, Abadi et
al. [54] propose DP-SGD, which is a classic method to train a
model while ensuring the privacy of training samples. David-
son et al. [55] design a practical mechanism named STAR
for providing cryptographically-enforced k-anonymity protec-
tions. Furthermore, Shamsabadi et al. [56] present Nebula, a
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system for differentially private histogram estimation on data
distributed among clients. Although these methods cannot be
directly applied to differentially private ATE estimation, their
underlying ideas offer valuable insights for future research.

VII. CONCLUSION

In this paper, we propose a practical framework PrivATE for
estimating the average treatment effect (ATE) for observational
data under differential privacy (DP). Based on propensity score
matching, two different levels (i.e., label-level and sample-
level) of privacy protection approaches in PrivATE are pro-
posed to accommodate various privacy requirements. To strike
a great trade-off between noise and matching errors, PrivATE
achieves an adaptive matching limit determination by con-
sidering the joint influence caused by noise perturbation and
matching inaccuracy. Extensive experiments on four datasets
demonstrate the superiority of our proposed PrivATE. We fur-
ther verify the effectiveness of matching limit determination.
We also analyze the impact of hyper-parameters of PrivATE
and provide the guideline for their selection.
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APPENDIX

A. Workflow of PrivATE
Algorithm 4 illustrates the overall process of PrivATE. In

the label-level privacy, only the third phase needs to consume
privacy budget to perturb the outcomes. While in the sample-
level privacy, all three phases need to allocate the privacy
budget to protect the privacy of all types of data.

Algorithm 4: PrivATE
Input: Original dataset D, privacy level l, privacy

budget ε (label-level) or
ε = ε11 + ε12 + ε2 + ε3 (sample-level), the
number of matched neighbors N , the maximum
variation range of outcome B, the error
coefficient c (label-level) or h (sample-level)

Output: Propensity score e↑(X), treatment T ↑, sorted
matrices H , average treatment effect estimate
ω̂

1 if l is label-level then
// Phase 1: Regression model

training

2 e↑(X) ⇐ Algorithm 1(D, l)
// Phase 2: Similar sample matching

3 T ↑, H ⇐Algorithm 2(D, e↑(X), l)
// Phase 3: Causal effect

estimation

4 ω̂ ⇐Algorithm 3(D,H,N, T ↑, l, B, ε, c)
5 else

// Phase 1: Regression model

training

6 e↑(X) ⇐ Algorithm 1(D, l, ε11, ε12)
// Phase 2: Similar sample matching

7 T ↑, H ⇐Algorithm 2(D, e↑(X), l, ε2)
// Phase 3: Causal effect

estimation

8 ω̂ ⇐Algorithm 3(D,H,N, T ↑, l, B, ε3, h)

B. Proof of Theorem 1
Proof. In the label-level setting, only the outcome is sensitive
information. In the first two phases, the outcome does not need
to be accessed, thus does not consume the privacy budget. In
the third phase, the original potential outcomes of all samples
are aggregated to calculate the potential outcome sum of the
treated and control groups. We utilize Laplace mechanism to
perturb the original aggregated outcome, thus this step satisfies
ε-DP. Note that the samples of the treated and control groups
are non-overlapping, thus these two parts can share the same
privacy budget according to the parallel composition. Finally,

15



the final ATE estimate is computed based on the perturbed
aggregated outcome, which can be considered post-processing
and does not consume the privacy budget. Therefore, if the
privacy level l is label-level, Algorithm 4 satisfies ε-Label DP.

Lemma 4. Let G(w) and g(w) be two vector-based functions,
which are continuous, and differentiable at all points. More-
over, let G(w) and G(w)+g(w) be ς1-strongly convex in L1-
norm. If w1 = argminw G(w) and w2 = argminw G(w) +
g(w), then

||w1 → w2||1 ↗
1

ς1
max
w

||⇑g(w)||↘

Proof. Using the definition of w1 and w2, and the fact that G
and g are continuous and differentiable everywhere,

⇑G(w1)→⇑G(w2) = ⇑g(w2)

As G(w) is ς1-strongly convex, then

(⇑G(w1)→⇑G(w2))
T (w1 → w2) = (⇑g(w2))

T (w1 → w2)

⇓ ς1||w1 → w2||
2
1

Based on Hölder inequality, we have

(⇑g(w2))
T (w1 → w2) ↗ ||⇑g(w2)||↘||w1 → w2||1

Then, we obtain

ς1||w1 → w2||
2
1 ↗ ||⇑g(w2)||↘||w1 → w2||1

Further, we have

ς1||w1 → w2||1 ↗ ||⇑g(w2)||↘

Finally, we can obtain

||w1 → w2||1 ↗
1

ς1
max
w

||⇑g(w)||↘

C. Proof of Theorem 2
Proof 1: Private model training satisfies ε11-DP.

Proof. Assuming that the dataset D and the adjacent dataset
D↑ differ in the i-th sample, the difference between their
corresponding loss functions is as follows:

g(w) = J(w,D)→ J(w,D↑)

=
1

n
[log(1 + e↔XT

i wti)→ log(1 + e↔X→T
i wt→i)]

We observe that the logarithmic loss function l = log(1 +
e↔XTwt) is convex and differentiable, and J(w) is ς-strongly
convex. Then, we can obtain the derivative of g(w) as follows:

⇑g(w) =
1

n
[XT

i l
↑(XT

i wti)ti →X ↑T
i l

↑(X ↑T
i wt

↑
i)t

↑
i],

where l↑(·) stands for the derivative of the logarithmic loss
function, and its range is [0, 1]. Then, we obtain

||⇑g(w)||↘ =
1

n
||XT

i l
↑(XT

i wti)ti →X ↑T
i l

↑(X ↑T
i wt

↑
i)t

↑
i||↘

For vector v, we have ||v||↘ = maxj |vj |. Since |l↑(·)t| ↗ 1,
we further obtain

|⇑g(w)j | ↗
1

n
|Xi,j →X ↑

i,j | ↗
1

n
(|Xi,j |+ |X ↑

i,j |) ↗
2

n

Therefore, we can obtain

max
w

||⇑g(w)||↘ ↗
2

n

It is obvious that ϑ
2 ||w||

2
2 is ς-convex in L2-norm. Next, we

need to convert it to L1-norm strongly convex. For vector v,
||v||1 ↗

⇔
d||v||2, then

ς||w1 → w2||
2
2 ⇓ ς

1

d
||w1 → w2||

2
1

Therefore, the regularization term ϑ
2 ||w||

2 is ϑ
d -strongly

convex in L1-norm (i.e., ς1 = ϑ
d ). Based on Lemma 4, we

can obtain

||w1 → w2||1 ↗
1

ς1
max
w

||⇑g(w)||↘ ↗
d

ς
·
2

n
=

2d

nς

Therefore, the L1-sensitivity of w is 2d
nϑ . The Laplace noise

with the privacy budget of ε11 is adopted to perturb the true
weights, thus the privacy model training satisfies ε11-DP.

Proof 2: Private score calculation satisfies ε12-DP.

Proof. Different samples are independent of each other, thus
the same privacy budget ε12 can be used to add Laplace
noise to their propensity scores. According to the parallel
composition introduced in Section II-B, the step of private
score calculation satisfies ε12-DP.

Proof 3: Similar sample matching satisfies ε2-DP.

Proof. For treatment T , the random response mechanism is
applied to protect the sample’s privacy. According to Sec-
tion II-B, the random response mechanism meets the require-
ments of DP. The distance calculation between various samples
and distance sorting are based on the perturbed T ↑ and e↑(X).
According to the post-processing property of DP, these steps
do not incur additional privacy loss. Following the sequential
composition of DP, the similar sample matching phase satisfies
ε2-DP.

Proof 4: Causal effect estimation satisfies ε3-DP.

Proof. The matching limit is calculated without touching the
true data, thus it meets DP. The counterfactual outcome is
perturbed by Laplace noise with the privacy budget of ε3.
The ATE estimation is finished based on the noisy outcomes.
According to the sequential composition and post-processing
of DP, causal effect estimation satisfies ε3-DP.

Overall Privacy Budget. According to the above proofs, in
the first phase, the private regression model training satisfies
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ε11-DP, and the private propensity score calculation satisfies
ε12-DP. In the second phase, the similar sample matching
satisfies ε2-DP. In the third phase, the causal effect estimation
satisfies ε3-DP. Based on the sequential composition of DP,
we obtain that if l is set to sample-level, Algorithm 4 satisfies
ε-Sample DP, where ε = ε11 + ε12 + ε2 + ε3.

D. Proof of Theorem 3

Proof. Here, we provide the derivation for the outcome sum of
the treated group S1 (the derivation of the control group S0 is
similar). According to Equation 6, let Ŝ denote the estimation
of S, the expected square error E[(Ŝ → S)2] can be written
as the summation of variance and the squared bias of Ŝ, i.e.,
E[(Ŝ → S)2] = Var[Ŝ] + Bias[Ŝ]2.

The variance of Ŝ comes from Laplace noise, given the
maximum variation range of the outcome B, the matching up-
per limit for each sample k and the privacy budget ε, we obtain
the expected error of variance part is Var[Ŝ] = 2( (k+1)B

ω )2.
The error of bias part comes from the matching difference

caused by whether the matching upper limit is applied. For
each sample j ↔ {1, 2, ..., nc} in the control group, let uj

represents the number of times sample j is selected as a neigh-
bor in the original nearest neighbor matching. Then, we can
obtain the total number of times R =

∑nc

j=1 max(0, uj → k)
that neighbor samples are replaced when matching without the
matching upper limit and when matching with the matching
upper limit. Further, we obtain Bias[Ŝ]2 = |E(Ŝ) → S|2 ↗

(RNB)2, where N is the number of neighbors for each sample
in the matching.

Based on the above derivation, we can obtain:

E[(Ŝ → S)2] ↗ 2(
(k + 1)B

ε
)2 + (

R

N
B)2

E. Complexity Analysis

In this section, we analyze the computational complexity
of various methods, and quantitatively evaluate their running
time and memory consumption.
Time Complexity. We provide the time complexity by ana-
lyzing each phase of the algorithms. The number of samples
is n, and the number of covariates is d.

For label-level privacy of PrivATE, the goal of the first
phase is to train a logistic regression model. The time com-
plexity of model training is O(nd). In the second phase, we
need to calculate and sort the distance between the sample and
other samples in the opposite treatment group, O(n log n). In
the third phase, the counterfactual outcome of each sample
is estimated and the potential outcomes are aggregated to
compute the final ATE. The time complexity is O(nN),
where N is the number of neighbors in the counterfactual
estimation. Above all, we obtain the total time complexity is
O(nd+n log n+nN). For sample-level privacy of PrivATE,
additional noise injection will incur a time complexity of
O(n) < O(n log n). Therefore, the time complexity of
sample-level privacy is also O(nd+ n log n+ nN).

For IPW-PP, the time complexity of propensity score model
training is O(n1d), where n1 is the number of samples used to
train the model. The time complexity of differentially private
ATE estimation phase is O(n2d), where n2 = n → n1 is the
number of samples used to estimate ATE. Since O(n1d) +
O(n2d) < O(nd), the total time complexity of IPW-PP is
O(nd).

For SmoothDPM, the time complexity of matching is O(n),
and the time complexity of smooth sensitivity calculation is
O(ng), where g is the number of different discrete covariate
combinations. Therefore, the time complexity of SmoothDPM
is O(ng).

For DPCI, the time complexity of nuisance model fitting is
typically O(nd). The time complexity of ATE calculation is
O(n). Therefore, the total time complexity of DPCI is O(nd).

For PrivSyn, in the marginal selection step, there are
p = d(d↔1)

2 possible pairwise marginals. In the i-th iteration
of marginal selection algorithm, (p → i) pairwise marginals
need to be checked; thus the time complexity is

∑m
i=1(p →

i) = mp →
m(m+1)

2 = O(md2), where m is the number of
marginals. In the dataset generation step, PrivSyn should go
through all marginals r times to ensure consistency. Thus, the
time complexity is mr, and the overall time complexity is
O(md2 +mr).

For AIM, all 1-way marginals are measured in the begin-
ning, and the time complexity is O(nd). In the iterative stage,
the noise is injected into the selected v-way marginals in each
round. The corresponding time complexity is O(Tqnv), where
T is the number of iteration, and q is the number of candidate
queries in each round. Therefore, the total time complexity of
AIM is O(nd+ Tqnv).
Space Complexity. For PrivATE, it requires storing the
covariate matrix and the propensity score, thus the space
complexity of PrivATE is O(nd). For IPW-PP, the memory
consumption mainly comes from the original dataset and
model training, and the corresponding space complexity is
O(nd). For SmoothDPM, it requires storing the original
dataset and the grouping information, thus the space time
complexity is O(nd+g). For DPCI, it mainly requires storing
the dataset and nuisance models, thus the space complexity
is O(nd). For PrivSyn, the memory consumption consist of
two parts, i.e., marginal tables and synthetic dataset. The
memory comsumption of marginal tables is the product of the
number of marginals m and the average number of cells for
each marginal C, and the memory consumption of synthetic
dataset is O(nd). Therefore, the space complexity of PrivSyn
is O(mC + nd). For AIM, it requires to store the original
dataset with the space complexity of O(nd). In the iteration
process, AIM needs to store the noise measurement values. The
space complexity is O(Thv), where hv is the domain size for
any v-way marginal. In addition, AIM also needs to storage
the Private-PGM model parameters, with the space complexity
of O(S), where S is the junction tree size. Therefore, the total
space complexity of AIM is O(nd+ Thv + S).
Empirical Evaluation. Table IV and Table V show the
running time and the memory consumption for all methods

17



TABLE III: Comparison of computational complexity.

Methods Time Space

IPW-PP O(nd) O(nd)
SmoothDPM O(ng) O(nd+ g)

DPCI O(nd) O(nd)
PrivSyn O(md2 +mr) O(mC + nd)
AIM O(nd+ Tqnv) O(nd+ Thv + S)

PrivATE (sample) O(nd+ n logn+ nN) O(nd)
PrivATE (label) O(nd+ n logn+ nN) O(nd)

TABLE IV: Comparison of running time (measured by sec-
onds).

Datasets
Methods IHDP Lalonde ACIC Synth

IPW-PP 0.29s 0.16s 0.32s 0.06s
SmoothDPM 0.03s 0.04s 0.06s 0.02s

DPCI 0.09s 0.04s 0.94s 0.08s
PrivSyn 67.02s 5.18s 4861.72s 8.11s
AIM 210.35s 22.24s 12569.72s 104.63s

PrivATE (sample) 0.08s 0.04s 0.68s 0.05s
PrivATE (label) 0.06s 0.02s 0.55s 0.04s

TABLE V: Comparison of memory consumption (measured
by Megabytes).

Datasets
Methods IHDP Lalonde ACIC Synth

IPW-PP 471.13 470.92 493.67 472.70
SmoothDPM 469.13 468.92 477.31 470.81

DPCI 479.84 476.26 483.60 476.05
PrivSyn 540.44 534.98 572.21 537.60
AIM 1712.74 933.76 4177.00 1043.12

PrivATE (sample) 470.60 469.97 484.55 470.92
PrivATE (label) 468.19 467.46 479.83 468.29

on the four datasets (see their details in Table II).
The empirical running time in Table IV illustrates that the

performance of differentially private ATE estimation methods
is better than synthesis-based methods. The running time of
IPW-PP, SmoothDPM and PrivATE on the four datasets is
smaller than 1s, which reflects their high efficiency. PrivATE
incurs longer runtime on the ACIC dataset due to its larger
size, which increases the computational cost of both model
training and distance sorting. The running time of sample-level
of PrivATE is slightly higher than label-level since sample-
level requires additional noise injection. In addition, the run-
ning time of PrivSyn is significantly longer than PrivATE
since it requires capturing the features of many marginals. AIM
exhibits the longest time due to a large number of iterations.

Table V shows the memory consumption. The consumption
of PrivATE is the lowest. We find that the consumption of
PrivATE, IPW-PP and SmoothDPM is close because most
of the same memory is used to store the original dataset.
The consumption of AIM is significantly higher than that of
other methods since it requires to storage the selected v-way
marginals and the junction tree.

F. Dataset Description
The details of the four datasets are as follows.

• IHDP [31]. The Infant Health and Development Program
(IHDP) dataset is a semi-real dataset, where only the out-
come value is simulated. This dataset includes n = 747
individuals comprised of nt = 139 treated and nc =
608 control individuals. The treatment involves specialist
home visits for children, while the outcome is their future
cognitive test scores. The dimension of the covariates is
d = 25, including demographic information, infant health,
socioeconomic status, etc.

• Lalonde [32]. The Lalonde dataset is a real dataset that
comes from an evaluation study of the national supported
work (NSW) program. In particular, the experimental treated
group from the NSW study (which received job training)
is combined with a non-experimental control group drawn
from observational surveys. This dataset is composed of n =
445 individuals, where nt = 185 individuals belong to the
treated group and nc = 260 individuals belong to the control
group. The treatment refers to whether or not to participate
in the NSW program, and the outcome is earning in 1978.
This dataset includes d = 8 dimensions of covariates, such
as the age, years of education, etc.

• ACIC [33]. ACIC comes from the Atlantic Causal Inference
Conference competition in 2016 for causal challenges. The
dataset used in this competition is semi-real, i.e., the covari-
ates are real, while the treatment and outcome are synthetic.
In our experiment, there are a total of n = 4802 samples,
of which nt = 858 samples are in the treated group and
nc = 3944 samples are in the control group.

• Synth [18]. This dataset is a synthetic dataset. We adopt
the simulated method introduced in [21] to generate this
dataset. First, we simulate a covariate matrix. A total of
n = 1000 samples are generated, each characterized by
d = 20 covariates. These covariates are independently
sampled from a uniform distribution. To mimic the selection
bias inherent in observational data, the treatment assignment
T is made dependent on the covariates. We employ a logistic
model where the propensity score for each sample is given
by e(Xi) = sigmoid(a · (2Xi → 1)). The parameter a,
which controls the extent of selection bias, is drawn from
the uniform distribution. Next, the observed outcome Y for
each sample is synthesized using a linear response function:
Yi = b ·Xi + ω · Ti + qi. Here, b is a vector of coefficients
sampled from a uniform distribution, representing the het-
erogeneous influence of each covariate on the outcome. The
scalar ω is set to 0.5, which stands for the ATE estimate. qi
is an independent noise term, also sampled from a uniform
distribution, which introduces random variability into the
outcome. After the above process, the treatment assignment
yields a naturally imbalanced split, resulting in a final
dataset with nt = 489 samples in the treated group and
nc = 511 samples in the control group.
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